-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecompose_network.py
53 lines (48 loc) · 1.6 KB
/
decompose_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
from pathlib import Path
import torch
import torch.nn as nn
import torchvision.models as models
from decompose_layer import decompose_layer
from decompose_resnet import decompose_resnet
from utils import load_model
RESNETS = {
"cifar10_resnet20",
"cifar10_resnet32",
"cifar10_resnet56",
"cifar10_resnet110",
"imagenet_resnet18",
"imagenet_resnet34",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-net", type=str, required=True, help="net type")
parser.add_argument(
"-weights",
type=str,
required=False,
help="the weights file of the baseline network",
)
parser.add_argument("-p", type=float, default=False, help="RSDTR precision")
args = parser.parse_args()
p = Path(__file__)
if args.net == "imagenet_resnet34":
net = models.resnet34(True)
elif args.net == "imagenet_resnet18":
net = models.resnet18(True)
else:
net = load_model(args.weights)
if args.net in RESNETS:
decompose_resnet(args, net)
else:
for key, layer in net.features._modules.items():
if isinstance(layer, nn.modules.conv.Conv2d) and key != "0":
decomposed = decompose_layer(layer, args.p)
net.features._modules[key] = decomposed
Path(f"{p.parent}/decomposed_weights/").mkdir(parents=True, exist_ok=True)
checkpoint = {"model": net, "state_dict": net.state_dict()}
tmp = str(args.p)
torch.save(
checkpoint,
f"{p.parent}/decomposed_weights/tr_{args.net}_{tmp.replace('.', '_')}.pth",
)