-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dnsm.py
67 lines (55 loc) · 1.9 KB
/
test_dnsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import pandas as pd
import torch
import pytest
from netam.framework import (
crepe_exists,
load_crepe,
load_and_add_shm_model_outputs_to_pcp_df,
)
from netam.common import aa_idx_tensor_of_str_ambig, MAX_AMBIG_AA_IDX
from netam.models import TransformerBinarySelectionModelWiggleAct
from netam.dnsm import DNSMBurrito, train_test_datasets_of_pcp_df
def test_aa_idx_tensor_of_str_ambig():
input_seq = "ACX"
expected_output = torch.tensor([0, 1, MAX_AMBIG_AA_IDX], dtype=torch.int)
output = aa_idx_tensor_of_str_ambig(input_seq)
assert torch.equal(output, expected_output)
@pytest.fixture
def pcp_df():
df = load_and_add_shm_model_outputs_to_pcp_df(
"data/wyatt-10x-1p5m_pcp_2023-11-30_NI.first100.csv.gz",
"data/cnn_joi_sml-shmoof_small",
)
return df
@pytest.fixture
def dnsm_burrito(pcp_df):
"""Fixture that returns the DNSM Burrito object."""
train_dataset, val_dataset = train_test_datasets_of_pcp_df(pcp_df)
model = TransformerBinarySelectionModelWiggleAct(
nhead=2, d_model_per_head=4, dim_feedforward=256, layer_count=2
)
burrito = DNSMBurrito(
train_dataset,
val_dataset,
model,
batch_size=32,
learning_rate=0.001,
min_learning_rate=0.0001,
)
burrito.joint_train(epochs=1, cycle_count=2)
return burrito
def test_crepe_roundtrip(dnsm_burrito):
os.makedirs("_ignore", exist_ok=True)
crepe_path = "_ignore/dnsm"
dnsm_burrito.save_crepe(crepe_path)
assert crepe_exists(crepe_path)
crepe = load_crepe(crepe_path)
model = crepe.model
assert isinstance(model, TransformerBinarySelectionModelWiggleAct)
assert dnsm_burrito.model.hyperparameters == model.hyperparameters
model.to(dnsm_burrito.device)
for t1, t2 in zip(
dnsm_burrito.model.state_dict().values(), model.state_dict().values()
):
assert torch.equal(t1, t2)