-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess_data.py
215 lines (198 loc) · 7.23 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
import logging as log
import argparse
import os
import os.path
import time
import pandas as pd
import csv
import random
import numpy as np
from common import get_randint
from read_data import write_partis_data_from_annotations, write_data_after_imputing, write_data_after_sampling
from data_split import split_train_val
from shutil import copyfile
def parse_args():
''' parse command line arguments '''
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--seed',
type=int,
help='Random number generator seed for replicability',
default=1)
parser.add_argument('--log-file',
type=str,
help='Log file',
default='_output/log_preprocess.txt')
parser.add_argument('--path-to-annotations',
type=str,
help='path to partis annotations')
parser.add_argument('--input-genes',
type=str,
default=None,
help='csv input germline info if not using partis annotations')
parser.add_argument('--input-seqs',
type=str,
default=None,
help='csv input sequence info if not using partis annotations')
parser.add_argument('--output-genes',
type=str,
default=None,
help='csv file with output germline info')
parser.add_argument('--output-seqs',
type=str,
default=None,
help='csv file with output sequence info')
parser.add_argument('--output-train-seqs',
type=str,
default=None,
help='csv file with output sequence info on the training set')
parser.add_argument('--output-test-seqs',
type=str,
default=None,
help='csv file with output sequence info on the testing set')
parser.add_argument('--motif-len',
type=int,
help='comma-separated motif lengths (odd only)',
default=5)
parser.add_argument('--impute-ancestors',
action='store_true',
help='impute ancestors using dnapars')
parser.add_argument('--sample-from-family',
action='store_true',
help='sample sequence from clonal family')
parser.add_argument('--sample-highest-mutated',
action='store_true',
help='sample highest mutated sequence from each clonal family')
parser.add_argument("--locus",
type=str,
choices=('','igh','igk','igl'),
help="locus for use in partis annotations (igh, igk or igl; default selects all loci)",
default='')
parser.add_argument("--species",
type=str,
choices=('','mouse','human'),
help="species for use in partis annotations (mouse or human; default selects all species in data)",
default='')
parser.add_argument('--group',
type=str,
help="a group that's in the metadata file to filter by (defaults to no filter)",
default='')
parser.add_argument('--region',
type=str,
choices=('v','d','j','vdj'),
help="region of BCR to return",
default='v')
parser.add_argument('--germline-family',
type=str,
choices=('v','d','j'),
help="germline family to use for validation splits",
default='v')
parser.add_argument('--scratch-directory',
type=str,
help='where to write dnapars files, if necessary',
default='_output')
parser.add_argument('--metadata-path',
type=str,
help='metadata with subject/species/locus information',
default=None)
parser.add_argument('--use-out-of-frame-seqs',
action='store_true',
help='use out-of-frame seqs?')
parser.add_argument('--filter-indels',
action='store_true',
help='ignore sequences that had indels?')
parser.add_argument('--test-column',
type=str,
help='column in the dataset to split training/testing on (e.g., subject, clonal_family, etc.)',
default=None)
parser.add_argument('--test-idx',
type=int,
help='index of test column to use for splitting (default chooses randomly based on tuning sample ratio)',
default=None)
parser.add_argument('--tuning-sample-ratio',
type=float,
help="""
proportion of data to use for tuning the penalty parameter.
if zero, training data will be the full data
""",
default=0.1)
args = parser.parse_args()
assert(args.motif_len % 2 == 1 and args.motif_len > 1)
return args
def write_train_test(output_seqs, sampled_set):
"""
Write data after sampling so shazam and samm fit to the same data
"""
with open(output_seqs, 'w') as seq_file:
seq_writer = csv.DictWriter(seq_file, sampled_set[0].keys())
seq_writer.writeheader()
for seq_dict in sampled_set:
seq_writer.writerow(seq_dict)
def main(args=sys.argv[1:]):
args = parse_args()
log.basicConfig(format="%(message)s", filename=args.log_file, level=log.DEBUG)
random.seed(args.seed)
np.random.seed(args.seed)
scratch_dir = os.path.join(args.scratch_directory, str(time.time() + get_randint()))
if not os.path.exists(scratch_dir):
os.makedirs(scratch_dir)
if args.path_to_annotations is not None:
seq_filters = {}
if args.filter_indels:
seq_filters['indel_reversed_seqs'] = ['']
if args.use_out_of_frame_seqs:
seq_filters['in_frames'] = [False]
write_partis_data_from_annotations(
args.output_genes,
args.output_seqs,
args.path_to_annotations,
args.metadata_path,
filters={
'group': [args.group],
'locus': [args.locus],
'species': [args.species],
},
seq_filters=seq_filters,
region=args.region,
germline_family=args.germline_family,
)
args.input_genes = args.output_genes
args.input_seqs = args.output_seqs
if args.sample_from_family or args.sample_highest_mutated:
write_data_after_sampling(
args.output_genes,
args.output_seqs,
args.input_genes,
args.input_seqs,
sample_highest_mutated=args.sample_highest_mutated,
)
elif args.impute_ancestors:
write_data_after_imputing(
args.output_genes,
args.output_seqs,
args.input_genes,
args.input_seqs,
motif_len=args.motif_len,
verbose=False,
scratch_dir=scratch_dir
)
elif args.path_to_annotations is None:
copyfile(args.input_genes, args.output_genes)
copyfile(args.input_seqs, args.output_seqs)
if args.output_train_seqs is not None:
# convert pandas df to list of dicts
metadata = pd.read_csv(args.output_seqs).T.to_dict().values()
train_idx, test_idx = split_train_val(
len(metadata),
metadata,
args.tuning_sample_ratio,
args.test_column,
args.test_idx,
)
train_set = [metadata[i] for i in train_idx]
test_set = [metadata[i] for i in test_idx]
# for fitting shazam and later validating
write_train_test(args.output_train_seqs, train_set)
write_train_test(args.output_test_seqs, test_set)
if __name__ == "__main__":
main(sys.argv[1:])