-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathslds_example_figure.py
248 lines (195 loc) · 7.52 KB
/
slds_example_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
np.random.seed(123)
import matplotlib
matplotlib.rcParams.update({'font.sans-serif' : 'Helvetica',
'axes.labelsize': 10,
'xtick.labelsize' : 6,
'ytick.labelsize' : 6,
'axes.titlesize' : 10})
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import matplotlib.gridspec as gridspec
import seaborn as sns
sns.set(style="white")
color_names = ["red",
"windows blue",
"amber",
"faded green",
"dusty purple",
"orange",
"clay",
"pink",
"greyish",
"light cyan",
"steel blue",
"pastel purple",
"mint",
"salmon"]
colors = sns.xkcd_palette(color_names)
from pybasicbayes.distributions import Regression, DiagonalRegression, Gaussian
from pyslds.models import HMMSLDS
T = 1000
D = 50
n = T // D
# SLDS
K, D_obs, D_latent = 4, 8, 2
def sample_slds_model():
mu_init = np.zeros(D_latent)
mu_init[0] = 2.0
sigma_init = 0.01 * np.eye(D_latent)
def random_rotation(n, theta):
rot = 0.99 * np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
out = np.zeros((n, n))
out[:2, :2] = rot
q = np.linalg.qr(np.random.randn(n, n))[0]
return q.dot(out).dot(q.T)
def random_dynamics(n):
A = np.random.randn(n,n)
A = A.dot(A.T)
U,S,V = np.linalg.svd(A)
A_stable = U.dot(np.diag(S/(1.1*np.max(S)))).dot(V.T)
# A_stable = U.dot(0.99 * np.eye(n)).dot(V.T)
return A_stable
ths = np.linspace(0, np.pi/8., K)
As = [random_rotation(D_latent, ths[k]) for k in range(K)]
# As = [random_dynamics(D_latent) for k in range(K)]
bs = [np.zeros((D_latent, 1))] + [.25 * np.random.randn(D_latent, 1) for k in range(K-1)]
C = np.random.randn(D_obs, D_latent)
d = np.zeros((D_obs, 1))
sigma_obs = 0.5 * np.ones(D_obs)
###################
# generate data #
###################
init_dynamics_distns = [Gaussian(mu=mu_init, sigma=sigma_init) for _ in range(K)]
dynamics_distns = [Regression(A=np.hstack((A, b)), sigma=0.01 * np.eye(D_latent)) for A,b in zip(As, bs)]
emission_distns = DiagonalRegression(D_obs, D_latent+1, A=np.hstack((C, d)), sigmasq=sigma_obs)
slds = HMMSLDS(
dynamics_distns=dynamics_distns,
emission_distns=emission_distns,
init_dynamics_distns=init_dynamics_distns,
alpha=3., init_state_distn='uniform')
#### MANUALLY CREATE DATA
P = np.ones((K,K)) + 1 * np.eye(K)
P = P / np.sum(P,1,keepdims=True)
z = np.zeros(T//D, dtype=np.int32)
for t in range(1,T//D):
z[t] = np.random.choice(np.arange(K), p=P[z[t-1]])
z = np.repeat(z, D)
statesobj = slds._states_class(model=slds, T=z.size, stateseq=z, inputs=np.ones((z.size, 1)))
y = statesobj.data = statesobj.generate_obs()
x = statesobj.gaussian_states
slds.states_list.append(statesobj)
return z,x,y,slds
def draw_slds_figure(z, x, y, filename=None):
fig = plt.figure(figsize=(5.5, 2.7))
gs = gridspec.GridSpec(5, 1)
ax = fig.add_subplot(gs[2:, 0])
ylim = 1.1 * abs(y).max()
ymax = ylim * (2*D_obs + 1)
ymin = -ylim
# Plot the discrete state in the background
cps = np.where(np.diff(z) != 0)[0] + 1
left_cps = np.concatenate(([0], cps))
right_cps = np.concatenate((cps, [T]))
for l,r in zip(left_cps, right_cps):
ax.add_patch(
Rectangle([l, ymin], r-l, ymax-ymin,
color=colors[z[l]], ec="none", alpha=0.5))
ax.plot([r, r], [ymin, ymax], '-', color="gray", lw=1)
# Plot the observations
for i in range(D_obs):
ax.plot(np.arange(T), ylim * (2*i+1) + y[:,i], '-k', lw=1)
ax.set_xlim(0, T)
ax.set_xlabel("time")
ax.set_ylim(ymin, ymax)
ax.set_yticks([])
ax.set_yticks(ylim * (2*np.arange(D_obs)+1))
def yticklabel(i):
return "$n=%d$" % (D_obs-i) if (i >= D_obs-2) else \
"$n=N$" if i == 0 else "."
ax.set_yticklabels(map(yticklabel, np.arange(D_obs)))
ax.yaxis.labelpad = 0
ax.set_ylabel("${\\mathbf{y}_t}$", rotation=0, verticalalignment='center')
## Plot the continuous latent state above that above
ax = fig.add_subplot(gs[1, 0])
xlim = 1.1 * abs(x).max()
for l, r in zip(left_cps, right_cps):
ax.add_patch(
Rectangle([l, -xlim], r - l, 2*xlim,
color=colors[z[l]], ec="none", alpha=0.5))
ax.plot([r, r], [-xlim, xlim], '-', color="gray", lw=1)
linestyles = ["-", ":"]
for i in range(D_latent):
ax.plot(np.arange(T), x[:, i],
'k', ls=linestyles[i%len(linestyles)], lw=1)
ax.set_xlim(0, T)
ax.set_ylim(-xlim, xlim)
ax.set_xticks([])
ax.set_yticks([])
ax.yaxis.labelpad = 34
ax.set_ylabel("${\\mathbf{x}_t}$", rotation=0, verticalalignment='center')
## Now plot the latent state above that above
ax = fig.add_subplot(gs[0, 0])
for l, r in zip(left_cps, right_cps):
ax.add_patch(
Rectangle([l, 0], r - l, 10,
color=colors[z[l]], ec="none", alpha=0.5))
ax.plot([r, r], [0, 10], '-', color="gray", lw=1)
ax.text(l + (r - l) / 2. - 10., 3,
# "u" if z[l] == 0 else "d",
# string.ascii_lowercase[z[l]],
z[l]+1,
fontdict={"size": 9})
ax.set_xlim(0, T)
ax.set_ylim(0, 10)
ax.set_xticks([])
ax.set_yticks([])
ax.yaxis.labelpad = 34
ax.set_ylabel("${\\mathbf{z}_t}$", rotation=0, verticalalignment='center')
if filename is not None:
fig.savefig(filename)
plt.show()
def plot_vector_field(k, A, b=None, n_pts=30, xmin=-5, xmax=5,
figsize=(5.5/4.0, 5.5/4.0),
title="", filename="dynamics_{}"):
XX, YY = np.meshgrid(
np.linspace(xmin, xmax, n_pts),
np.linspace(xmin, xmax, n_pts))
xx, yy = np.ravel(XX), np.ravel(YY)
xy = np.column_stack((xx, yy))
b = 0 if b is None else b
d_xy = xy.dot(A.T) + b - xy
# Make the plot
XY = list(map(np.squeeze, [XX, YY]))
C = np.ones((n_pts ** 2, 1)) * np.array(colors[k])[None, :]
C = np.hstack((C, 0.75 * np.ones((n_pts**2, 1))))
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(111, aspect=1.0)
ax.quiver(XY[0], XY[1], d_xy[:,0], d_xy[:,1], color=C,
# scale=3.0, scale_units="inches",
headwidth=5.,
lw=6,
)
center = -np.linalg.solve(A - np.eye(D_latent), b)
ax.plot(center[0], center[1], 'o', color=colors[k], markersize=4)
ax.set_xlabel("$x_1$", fontsize=9)
ax.set_ylabel("$x_2$", fontsize=9)
ax.set_xlim(xmin, xmax)
ax.set_ylim(xmin, xmax)
plt.tick_params(axis='both', labelsize=8)
ax.set_title(title, fontsize=10)
plt.savefig("dynamics_{}.pdf".format(k))
if __name__ == "__main__":
# Sample data
z,x,y,slds = sample_slds_model()
# Illustrative figure of SLDS
draw_slds_figure(z,x,y, filename="slds_example.pdf")
# Vector fields for latent states
for k in range(K):
plot_vector_field(k, slds.dynamics_distns[k].A[:, :-1],
b=slds.dynamics_distns[k].A[:,-1],
title="$A^{(%d)} x_t + b^{(%d)}$" % (k+1,k+1),
figsize=(2.,2.),
n_pts=10)
plt.show()