-
Notifications
You must be signed in to change notification settings - Fork 0
/
7_dash_app.py
121 lines (112 loc) · 3.91 KB
/
7_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Import required libraries
import pandas as pd
import dash
from dash import html
from dash import dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df["Payload Mass (kg)"].max()
min_payload = spacex_df["Payload Mass (kg)"].min()
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(
children=[
html.H1(
"SpaceX Launch Records Dashboard",
style={"textAlign": "center", "color": "#503D36", "font-size": 40},
),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
dcc.Dropdown(
id="site-dropdown",
options=[
{"label": "All Sites", "value": "ALL"},
]
+ [{"label": ls, "value": ls} for ls in spacex_df["Launch Site"].unique()],
value="ALL",
placeholder="Select a Launch Site here",
searchable=True,
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id="success-pie-chart")),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
dcc.RangeSlider(
id="payload-slider",
min=0,
max=10000,
step=1000,
value=[min_payload, max_payload],
),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id="success-payload-scatter-chart")),
]
)
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
# Function decorator to specify function input and output
@app.callback(
Output(component_id="success-pie-chart", component_property="figure"),
Input(component_id="site-dropdown", component_property="value"),
)
def get_pie_chart(entered_site):
if entered_site == "ALL":
fig = px.pie(
spacex_df,
values="class",
names="Launch Site",
title="Total Success Launches By Site",
)
else:
filtered_df = (
spacex_df.loc[spacex_df["Launch Site"] == entered_site, "class"]
.value_counts(normalize=True)
.to_frame()
.reset_index()
)
fig = px.pie(
filtered_df,
values="class",
names="index",
title=f"Total Success Launches For Site {entered_site}",
)
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(
Output(component_id="success-payload-scatter-chart", component_property="figure"),
[
Input(component_id="site-dropdown", component_property="value"),
Input(component_id="payload-slider", component_property="value"),
],
)
def get_scatter_plot(entered_site, payload):
filtered_df = spacex_df[
spacex_df["Payload Mass (kg)"].between(payload[0], payload[1])
]
if entered_site == "ALL":
fig = px.scatter(
filtered_df,
x="Payload Mass (kg)",
y="class",
color="Booster Version Category",
title="Correlation between Payload and Success for all sites",
)
else:
fig = px.scatter(
filtered_df[filtered_df["Launch Site"] == entered_site],
x="Payload Mass (kg)",
y="class",
color="Booster Version Category",
title=f"Correlation between Payload and Success for site {entered_site}",
)
return fig
# Run the app
if __name__ == "__main__":
app.run_server()