-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathevaluate.py
256 lines (201 loc) · 8.42 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import argparse
import os
import pickle
import random
import open3d # noqa: F401
import torch
from pytorch3d.loss import chamfer_distance
from tqdm import tqdm
from unsupervisedRR.configs import get_cfg_defaults
from unsupervisedRR.datasets import build_loader
from unsupervisedRR.models import build_model
from unsupervisedRR.models.model_util import get_grid
from unsupervisedRR.utils.metrics import evaluate_correspondances, evaluate_pose_Rt
import numpy as np # isort: skip || avoid open3d memory leak
# deterministic evaluation due to sampling in some methods
seed = 77
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# Set path for where to save the output dictionaries
RESULTS_DIR = None
def evaluate_split(model, data_loader, args, dict_name=None, use_tqdm=True):
all_metrics = {}
all_outputs = {}
for batch in tqdm(data_loader, disable=not use_tqdm, dynamic_ncols=True):
batch_output, batch_metrics = forward_batch(model, batch)
for metric in batch_metrics:
b_metric = batch_metrics[metric].detach().cpu()
if metric in all_metrics:
all_metrics[metric] = torch.cat((all_metrics[metric], b_metric), dim=0)
else:
all_metrics[metric] = b_metric
instances = batch_metrics["instance_id"]
for ins in instances:
all_outputs[ins] = {"Rt": batch_output["vp_1"].detach().cpu()}
if "corres_01" in batch_output:
_corres = batch_output["corres_01"]
_corres = [_c.detach().cpu() for _c in _corres]
all_outputs[ins]["corres"] = _corres
# Save outputs
if dict_name is not None:
dict_path = os.path.join(RESULTS_DIR, dict_name)
with open(dict_path, "wb") as handle:
output_dict = {
"metrics": all_metrics,
"outputs": all_outputs,
"args": args,
}
pickle.dump(output_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
# save metrics
for metric in all_metrics:
if metric == "instance_id":
continue
vals = all_metrics[metric]
summary = f"{metric:30s}: {vals.mean():7.3f} +/- {vals.std():7.3f} || "
summary += f"median {vals.median():7.3f}"
print(summary)
# calculate percentage under errors
r_acc = []
t_acc = []
c_acc = []
r_err = all_metrics["vp-error_R"]
t_err = all_metrics["vp-error_t"]
c_err = all_metrics["chamfer"] * 1000
for error in [5, 10, 45]:
r_acc.append((r_err <= error).float().mean().item())
for error in [5, 10, 25]:
t_acc.append((t_err <= error).float().mean().item())
for error in [1, 5, 10]:
c_acc.append((c_err <= error).float().mean().item())
r_acc_str = " | ".join([f"{x * 100:4.1f}" for x in r_acc])
t_acc_str = " | ".join([f"{x * 100:4.1f}" for x in t_acc])
c_acc_str = " | ".join([f"{x * 100:4.1f}" for x in c_acc])
print(f"Rotation Accuracies: {r_acc_str}")
print(f"Translation Accuracies: {t_acc_str}")
print(f"Chamfer Accuracies: {c_acc_str}")
print("For latex: ")
latex = f"{model.cfg.name} & "
latex += f"{r_acc[0] * 100:4.1f} & "
latex += f"{r_acc[1] * 100:4.1f} & "
latex += f"{r_acc[2] * 100:4.1f} & "
latex += f"{r_err.mean():4.1f} & "
latex += f"{r_err.median():4.1f} & "
latex += f"{t_acc[0] * 100:4.1f} & "
latex += f"{t_acc[1] * 100:4.1f} & "
latex += f"{t_acc[2] * 100:4.1f} & "
latex += f"{t_err.mean():4.1f} & "
latex += f"{t_err.median():4.1f} & "
latex += f"{c_acc[0] * 100:4.1f} & "
latex += f"{c_acc[1] * 100:4.1f} & "
latex += f"{c_acc[2] * 100:4.1f} & "
latex += f"{c_err.mean():4.1f} & "
latex += f"{c_err.median():4.1f} & "
print(latex)
def forward_batch(model, batch):
num_views = 2
gt_rgb = [batch[f"rgb_{i}"].cuda() for i in range(num_views)]
gt_dep = [batch[f"depth_{i}"].cuda() for i in range(num_views)]
gt_vps = [batch[f"Rt_{i}"].cuda() for i in range(num_views)]
K = batch["K"].cuda()
output = model(gt_rgb, K=K, deps=gt_dep)
metrics = {"instance_id": batch["uid"]}
# Model outputs
vp_1 = output["vp_1"]
pr_pc = output["joint_pointcloud"]
gt_pc = model.generate_pointclouds(K, gt_dep, gt_vps)
# Evaluate pose
p_metrics = evaluate_pose_Rt(vp_1, gt_vps[1])
for _k in p_metrics:
metrics[f"{_k}"] = p_metrics[_k].detach().cpu()
# get chamfer metrics
cham = chamfer_distance(pr_pc.cuda(), gt_pc.cuda(), batch_reduction=None)[0].cpu()
metrics["chamfer"] = cham
# gather inputs
if "corres_01" in output:
id_c0, id_c1, c_ratio, _ = output["corres_01"]
# Evaluate correspondaces -- should REALLY be factored out more
depth_0 = gt_dep[0]
B, _, H, W = depth_0.shape
depth_0 = depth_0.view(B, 1, -1)
id_01_0 = id_c0.unsqueeze(1)
id_01_1 = id_c1.unsqueeze(1)
grid = get_grid(B, H, W)
grid = grid[:, :2].view(B, 2, -1).to(depth_0.device)
dep01_0 = depth_0.gather(2, id_01_0)
pix01_0 = grid.gather(2, id_01_0.repeat(1, 2, 1))
pix01_1 = grid.gather(2, id_01_1.repeat(1, 2, 1))
Rt_i = gt_vps[1]
c_err_i = evaluate_correspondances(pix01_0, pix01_1, dep01_0, K, Rt_i)
# errors cannot be larger than diagnonal (impossible .. )
diag = (H ** 2 + W ** 2) ** 0.5
c_err_i = c_err_i.clamp(max=diag)
valid = (c_err_i >= 0).float()
valid_denom = valid.sum(dim=1).clamp(min=1)
error = (c_err_i * valid).sum(dim=1) / valid_denom
metrics["corr-validDepth"] = valid.mean(dim=1) * 100.0
metrics["corr-meanError"] = error
for px_thresh in [2, 4, 10]:
in_px = (c_err_i < px_thresh).float()
in_px = (in_px * valid).sum(dim=1) / valid_denom
metrics[f"corr-within{px_thresh}px"] = in_px * 100.0
return output, metrics
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model", type=str)
parser.add_argument("--checkpoint", type=str, default=None)
parser.add_argument("--dataset", type=str, default="ScanNet")
parser.add_argument("--split", type=str, default="test")
parser.add_argument("--boost_alignment", default=False, action="store_true")
parser.add_argument("--save_dict", type=str, default=None)
parser.add_argument("--progress_bar", default=False, action="store_true")
parser.add_argument("--no_ratio", default=False, action="store_true")
parser.add_argument("--point_ratio", default=None, type=float)
parser.add_argument("--num_seeds", default=None, type=int)
args = parser.parse_args()
# Dataset configs to be decided
default_cfg = get_cfg_defaults()
default_cfg.defrost()
# Dataset Parameters
dataset_cfg = default_cfg.DATASET
dataset_cfg.name = args.dataset
dataset_cfg.batch_size = 4
data_loader = build_loader(dataset_cfg, split=args.split)
# Define model
if args.checkpoint is not None:
checkpoint = torch.load(args.checkpoint)
model_weights = checkpoint["model"]
print(f"Loaded checkpoint from {args.checkpoint}")
print(f" Epoch: {checkpoint['epoch']}")
print(f" Step: {checkpoint['step']}")
# Load checkpoint
model_cfg = checkpoint["cfg"].MODEL
model_cfg.defrost()
print("===== Loaded Model Configs =====")
print(model_cfg)
else:
model_cfg = default_cfg.MODEL
model_weights = None
model_cfg.name = args.model
# Set alignmnet performance
if args.boost_alignment:
assert not args.no_ratio
assert args.num_seeds is None
assert args.point_ratio is None
model_cfg.alignment.defrost()
model_cfg.alignment.num_seeds = 100
model_cfg.alignment.point_ratio = 0.05
model_cfg.alignment.base_weight = "nn_ratio"
if args.no_ratio:
model_cfg.alignment.base_weight = "uniform"
if args.num_seeds is not None:
model_cfg.alignment.num_seeds = args.num_seeds
if args.point_ratio is not None:
model_cfg.alignment.point_ratio = args.point_ratio
model = build_model(model_cfg).cuda()
if model_weights is not None:
model.load_state_dict(model_weights)
evaluate_split(model, data_loader, args, args.save_dict, use_tqdm=args.progress_bar)