-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmodel-3conv_1pool.py
65 lines (46 loc) · 1.94 KB
/
model-3conv_1pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
from __future__ import division
import tensorflow as tf
import params
def weight_variable(name, shape):
return tf.get_variable(name, shape=shape, initializer=tf.contrib.layers.xavier_initializer())
# initial = tf.truncated_normal(shape, stddev=0.1)
# return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME')
def maxpool2d(x, k, s):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, s, s, 1], padding='SAME')
x = tf.placeholder(tf.float32,
shape=[None, params.img_height, params.img_width, params.img_channels])
y_ = tf.placeholder(tf.float32, shape=[None, 1])
x_image = x
print ("input: {}".format(x_image.get_shape()))
# first convolutional layer
W_conv1 = weight_variable("wc1", [3, 3, 3, 8])
b_conv1 = bias_variable([8])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1, 3) + b_conv1)
print ("h_conv1: {}".format(h_conv1.get_shape()))
# second convolutional layer
W_conv2 = weight_variable("wc2", [3, 3, 8, 8])
b_conv2 = bias_variable([8])
h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2, 3) + b_conv2)
print ("h_conv2: {}".format(h_conv2.get_shape()))
# third convolutional layer
W_conv3 = weight_variable("wc3", [3, 3, 8, 8])
b_conv3 = bias_variable([8])
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 3) + b_conv3)
print ("h_conv3: {}".format(h_conv3.get_shape()))
# pooling
h_conv3_pool = tf.nn.relu(maxpool2d(h_conv3, 4, 2))
print ("h_conv3_pool: {}".format(h_conv3_pool.get_shape()))
h_conv3_flat = tf.reshape(h_conv3_pool, [-1, 64])
print ("h_conv3_flat: {}".format(h_conv3_flat.get_shape()))
keep_prob = tf.placeholder(tf.float32)
# output
W_fc5 = weight_variable("fc", [64, 1])
b_fc5 = bias_variable([1])
y = tf.multiply(tf.atan(tf.matmul(h_conv3_flat, W_fc5) + b_fc5), 2) #scale the atan output