-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpixel_extract.py
191 lines (165 loc) · 5.41 KB
/
pixel_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 25 15:34:58 2014
@author: Maria
"""
#finding pixel values
from astropy.io import fits
import os
from numpy import *
""" the function med() is not correct """
##########
# DESCRIPTION
# finds the median sky value for an image and subtracts it from the corresponding
# image.
# PARAMETERS
# target_dir - the directory where the files are
# image - a combined image
# y_images - the 10X10 sections in the y direction on the image
# x_images - the 10X10 sections in the x direction on the image
# add - the filter color
# medx - the median image for the x direction
# medy - the median image for the y direction
# RETURNS
# none
##########
def pixel_ext(target_dir,image):
#change directory
os.chdir(target_dir)
files = os.listdir(target_dir)
images = sort(files)
for i in images:
#creates lists of images
y_images,add = Y_sections(image,target_dir)
x_images = X_sections(image,target_dir)
medx = median_fits(y_images, "Y" + add + "sky_medain.fits"+ i,add)
medy = median_fits(x_images, "X" + add + "sky_medain.fits"+ i,add)
med(medx)
med(medy)
##########
# DESCRIPTION
# Sorts the images in the current folder so that you're left with fits files only
# PARAMETERS
# images - list of fits files in the current working directory
# RETURNS
# images
##########
def sort(files):
images = []
for i in files:
[name, ext] = os.path.splitext(i)
if ext == '.fits' or ext == '.fit' or ext == '.fts':
images.append(i)
return images
def med(image):
f = fits.open(image)
d = f[0].data
output = d - median(d)
hdu = fits.PrimaryHDU(output)
hdu.writeto("med" +image)
###########
# DESCRIPTION
# locates multiple 10X10 sections of the image and stores them in a list
# PARAMETERS
# image - the input combined image
# path - the path for the image
# new_images - list of the 10X10 images
# k - the second dimension for the y direction to get a 10X10 image
# x1 - x low limit
# x2 - x high limit
# f - the opened file
# x - the file linked with its path
# d - the data in the file
# section - the section of the data
# c - the filter of the image
# RETURNS
# new_images back to main
###########
def Y_sections(image, path):
new_images = []
for j in range(0,3880,10):
k = 10+j
x1 = 2006
x2 = 2016
x = os.path.join(path,image)
f = fits.open(x)
d = f[0].data
section = d[j:k,x1:x2]
new_images.append(section)
c = f[0].header['filter']
f.close()
return new_images,c
###########
# DESCRIPTION
# locates multiple 10X10 sections of the image and stores them in a list
# PARAMETERS
# image - the input combined image
# path - the path for the image
# new_images - list of the 10X10 images
# k - the second dimension for the x direction to get a 10X10 image
# y1 - y low limit
# y2 - y high limit
# f - the opened file
# x - the file linked with its path
# d - the data in the file
# section - the section of the data
# c - the filter of the image
# RETURNS
# new_images back to main
###########
def X_sections(image, path):
new_images = []
for j in range(0,3880,10):
k = 10+j
y2 = 3550
y1 = 3540
x = os.path.join(path,image)
f1 = fits.open(x)
d1 = f1[0].data
section = d1[y1:y2,j:k]
new_images.append(section)
f1.close()
return new_images
##########
# DESCRIPTION
# Creates a new header card called filter and sets it equal to 'Ha 6620'
# PARAMETERS
# x - tells function where file is with path joined with filename
# f - opened fits file in update mode
# keyword- card you'd like to add to the header
# phrase - what you want to be stored in the header card
# RETURNS
# none
##########
def new_headercard(image,path,keyword ="",phrase=""):
#for i in images:
x = os.path.join(path,image)
f2= fits.open(x, mode ='update')
f2[0].header[keyword] = phrase
f2.flush()
f2.close()
###########
# DESCRIPTION
# takes a list of arrays and finds the medain element by element
# PARAMETERS
# dm - makes an array of the data list
# med - the median of the array dm
# path2 - where you'd like the median images to be sent
# hdu - creates a new primary header object
# hdulist- creates a new primary header
# RETURNS
# new_image back to main
###########
def median_fits(data_list,newfile_name="",add =""):
dm = array(data_list)
#axis 0 is the intensity
med = median(dm, axis = 0)
path2 = '/nfs/home/mcqu4304/maskims/No_obs'
hdu = fits.PrimaryHDU(med)
hdulist = fits.HDUList(hdu)
#creates the new file name
newimage = os.path.join(path2, newfile_name)
hdulist.writeto(newimage)
#new_headercard(newimage,"'/nfs/home/mcqu4304/maskims/No_obs'","OBJECT",add+"sky_median")
return newfile_name
pixel_ext('/nfs/home/mcqu4304/maskims/No_obs','noobstrimHacombined_5.fits')