-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathrevcmp.c
282 lines (241 loc) · 9 KB
/
revcmp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h> // getpid
#include <sys/time.h>
#include <stdarg.h>
#include <inttypes.h>
#ifdef _MSC_VER
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#else
#include <byteswap.h>
#endif
typedef struct {
uint64_t b[NUM_BKMER_WORDS];
} BinaryKmer;
#define BKMER_BYTES (NUM_BKMER_WORDS * sizeof(uint64_t))
#define BINARY_KMER_ZERO_MACRO {.b = {0}}
// Since kmer_size is always odd, top word always has <= 62 bits used
// Number of bases store in all but the top word
#define BKMER_LOWER_BASES ((NUM_BKMER_WORDS-1)*32)
#define BKMER_TOP_BASES(ksize) ((ksize)&31)
#define BKMER_TOP_BITS(ksize) (BKMER_TOP_BASES(ksize) * 2)
#define BKMER_TOP_BP_BYTEOFFSET(ksize) (BKMER_TOP_BITS(ksize) - 2)
// byte reverse complement look up table
// Example: byte representing ACTG -> CAGT
// since A=00, C=01, G=10, T=11
// ACTG = 00011110 (30)
// revcmp[30] = 01001011 (0x4B)
// => CAGT
static const uint8_t revcmp_table[256] =
{
0xFF, 0xBF, 0x7F, 0x3F, 0xEF, 0xAF, 0x6F, 0x2F,
0xDF, 0x9F, 0x5F, 0x1F, 0xCF, 0x8F, 0x4F, 0x0F,
0xFB, 0xBB, 0x7B, 0x3B, 0xEB, 0xAB, 0x6B, 0x2B,
0xDB, 0x9B, 0x5B, 0x1B, 0xCB, 0x8B, 0x4B, 0x0B,
0xF7, 0xB7, 0x77, 0x37, 0xE7, 0xA7, 0x67, 0x27,
0xD7, 0x97, 0x57, 0x17, 0xC7, 0x87, 0x47, 0x07,
0xF3, 0xB3, 0x73, 0x33, 0xE3, 0xA3, 0x63, 0x23,
0xD3, 0x93, 0x53, 0x13, 0xC3, 0x83, 0x43, 0x03,
0xFE, 0xBE, 0x7E, 0x3E, 0xEE, 0xAE, 0x6E, 0x2E,
0xDE, 0x9E, 0x5E, 0x1E, 0xCE, 0x8E, 0x4E, 0x0E,
0xFA, 0xBA, 0x7A, 0x3A, 0xEA, 0xAA, 0x6A, 0x2A,
0xDA, 0x9A, 0x5A, 0x1A, 0xCA, 0x8A, 0x4A, 0x0A,
0xF6, 0xB6, 0x76, 0x36, 0xE6, 0xA6, 0x66, 0x26,
0xD6, 0x96, 0x56, 0x16, 0xC6, 0x86, 0x46, 0x06,
0xF2, 0xB2, 0x72, 0x32, 0xE2, 0xA2, 0x62, 0x22,
0xD2, 0x92, 0x52, 0x12, 0xC2, 0x82, 0x42, 0x02,
0xFD, 0xBD, 0x7D, 0x3D, 0xED, 0xAD, 0x6D, 0x2D,
0xDD, 0x9D, 0x5D, 0x1D, 0xCD, 0x8D, 0x4D, 0x0D,
0xF9, 0xB9, 0x79, 0x39, 0xE9, 0xA9, 0x69, 0x29,
0xD9, 0x99, 0x59, 0x19, 0xC9, 0x89, 0x49, 0x09,
0xF5, 0xB5, 0x75, 0x35, 0xE5, 0xA5, 0x65, 0x25,
0xD5, 0x95, 0x55, 0x15, 0xC5, 0x85, 0x45, 0x05,
0xF1, 0xB1, 0x71, 0x31, 0xE1, 0xA1, 0x61, 0x21,
0xD1, 0x91, 0x51, 0x11, 0xC1, 0x81, 0x41, 0x01,
0xFC, 0xBC, 0x7C, 0x3C, 0xEC, 0xAC, 0x6C, 0x2C,
0xDC, 0x9C, 0x5C, 0x1C, 0xCC, 0x8C, 0x4C, 0x0C,
0xF8, 0xB8, 0x78, 0x38, 0xE8, 0xA8, 0x68, 0x28,
0xD8, 0x98, 0x58, 0x18, 0xC8, 0x88, 0x48, 0x08,
0xF4, 0xB4, 0x74, 0x34, 0xE4, 0xA4, 0x64, 0x24,
0xD4, 0x94, 0x54, 0x14, 0xC4, 0x84, 0x44, 0x04,
0xF0, 0xB0, 0x70, 0x30, 0xE0, 0xA0, 0x60, 0x20,
0xD0, 0x90, 0x50, 0x10, 0xC0, 0x80, 0x40, 0x00
};
// uses revcmp_table in src/basic/binary_seq.c
BinaryKmer binary_kmer_reverse_complement4(const BinaryKmer bkmer,
size_t kmer_size)
{
const size_t top_bits = BKMER_TOP_BITS(kmer_size), unused_bits = 64 - top_bits;
BinaryKmer revcmp = BINARY_KMER_ZERO_MACRO;
uint64_t word;
#if NUM_BKMER_WORDS == 1
// In word: reversing base order and bit negate (complementing base)
// using revcmp_table
// Unrolled loop
word = bkmer.b[0];
revcmp.b[0] = revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[0] <<= 8;
revcmp.b[0] |= revcmp_table[word];
#else /* NUM_BKMER_WORDS > 1 */
size_t i, j;
for(i = 0, j = NUM_BKMER_WORDS-1; i < NUM_BKMER_WORDS; i++, j--)
{
// swap word i into word j
word = bkmer.b[i];
revcmp.b[j] = revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff]; word >>= 8; revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word];
}
// Now shift bits right by unused_bits
for(i = NUM_BKMER_WORDS-1; i > 0; i--) {
revcmp.b[i] = (revcmp.b[i] >> unused_bits) | (revcmp.b[i-1] << top_bits);
}
#endif
revcmp.b[0] >>= unused_bits;
return revcmp;
}
BinaryKmer binary_kmer_reverse_complement3(const BinaryKmer bkmer,
size_t kmer_size)
{
const size_t top_bits = BKMER_TOP_BITS(kmer_size), unused_bits = 64 - top_bits;
size_t i, j, k;
BinaryKmer revcmp = BINARY_KMER_ZERO_MACRO;
uint64_t word;
for(i = 0, j = NUM_BKMER_WORDS-1; i < NUM_BKMER_WORDS; i++, j--)
{
// swap word i into word j
word = bkmer.b[i];
// Loop over bytes in binary kmer
for(k = 0; k < sizeof(uint64_t); k++)
{
revcmp.b[j] <<= 8;
revcmp.b[j] |= revcmp_table[word & 0xff];
word >>= 8;
}
}
// Now shift bits right by unused_bits
for(i = NUM_BKMER_WORDS-1; i > 0; i--) {
revcmp.b[i] = (revcmp.b[i] >> unused_bits) | (revcmp.b[i-1] << top_bits);
}
revcmp.b[0] >>= unused_bits;
return revcmp;
}
BinaryKmer binary_kmer_reverse_complement2(const BinaryKmer bkmer,
size_t kmer_size)
{
const size_t top_bits = BKMER_TOP_BITS(kmer_size), unused_bits = 64 - top_bits;
BinaryKmer revcmp = BINARY_KMER_ZERO_MACRO;
uint64_t word;
#if NUM_BKMER_WORDS == 1
// Swap byte order
word = bswap_64(bkmer.b[0]);
// 4 bases within a byte, so swap their order
word = (((word & 0x0303030303030303UL) << 6) |
((word & 0x0c0c0c0c0c0c0c0cUL) << 2) |
((word & 0x3030303030303030UL) >> 2) |
((word & 0xc0c0c0c0c0c0c0c0UL) >> 6));
// Bitwise negate to complement bases
revcmp.b[0] = ~word;
#else /* NUM_BKMER_WORDS > 1 */
size_t i, j;
for(i = 0, j = NUM_BKMER_WORDS-1; i < NUM_BKMER_WORDS; i++, j--)
{
// Swap byte order
word = bswap_64(bkmer.b[i]);
// 4 bases within a byte, so swap their order
word = (((word & 0x0303030303030303UL) << 6) |
((word & 0x0c0c0c0c0c0c0c0cUL) << 2) |
((word & 0x3030303030303030UL) >> 2) |
((word & 0xc0c0c0c0c0c0c0c0UL) >> 6));
// Bitwise negate to complement bases
revcmp.b[j] = ~word;
}
// Need to shift right
for(i = NUM_BKMER_WORDS-1; i > 0; i--) {
revcmp.b[i] = (revcmp.b[i] >> unused_bits) | (revcmp.b[i-1] << top_bits);
}
#endif
revcmp.b[0] >>= unused_bits;
return revcmp;
}
BinaryKmer binary_kmer_reverse_complement1(const BinaryKmer bkmer,
size_t kmer_size)
{
const size_t top_bits = BKMER_TOP_BITS(kmer_size), unused_bits = 64 - top_bits;
size_t i, j;
BinaryKmer revcmp = BINARY_KMER_ZERO_MACRO;
uint64_t word;
for(i = 0, j = NUM_BKMER_WORDS-1; i < NUM_BKMER_WORDS; i++, j--)
{
// Swap byte order
word = bswap_64(bkmer.b[i]);
// 4 bases within a byte, so swap their order
word = (((word & 0x0303030303030303UL) << 6) |
((word & 0x0c0c0c0c0c0c0c0cUL) << 2) |
((word & 0x3030303030303030UL) >> 2) |
((word & 0xc0c0c0c0c0c0c0c0UL) >> 6));
// Bitwise negate to complement bases
revcmp.b[j] = ~word;
}
// Need to shift right
for(i = NUM_BKMER_WORDS-1; i > 0; i--) {
revcmp.b[i] = (revcmp.b[i] >> unused_bits) | (revcmp.b[i-1] << top_bits);
}
revcmp.b[0] >>= unused_bits;
return revcmp;
}
void seed_random()
{
struct timeval time;
gettimeofday(&time, NULL);
srand((((time.tv_sec ^ getpid()) * 1000001) + time.tv_usec));
}
int main(int argc, char **argv)
{
// Read args
int c;
size_t i, j, method = 1, n = 1000000, k = 32*NUM_BKMER_WORDS-1;
uint64_t r = 0;
seed_random();
while((c = getopt(argc, argv, "m:n:k:")) >= 0) {
if(c == 'm') method = atoi(optarg);
else if(c == 'n') n = atoi(optarg);
else if(c == 'k') k = atoi(optarg);
else { printf("Bad arg: -m <1..3> -n <n>\n"); exit(EXIT_FAILURE); }
}
printf("Using %zu for %zu loops k: %zu\n", method, n, k);
BinaryKmer x, y;
for(j = 0; j < NUM_BKMER_WORDS; j++) {
x.b[j] = ((uint64_t)rand() << 32) | rand();
}
for(i = 0; i < n; i++) {
switch(method) {
case 0: y = x; break;
case 1: y = binary_kmer_reverse_complement1(x, k); break;
case 2: y = binary_kmer_reverse_complement2(x, k); break;
case 3: y = binary_kmer_reverse_complement3(x, k); break;
case 4: y = binary_kmer_reverse_complement4(x, k); break;
default: exit(-1);
}
r += y.b[0];
for(j = 0; j < NUM_BKMER_WORDS; j++) x.b[j] ^= y.b[j];
x.b[0]++;
}
printf("b[0]: %zu\n", (size_t)r);
return EXIT_SUCCESS;
}