forked from optuna/optuna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_integration.py
105 lines (82 loc) · 3.49 KB
/
keras_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Optuna example that demonstrates a pruner for Keras.
In this example, we optimize the validation accuracy of hand-written digit recognition using
Keras and MNIST, where the architecture of the neural network and the learning rate of optimizer
is optimized. Throughout the training of neural networks, a pruner observes intermediate
results and stops unpromising trials.
You can run this example as follows:
$ python keras_integration.py
"""
import keras
from keras.datasets import mnist
from keras.layers import Dense
from keras.layers import Dropout
from keras.models import Sequential
import optuna
from optuna.integration import KerasPruningCallback
N_TRAIN_EXAMPLES = 3000
N_VALID_EXAMPLES = 1000
BATCHSIZE = 128
CLASSES = 10
EPOCHS = 20
def create_model(trial):
# We optimize the number of layers, hidden units and dropout in each layer and
# the learning rate of RMSProp optimizer.
# We define our MLP.
n_layers = trial.suggest_int("n_layers", 1, 3)
model = Sequential()
for i in range(n_layers):
num_hidden = int(trial.suggest_loguniform("n_units_l{}".format(i), 4, 128))
model.add(Dense(num_hidden, activation="relu"))
dropout = trial.suggest_uniform("dropout_l{}".format(i), 0.2, 0.5)
model.add(Dropout(rate=dropout))
model.add(Dense(CLASSES, activation="softmax"))
# We compile our model with a sampled learning rate.
lr = trial.suggest_loguniform("lr", 1e-5, 1e-1)
model.compile(
loss="categorical_crossentropy",
optimizer=keras.optimizers.RMSprop(lr=lr),
metrics=["accuracy"],
)
return model
def objective(trial):
# Clear clutter from previous session graphs.
keras.backend.clear_session()
# The data is split between train and validation sets.
(x_train, y_train), (x_valid, y_valid) = mnist.load_data()
x_train = x_train.reshape(60000, 784)[:N_TRAIN_EXAMPLES].astype("float32") / 255
x_valid = x_valid.reshape(10000, 784)[:N_VALID_EXAMPLES].astype("float32") / 255
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train[:N_TRAIN_EXAMPLES], CLASSES)
y_valid = keras.utils.to_categorical(y_valid[:N_VALID_EXAMPLES], CLASSES)
# Generate our trial model.
model = create_model(trial)
# Fit the model on the training data.
# The KerasPruningCallback checks for pruning condition every epoch.
model.fit(
x_train,
y_train,
batch_size=BATCHSIZE,
callbacks=[KerasPruningCallback(trial, "val_accuracy")],
epochs=EPOCHS,
validation_data=(x_valid, y_valid),
verbose=1,
)
# Evaluate the model accuracy on the validation set.
score = model.evaluate(x_valid, y_valid, verbose=0)
return score[1]
if __name__ == "__main__":
study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=100)
pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))