-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIII-abstraction-15.rkt
451 lines (336 loc) · 10.8 KB
/
III-abstraction-15.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
;; The first three lines of this file were inserted by DrRacket. They record metadata
;; about the language level of this file in a form that our tools can easily process.
#reader(lib "htdp-intermediate-reader.ss" "lang")((modname III-abstraction-ch14) (read-case-sensitive #t) (teachpacks ()) (htdp-settings #(#t constructor repeating-decimal #f #t none #f () #f)))
(require test-engine/racket-tests)
;;;; 15 Designing Abstractions
(require 2htdp/image)
;;;; 15.1 Abstractions from Examples
; List-of-numbers -> List-of-numbers
; converts a list of Celsius
; temperatures to Fahrenheit
(define (cf* l)
(cond
[(empty? l) '()]
[else
(cons
(C2F (first l))
(cf* (rest l)))]))
; Number -> Number
; converts one Celsius
; temperature to Fahrenheit
(define (C2F c)
(+ (* 9/5 c) 32))
(check-expect (cf* '(10 20 30))
(list (C2F 10) (C2F 20) (C2F 30)))
; [List-of IR] -> List-of-strings
; Inventory -> List-of-strings
; extracts the names of
; toys from an inventory
(define (names i)
(cond
[(empty? i) '()]
[else
(cons
(IR-name (first i))
(names (rest i)))]))
(define-struct IR
[name price])
; An IR is a structure:
; (make-IR String Number)
; An Inventory is one of:
; - '()
; - (cons IR Inventory)
;; Q: Why define Inventory rather than just saying [List-of IR]
(check-expect (names (list (make-IR "yo" 32) (make-IR "dude" 43)))
(list "yo" "dude"))
(define (map1 k g)
(cond [(empty? k) '()]
[else (cons (g (first k))
(map1 (rest k) g))]))
; List-of-numbers -> List-of-numbers
(define (cf*-from-map1 l)
(map1 l C2F))
; Inventory -> List-of-strings
(define (names-from-map1 i)
(map1 i IR-name))
(check-expect (cf* (list 100 0 -40))
(list 212 32 -40))
(check-expect (names
(list
(make-IR "doll" 21.0)
(make-IR "bear" 13.0)))
(list "doll" "bear"))
(check-expect (cf*-from-map1 (list 100 0 -40))
(list 212 32 -40))
(check-expect (names-from-map1
(list
(make-IR "doll" 21.0)
(make-IR "bear" 13.0)))
(list "doll" "bear"))
(check-expect (add-1-to-each '(1 2 3 4))
'(2 3 4 5))
; List-of-numbers -> List-of-numbers
(define (add-1-to-each l)
(map1 l add1))
;; Exercise 250
; Number -> [List-of Number]
; tabulates sin between n
; and 0 (incl.) in a list
(define (tab-sin n)
(cond [(= n 0) (list (sin 0))]
[else (cons (sin n)
(tab-sin (sub1 n)))]))
; Number -> [List-of Number]
; tabulates sqrt between n
; and 0 (incl.) in a list
(define (tab-sqrt n)
(cond [(= n 0) (list (sqrt 0))]
[else (cons (sqrt n) (tab-sqrt (sub1 n)))]))
(define (tabulate n cb)
(cond [(= n 0) (list (cb 0))]
[else (cons (cb n) (tabulate (sub1 n) cb))]))
; Number -> [List-of Number]
; tabulates sqrt between n
; and 0 (incl.) in a list
(define (tab-sqrt* n)
(tabulate n sqrt))
; Number -> [List-of Number]
; tabulates sin between n
; and 0 (incl.) in a list
(define (tab-sin* n)
(tabulate n sin))
(check-expect (tab-sqr 4)
(list (sqr 4) (sqr 3) (sqr 2) (sqr 1) (sqr 0)))
(define (tab-sqr n)
(tabulate n sqr))
(define (tab-tan n)
(tabulate n tan))
;; Exercise 251
; [List-of Number] -> Number
; computes the sum of
; the numbers on l
(define (sum l)
(cond [(empty? l) 0]
[else (+ (first l)
(sum (rest l)))]))
(check-expect (sum '(1 2 3 4))
10)
; [List-of Number] -> Number
; computes the product of
; the numbers on l
;; (define (product l)
;; (cond [(empty? l) 1]
;; [else (* (first l)
;; (product (rest l)))]))
(check-expect (product '(1 2 3 4))
24)
; [List-of Any] fn Any -> Any
(define (fold1 l cb base-case)
(cond [(empty? l) base-case]
[else (cb (first l)
(fold1 (rest l) cb base-case))]))
(check-expect (fold1 '(1 2 3 4) + 0)
10)
(check-expect (fold1 '(1 2 3 4) + 0)
(+ 1 (+ 2 (+ 3 (+ 4 0)))))
(check-expect (fold1 '(1 2 3 4) * 1)
24)
(check-expect (fold1 '(1 2 3 4) * 1)
(* 1 (* 2 (* 3 (* 4 1)))))
;; Exercise 252
; Posn Image -> Image
(define (place-dot p img)
(place-image
dot
(posn-x p) (posn-y p)
img))
; graphical constants
(define emt
(empty-scene 100 100))
(define dot
(circle 3 "solid" "red"))
; [List-of Number] -> Number
(define (product l)
(cond [(empty? l) 1]
[else (* (first l)
(product (rest l)))]))
; [List-of Posn] -> Image
(define (image* l)
(cond [(empty? l) emt]
[else (place-dot (first l)
(image* (rest l)))]))
; Q: Supposed to be the same implemetation as 251's fold1?
(define (fold2 l cb base-case)
(cond [(empty? l) base-case]
[else (cb (first l)
(fold2 (rest l) cb base-case))]))
(check-expect (fold2 '(2 3 4 5)
* 1)
(product '(2 3 4 5)))
(check-expect (fold2 '(2 3 4 5) * 1)
(* 2 (* 3 (* 4 (* 5 1)))))
(check-expect (fold2 (list (make-posn 2 1)
(make-posn 3 4))
place-dot emt)
(image* (list (make-posn 2 1)
(make-posn 3 4))))
(check-expect (fold2 (list (make-posn 2 1) (make-posn 3 4)) place-dot emt)
(place-dot (make-posn 2 1) (place-dot (make-posn 3 4) emt)))
;; 15.2 Similarities in Signatures
; Number Boolean -> String
(define (f n b) "hello world")
; A parametrized signature, such as:
; [X Y] [List-of X] -> [List-of Y]
; can be instantiated as (for `cf*`):
; [List-of Number] -> [List-of Number]
; or as (for `names`):
; [List-of IR] -> [List-of String]
; We never declared a signature for `map1`
; Here are the signatures of two functions we wrote
; that make use of abstract function `map1`:
; List-of-numbers -> List-of-numbers
;(define (cf*-from-map1 l) (map1 l C2F))
; and C2F was: Number -> Number
; Inventory -> List-of-strings
;(define (names-from-map1 i) (map1 i IR-name))
; and IR-name was: IR -> String
; [X Y] [List-of X] [X -> Y] -> [List-of Y]
; [List-of Number] -> Number
; [List-of Posn] -> Image
; [List-of Number] Number [Number Number -> Number]
; -> Number
(define (pr* l bs jn)
(cond
[(empty? l) bs]
[else
(jn (first l)
(pr* (rest l)
bs
jn))]))
; [List-of Posn] Image [Posn Image -> Image]
; -> Image
(define (im* l bs jn)
(cond
[(empty? l) bs]
[else
(jn (first l)
(im* (rest l)
bs
jn))]))
; [X Y] [List-of X] Y [X Y -> Y] -> Y
; (define fold2 (...) ...)
; Although mine had base-case and callback order flipped.
; Exercise 253
;; See question, asked here:
;; https://www.reddit.com/r/Racket/comments/ec5zuu/htdp_exercise_253_describe_collections_with_at/
; 1)
; [Number -> Boolean]
(check-expect (even? 4) #true)
(check-expect (even? 1) #false)
(check-error (even? 'foo))
; 2)
; [Boolean String -> Boolean]
(check-expect (equal? #true "true") #false)
; 3)
; [Number Number Number -> Number]
(check-expect (+ 1 2 3) 6)
(check-error (+ 1 2 'foo))
; 4)
; [Number -> [List-of Number]]
(check-expect (list 5) '(5))
; 5)
; [[List-of Number] -> Boolean]
(check-expect (list? '(5)) #true)
; Exercise 254
;; From Chapter 11
(check-expect (insert 2 (list 1 3)) (list 1 2 3))
(check-expect (insert 2 (list 1)) (list 1 2))
(check-expect (insert 2 (list 3)) (list 2 3))
(check-expect (insert 2 (list)) (list 2))
; Number List-of-numbers -> List-of-numbers
; inserts n into the sorted list of numbers alon
(define (insert n alon)
(cond [(empty? alon) (list n)]
[(< n (first alon)) (cons n alon)]
[else (cons (first alon)
(insert n (rest alon)))]))
(check-expect (ho-insert 3 (list 1 4) <) (list 1 3 4))
(check-expect (ho-insert 3 (list 4 5) <) (list 3 4 5))
(check-expect (ho-insert 6 (list 4) <) (list 4 6))
(check-expect (ho-insert 6 (list 4 5) <) (list 4 5 6))
(check-expect (ho-insert 3 (list) <) (list 3))
;; [Number [List-of Number] [Number Number -> Boolean] -> [List-of Number]]
(define (ho-insert n lon cb)
(cond [(empty? lon) (list n)]
[(cb n (first lon)) (cons n lon)]
[else (cons (first lon)
(ho-insert n (rest lon) cb))]))
(check-expect (sort-n '(2 7 1 4) <) '(1 2 4 7))
(check-expect (sort-n '(4 1) <) '(1 4))
(check-expect (sort-n '(3) <) '(3))
(check-expect (sort-n '() <) empty)
;; [[List-of Number] [Number Number -> Boolean] -> [List-of Number]]
(define (sort-n lon cb)
(cond [(empty? lon) empty]
[else (ho-insert (first lon)
(sort-n (rest lon) cb)
cb)]))
(check-expect (sort-s '("b" "c" "a") string<?) '("a" "b" "c"))
(check-expect (sort-s '("f" "e" "b" "c" "a") string<?)
'("a" "b" "c" "e" "f"))
;; [[List-of String] [String String -> Boolean] -> [List-of String]]
(define (sort-s los cb)
(cond [(empty? los) empty]
[else (ho-insert (first los)
(sort-s (rest los) cb)
cb)]))
(define (IR-compare ir1 ir2)
(< (IR-price ir1)
(IR-price ir2)))
;; [[List-of IR] [IR IR -> Boolean] -> [List-of IR]]
(define (sort-ir loir cb)
(sort-generic loir IR-compare empty))
;; [[List-of X] [X X -> Boolean] -> [List-of X]]
(define (sort-generic listo cb base-case)
(cond [(empty? listo) base-case]
[else (ho-insert (first listo)
(sort-s (rest listo) cb)
cb)]))
; Exercise 255
(check-expect (map-n (list 1 2 3) add1) (list 2 3 4))
;; [[Listof Number] [Number -> Number] -> [Listof Number]]
(define (map-n lon cb)
(cond [(empty? lon) empty]
[else (cons (cb (first lon))
(map-n (rest lon) cb))]))
(define (my-identity str) str)
(check-expect (map-n (list "a" "b" "c") my-identity) (list "a" "b" "c"))
;; [[Listof String] [String -> String] -> [Listof String]]
(define (map-s los cb)
(cond [(empty? los) empty]
[else (cons (cb (first los))
(map-s (rest los) cb))]))
;; [[Listof X] [X -> X] -> [Listof X]]
(define (map-generic listo cb base-case)
(cond [(empty? listo) base-case]
[else (cons (cb (first listo))
(map-generic (rest listo) cb))]))
;; (define (map1 k g)
;; (map-generic k g empty))
;;;; 15.3 Single Point of Control
;; Form an abstraction instead of copying and modifying any code.
;;;; 15.4 Abstractions from Templates
;; [X Y] [[List-of X] Y [X Y -> Y] -> Y]
(define (reduce l base combine)
(cond
[(empty? l) base]
[else (combine (first l)
(reduce (rest l) base combine))]))
;; [List-of Number] -> Number
;; (define (sum lon)
;; (reduce lon 0 +))
;; [List-of Number] -> Number
;; (define (product lon)
;; (reduce lon 1 *))
"end"
(test);; DrRacket does something like this behind the scenes