-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathintra_db_main.py
256 lines (194 loc) · 9.75 KB
/
intra_db_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import print_function, division
import argparse
import os
import random
from tqdm import tqdm
import pandas as pd
import numpy as np
import math
from collections import defaultdict
import torch
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader
from utils import AvgrageMeter, evalute_performances, evalute_threshold_based
from model.mfad import FAD_HAM_Net
from losses import WeightedFocalLoss
from dataset import FacePAD_Train, FacePAD_Val
# This inter_db.py is used for inter dataset training and evaluation
# The evaluation metrics for cross-domain and inter-dataset is different.
def main():
# create log file
log_id = 'pretrain_{}'.format(args.pretrain) + '_lr_{}'.format(args.lr) + '_' + args.prefix
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
log_path = os.path.join(args.log_dir, log_id + '.txt')
# for save output prediction labels
results_dir = os.path.join('results', log_id)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
# create directory for save trained models
checkpoint_save_dir = os.path.join('checkpoints', log_id)
best_weights_path = os.path.join(checkpoint_save_dir, 'best_weights.pth')
if not os.path.isdir(checkpoint_save_dir):
os.makedirs(checkpoint_save_dir)
# initialize model
model = FAD_HAM_Net(pretrain=args.pretrain, variant=args.backbone).cuda()
print('-------------- train ------------------------')
log_file = open(os.path.join(args.log_dir, log_id + '.txt'), 'w')
# load data
train_path = os.path.join(args.protocol_dir, 'train.csv')
val_path = os.path.join(args.protocol_dir, 'dev.csv')
test_path = os.path.join(args.protocol_dir, 'test.csv')
train_dataset = FacePAD_Train(train_path)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_works, pin_memory=True)
val_dataset = FacePAD_Val(val_path)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_works, pin_memory=True)
test_dataset = FacePAD_Val(test_path)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_works, pin_memory=True)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True, weight_decay=0.0001)
smoothl1_criterion = torch.nn.SmoothL1Loss().cuda()
FL_criterion = WeightedFocalLoss(alpha=.5, gamma=2).cuda()
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.999)
scaler = GradScaler()
# parameters for early stopping
epochs_no_improvement = 0
max_auc = -1
min_acer = 1000
best_weights = None
best_epoch = -1
for epoch in range(1, args.epochs+1):
loss_total = AvgrageMeter()
loss_1_total = AvgrageMeter()
loss_2_total = AvgrageMeter()
###########################################
''' train '''
###########################################
model.train()
# loss weight update
if epoch >= 5:
w1 = 100 # 10-75
else:
w1 = 1
progress_bar = tqdm(train_loader)
for i, (images, labels, map_x) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = images.cuda()
labels = labels.cuda()
map_x = map_x.cuda()
model.zero_grad()
with autocast():
pred, map_y = model(images)
pred = torch.squeeze(pred)
loss_1 = FL_criterion(pred.type(torch.cuda.FloatTensor), labels.type(torch.cuda.FloatTensor))
loss_2 = smoothl1_criterion(map_y, map_x) * w1
loss = loss_1 + loss_2
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
loss_total.update(loss.data, images.shape[0])
loss_1_total.update(loss_1.data, images.shape[0])
loss_2_total.update(loss_2.data, images.shape[0])
progress_bar.set_postfix(
loss_1 ='%.5f' % (loss_1_total.avg),
loss_2 ='%.5f' % (loss_2_total.avg),
loss ='%.5f' % (loss_total.avg),
)
###########################################
''' val '''
###########################################
print ('------------ val -------------------')
model.eval()
predictions, gt_labels, video_ids = [], [], []
with torch.no_grad():
for (images, labels, _, video_id) in tqdm(val_loader):
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
pred, _ = model(images)
pred = torch.sigmoid(pred)
for j in range(images.shape[0]):
predictions.append(pred[j].detach().cpu())
gt_labels.append(labels[j].detach().cpu())
video_ids.append(video_id[j])
# fuse prediction scores (mean value) of all frames for each video
predictions, gt_labels, _ = compute_video_score(video_ids, predictions, gt_labels)
val_th, val_apcer, val_bpcer, val_acer, val_auc = evalute_performances(predictions, gt_labels)
scheduler.step()
# check if need early stopping
if val_acer < min_acer:
min_acer = val_acer
epochs_no_improvement = 0
best_weights = model.state_dict()
best_epoch = epoch
else:
epochs_no_improvement += 1
if epochs_no_improvement >= args.patience:
print(f"EARLY STOPPING at {best_epoch}: {min_acer}")
break
tqdm.write('Epoch: %d, Train: loss_total= %.4f, Val: th=%.4f, acer=%.4f \n' % (epoch, loss_total.avg, val_th, val_acer))
log_file.write('Epoch: %d, Train: loss_total= %.4f, loss_1 = %.4f, loss_2=%.4f, Val: th=%.4f, acer=%.4f, apcer=%.4f, bpcer=%.4f \n' % (epoch, loss_total.avg, loss_1_total.avg, loss_2_total.avg, val_th, val_acer, val_apcer, val_bpcer))
log_file.flush()
###########################################
''' Test '''
###########################################
print ('------------ test -------------------')
model.eval()
predictions, gt_labels, video_ids = [], [], []
with torch.no_grad():
for (images, labels, _, video_id) in tqdm(test_loader):
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
with autocast():
pred, _ = model(images)
pred = torch.sigmoid(pred)
for j in range(images.shape[0]):
predictions.append(pred[j].detach().cpu())
gt_labels.append(labels[j].detach().cpu())
video_ids.append(video_id[j])
predictions, gt_labels, _ = compute_video_score(video_ids, predictions, gt_labels)
# The threshold from development set is used for evaluate test set.
test_apcer, test_bpcer, test_acer = evalute_threshold_based(predictions, gt_labels, val_th)
tqdm.write('Test based on val_TH: apcer=%.4f, bpcer= %.4f, acer= %.4f \n' % (test_apcer, test_bpcer, test_acer))
log_file.write('Test based on val_TH: apcer=%.4f, bpcer= %.4f, acer= %.4f \n' % (test_apcer, test_bpcer, test_acer))
log_file.flush()
torch.save(best_weights, best_weights_path)
def compute_video_score(video_ids, predictions, labels):
predictions_dict, labels_dict = defaultdict(list), defaultdict(list)
for i in range(len(video_ids)):
video_key = video_ids[i]
predictions_dict[video_key].append(predictions[i])
labels_dict[video_key].append(labels[i])
new_predictions, new_labels, new_video_ids = [], [], []
for video_indx in list(set(video_ids)):
new_video_ids.append(video_indx)
scores = np.mean(predictions_dict[video_indx])
label = labels_dict[video_indx][0]
new_predictions.append(scores)
new_labels.append(label)
return new_predictions, new_labels, new_video_ids
if __name__ == "__main__":
torch.cuda.empty_cache()
cudnn.benchmark = True
if torch.cuda.is_available():
print('GPU is available')
torch.cuda.manual_seed(0)
else:
print('GPU is not available')
torch.manual_seed(0)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--protocol_dir', type=str, required=True)
parser.add_argument('--prefix', default='inter-dataset', type=str)
parser.add_argument("--backbone", default='resnet50', type=str, choices=['resnet101', 'resnet50', 'resnet34', 'resnet18'])
parser.add_argument("--pretrain", default=True, type=lambda x: (str(x).lower() in ['true','1', 'yes']))
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--epochs", default=100, type=int, help="maximum epochs")
parser.add_argument("--batch_size", default=64, type=int, help="train batch size")
parser.add_argument("--num_works", default=32, type=int, help="train batch size")
parser.add_argument("--patience", default=15, type=int)
parser.add_argument('--log_dir', type=str, default="training_logs")
args = parser.parse_args()
main()