-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAIS_MarLik.tex
144 lines (120 loc) · 4.58 KB
/
AIS_MarLik.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
% Use pdfLatex to compile
\documentclass[aoas]{imsart}
\usepackage[dvipsnames]{xcolor}
\usepackage{charter}
\usepackage{latexsym,amssymb, amsmath, amsfonts}
\usepackage{graphicx}
\RequirePackage{natbib}
%\usepackage{amsthm,wrapfig,url,bm,rotating,multirow}
\RequirePackage[colorlinks,citecolor=blue,urlcolor=blue]{hyperref}
%\RequirePackage{hypernat}
\startlocaldefs
\def\ci{\perp\!\!\!\perp}
%\def\bibfontsize{\small}
%\def\authorfmt#1{\textsc{#1}}
\def\MI{\textsf{MI}}
\def\ESS{\textsf{ESS}}
\def\PI{\textsf{PI}}
\def\KL{\textsf{KL}}
\def\Z{\textsf{Z}}
\def\BF{\textsf{BF}}
\def\N{\textsf{N}}
\def\U{\textsf{U}}
\def\M{{\cal{M}}}
\def\K{{\cal{K}}}
\def\C{{\cal{C}}}
\def\N{{\cal{N}}}
\def\P{{\cal{P}}}
\def\v{\mathbf{v}}
\def\e{\epsilon}
\def\sj{\sigma}
\def\s{s}
\def\ind{\thicksim}
\newcommand{\uhoh}[1]{\textcolor{red}{\bf[#1]}}
\endlocaldefs
\graphicspath{{.}{Fig}}
\begin{document}
\begin{frontmatter}
\title{Adaptive Annealed Importance Sampling for Multi-Modal Posterior Exploration
and Model Selection with Application to Extrasolar Planet
Detection\protect\thanksref{T1}}
\runtitle{AAIS for Exoplanet Detection}
\thankstext{T1}{This work has been supported by Statistical and
Applied Mathematical Sciences Institute through National Science
Foundation grant DMS--042240. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.}
% Bin + Alphabetical authorship for now
\begin{aug}
\author{\fnms{Bin} \snm{Liu}\thanksref{t2,m4} \ead[label=e1]{[email protected]}},
\author{\fnms{Jim} \snm{Berger}\thanksref{t2,m1}\ead[label=e4]{[email protected]}},
\author{\fnms{Merlise A.}
\snm{Clyde}\thanksref{t2,m1}\ead[label=e2]{[email protected]}},
\author{\fnms{James L.} \snm{Crooks}\thanksref{t2,m3}\ead[label=e5]{tba}},
\and
\author{\fnms{Tom} \snm{Loredo}\thanksref{t3,m2}\ead[label=e3]{[email protected]}}
\thankstext{t2}{Partially supported by National Science Foundation Grant AST--0507481}
\thankstext{t3}{Partially supported by National Science Foundation
Grant AST--XXXXX}
\runauthor{Liu et al.}
\affiliation{Kuang-Chi Institute of Advanced
Technology\thanksmark{m4},
Duke University\thanksmark{m1},
U.S.~Environmental Protection
Agency\thanksmark{m3} and Cornell University\thanksmark{m2}}
\address{Department of Electrical and Computer Engineering \\
Duke University \\
Durham, NC 27705 USA \\
\printead{e1}}
\address{Department of Statistical Science \\
Duke University \\
Durham, NC 27705 USA \\
\printead{e2}\\
\phantom{E-mail:\ }\printead*{e4}}
\address{Department of Astronomy \\Cornell University \\
Ithaca, NY USA \\
\printead{e3}}
\end{aug}
\begin{abstract}
The search for extrasolar planets presents several statistical
challenges including model selection and inference within models
that involve multi-modal posterior distributions. To address these
problems, we propose an adaptive annealed importance sampling
algorithm (AAIS) which facilitates simulation from multi-modal joint
posterior distribution and provides an effective and
easy-to-implement method for estimating marginal likelihoods that
are required for Bayesian model comparison. Using a sequential
importance sampling framework, we construct mixtures of Student $t$
distributions to approximate a sequence of ``annealed''
distributions that gradually approximates the target posterior
density. Borrowing ideas of birth/death and split/merge steps from
reversible jump Markov-chain Monte Carlo, we propose an adaptive
online method to increase/decrease the number of mixture
components guided by the effective sample size of the importance sample.
We use simulation studies and several
examples from exo-planet searches to demonstrate the greater
efficiency of the method.
The combination of annealing and heavier
tails of the Student $t$ components in the mixture greatly
facilitate capturing the ``spikey'' posterior densities present in
the highly nonlinear models in the exo-planet problem, while importance sampling permits
straightforward estimation of marginal likelihoods and posterior
model probabilities to address the uncertainty of whether planets
are indeed present. We illustrate the methodology with several
star systems and a simulation study.
\end{abstract}
\begin{keyword}
\kwd{Bayes Factor}
\kwd{Model Selection}
\kwd{Nonlinear Regression}
\end{keyword}
\end{frontmatter}
\include{intro}
\include{model}
\include{IS}
\include{sim}
\include{exo-examp}
\include{disc}
\bibliographystyle{imsart-nameyear}
\bibliography{statjour,sais_bib,mc}
\end{document}