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1. About NGSphy

NGSphy is a Python open-source tool for the genome-wide simulation of NGS data (read counts
or lllumina reads) obtained from thousands of gene families evolving under a common species
tree, with multiple haploid and/or diploid individuals per species, where sequencing coverage
(depth) heterogeneity can vary among species, individuals and loci, including off-target or
uncaptured loci.

2. Citation

If you use NGSphy, please cite:
e FEscalona, M, Rocha S and Posada D. NGSphy: phylogenomic simulation of
next-generation sequencing data . Submitted.
e Sukumaran, J and Holder MT. (2010). DendroPy: A Python library for phylogenetic
computing. Bioinformatics 26: 1569-1571.

if running ART cite also:

e Huang W, Li L, Myers JR and Marth, GT. (2012) ART: a next-generation sequencing read
simulator. Bioinformatics 28 (4): 593-594

if using SimPhy cite also:

e Mallo D, De Oliveira Martins L and Posada D. (2016). SimPhy : Phylogenomic Simulation of
Gene, Locus, and Species Trees. Systematic Biology 65(2): 334-344.

If using single gene tree input, cite also:

e Fletcher, W and Yang Z. (2009) INDELible: A flexible simulator of biological sequence
evolution. Molecular Biology and Evolution. 26 (8): 1879-88.


http://github.com/merlyescalona/ngsphy
http://darwin.uvigo.es/
mailto:merlyescalona@uvigo.es
mailto:dposada@uvigo.es

3. Getting started

NGSphy simulates reads (or read counts) from alignments originated from single gene trees or
gene-tree distributions (originated from species-tree distributions). It is designed to read directly
from SimPhy (a simulator of gene family evolution) in the case of gene-tree distributions, but it
can also be fed with gene trees directly. These trees can contain orthologs, paralogs and
xenologs. Alignments are simulated using INDELible and can represent multiple haploid and/or
diploid individuals per species. Then, either Illumina reads (using ART) or read counts are
simulated for each individual, with the depth of coverage allowed to vary between species,
individuals and loci. This flexibility allows for the simulation of both off-target (captured but not
targeted) and uncaptured (targeted but not captured) loci.

You will need a NGSphy settings file and the required files according to the input mode selected
(see below).
e Examples of setting files can be found here
(https://github.com/merlyescalona/ngsphy/tree/master/data/settings)
For installation please go to Section 4. Installation.
In Section 11, as well as in the NGSphy’s wiki, you can find tutorials for each of the
possible input modes (https://github.com/merlyescalona/ngsphy/wiki/).
e Validation and use cases experiments are included here.

3.1. Input/output files

3.1.1. Input

[Single gene-tree scenario]

e NGSPhy settings file
INDELible control file
Newick file with single gene tree
ancestral sequence file (FASTA) (optional)
reference allele file (optional)

[Species-tree scenario]
e NGSPhy settings file

e SimPhy output
e reference allele file (optional)

3.1.2. Key output files

o NGS reads
o FEASTQ
o ALN
o BAM
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e read counts

o VCF
e sequence alignments
o FEASTA

3.1.3. Run information files

® coverage variation

o CSV
o plain text
o |ogfiles

e bash scripts

3.2. Input modes
3.2.1. Single gene-tree scenarios:

e inputmode 1: allows you to generate DNA sequence
alignments from a single gene tree, generate haploid or
diploid individuals (by random mating within the same

Single gene tree

species) and produce NGS reads or read counts
B
[Tutorial 1]. c |
D
Newick file Control file
(Gene tree) (INDELible)

e inputmode 2: allows you to simulate DNA sequence
alignments from a single gene tree and a known
ancestral sequence. DNA sequences are evolved from
the ancestral sequence under the specified gene-tree,
haploid or diploid individuals and NGS reads or read
counts generated [Tutorial 2].


https://samtools.github.io/hts-specs/
https://es.wikipedia.org/wiki/FASTA
https://en.wikipedia.org/wiki/Comma-separated_values

Single gene tree
e inputmode 3: allows you to simulate reads/read counts

from a single gene tree and a known anchor (tip)

sequence. The tree is re-rooted at the anchor A
B
sequence before the simulation of the sequence c |
alignments [Tutorial 3]. D
Newick file Control file
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3.2.2. Gene-tree/Species-tree distributions

Gene-tree distribution

e inputmode 4: this mode uses the output from SimPhy
(SimPhy’s output)

to generate NGS reads or reads counts. SimPhy
generates distributions of gene trees and species trees
under different conditions. Each species tree is here
considered a replicate. For diploids, NGSphy requires
that the number of SimPhy gene tree tips per species n
be even. If this is not the case, NGSphy will issue a
warning and stop. Alternatively the user can specify
that NGSphy uses the SimPhy replicates that satisfy
this requirement [Tutorial 4].

Gene trees inside

. Sequences
species trees

3.3. NGS coverage heterogeneity

NGSphy can introduce coverage heterogeneity at three different levels: experiment, individual
and locus-wide, according to to user-defined statistical distributions, One can also try to mimic
the variation in coverage expected for targeted sequencing, including off-target loci,
non-captured loci and taxon-specific effects (more details on Section 6.3). These parameters can
be used to recreate different experimental situations:

NGS run effects: where we expect to obtain different coverages for different runs (replicates),
and variation of coverage across individuals and across loci. within single runs.
[Available for all input/simulation modes]

Targeted sequencing: where some target loci are not captured (non-capture loci), some are
captured with different coverage but were not targeted (off-target loci).
[Only possible for input mode 4 (gene tree distributions (SimPhy data))]


http://github.com/adamallo/SimPhy

Taxon-specific effects: they can be used, for example, to emulate a decay in coverage related to
the phylogenetic distance of the species of interest to the reference sequence used to build the
target/capture probes.

[Available for all input/simulation modes]

4. Installation
4.1 Computer requirements

NGSphy has been developed for Linux/MAC environments with Python 2.7.

4.2 NGSphy

To install NGSphy you can:
a) clone its git repository and download the required third-party software (Section 4.3):

# 1. Clone NGSphy repository

git clone https://github.com/merlyescalona/ngsphy.qgit

# 2. Move to ngsphy/dist folder

cd ngsphy

# 3. Extract files and install:

python setup.py install --user # if user does not have sudoer permissions
# sudo python setup.py install # if user with sudoer permissions

b) install NGSphy through pip and download the required third-party software (Section 4.3):

pip install --user ngsphy # if user does not have sudoer permissions
# sudo pip install ngsphy # if user with sudoer permissions

4.3 Third-party software

4.3.1 ART (for Illumina reads generation)

ART is a set of simulation tools to generate synthetic next-generation sequencing reads. You can
download it from:

http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
Version ChocolateCherryCake or later.

Following installation instructions from ART, you can download the binaries or compile the source
code. If you decide to compile the source code:
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# 1. Extract files from the compressed tgz

cd /path/to/art-download

tar -xvf artsrcmountrainier20160605linuxtgz.tgz

# 2. Change current directory to the extracted one

cd art_src_MountRainier_Linux/

# 3. Make sure you have all the dependencies installed and generate the Makefile
.Jconfigure

# 4. Run the Makefile

make

4.3.2 INDELible (for sequence generation)

INDELible is an application for sequence simulation. You can download it from:
http://abacus.gene.ucl.ac.uk/software/indelible/
Version 1.03.

In order to get INDELible, you will need to register. It is free software, and is distributed under:
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or any later version. For more information go to http://www.gnu.org/licenses/.

Once the software is downloaded:
1. Unpack the archive on Unix-like systems using:

# 1. Change directory to the download folder.
cd /path/to/indelible-download

# 2. Extract file from the compressed file.

tar -xvzf INDELibleV1.03.tar.gz

a. If you want to compile from source:

# 3. Move to the source folder
cd INDELibleV1.03/src/

i. include the following line at to the top of MersenneTwister.h file.

#include <unistd.h>

ii. Compile INDELible using:



http://abacus.gene.ucl.ac.uk/software/indelible/
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# 4. Compile the program.
g++ -o indelible indelible.cpp -Im

b. If you want to use the binaries, directly:

# This is an example for MacOS

# 3. Move to the binaries folder

cd INDELibleV1.03/bin/

# 4. Rename the binary (for proper NGSphy execution)
mv indelible_1.03_OSX_intel indelible

# 5. Modified execution permissions

chmod +x indelible

4.3.3. INDELible - NGSphy version (for sequence generation with known
ancestral sequence)

This is a version of INDELible that we have modified to be able to use a given ancestral sequence
at the root for a single partition. It can be obtained from cloning its repository:

# 1. Clone the repository

git clone https://github.com/merlyescalona/indelible.git indelible-ngsphy
# 2. Change directory to indelible-ngsphy source code folder.

cd indelible-ngsphy/

# 3. Compile

make

4.3.4. SimPhy (multiple gene trees evolved under a species tree)

SimPhy can be obtained from cloning its repository and installing its dependencies. Detailed,
information on how to install SimPhy here.

# 1. Clone the repository
git clone https://github.com/adamallo/SimPhy.git

4.4. Adding NGSphy and third-party software to the path

Once all software has been installed, it must be added to the path.

e First you have to add the lines below to the "™/.bashrc file to keep the changes
permanently.

ART="/path/to/art/executable"
INDELIBLE="/path/to/indelible/executable"
INDELIBLENP="/path/to/indelible-ngsphy/executable"
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NGSPHY="/path/to/ngsphy/executable"
SIMPHY="/path/to/simphy/executable"
export PATH="$ART:$INDELIBLE:$INDELIBLENP:$NGSPHY:$SIMPHY:$PATH"

e Apply changes

source "/.bashrc

5. Usage

NGSphy does not have a Graphical User Interface (GUI) and works on the Linux/Mac command
line in a non-interactive fashion.

[-l <log_level>]

usage: ngsphy [-s <settings_file_path>]

[-v][-h]

5.1. Arguments

e Optional arguments:
o -s <settings_file_path>, --settings <settings_file_path>

Path to

the settings file. This is optional, by default NGSphy looks for a settings.txt

file in the current working directory. You can also specify a particular settings file

with:

ngsphy -s my_settings.txt

o -l<log_level>, --log <log_level>
Specified hierarchical log levels that will be shown through the standard output. A
detailed log will be stored in a separate file when level == DEBUG. Possible

values:
[ ]

DEBUG: shows very detailed information of the program's process.
INFO (default): shows only information about the state of the program.
WARNING: shows only system warnings.

ERROR: shows only execution errors.

e Information arguments:
o -V, --version
Show program's version number and exit.
o -h,--help
Show help message and exit.




NOTE: Example of the settings files can be found under the data/settings folder in the NGSphy

source.

6. The settings file

NGSphy requires a settings file (by default “settings.txt”) that specifies the different options and
parameter values for the simulations. A file with a different name can be specified with the
-s/--settings option. The information in the settings file is organized in 6 optional/required blocks
(default values are underlined):

1.
2.
3.

>

[general]: general parameters.

[data]: specifies the type of input data as well as input parameters and files.
[coverage]: parameters that describe the variation of coverage in the dataset
(optional).

[ngs-reads-art]: specifies ART execution parameters (optional)
[ngs-read-counts]: specifies parameters for read counts (optional).
[execution]: describes how the execution of the whole process will be made
(optional).

6.1. [general] block

Stores general parameters for each NGSphy run.

[general]

path=/home/user/
output_folder_name=NGSphy output

ploidy=1
e path
O purpose: path where output folder will be created.
o type: string (path).

e output_folder_name

O

purpose: name of the output folder where NGSphy results will be stored. If the
output folder already exists, the new output folder will get the same base name
with a numerical suffix (outputFolder_n), representing the nth time the program
with that output folder name was ran.

type: string.

value: NGSphy_output

purpose: refers to the ploidy that the resulting individuals will have. So far it is only
possible to generate haploid and diploid individuals.

type: number (integer).

values: 1, 2 (in the closed-interval [1,2]).



e seed

o purpose: random number generator seed.

o type: number (integer)

o value in the closed-interval [0, 232 - 1]

6.2. [data] block

Defines the input data for NGSphy, which consists of different modes:

A

Single gene tree

A ——
B
C
D
Newick file Control file
(Gene tree) (INDELible)

C

Single gene tree
with anchor sequence

Anchor sequence

O O o O DYy o =B B
A ——
B
C
D
Newick file Control file
(Gene tree) (INDELible)

B

Single gene tree
with ancestral sequence

Ancestral sequence

oy Iy I DNEYYYN oy =B B
A I
B
C
D
Newick file Control file
(Gene tree) (INDELible)

D

Gene-tree distribution
(SimPhy’s output)

Gene trees inside

. Sequences
species trees

FIGURE 1: Input modes: a) a single gene tree; b) single gene tree with a user-defined ancestral
sequence; ¢) a single gene tree with an anchor sequence and d) gene-tree distributions (SimPhy
output [species-tree simulations)])



6.2.1. Input data options

Single gene tree [data]

inputmode=1
gene_tree_file=/home/myuser/my_gene_tree.tree
indelible_control_file=/home/myuser/my_control_indelible.txt

Single gene tree with [data]

user-defined ancestral | inputmode=2

sequence gene_tree_file=/home/myuser/my_gene_tree.tree
ancestral_sequence_file=/home/myuser/my_ancestral.fasta
indelible_control_file=/home/myuser/my_control_indelible.txt

Single gene tree with [data]

user-defined anchor inputmode=3

sequence gene_tree_file=/home/myuser/my_gene_tree.tree
anchor_sequence_file=’/home/myuser/my_anchor.fasta
anchor_tip_label=1_0_0
indelible_control_file=/home/myuser/my_control_indelible.txt

Gene-tree distribution | [data]

SimPhy output inputmode=4

(species-tree simulations) | simphy_folder_path=testSimphy
simphy_data_prefix=data
simphy_filter=true

e inputmode

o purpose: identifies the type of input.

o type: number (integer)

o value: values within the closed interval [1,4]
1. single gene tree
2. single gene tree with an ancestral sequence
3. single gene tree with an anchor sequence
4. gene-tree distribution (SimPhy output [species-tree simulations))

6.2.2. Single gene tree

e gene_tree_file
o purpose: path of the gene tree in Newick format . There must be a single path and
a single tree in the file. The name of the file, without extension, must be the same
as the name of the tree within the INDELible control file, in the
[NGSPHYPARTITION] option.
o type: string (path)
o format: see specification in Section 6.2.5. (INDELible control file).
e indelible_control_file
o purpose: path for the INDELible control file.
o type: string (path)
o format: see specification in Section 6.2.5. (INDELible control file).

1


http://evolution.genetics.washington.edu/phylip/newicktree.html

6.2.3. Single gene tree with an user-defined ancestral sequence

e gene_tree_file
O purpose: same as in Section 6.2.1. (Single gene tree)
o type: string (path)
e ancestral_sequence_file
o purpose: path to the FASTA file that contains the ancestral sequence.
o type: string (path)
e indelible_control_file
o purpose: Same as Section 6.2.1. (Single gene tree)
o type: string (path)

6.2.4. Single gene tree with an user-defined anchor sequence

e gene_tree_file
O purpose: same as in Section 6.2.1. (Single gene tree)
o type: string (path)
e anchor_sequence_file
o purpose: path to the FASTA file that contains the anchor sequence.
o type: string (path)
e anchor_tip_label
o purpose: tip label of the gene tree that corresponds to the tip that will be used as
root.
o type: string
o format: see specification in the Section 6.2.6. (Single gene-tree file labeling)
e indelible_control_file
o purpose: Same as Section 6.2.1. (Single gene tree)
o type: string (path)

6.2.4.1. Re-rooting process

If the user wants to use a tip sequence as the root for the alignment simulation
(anchor_sequence), the gene tree has to be re-rooted (anchor_tip_label), so that simulation can
proceed using the anchor_sequence as the root node. In the example shown in Figure 2,
NGSphy would transform the tree on the left into the one on the right, using as anchor tip 2_0_0.
The key observation here is that the branch length from node A to tip 2_0_0 has to become
zero. Then, the re-rooted tree plus the anchor (known) sequence are given to indelible-ngsphy,
with the INDELible control file (format in Section 6.2.5. INDELible control file) to simulate the
corresponding sequence alignments under the model from the control file.
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FIGURE 2: Re-rooting process. Number above branches indicate branch length.

6.2.5. Gene-tree distribution (SimPhy output [species-tree simulations])

e simphy_folder_path
o purpose: path to the folder with SimPhy’s output
o type: string (path)
e simphy_data_prefix
o purpose: prefix used in SimPhy's run.
o type: string
e simphy_filter [optional]
o purpose: filter out the replicates that do not satisfy the required ploidy. For the
diploid case the number of gene tree tips per species has to be an even number.
See more in Section 6.2.7. (Individual assignment).
o type: boolean
o value:
m O, false, off: don't filter
m 1, true, on: filter

6.2.5.1. A valid SimPhy ouput

A detailed description of SimPhy's output can be found in https://github.com/adamallo/simphy.
The SimPhy output required by NGSphy has to include:

e <simphy_project_name>.command: a plain text file with the original command line
arguments.

13
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e <simphy_project_name>.db: a SQLite database composed by three (3) linked tables with
different information about species, locus and gene trees.

e <simphy_project_name>.params: a plain text file summarizing the sampled options.

e a set of folders with the multiple sequence alignments and the corresponding trees in
FASTA format.

6.2.6. INDELible Control file - NGSphy version

When the input mode is a single gene tree, it is necessary to have a control file to call INDELible.
Here, we use a slightly modified version of the INDELible's control file. To properly set up the
configuration file for INDELible, wusers should refer first to INDELible’s manual
(http://abacus.gene.ucl.ac.uk/software/indelible/manual/)l. In our version, the file must include the
following blocks:

[TYPE]: 1 block

[SETTINGS]: 1 block (optional)

[MODEL]: 1 block

[NGSPHYPARTITION]: 1 block

Including a wrong number of blocks or other type of blocks will result in an error message and
will terminate NGSPhy execution.

6.2.6.1. Block definitions

[TYPE] standard INDELible specification.
[SETTINGS] standard INDELible specification.
[MODEL] standard INDELible specification.
[NGSPHYPARTITION] this block defines:
o the gene tree for INDELible (this name has to be the same as the Newick file used
as input (see Section 6.2)
o the substitution model for INDELible. This name must match the name of the
model used in the previous [MODEL] block.
o the sequence length.

For example, we have a gene tree in the Newick file: treel.tree, where sequences will
evolve under model m1, with a length of 500bp.

[NGSPHYPARTITION] tree1 m1500

NOTE: Example of the modified INDELible control files can be found under the data/indelible
folder in the NGSphy source.
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6.2.7. Single gene-tree file format and labeling

Single gene trees in Newick format should have specific tip labels. Tips must follow a specific
format in order to be managed by NGSphy. This format indicates species, locus and individual
with the scheme (X_Y_Z) where:

e X stands for the the species identifier, where X >0
e Y for the locus identifier, where Y >0
e Z for the individual identifier, where Z> 0

The gene tree file must be in Newick format, rooted and with branch lengths. If the gene tree is
not rooted, it will be forced following Dendropy specifications.

For example, if we have 3 species and 2 gene copies per species the labels would be:

FIGURE 3: Gene tree labeling example.

((1_0_1:1.0,1_0_0:2.0):1.0, (2_0_1:1.0,2_0_0:1.0)),( (3_0_1:2.0,3_0_0:3.0) ));

6.2.8. Assignment of individuals

For haploid individuals, each tip in the gene tree provided will correspond to a single individual.
For diploid individuals the number of gene-tree tips per species must be even. In this case, the
individuals are generated by randomly sampling without replacement two gene copies from a
specific gene-family until all gene tree tips have been assigned to an individual.

For the gene-tree distribution input mode only, the outgroup in the gene trees is called “0_0_0"
and has one gene copy. Therefore, for the generation of diploid individuals, the outgroup will be

homozygous, obtained by the duplication of the sequence of its gene copy.

The description of the sequence(s) in the final FASTA file of the individual is formatted as:

>project:replD:locusID:sequence_file_prefix:indID:full_sequence_description
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Where:

e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
replD: replicate identifier.
loclD: locus identifier.
indID: individual identifier.
sequence_file_prefix: if using any of the single gene tree input modes, it will be
ngsphydata. For the gene-tree distribution input mode, it will be the simphy_data_prefix.
e full_sequence_description: the description of the original sequence.

6.3. [coverage] block

Sequencing coverage can be specified at three different levels: experiment, individual and
locus-wide. It is also possible to mimic the variation in coverage expected for targeted
sequencing, including off-target loci and taxon-specific effects.

[coverage]

experiment=F:100

individual=LN:1.2,1

locus=LN:1.3,1

offtarget=0.4, 0.01 # 40% loci are off-target, will have 1% of the coverage
notcaptured=0.5

taxon=1,0.5;2:0.25

6.3.1. Sampling notation

The parameters that will define the coverage in NGSphy have to be provided using a specific
notation in order to define statistical distributions and dependency between arguments. The
sampling notation is structured as a particular statistical distribution (see code for the statistical
distribution), followed by a colon and a list of comma-separated parameter values:

distribution_code:param1,param?2, ...

For example:

a) Fixed value=100.

F:100




b) Poisson distribution with mean=100.

P:100
Poisson(lambda=100)
o:
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FIGURE 4: Sampling notation example. Poisson distribution.
¢) Negative Binomial, mean=100 and overdispersion=10.
NB:100,10
Negative Binomial (mean=100, overdispersion=10)
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FIGURE 5: Sampling notation example. Negative Binomial distribution.



6.3.2. Statistical distributions

Distribution | Code | Num. parameters | Parameters | Description

Binomial b/B 2 r,p trials, probabilities

Exponential e/E 1 s scale

Fixed point f/F 1 \Y% value

Gamma g/G 2 sh,sc shape,scale

Log. Normal | In/LN 2 mu, sd mean, standard deviation

Negative nb/N 2 mu, r mean of the underlying Poisson

Binomial B distribution, overdispersion

Normal n/N 2 mu, var mean, variance

Poisson p/P 1 I mean

Uniform u/U 2 min,max minimum (included), maximum
(excluded)

6.3.3. Coverage options

e experiment
o purpose: expected depth of coverage for a specific replicate.
o type: fixed value or statistical distribution.

e locus [optional]
O purpose: variation of expected coverage between loci.
o type: fixed value or statistical distribution.

e individual [optional]
o purpose: variation of expected coverage between individuals.
o type: fixed value or statistical distribution.

e offtarget [optional]

o purpose: related to targeted-sequencing experiments; percentage of loci that will
be considered off-target (captured and sequenced but not originally targeted);
expected coverage will be 1% of the experiment-wide.

o type: 1 pair (proportionLoci, proportionCoverage)

o value:

m proportionLoci: number (float) in the closed interval [0,1].
m proportionCoverage: number (float) in the closed interval [0,1].



e notcaptured [optional]

o purpose: related to targeted-sequencing experiments; fraction of originally
targeted loci that will not be captured/sequenced.

o type: number (float).

o value: number in the closed interval [0,1].

e taxon [optional]

o purpose: related to targeted-sequencing experiments; decrease in coverage for
particular species. It can be due to the phylogenetic distance between a
reference species (used to design the probes for the targeted loci) and the
individuals from the target-sequencing experiment or to species-specific sample

conditions.
o type: pairs (specieslD,coverageProportion)
o values:

m speciesID: one or more of the existent species in the tree.
m coverageProportion: value in the closed interval [0,1].
o format:

taxon=specieslID1,coverageProportion1; speciesID2,coverageProportion2 ...

6.3.4. Coverage sampling strategy

The experiment-wide coverage is sampled for each replicate from the specified statistical
distribution, and this value becomes the expected coverage for every loci and individual in that
replicate. For example, if experiment=P:100, we might sample a value of 104 for replicate 1, so the
expected coverage would be 104x for that particular experiment.

experiment-wide=P:100

= Expactad coverage = 104x

0.02 003 004
l

Density

0.00 0.01

I T T T 1
] 50 100 150 200

Index

FIGURE 6: Experiment-wide coverage sampling example.

An individual-wide coverage multiplier is sampled for each individual within a given replicate.
The value indicated in the settings file is in fact a hyper-parameter that controls a specific
hyper-distribution from which a single value is sampled per replicate. For that replicate, this value
will become the shape of a Gamma distribution with mean =1, from which a multiplier is sampled
for each individual.



In exactly the same manner, a locus-wide coverage multiplier is sampled for each locus within a
given replicate. The value indicated in the settings file is again a hyper-parameter that controls a
specific hyper-distribution from which a single value is sampled per replicate. For that replicate,
this value will become the shape of a Gamma distribution with mean =1, from which a multiplier is
sampled for each loci.

For example, imagine we have 2 replicates, 2 loci, 2 individuals and input the following coverage
settings:

[coverage]
experiment-wide: P:100
locus-wide: LN:1.2,1
individual-wide: E:1

First, we sample from a Poisson, with mean=100, to obtain the expected coverage per experiment
(repic, rep2c).

experiment-wide=P:100

=+
= repl ¢ = 102x
o
D. —_
(=]
=
W g 2|
g 2 rep2c=112x
]
o 4
=1
[=]
D_ -
= I T T T 1
0 50 100 150 200

Index

FIGURE 7: Experiment-wide coverage sampling a complex example.

e Coverage variation before locus/individual multipliers:

Expected coverage
Replicate Locus
Individual | Individual Il

A 102 102
1

B 102 102

A 12 12
2

B 12 12
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Probabilities

Afterwards, we sample the locus-wide rate multipliers from the hyper-distribution, in this
case a Log Normal with mean=1.2 and standard deviation =1 (locrepla,locrep2a). This,
give us the shape of the Gamma distribution with mean 1 from which we sample the rate
multipliers, as many as loci (locAm, locBm).

(Hyper parameter) locus-wide: LN:1.2,1

repl o =7. 164

. 935

Values

Density

Density

Replicate 1 - shape: 7.164

= | locBm = 0.8231
- locAm = 1.671
[= R T T T T 1
Values
Replicate 2 - shape: 1.935
o Nm =0.7682
o | locAm = 2.126
=] r T T T T 1

-t w 0 =
=

Values

FIGURE 8: Locus-wide coverage sampling.

Coverage variation after locus-wide multipliers:

Rate Resulting coverage
Replicate Locus multiplier
(per loci) Individual | Individual I

A 1.6710 170.4420 170.4420
1

B 0.8231 83.9562 83.9562

A 21260 238.1120 238.1120
2

B 0.7682 86.0384 86.0384

Next, we get the individual-wide rate multipliers, sampling from the hyper-distribution, an
Exponential with rate 1 (indwrepla, indwrep2 o). This, give us the shape of the Gamma
distribution with mean 1 from which we sample the rate multipliers, as many as individuals
(indAm, indBm).
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(Hyper parameter) individual-wide - E:1 Replicate 1 - shape: 0.7571

o _
2 5 2
T |
g -
A g 24 thd2m = 0.4849
= .
| =1.679
o= r T T 7 ] :
e @4 indwrep2 o = 0. 9795 = B * @ @ o
a =
% indwrem a=0.7571 Values
o =
=1 Replicate 2 - shape: 0.9795
.
G
=1 2 24
2
g 2 ind1m = 0.7437
ik ind2m = 1.325
= a |
f T T T T T 1 =S ' - - | |
0.0 05 1.0 15 20 25 30 = ™ = o = 2
Values Values

FIGURE 9: Individual-wide coverage sampling.

Finally, we apply all the multipliers. Coverage variation after locus-wide and individual-wide
multipliers:

Replicate | Individuals (Toaetfil':;i‘",tirﬂ::) IOCUZTUItIng Cove::iz -
| 0.4849 82.64733 40.71036
1 I 16790 286.1721 140.9625
| 0.7437 177.0838 63.9867
’ I 13250 315.4984 114.0009

Targeted sequencing parameters allow the user to emulate the variation in depth of coverage
that can occur in a targeted-sequencing experiment. This is possible when using gene tree
distributions (SimPhy project) as input data. These parameters identify the on-target/off-target loci
as well as the number of loci that may not be captured. While on-target loci will keep their
expected coverage, the off-target fraction will have a (user-defined) fraction of this. The
not-captured indicates the fraction of targeted loci that will not be captured, and its expected
coverage will be Ox. For example, if we have 2 replicates, 3 loci, and input the following
coverage:
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[coverage]

experiment-wide: P:100

off-target=0.33 0.1
notcaptured=0.5 # half of the on-target

If we consider the same coverage sampling as before, P:100:

Replicate | Locus Category Expected Rate Sampled
coverage multiplier coverage

1 A on-target 105 1 105

B on-target, not captured 105 0 0

C off-target 105 0.1 10.5
2 A on-target 92 1 92

B on-target, not captured 92 0 0

C off-target 92 0.1 9.2

Taxon-specific effects allows the user to define of coverage variation for specific taxa. It can be
used for example to emulate a decay in coverage, related to the phylogenetic distance of the a
species to the reference species used to build the target-loci probes (Bragg et al, 2016) (this is

sometimes called phylogenetic decay)

conditions (low amount of DNA, museum specimens, etc. ).

be assigned a proportion of the experiment-wide defined coverage.

—

| —

\ Reference

FIGURE 10: Taxon-specific coverage can be incorporated. Different clades (blue and orange) can

or in a more general context for particular sample
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For example:

[coverage]
experiment: F:60
taxon=1,0.5; 2,0.25

Meaning that, if the expected coverage for the experiment is 60x, individuals from the species
speciesID=1, will have a coverage of 30x (50% of the expected coverage) and the individuals from
the species speciesID=2, will have coverage of 15x (25% of the expected coverage).

6.4. [ngs-reads-art] block

Defines the options for ART. If the user specifies here any input (in,i) or output (out,0) arguments,
these will be ignored since these values will be auto-generated upstream by NGSphy.

For coverage, ART offers considers two different parameterizations:

® -c, --rcount: number of reads/read pairs to be generated per sequence/amplicon
e -f,--fcov: mean fold of read coverage to be simulated for each amplicon.

Here, these parameters will be treated as Boolean (true,false) while its expected value will be set
with the distributions given in the Section 6.3. [coverage] block. Units will be reads or depth of
coverage according to the ART option selected.

Parameter Possible Values Units
-c, --rcount True/on/1 reads
-f, --fcov False/off/O depth (x)

IMPORTANT: In NGSphy the coverage is defined per individual not per sequence/amplicon.

6.5. [ngs-read-counts] block

NGSphy creates two sets of VCF files (a VCF file per locus per replicate) that contain contains the
variable positions and their genotype likelihoods calculated upon reads with/without sequencing
errors. The latter VCF therefore also unveils the true genotypes (those with non-zero genotype
likelihoods).
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[ngs-read-counts]
read_counts_error=0.1
reference_alleles_file=/home/myuser/my_reference_alleles.txt

e read_counts_error
O purpose: to emulate sequencing error.
o type: number (float)
o value: value in the left-closed interval [0,1).
o reference_alleles_file
o purpose: identifiers of the sequences used as reference for the variable sites.
o type: string (path)

6.5.1. Reference allele file [optional]

Defines which alleles will be used as references to generate the VCF files. The description of the
allele sequences follow the labeling explained above in Section 6.2.5 (Single gene-tree file
labeling). The content of the file should be formatted as:

replD, spID,locID, indID

Where:
e replD, replicate ID.
spID, species ID (X value of the sequence description)
locID, locus ID (Y value of the sequence description)
indID, gene tree tip ID (Z value of the sequence description).

IMPORTANT: By default, if the reference allele file is not specified (or badly formatted), the
reference allele will correspond to the sequence named 1_0_0.

6.5.1.1. Example

The simplest case will be when the input is a single tree and all individuals have the same
number of loci. So, let’'s suppose we want to run NGSphy, with single gene tree inputmode
(inputmode=1). The gene tree is the following (as in Section 6.2.6.) :

FIGURE 11: Example of gene tree with proper label notation.
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Also, we want to generate read counts, with no errors, and we want to use the gene-tree tip with
label “2_0_1” as the reference allele. The reference allele file should contain:

1,2,0,1

6.6. [execution] block

This section define how NGSphy is executed. If the user has access to a computational cluster,
the ART commands can be converted into jobs for SGE or SLURM schedulers (see Section 6.6.2).
If desired, ART calls can be made by NGSphy transparently to the user (sequentially or in parallel
- multi-threading).

[execution]
environment=bash
runART=on
running_times=off
threads=4

6.6.1. Options

e environment
o purpose: specify in which environment the ART runs are going to be executed
(more details below).
o type: enumerate (possible environments)
o values:

m bash: generates a bash file with all the commands used to call ART.

m sge: generates the necessary files to run a job array in a cluster
environment running Sun Grid Engine. Includes: seed file, job script and a
possible script to launch ART jobs.

m slurm: generates the necessary files to run a job array in a cluster
environment running Simple Linux Utility for Resource Management.
Includes: seed file, job script and a possible script to launch ART jobs.

e threads
o purpose: number of threads to execute NGSphy.
o type: number (integer)
o value:1
e runART
o purpose: indicate whether the user actually wants to generate NGS reads This will
only run on local, under bash environment
o type: boolean
o values:
m 1, true, on: run ART.
m O, false, off: don't run ART, bash scripts will be generated.
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® running_times:
O purpose: obtain the running times file for the NGS mode processes (read counts
or ART).
o type: boolean
m Vvalues:
e O, false, off: don’t generate file
e 1, true, on: generate file

IMPORTANT: the generation of this file increases the execution time of the program.

NOTES

e If the execution block is missing, a bash script will be generated and ART instances will
not be run.

e |f the option environment is missing, a bash script will be generated (default behavior) and
ART instances will not be run, unless runART option is set.

e If the option runART is missing, ART instances will not be run.

e |[f the value chosen for the option run is wrong and bash is the value of environment, then
ART instances will not be run.

e If the value chosen for the option environment is wrong, behavior will be as if there was
no execution section, bash script will be generated and ART instances will not be run.

6.6.2. Cluster execution options (SGE,SLURM)

NGSphy can generate job templates for execution in computational clusters running Sun Grid
Engine (Gentzsch 2001, Oracle Corp.) or Simple Linux Utility for Resource Management (Yoo et al.
2003, https://slurm.schedmd.com/ ).

In this case, NGSphy generates two files, project. XXX.sh (job script) and project.seedfile.txt (the
seed-file for job arrays)

Where:

o XXX will be sge or slurm according to the selected execution environment.
e project. if using any of the single gene tree input modes, will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.

To execute this one would type a different command depending on job scheduler (SGE or
SLURM)

e SGE:

gsub -t 1-100 project.sge.sh

e SLURM:

sbatch --array 1-100 project.slurm.sh

27



https://slurm.schedmd.com/

Here there are some arbitrary examples of the files generated:

e SEED FILE

art_illumina art_illumina -ss GA2 -amp -p -sam -na -i
/home/user/NGSphy_output/individuals/1/01/testwsimphy_1_1_data_0.fasta -| 50 -f 10 -0
/home/user/NGSphy_output/reads/1/01/testwsimphy_1_1_data_0O_R

art_illumina art_illumina -ss GA2 -amp -p -sam -na -i
/home/user/NGSphy_output/individuals/1/01/testwsimphy_1_1_data_1.fasta - 50 -f 10 -0
/home/user/NGSphy_output/reads/1/01/testwsimphy_1_1_data_1_R

art_illumina art_illumina -ss GA2 -amp -p -sam -na -i
/home/user/NGSphy_output/individuals/1/01/testwsimphy_1_1_data_2.fasta -| 50 -f 10 -0
/home/user/NGSphy_output/reads/1/01/testwsimphy_1_1_data_2_R

o SGE job script:

#!/bin/bash

# SGE submission options

#$ - num_proc=1 # number of processors to use

#$ -1 h_rt=00:10:00 # Set 10 mins - Average amount of time for up to 1000bp
#$ -t 140} # Number of jobs/files that will be treated

#$ -N art.sims # A name for the job

command=$(awk 'NR==$SGE_TASK_ID{(print $1})' $SEEDFILE)
$command

e SLURM job script

#!/bin/sh

#SBATCH -n 1

#SBATCH --cpus-per-task 1
#SBATCH -t 00:10:00
#SBATCH --mem 4G
#SBATCH --array=1-1000

command=$(awk 'NR==$SLURM_ARRAY_TASK_ID{{print $1}} $SEEDFILE)
$command
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IMPORTANT: Take into account that the job script files generated by NGSphy are general
templates, and that in most cases they will be have to be modified according the the particular
cluster environments. It is strongly encouraged to consult the cluster administrator for proper
execution.

6.6.3. Running times file

Generated to keep track of the timings for each ART call or each NGS read counts process. File
name follows the format:

project.info

where, project will be NGSphy, if using any of the single gene tree input modes. Whereas, for the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.

Content of the file is formatted as follows:

replD,locID,indID,inputFile,cpuTime,seed,outputFilePrefix

replD: replicate identifier.

locID: locus identifier.

indID: individual identifier.

inputFile: path of the input file, corresponding to the individual FASTA file.

cpuTime: processing time

seed: if the NGS mode needs a seed for the generation of random numbers, it will be
here.

e outputFilePrefix: prefix of the file generated.
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7. Output

The output of NGSphy will depend on the NGS mode selected (ngs-read-counts or ngs-reads-art).
In both cases, the user will get a detailed log file and a folder structure as:

.eutput
I I [ I

.l alignments ind_labels . scripts . individuals .reads

S
ST STn
= = - m

| coverage | ref_alleles | cT1 GTg GT1 GTg

.
@*.csv @ o % o @ o o

FIGURE 12: Folder structure of the NGSphy output.

Folder structure include:
1. alignments: for single gene tree modes, stores the alignments and files generated for the
INDELible run.
2. coverage: stores tables describing the coverage for each locus and individual, one per
replicate.
3. individuals: stores the FASTA files with the individual sequences. Structured along the
hierarchy replicate > locus > individuals.
ind_labels: stores the correspondence between sequences and individuals.
reads: for lllumina reads, stores the ALN/BAM and/or FASTQ files generated by ART. For
read counts, stores all the VCF files. Structured as hierarchy:
a. replicate >locus > ALN/BAM/FASTQ/VCEF files
6. ref_alleles: stores the sequences of the references alleles used for the simulation of read
counts.
7. scripts: stores all the bash scripts generated.

ok
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7.1. Alignments

Stores the simulated sequences in FASTA format, both unaligned (*FASTA) and aligned
(*_TRUE.fasta) together with INDELible/INDELible-NGSphy control file, ancestral sequence, and
gene trees.

alignments/
|__ngsphy.tree # if inputmode = 3
|__NGSphy.indelible.times # if running_times=1
1

control.txt

ancestral.fasta # if inputmode in [2,3]

ngsphydata_1.fasta

ngsphydata_1_TRUE.fasta

LOG.txt # default indelible file

__tree.txt # default indelible file

7.2. Coverage

This folder will contain two types of files, comma-separated value (CSV) files with the coverage
distribution of each individual per replicate, and plain text files with information of the coverage
heterogeneity (multipliers). Format of the filenames are:

Coverage Multipliers
project.replD.coverage.csv project.replD.multipliers.txt
Where:

e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replID: number of the replicate.

Folder structure will look like this:

coverage/
|__SimPhyOutput.1.coverage.csv
SimPhyOutput.l.multipliers.txt
SimPhyOutput.2.coverage.csv
SimPhyOutput.2.multipliers.txt
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The coverage files, one per replicate, store a matrix of shape (number of individuals X number of
loci) where each cell corresponds to the depth of coverage of the loci for the specific individual.

indID ,L.01,L.02 ,L.03,L.04

0 ,4.317, 401.540, 467.337, 0.000
1,7.646, 711199, 827.737, 0.0

2 ,6.401, 595.411, 692.976, 0.0
3,10.602, 986.243, 1147.850, 0.0
4 15.316, 1424.710, 1658.165, 0.00

The multipliers files, also one per replicate, stores all the multipliers involved in the coverage
calculations. These files have 9 sections, starting with a “#” symbol and the name of the section.
The sections, ordered, are:

© 0N U R

Experiment coverage: shows the expected coverage per replicate.

Locus alpha shapes: shows the alpha shapes sampled that will be used for the Gamma
distribution that will introduced the coverage variation among loci.

Individual alpha shapes: shows the alpha shapes sampled that will be used for the
Gamma distribution that will introduced the coverage variation among individuals.

Locus multipliers: the sampled multipliers for the loci.

Individual multipliers: the sampled multipliers for the individuals.

On target loci: ID of the loci that are considered as on target.

Off target loci: ID of the loci that are considered as off target.

Not captured loci: ID of the loci that are considered as not captured.

Taxon decay: this will match the given taxon specific parameters from the settings file.
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An example of this file:

# Experiment coverage:
[100.0]

# Locus alpha shapes:
0.927251162511

# Individual alpha shapes:
1.53083011312

# Locus Multipliers:

1 0.834697014116

2 1.18198759526

3 0.65934212521

4 0.678000738762
5 0.473412350281
# Individual Multipliers:
1 0.259996456042
2 0.816753359147
3 0.165530070861
4 157630793049
5 1.3641198608

# On target loci

1,3,4

# Off target loci

2

# Not captured loci

5

# Taxon decay:

1,0.5

2,0.25

7.3. Ind_labels

These will store the correspondence between the original sequences and the generated

individuals. Each table is a CSV file named as follows:

project.replD.individuals.csv

Where:

e project: if using any of the single gene tree input modes, it will be NGSphy. For the

gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replD: number of the replicate.

Folder structure will look like this:

ind_labels/
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|__NGSphy.lindividuals.csv

7.3.1. Haploid individuals

This folder will contain tables with the correspondence between the individual identifier and the
corresponding sequence identifier. CSV file format:

replD, indID, splID,loclD,genelD
1, 0,0, 0,0

1,11 0,1

1, 2,1, 0, 2

Where:
e replD: identifier of the replicate to which the gene trees and sequences belong.
indID: identifier of the haploid individual.
spID: identifier of the species.
loclD: identifier of the locus.
genelD: identifier of the gene copy.

7.3.2. Diploid individuals

These tables will contain the correspondence between each individual and its two sequences.
CSV file format:

replD,indID,splID,loclD,matelD1,matelD2
1,1,1,0,3, 0

o o
N D

) )
) ’

1,
1,
1

WD

1
, 5
, 0

w
o
5

) )

Where:
e replD: identifier of the replicate.
indID: identifier of the generated diploid individual.
spID: identifier of the species.
locID: identifier of the locus.
matelD(1&2): identifiers of the gene copies paired within each individual.
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7.4. Individuals

This folder will store the haploid/diploid individual sequence files (i.e., 1/2 sequences for each
locus), hierarchically organized within replicates and loci. For example:

individuals/

1

1
|__prefix_1_1_ind1.fasta
|__prefix_1_1_ind2.fasta
|___prefix_1_1_ind3.fasta

2/
|___prefix_1_2_ind1.fasta
|__prefix_1_2_ind2.fasta
|__prefix_1_2_ind3.fasta

2/

1
|___prefix_2_1_ind1.fasta
|__prefix_2_1_ind2.fasta
|__prefix_2_1_ind3.fasta

2/
|__prefix_2_2_ind1.fasta
|__prefix_2_2_ind2.fasta
|__prefix_2_2_ind3.fasta

7.5. Ref_alelles

This folder contains the FASTA files with the reference allele sequences used in the VCF file with
the read counts. Folder is structured per replicate. There is a reference allele file per locus. Each
file contains a single sequence. The format of each file name:

project_REF_replD_loclID.fasta

Where:
e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replD: replicate identifier.
e loclD: locus identifier.
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Folder structure will look like this:

ref_alleles/
1
|__NGSphy_REF_1_1fasta
|__NGSphy_REF_1_2 fasta

2/
|__NGSphy_REF_2_1fasta
|__NGSphy_REF_2_2 fasta

7.6. Scripts

This folder will store all the scripts for ART execution, according to the options in the execution
block. If we decide to run NGSphy for any cluster environment, we will have the job script and the
seed file. If we choose bash as environment and we do not want to execute the ART commands
within NGSphy, we would have a single bash script.

SGE SLURM

reads/ reads/
|___project.sge.sh |___project.slurm.sh
|__project.sh |__project.sh

bash

reads/

|___project.sh

Where, project will be NGSphy, if using any of the single gene tree input modes. Whereas, for
the gene-tree distribution input mode, it will be the name of the SimPhy output folder.

7.7. NGS mode

Data will be structured per replicate.

7.7.1. NGS reads ART

This folder will store the output of ART. It follows the same folder structure of the individuals
folder, but instead of having FASTA files, it will contain the FASTQ files [and alignment and
mapping files (ALN and SAM) if requested ] generated by ART.
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reads/
1

1
__prefix_1_1_ind1_R1.fq
__prefix_1_1_ind1_R2.fq
__prefix_1_1_ind2_R1.fq
__prefix_1_1_ind2_R2.fq
2/
__prefix_1_2_ind1_R1.fq
__prefix_1_2_ind1_R2.fq
__prefix_1_2_ind2_R1.fq
__prefix_1_2_ind2_R2.fq
2/

1
__prefix_2_1_ind1_R1.fq
__prefix_2_1_ind1_R2.fq
__prefix_2_1_ind2_R1.fq
__prefix_2_1_ind2_R2.fq
2/
__prefix_2_2_ind1_R1.fq
__prefix_2_2_ind1_R2.fq
__prefix_2_2_ind2_R1.fq
__prefix_2_2_ind2_R2.fq

NOTE: Independently of the environment chosen and the value of the “runART” option,

NGSphy will generate the hierarchical folder structure.

7.7.2. NGS read counts

This folder will store the output obtained from the read count simulation. This folder is structured
in 2 sub-folders (with and without sequencing errors), each structured per replicate, and

containing as many VCF files as loci.
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Sub-folders will be:
e no_error: VCF files with the simulated read counts without sequencing error.
e with_error: VCF files with the simulated read counts with the introduced sequencing
error.

reads
|__no_error/

1/
|__prefix_1_1_TRUE.VCF
|__prefix_1_2_TRUE.VCF
|__prefix_1_3_TRUE.VCF

2/
|__prefix_2_1_TRUE.VCF
|__prefix_2_2_TRUE.VCF
|__prefix_2_3_TRUE.VCF

|__with_error/

1/
|__prefix_1_1.VCF
|__prefix_1_2.VCF
|___prefix_1_3.VCF

2/
|__prefix_2_1VCF
|__prefix_2_2.VCF
|__prefix_2_3.VCF

7.8. Other files
7.8.1. Summary log file

In the output folder there will be a file which contains a summary of the parameters used for the
simulation. The name of the file will have the format:

NGSPHY.YYYYMMDD-HH:mm:SS.summary.log

YYYY: year
MM: month
DD: day

HH: hours
mm: minutes
ss: seconds
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Here, an example of the output:

Settings:
[GENERAL]
path : ./
output_folder_name : NGSphy_case1_100x_RC
ploidy : 2 (Diploid individuals)
seed : 50426717
numreplicates 1
numlociperreplicate : 1
filtered_replicates 1
numindividualsperreplicate 8
[DATA]
inputmode . 4 (Gene-tree distribution-SimPhy output)
simphy_folder_path : SimPhy_usecase
simphy_data_prefix : data
[COVERAGE]
experiment ;. 100
[NGS-READ-COUNTS]
read_counts_error : 0
reference_alleles_file : files/my_reference_allele_file.casel.txt
[EXECUTION]
environment . bash
threads : 2
runart : off
running_times 0

7.8.2. Running times file

Stores information related to the time used in each ART run or read-count thread per locus. This
file will contain input/output files for each process and its corresponding individual, locus
(gene-tree) and replicate (REPID). See more on Section 6.6.3

Example of the file

1,1,0,output/individuals/1/01/test_wrapper_1_01_data_0.fasta, 0.013984,
1479977980,0utput/reads/1/01/test_wrapper_1_01_data_0_R
1,1,1,output/individuals/1/01/test_wrapper_1_01_data_1.fasta, 0.014757,
1479977980,0utput/reads/1/01/test_wrapper_1_01_data_1_R
1,1,2,output/individuals/1/01/test_wrapper_1_01_data_2.fasta, 0.013589,
1479977980,0output/reads/1/01/test_wrapper_1_01_data_2_R
1,1,3,output/individuals/1/01/test_wrapper_1_01_data_3.fasta, 0.013404,
1479977980,output/reads/1/01/test_wrapper_1_01_data_3_R

7.8.3. Debug file

For each NGSphy run is optional to get a debug log file. If the “-I/--log” option in the command
line is set to DEBUG, the file will be generated in the current working directory and under the
name:
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NGSPHY.YYYYMMDD-HH:mm:SS.log

YYYY: year
MM: month
DD: day

HH: hours
mm: minutes
ss: seconds

This file stores information of the program execution, at a very detailed level. A debug log file will
look like this:

13/08/2017 11:21:19 AM - ERROR (__main__lhandlingCmdArguments:82): Something happened while
parsing the arguments.
Please verify. Exiting.
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8. Additional information

8.1. Motivation

Advances in sequencing technologies have now made very common that datasets for
phylogenomic inference consist of large numbers of loci from multiple species and individuals.
The use of next-generation sequencing (NGS) for phylogenomics implies a complex
computational pipeline where multiple technical and methodological decisions are necessary that
might influence the final tree obtained, from coverage to assembly, mapping, variant calling
and/or phasing. In order to assess the influence of these variables, here we introduce NGSphy,
an open-source tool for the genome-wide simulation of lllumina reads obtained from thousands
of gene families evolving under a common species tree, with multiple haploid and/or diploid
individuals per species, where sequencing coverage (depth) heterogeneity can be modelized
across individuals and loci, including off-target loci and phylogenetic decay. Moreover, parameter
values for the different replicates can be sampled from user-defined statistical distributions.

Mapping / Pr;ﬂ':,:"s
Assembly
pecies and Gene tree equence Individual
Speci d G 5 - - _ References
simulations simulation generation
Wariant Programs
_/_ Calling Filters
r wws ww g
i i E =
T —— BN =
— —— Coverage Programs
- i SE/PE/MP
# Individuals # Loci ) .
# species Size Haploids/diploid Read length
individuals Programs
Gene tree Methods
| inference Programs
|
L __ +_’/—4 Species tree Methods
_\\; Inference Programs

FIGURE 13: A possible analysis pipeline for multilocus, multispecies datasets with multiple
individuals with the final goal of exploring the sensitivity of species tree inferences to NGS
parameterization variation.

8.2. What can be done with NGSphy? The detailed scenarios

With NGSphy you can generate:
e haploid/diploid individuals from gene-tree distributions
e genome sequences of haploid/diploid individuals from a single gene tree
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e genome sequences of haploid/diploid individuals from a single gene tree and an
user-defined ancestral sequence
e genome sequences of haploid/diploid individuals from a single gene tree, an user-defined
ancestral sequence and an anchor tip.
e NGS lllumina reads of haploid/diploid individuals
o NGS read counts of haploid/diploid individuals
e Forthe NGS data generation, variation of coverage due to the following:
o variation across individuals and/or loci
o targeted-sequencing effects
m on/off target loci
m on-target loci not captured
m taxon-specific variation

8.3. Third-party software involved

8.3.1. ART

e Huang W, Li L, Myers JR, and Marth, GT (2012) ART: a next-generation sequencing read
simulator. Bioinformatics 28 (4): 593-594

ART (http://www.niehs.nih.gov/research/resources/software/biostatistics/art/) is a set of simulation
tools to generate synthetic next-generation sequencing reads. ART simulates sequencing reads
by mimicking real sequencing process with empirical error models or quality profiles summarized
from large recalibrated sequencing data. ART can also simulate reads using user own read error
model or quality profiles. ART supports simulation of single-end, paired-end/mate-pair reads of
three major commercial next-generation sequencing platforms: lllumina’s Solexa, Roche’s 454
and Applied Biosystems’ SOLiID. ART can be used to test or benchmark a variety of method or
tools for next-generation sequencing data analysis, including read alignment, de novo assembly,
SNP and structural variation discovery. ART outputs reads in the FASTQ format, and alignments in
the ALN format. ART can also generate alignments in the SAM alignment or UCSC BED file
format.

8.3.2. INDELible

e William Fletcher and Ziheng Yang (2009) INDELible: A flexible simulator of biological
sequence evolution. Molecular Biology and Evolution. 26 (8). 1879-88.
doi:10.1093/molbev/msp098

INDELible (http://abacus.gene.ucl.ac.uk/software/indelible/) is an application for biological
sequence simulation that combines many features. Using a length-dependent model of indel
formation it can simulate evolution of multi-partitioned nucleotide, amino-acid, or codon data sets
through the processes of insertion, deletion, and substitution in continuous time.

Nucleotide simulations may use the general unrestricted model or the general time reversible
model and its derivatives, and amino-acid simulations can be conducted using fifteen different
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empirical rate matrices. Substitution rate heterogeneity can be modelled via the continuous and
discrete gamma distributions, with or without a proportion of invariant sites. INDELible can also
simulate under non-homogenous and non-stationary conditions where evolutionary models are
permitted to change across a phylogeny. Unique among indel simulation programs, INDELible
offers the ability to simulate using codon models that exhibit nonsynonymous/synonymous rate
ratio heterogeneity among sites and/or lineages.

8.3.3. SimPhy

e Diego Mallo, Leonardo De Oliveira Martins and David Posada (2015). SimPhy :
Phylogenomic Simulation of Gene, Locus, and Species Trees. Systematic Biology.,
November, syv082. doi:10.1093/sysbio/syv082

SimPhy (https://github.com/adamallo/simphy) is a program for the simulation of gene family
evolution under incomplete lineage sorting (ILS), gene duplication and loss (GDL), replacing
horizontal gene transfer (HGT) and gene conversion (GC). SimPhy simulates species, locus and
gene trees with different levels of rate heterogeneity, and uses INDELible to evolve
nucleotide/codon/aminoacid sequences along the gene trees. The input for SimPhy are the
simulation parameter values, which can be fixed or sampled from user-defined statistical
distributions. The output consists of sequence alignments and a relational database that facilitate
posterior analyses.
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8.4. NGSphy workflow
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FIGURE 14: NGSphy workflow

NGSphy, verifies all the content of the project, the settings files involved and/or the existence of
the corresponding third-party applications in order to run. If the input data corresponds to the
single gene tree an user-defined ancestral sequence, first the tree is rooted to the selected
gene-tree tip. The next step (for any single gene tree input mode) is to evolve the tree under the
specific evolution mode to obtain the expected genome sequences. Then (any input mode), the
generation of individuals, whether haploid or diploid:

e For haploid individuals, resulting genome sequences are separated into single FASTA
files and identified. In addition, a file is generated with the correspondence between the
individual generated and the description of the sequence it belongs to.

e For diploid individuals, there is a process of verification that the project content includes
species-trees with an even number of individuals per taxa. Sequences are then "paired",
individuals being generated by randomly sampling without replacement two sequences
within the same gene family and species. Output will include a table for each replicate
with the identifiers for the sequences paired and the individuals generated.

Afterwards, the coverage variation matrices will be computed according to the parameters
introduced and finally the sequencing data generated, consist on either lllumina reads or read
counts (VCF files).

e For the lllumina reads, program calls out ART, the NGS simulator, with the parameters
established in the settings file and generates reads from the previously generated
individuals. Resulting files depend on the settings introduced, and they are files related to
the execution of the ART processes (scripts and text files), and the output of such
processes (ALN, BAM and/or FASTQ files).

e Forread counts, two scenarios are simultaneously computed, with and without errors.

8.5. Read count simulation

The read count approach is based on the assumption (Ritz et al., 2011) that the sequencing
process is uniform in generating short reads from the target genome, and that the number of
reads mapped to a region is expected to be proportional to the number of times the region
appears in a DNA sample (Ji and Chen, 2015). Read counts are produced under a user-defined
error rate. First, the variable sites (regarding the reference sequences) are identified. Then,
coverage for each position is sampled from a Negative Binomial distribution whose mean and
overdispersion parameter are the sampled coverage for the specific locus and individual. For
diploid individuals, coverage is further splitted among chromosomes with equal probability.
Genotype likelihoods for every site are computed as in GATK (McKenna et al 2010) (see also
Korneliussen et al. 2014). The output is a set of VCF files, one per locus.

45



9. Getting help

Most common issues, doubts and questions should be solved by reading this manual. If that is
not the case or you find any bug, you can post an issue to this repository for reproducibility
purposes, with the following files attached:

e the settings file

e <simphy_project_name>.command file or the indelible_control.txt file.

10. Development and testing

This software has been developed for Linux/Mac environments and specifically tested under:

e Linux Kernel:

4.8.0-58-generic #63™16.04.1-Ubuntu SMP Mon Jun 26 18:08:51 UTC 2017 x86_64 x86_64 x86_64
GNU/Linux

e Distribution

Ubuntu 16.04.2 LTS

e Hardware

Dual core Intel Core i5-3427U (-HT-MCP-) cache: 3072 KB
8GB RAM
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11. Tutorials

Here we find settings files for 4 simple test-case scenarios. They are available in
ngsphy/data/settings (see Escalona et al. submitted for further details). They correspond to the 4
possible input modes. The trees, sequences, reference alleles and INDELible control files needed
for their execution can be found, respectively, in:

ngsphy/data/trees
ngsphy/data/sequences/
ngsphy/data/reference_alleles/
ngsphy/data/indelible/

You can use them to check the proper installation of the pipeline and adapt them to your
particular case. In addition, there is a script file for each case scenario in: ngsphy/test

1. Generating read counts from a single gene tree
a. Corresponds to inputmode=1
b. Script: ngsphy.test.1.sh
2. Generating lllumina reads from a single gene tree, using an ancestral sequence
a. Corresponds to inputmode=2
b. Script: ngsphy.test.2.sh
3. Generating read counts from a single gene tree, using an anchor sequence
a. Corresponds to inputmode=3
b. Script: ngsphy.test.3.sh
4. Generating lllumina reads from gene tree distributions
a. Corresponds to inputmode=4
b. Script: ngsphy.test.4.sh

NOTES:
- All setting files here described assume that:
a. executables are accessible from any folder, and are properly (re)named.
b. all the requested files are in the same directory, otherwise you will have to
change the path related options accordingly.
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11.1.Generating read counts from a single gene tree

Here we will generate read counts for the tips of a single gene tree. The read counts will have
0.1% of sequencing error and the expected coverage is 100x. Reference allele file is not given,
thus the one with the label 1_0_0 is used (default). Output will be stored in the current working
directory. Settings file looks as below and is named ngsphy.settings.1.txt

[general]

path=.
output_folder_name=NGSphy_output
ploidy=1

[data]

inputmode=1
gene_tree_file=tl.tree
indelible_control_file=control.1.txt
[coverage]

experiment=F:100
[ngs-read-counts]
read_counts_error=0.1
[execution]

environment=bash
running_times=off

threads=2

FILE: ngsphy.settings.1.txt

e Forthe generation of sequences with INDELible:

[TYPE] NUCLEOTIDE 1// nucleotide simulation using algorithm from method 1
[SETTINGS]
[ancestralprint] NEW // generates a file with the ancestral sequence
[output] FASTA
[MODEL] m1// no insertions, no gamma
[submodel] HKY 2.5 // HKY with kappa=2.5
[statefreq] 0.10.2 0.3 0.4 // frequenciesfor TCA G
[NGSPHYPARTITION] t1 m1 1000 // t1 with model m1to generate 1000 bp long sequences

FILE: control.1.txt
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e The tree has 4 tips, one per individual.

1.00

200

3,00

400

FIGURE 15: Tree file tl.tree

(1_0_0:1.0, 2_0_0:1.0):1.0,(3_0_0:1.0, 4_0_0:1.0):1.0);

FILE: tl.tree

11.1.1. Execution

To run this example, use:

ngsphy -s ngsphy.settings.1.txt

11.1.2. Output

Several output folders/files are produced under the main directory:

alignments: this contains the data used and generated by INDELible.
coverage: the exact coverage for each loci (L) of each individual (l). This is written into a
table with dimensions (I x L). In this case, this value was fixed at 100x for all individuals.

e individuals: where the sequence files (FASTA) for all loci and individuals are written.
There is a subfolder structure reflecting the number of replicates and gene trees. In this
case, the single gene-tree t1 has 4 tips, corresponding to 4 haploid individuals, thus we
will have 4 FASTA files, each file containing a single sequence corresponding to an
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individual. Here, an example of a single individual file (see more in Section 6.2.7.
Individual assignment).:

$ cat individuals/1/1/NGSphy_1_1_ngsphydata_0.fasta

>NGSphy:1:1:ngsphydata:0:1_0_0
GGCCGTGGCCCGGGGTGGGAAACGGCCGACGAAAATGGGGGAATCCAACCAGTGG....

e ind_labels: it has as many files as replicates, and stores the relation
replicate/individual/species/locus/sequence. In this case:

$ cat ind_labels/NGSphy.l.individuals.csv
indexREP,indID,speciesID,locusID,genelD
1,0,1,0,0
1,1,2,0,0
1,2,3,0,0
1,3,4,0,0

e reads: stores VCF with the simulated read counts. If sequence error is introduced, the
VCF files without errors will also be written.

|__reads/
|__no_error/ # VCF files without sequencing error
|__1/ # replicate identifier
|__ngsphydata_1_1_NOERROR.vcf
|__with_error/ # VCF files with sequencing error
|__1/ # replicate identifier

|__ngsphydata_1_1.vcf

e ref_alleles: FASTA files with the sequences of the reference alleles used for the read
count process.

|__ref_alleles/
|__1/ # replicate identifier
|__NGSphy_REF_1_1.fasta # FASTA file with reference allele sequence for replicate 1, locus 1.
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11.2.Generating lllumina reads from a single gene tree, using an
ancestral sequence

Here we will simulate lllumina reads from diploid individuals evolving under a single gene tree
with a known ancestral sequence. The lllumina reads will have the following characteristics:
Machine: HiSeq2000

100bp PE reads

Fragments will have mean length of 250bp (standard deviation 50bp)

Expected coverage of 50x.

Settings file looks as below and is named ngsphy.settings.2.txt

[general]

path=.
output_folder_name=NGSphy_output
ploidy=2

[data]

inputmode=2
gene_tree_file=t2.tree
ancestral_sequence_file=my_ancestral.fasta
indelible_control_file=control.2.txt
[coverage]

experiment=F:50

[ngs-reads-art]

fcov=true

amp=true

=100

m=250

p=true

g=true

s=50

sam=true

ss=HS20

[execution]

environment = bash

runART=off

threads=2

FILE: ngsphy.settings.2.txt
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INDELible control file:

[TYPE] NUCLEOTIDE 1
[SETTINGS]
[output] FASTA
[ancestralprint] NEW
[MODEL] m1// no insertions, no gamma
[submodel] HKY 0.5 // HKY with kappa=0.5
[NGSPHYPARTITION] t2 m1 500

FILE: control.2.txt

The tree, in this case, has 8 tips belonging to 4 individuals of 4 species.

FIGURE 16: Tree file t2.tree
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((1_0_1:1.0,1_0_0:1.0):1.0,2_0_1:1.0,2_0_0:1.0):1.0):1.0,((3_0_1:1.0,3_0_0:1.0):1.0,
(4_0_1:1.0,4_0_0:1.0):1.0):1.0);

FILE: t2.tree

11.2.1. Execution

To run this example, use:

ngsphy -s ngsphy.settings.2.txt
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11.2.2. Output

Several output files are produced under the main directory:

e alignments: this contains the data used and generated by INDELible.

e coverage: the exact coverage for each loci (L) of each individual (I). This is written into a
table with dimensions (I x L). In this case, this value was fixed at 50x for all individuals.

e individuals: where the sequence files (FASTA) for all loci and individuals are written.
There is a subfolder structure reflecting the number of replicates and gene trees. In this
case, the single gene-tree t2 has 8 tips, corresponding to 4 diploid individuals, thus we
will have 4 FASTA files, each file containing a 2 sequences corresponding to an
individual.

e ind_labels: correspondence replicate/individual/species/locus/sequence. In this case:

$cat NGSphy.lindividuals.csv
indexREP,indID,speciesID,locusID,matelD1,matelD2
1,0,2,0,0,1

1,1,3,0,0,1

1,2,4,0,1,0

1,3,1,0,1,0

e reads: stores the FASTQ files generated by ART. In this case the execution has been
turned off (runART=0ff) and we obtain an empty hierarchical folder structure.

e scripts: file with all nheeded command lines to generate the lllumina reads from all the
diploid individuals in ART. For medium-big datasets it is convenient to use this feature and
run ART separately. The file looks like this:

$ cat NGSphy_output/scripts/NGSphy.sh

art_illumina -amp -1 100 -m 250 -p -q -s 50 -sam -ss HS20 --fcov 50.0 --in
/home/user/git/test-ngsphy/test2/NGSphy_output/individuals/1/1/NGSphy_1_1_ngsphydata_0.fasta --out
/home/user/git/test-ngsphy/test2/NGSphy_output/reads/1/1//NGSphy_1_1_ngsphydata_0_R

art_illumina -amp -1 100 -m 250 -p -q -s 50 -sam -ss HS20 --fcov 50.0 --in
/home/user/git/test-ngsphy/test2/NGSphy_output/individuals/1/1//NGSphy_1_1_ngsphydata_1.fasta --out
/home/user/git/test-ngsphy/test2/NGSphy_output/reads/1/1/NGSphy_1_1_ngsphydata_1_R

art_illumina -amp -1 100 -m 250 -p -q -s 50 -sam -ss HS20 --fcov 50.0 --in
/home/user/git/test-ngsphy/test2/NGSphy_output/individuals/1/1//NGSphy_1_1_ngsphydata_2.fasta --out
/home/user/git/test-ngsphy/test2/NGSphy_output/reads/1/1/NGSphy_1_1_ngsphydata_2_R

art_illumina -amp -1 100 -m 250 -p -q -s 50 -sam -ss HS20 --fcov 50.0 --in
/home/user/git/test-ngsphy/test2/NGSphy_output/individuals/1/1//NGSphy_1_1_ngsphydata_3.fasta --out
/home/user/git/test-ngsphy/test2/NGSphy_output/reads/1/1/NGSphy_1_1_ngsphydata_3_R
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11.3.Generating read counts from a single gene tree, using an
anchor sequence

In this example we use a sequence from a specific tip of the tree called anchor sequence - to root
the tree and start the simulation. We will obtain sequences from the rest of the gene tree tips
keeping their relationships, and then read counts for all tips with 0.1% sequencing error and 100x
expected coverage. In this case the allele used as reference for the read counts is the anchor
sequence (here 2_0_0; in my_anchor_sequence.fasta), but a different one can be specified.

[general]

path=.

output_folder_name=NGSphy_output

ploidy=1

[data]

inputmode=3

gene_tree_file=t3.tree
anchor_sequence_file=my_anchor_sequence fasta
anchor_tip_label=2_0_0
indelible_control_file=control.3.txt

[coverage]

experiment=F:100

[ngs-read-counts]

read_counts_error=0.1
reference_alleles_file=my_reference_allele_file.txt
[execution]

environment=bash

running_times=off

threads=2

FILE: ngsphy.settings.3.txt
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The tree:

3

FIGURE 17: Tree file t3.tree
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(((1-0_0:1.0, 2_0_0:1.0):1.0),(3_0_0:1.0, 4_0_0:1.0):1.0),5_0_0:3.0);

FILE: t3.tree

INDELible control file:

[TYPE] NUCLEOTIDE 1
[SETTINGS]

[ancestralprint] NEW

[output] FASTA
[MODEL] m1

[submodel] HKY 0.1
[NGSPHYPARTITION] t3 m1100

FILE: control.3.txt

11.3.1. Execution

To run this example, use:

ngsphy -s ngsphy.settings.3.txt

55




11.3.2. Output

alignments: this contains the data used and generated by INDELible.
coverage: the exact coverage for each loci (L) of each individual (l). This is written into a
table with dimensions (I x L). In this case, this value was fixed at 100x for all individuals.

e individuals: where the sequence files (FASTA) for all loci and individuals are written.
There is a subfolder structure reflecting the number of replicates and gene trees. In this
case, the single gene-tree (t3) has 5 tips, corresponding to 5 haploid individuals, thus we
will have 5 FASTA files, each file containing a single sequence corresponding to an
individual.
ind_labels: relation replicate/individual/species/locus/sequence.
reads: stores VCF with the simulated read counts.
ref_alleles: FASTA files with the sequences of the reference alleles used for the read
count. These files will be generated whether the reference allele matches the anchor
sequence or not.
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11.4. Generating lllumina reads from gene tree distribution

In this more complex example, we will simulate Illumina reads from a gene tree distribution, which
needs to be first obtained with SimPhy.

1.4.1. SimPhy run

For this example we will simulate 2 species tree replicates with a variable height between
200.000 years and 20.000.000 years (u:200000,20000000). These trees will have 5 ingroup + 1
outgroup species. The ingroup species will have 6 individuals per species, while the outgroup is
a single individual. Each replicate will have 10 gene trees. The effective population size (10.000)
of each species and the substitution rate (0.00001) of each gene tree are fixed. Finally will add
heterogeneity at different levels (-h parameters). To run the simulation we use:

simphy -rs 2 -rl £:10 -sb In:-15,1 -st u:200000,20000000 -sl f:5 -so f:1 -sp f:100000 -su f:0.00001 -si f:6 -hh
In:1.2,1-hlIn:1.4,1-hg f:200 -v 1 -0 testwsimphy -cs 6656 -od 1-op 1-oc 1-on 1

In detail:
Paramete Value Description
r
-rs 2 Number of species tree replicates
-rl 10 Number of locus tree per replicate
-rg i1 Number of gene trees per replicate
-sb In:-15,1 Speciation rate (events/time unit)
-st u:200000, | Species tree height (time units)
20000000
-s| f:5 Number of taxa
-SO i1 Ratio between ingroup height and the branch from the root to the
ingroup
-sp 100000 | Tree-wide effective population size
-su f:0.00001 | Tree-wide substitution rate
-Si f.6 Number of individuals per species
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-hh In:1.2,1 Gene-by-lineage-specific locus tree parameter

-hl In:1.4,1 Gene-family-specific rate heterogeneity modifiers
-hg f:200 Gene-by-lineage-specific rate heterogeneity modifiers
-V 1 verbosity: Global settings summary, simulation progress per

replicate (number of simulated gene trees), warnings and errors

-0 testwsimph | Common output prefix-name (for folders and files)
y
-CS 6656 Random number generator seed
-od 1 Activates the SQLite database output
-op 1 Activates logging of sampled options
-on 1 Activates the output of the bounded locus subtrees file

To simulate the DNA alignment for every gene tree simulated we now use the script provided
with Simphy (INDELIble_wrapper.pl) and the following INDELible control file.

[TYPE] NUCLEOTIDE 1
[SETTINGS]
[output] FASTA
[fastaextension] fasta
[MODEL] complex_common
[submodel] GTR $(rd:6,16,2,8,20,4)
[statefreq] $(d:1,1,1,1)
[rates] O $(e:2) O

[SIMPHY-UNLINKED-MODEL] simple_unlinked
[submodel] HKY $(e:1)
[statefreq] $(d:1,1,1,9)

[SIMPHY-PARTITIONS] simple [1 simple_unlinked 500] //// The first half of the gene families will evolve
under the model "simple_unlinked". Their sequence lengths are sampled from a Normal with mean=1000
and sd=100.

[SIMPHY-EVOLVE] 1 data // One sequence alignment for each gene tree, saved in files with "dataset" as
common prefix (it will generate dataset_1, dataset_2, etc.)

FILE: control.4.txt. This file is based on a SimPhy example case. For more information on this
example please go to SimPhy wiki

To run we use:
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# perl INDELIble_wrapper.pl <simphy_folder> <simphy's_indelible_control_file>
<seed_for_random_number_generation> <num_threads>
perl INDELIble_wrapper.pl testwsimphy/ control.4.txt SRANDOM 2

Here, we use the Linux environment variable $RANDOM, which returns a different random
integer in the range [0,32767]. For more information, go here.

After this, we will obtain folders in a hierarchical structure which look like this:

|__testwsimphy/

|__testwsimphy.command # SimPhy log files

|__testwsimphy.db # SimPhy log files

|__testwsimphy.params # SimPhy log files

|__1/ # Species tree replicate
|__data_[1-10].fasta # INDELIble output
|__data_[1-10]_TRUE.phy # INDELIble output
|__g_trees[1-10].trees # Simphy output
|__control.txt # INDELIble_wrapper.pl output
|__bounded_locus_subtrees.out # Simphy output
|__LOG.txt # INDELIble output
|__I_trees.trees # Simphy output
|__s_tree.trees # Simphy output
|__trees.txt # INDELIble output

|__2/ # Species tree replicate
|__data_[1-10].fasta # INDELIble output
|__data_[1-10]_TRUE.phy # INDELIble output
|__g_trees[1-10].trees # SimPhy output
|___control.txt # INDELIble_wrapper.pl output
|__bounded_locus_subtrees.out # SimPhy output
|__LOG.txt # INDELIble output
|__I_trees.trees # SimPhy output
|__s_tree.trees # SimPhy output
|__trees.txt # INDELIble output
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11.4.2. Running NGSphy

Now we use NGSphy to generate the Illumina reads from the tips of these gene-trees with the
settings file ngsphy.settings.4.txt (see below). As we want to generate diploid individuals in this
case, NGSphy will randomly “mate” tips (gene-copies) within each taxa/species. Outgroup taxa
has always one sequence (when it is generated in SimPhy) and is assumed to be homozygous (so
its sequence is duplicated before generating reads/read counts). As the species trees generated
have 6 taxa (5 ingroup + 1 outgroup), each ingroup having 6 tips, we will have 16 individuals in
total:

o 6 gene-copies * 5 ingroup taxa = 30 sequences =15 diploid individuals.

o 1outgroup * 2 (homozygous) = 2 sequences = 1 diploid individual.

Also, we want the base coverage to be 100x for both replicates (experiment=F:100), but we want
to add some variation among loci and individuals. This variation is in this example modeled with
a Log Normal distribution with mean 1.2 and standard deviation 1 for the individuals and a Log
Normal distribution with mean 1.3 and standard deviation 1 for the loci. These distributions will
model the underlying Gamma distribution that will sample the rate multipliers for the specific
individual and locus. For example, the multipliers for the individual variation, for each replicate,
might be sampled from distributions like these, first (to the left) the shapes of the Gamma
distributions, and finally from the Gamma distribution the multipliers:

{Hyper parameter) Individual-wide: LN:1.2,1 Replicate 1 - shape: 4.164

Alpha shape = 9.9
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FIGURE 18: Example of possible distributions of the rate multipliers according the settings file
ngsphy.settings.4.txt to model the coverage variation among individuals.
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The file indicates the general parameters, mode of the input (gene tree distribution) and SimPhy
related parameters, the sampling process of the expected coverage and the sequencing
features.

[general]

path=.
output_folder_name=NGSphy_output
ploidy=2

[data]

inputmode=4
simphy_folder_path=./testwsimphy
simphy_data_prefix=data
simphy_filter=true
[coverage]
experiment=F:100
individual=LN:1.2,1
locus=LN:1.3,1
offtarget=0.25, 0.01
notcaptured=0.5
taxon=1,0.5;2,0.25
[ngs-reads-art]

fcov=true

=100

m=250

p=true

g=true

s=50

sam=true

ss=HS20

[execution]

environment = bash
runART =on

threads=2

FILE: ngsphy.settings.4.txt
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11.4.3. Execution

To run this example, use:

ngsphy -s ngsphy.settings.4.txt

11.4.4. Output

coverage: the exact coverage for each loci (L) of each individual (l). This is written into a
table with dimensions (I x L). In this case, we include variation in coverage among loci and
individuals as in targeted-sequencing experiments. It is also introduced the simulation of
off-target loci (thus with less coverage) and some of the loci are assumed to be not
captured/sequenced at all. We have 2 files, one per replicate. From the simulated species
trees we get 16 individuals per replicate and 10 gene-trees (loci) each. Hence, the
coverage tables have 16 x 10 dimensions (I x L). Content of the coverage file
(testwsimphy.l.coverage.csv ).

$ cat testwsimphy.1.coverage.csv

indID ,L.01,L.02,L.03,..04,L.05,L.06,L.07,L.08,L.09,L.10

0,4.317, 401.540, 467.337, 0.000, 0.0, 222.453, 0.0, 0.0, 190.841, 286.270
1,7.646, 711199, 827.737, 0.0, 0.0, 394.004, 0.0, 0.0, 338.013, 507.035

2 ,6.401, 595.411, 692.976, 0.0, 0.0, 329.857, 0.0, 0.0, 282.982, 424.486
3,10.602, 986.243, 1147.850, 0.0, 0.0, 546.378, 0.0, 0.0, 468.733, 703.121
4 15.316, 1424.710, 1658.165, 0.0, 0.0, 789.289, 0.0, 0.0, 677.124,1015.717
5,8.363, 777.926, 905.398, 0.0, 0.0, 430.971, 0.0, 0.0, 369.726, 554.606
6 ,3.749, 348.727, 405.870, 0.0, 0.0, 193.195, 0.0, 0.0, 165.740, 248.618

7 ,6.680, 621.410, 723.236, 0.0, 0.0, 344.261, 0.0, 0.0, 295.339, 443.022
8,7.538, 701.225, 816.129, 0.0, 0.0, 388.478, 0.0, 0.0, 333.272, 499.924
9,3.724, 346.376, 403.134, 0.0, 0.0, 191.892, 0.0, 0.0, 164.623, 246.942

10 ,6.686, 621.916, 723.824, 0.0, 0.0, 344.541, 0.0, 0.0, 295.579, 443.382
11,3.334, 310.150, 360.971, 0.0, 0.0, 171.823, 0.0, 0.0, 147.405, 221115

12 ,18.427, 1714101, 1994.976, 0.0, 0.0, 949.611, 0.0, 0.0, 814.664, 1222.033
13,7.502, 697.831, 812.178, 0.0, 0.0, 386.598, 0.0, 0.0, 331.659, 497.504
14 ,6.712, 624.364, 726.674, 0.0, 0.0, 345.898, 0.0, 0.0, 296.743, 445.128
15,0.015, 1.401, 1.631, 0.0, 0.0, 0.776, 0.0, 0.0, 0.666, 0.999

individuals: we will have the sequence files for the individuals generated. This case, we
asked to generate diploid individuals. We will have 16 individuals per locus, and each file
contains 2 sequences.

ind_labels: relation correspondence replicate/individual/species/locus/sequences.

reads: this folder follows a hierarchical structure like the one obtained in SimPhy, and it
stores the FASTQ files generated by ART.

scripts: this folder will be empty since ART is, in this example, ran within NGSphy.
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12. Validation test: phylogenetic reconstruction from
simulated alignments

To test whether NGSPhy is working as expected we performed several sanity checks and test
runs. Here we describe a particular experiment to check that the simulated alignments have in
fact evolved under the user-defined gene tree. The simulation process started from the gene tree
in Figure 1, using the tip 1_0_0 as anchor (i.e., providing a known sequence corresponding to that

tip).

0.0 0.1 0.2 0.3 0.4

FIGURE 19: Gene-tree with five tips used for the validation. Numbers above the branches represent branch
lengths in expected number of substitutions.

We ran 100 replicates of NGSphy in inputmode 3 (single gene tree with user-defined anchor
sequence). The sequence alignments were simulated under a JC69 model (Jukes and Cantor,
1969), equal base frequencies and a length of 1000 bp. The simulated alignments were used to
reconstruct maximum likelihood (ML) trees with raxml-ng, using the (known) JC69 model. Ten
heuristic searches were performed per alignment, starting on maximum parsimony trees. The
Robinson-Foulds (RF) (Robinson and Foulds, 1981) and Branch Score distances (BSD) (Kuhner and
Felsenstein, 1994) were used to compare the input gene tree and the estimated ML trees respect
to topology and branch lengths, respectively. All RF scores were always zero, while the BSD were
always minimal (mean = 0.0555, standard deviation = 0.0175), suggesting that the alignment
simulation is correct.

In the input mode used for this test, the anchor tip is used to re-root the tree, and then used by
indelible-ngsphy to generate the locus alignment. This process involves the generation of a
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zero-branch-length between the anchor tip and what is considered the root node by indelible. To
show that this re-rooting process was not leading to any error and that the generated anchor
sequence is identical to the one defined by the user as anchor, we measured the p-distance
between them. In all cases this distance was zero.

12.1 Execution

Script to run this test is under under ngsphy/manuscript/supp.material/scripts/supp.testi.sh

To run this test you need the following files:

NGSphy settings file: ngsphy/data/settings/ngsphy.settings.supp.testl.txt
INDELible control file: ngsphy/data/indelible/control.supp.testl.txt

Tree file: ngsphy/data/trees/supp.testl.iree

Anchor sequence file: ngsphy/data/sequences/anchor.supp.testi.fasta.tar.qgz

To execute this script it is required to have installed:

e raxmil-ng
1.2 Steps

Following the script file, first we have to state:

1. Where the NGSphy repository is located

2. Where will the output be written

3. The name of the output folder

4. Arandom seed number 2.0rganize the data, generate output folders and copy it from the
repository to the corresponding output folders.

5. Assuming NGSphy and its dependencies are properly installed, we call for 100 NGSphy
replicates.

6. Call raxml-ng, for each of the generated replicate alignments.

7. We generate 2 files with the paths for the ML trees from raxml-ng, and for the rerooted
trees generated in NGSphy

8. Finally, using the R code at the end of the script, it will be possible to generate a plot with
the branch scores and RF distances.
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13. Use case test

One of the possible uses of NGSphy might be the optimization of depth of coverage for a given
purpose. In this case we designed a small experiment to visualize the potential trade-off between
NGS coverage and SNP discovery. In this case we used NGSphy to simulate a single sequence
alignment from a given gene-tree (Figure 20) and from it we generated 100 NGS datasets at
different depths of coverage.

0.000 0.002 0.004 0.006

FIGURE 20: Gene-tree used for the use case simulation. It represents four species with two
individuals per species. Numbers above the branches represent branch lengths, in expected
number of substitutions.

The sequence alignments were simulated under a JC69 substitution model (Jukes and Cantor,
1969), with equal base frequencies and a length of 10.000 bp. The lllumina runs generated 150
bp paired-end reads for all individuals at a coverage of 2X, 10X, 50X, 100X and 200X (100
replicates for each level). The detailed settings are shown in Table 1.
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Table 1: NGSphy settings parameters. varies for 2, 10, 20, 100 and 200x

general path /output/<coverage>
output_folder_path NGSphy_test2_<coverage>
ploidy 1
data inputmode 1
gene_tree_file files/supp.test2.tree
indelible_control_file files/control.supp.test2.txt
coverage experiment <coverage>
ngs-reads-art fcov true
I 150
m 250
o} true
q true
S 50
SS HS25
execution environment bash
runART on
threads 2

Mapping was carried out using the MEM algorithm of BWA Version 0.7.7-r441 (Li and

Durbin

2009), against a randomly chosen reference (sequence 1_0_2 in all cases). Following a
standardized best-practices pipeline (Van der Auwera and Carneiro, 2013) mapped reads from all
replicates were independently processed, performing local realignment around indels and
removing PCR duplicates. Variant calling was made with GATK (Mckenna et al., 2010), using the

single-sample variant-calling joint-genotyping framework using the HaplotypeCaller

and

GenotypeVCF modules. SNP calls from each replicate were compared to the true variant sites,
showing that SNP recovery increased very rapidly until 10X, when almost all true variants were

called (Figure 21).
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FIGURE 21: Called variants and true positives (mean and Q1/Q3) at different depths of coverage.
The true number of SNPs is 386. At 100x and 200x only 1 site (average) is not recovered.

13.1 Execution

The script use to carry out this test can be found under
ngsphy/manuscript/supp.material/scripts/supp.test2.sh.

To run this test you need the following files:

NGSphy settings file (2x): ngsphy/data/settings/ngsphy.settings.supp.test2.2x.txt
NGSphy settings file (10x): ngsphy/data/settings/ngsphy.settings.supp.test2.10x.txt
NGSphy settings file (20x): ngsphy/data/settings/ngsphy.settings.supp.test2.20x.txt
NGSphy settings file (100x): ngsphy/data/settings/ngsphy.settings.supp.test2.100x.txt
NGSphy settings file (200x): ngsphy/data/settings/ngsphy.settings.supp.test2.200x.txt

NGSphy settings file (200x - read counts):
ngsphy/data/settings/ngsphy.settings.supp.test2.200x.rc.txt

INDELible control file: ngsphy/data/indelible/control.supp.test2.txt
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Tree file: ngsphy/data/trees/supp.test2.tree

Reference allele file for read counts:
ngsphy/data/reference_alleles/my_reference_allele_file.test2.txt

To execute this script it is required to have installed:

e bwa
e GATK
e SAMtools
e Picard
13.2 Steps
1. Following the script file, first we have to state:
o Where the NGSphy repository is located
o Where will the output be written
o The name of the output folder
o Arandom seed number
o Paths for GATK and PICAR jar packages
o Coverage levels
2. Organize the data to run the simulation and the analysis, copying the setting files,
reference sequence and the reference allele file into the analysis folder.
3. Extract the true variants from the dataset, and we do that using NGSphy with the NGS
read counts
4. Selectthe sequence with the label 1_0_0, and put it into a separate file, this will be the
reference sequence.
5. Run 100 replicates of NGSphy with the different coverage levels, each:
6. Index the reference with bwa,samtools and Picard:
7. Map all the datasets to the selected reference:
8. Sort and convert into BAM file
9. Mark duplicates
10. Realign around indels
11. Single sample variant calling with each dataset, using HaplotypeCaller mode GCVF
12. Call joint genotypes with GenotypeGVCFs
13. Count discovered variants
14. Compare discovered variants with true variants
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