-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmaml_omniglot.py
278 lines (238 loc) · 9.76 KB
/
maml_omniglot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2022-2024 MetaOPT Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# This file is modified from:
# https://github.com/facebookresearch/higher/blob/main/examples/maml-omniglot.py
# ==============================================================================
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This example shows how to use TorchOpt to do Model Agnostic Meta Learning (MAML)
for few-shot Omniglot classification.
For more details see the original MAML paper:
https://arxiv.org/abs/1703.03400
This code has been modified from Jackie Loong's PyTorch MAML implementation:
https://github.com/dragen1860/MAML-Pytorch/blob/master/omniglot_train.py
Our MAML++ fork and experiments are available at:
https://github.com/bamos/HowToTrainYourMAMLPytorch
"""
import argparse
import time
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchopt
from helpers.omniglot_loaders import OmniglotNShot
mpl.use('Agg')
plt.style.use('bmh')
def main():
argparser = argparse.ArgumentParser()
argparser.add_argument('--n_way', type=int, help='n way', default=5)
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5)
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=15)
argparser.add_argument(
'--task_num',
type=int,
help='meta batch size, namely task num',
default=32,
)
argparser.add_argument('--seed', type=int, help='random seed', default=1)
args = argparser.parse_args()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
rng = np.random.default_rng(args.seed)
# Set up the Omniglot loader.
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
db = OmniglotNShot(
'/tmp/omniglot-data',
batchsz=args.task_num,
n_way=args.n_way,
k_shot=args.k_spt,
k_query=args.k_qry,
imgsz=28,
rng=rng,
device=device,
)
# Create a vanilla PyTorch neural network.
net = nn.Sequential(
nn.Conv2d(1, 64, 3),
nn.BatchNorm2d(64, momentum=1.0, affine=True),
nn.ReLU(inplace=False),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.BatchNorm2d(64, momentum=1.0, affine=True),
nn.ReLU(inplace=False),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 64, 3),
nn.BatchNorm2d(64, momentum=1.0, affine=True),
nn.ReLU(inplace=False),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(64, args.n_way),
).to(device)
# We will use Adam to (meta-)optimize the initial parameters
# to be adapted.
meta_opt = optim.Adam(net.parameters(), lr=1e-3)
log = []
test(db, net, epoch=-1, log=log)
for epoch in range(10):
train(db, net, meta_opt, epoch=epoch, log=log)
test(db, net, epoch=epoch, log=log)
plot(log)
def train(db, net, meta_opt, epoch, log):
net.train()
n_train_iter = db.x_train.shape[0] // db.batchsz
inner_opt = torchopt.MetaSGD(net, lr=1e-1)
for batch_idx in range(n_train_iter):
start_time = time.time()
# Sample a batch of support and query images and labels.
x_spt, y_spt, x_qry, y_qry = db.next()
task_num = x_spt.size(0)
# TODO: Maybe pull this out into a separate module so it
# doesn't have to be duplicated between `train` and `test`?
# Initialize the inner optimizer to adapt the parameters to
# the support set.
n_inner_iter = 5
qry_losses = []
qry_accs = []
meta_opt.zero_grad()
net_state_dict = torchopt.extract_state_dict(net, by='reference', detach_buffers=True)
optim_state_dict = torchopt.extract_state_dict(inner_opt, by='reference')
for i in range(task_num):
# Optimize the likelihood of the support set by taking
# gradient steps w.r.t. the model's parameters.
# This adapts the model's meta-parameters to the task.
# higher is able to automatically keep copies of
# your network's parameters as they are being updated.
for _ in range(n_inner_iter):
spt_logits = net(x_spt[i])
spt_loss = F.cross_entropy(spt_logits, y_spt[i])
inner_opt.step(spt_loss)
# The final set of adapted parameters will induce some
# final loss and accuracy on the query dataset.
# These will be used to update the model's meta-parameters.
qry_logits = net(x_qry[i])
qry_loss = F.cross_entropy(qry_logits, y_qry[i])
qry_acc = (qry_logits.argmax(dim=1) == y_qry[i]).float().mean()
qry_losses.append(qry_loss)
qry_accs.append(qry_acc.item())
torchopt.recover_state_dict(net, net_state_dict)
torchopt.recover_state_dict(inner_opt, optim_state_dict)
qry_losses = torch.mean(torch.stack(qry_losses))
qry_losses.backward()
meta_opt.step()
qry_losses = qry_losses.item()
qry_accs = 100.0 * np.mean(qry_accs)
i = epoch + float(batch_idx) / n_train_iter
iter_time = time.time() - start_time
print(
f'[Epoch {i:.2f}] Train Loss: {qry_losses:.2f} | Acc: {qry_accs:.2f} | Time: {iter_time:.2f}',
)
log.append(
{
'epoch': i,
'loss': qry_losses,
'acc': qry_accs,
'mode': 'train',
'time': time.time(),
},
)
def test(db, net, epoch, log):
# Crucially in our testing procedure here, we do *not* fine-tune
# the model during testing for simplicity.
# Most research papers using MAML for this task do an extra
# stage of fine-tuning here that should be added if you are
# adapting this code for research.
net.train()
n_test_iter = db.x_test.shape[0] // db.batchsz
inner_opt = torchopt.MetaSGD(net, lr=1e-1)
qry_losses = []
qry_accs = []
for _ in range(n_test_iter):
x_spt, y_spt, x_qry, y_qry = db.next('test')
task_num = x_spt.size(0)
# TODO: Maybe pull this out into a separate module so it
# doesn't have to be duplicated between `train` and `test`?
n_inner_iter = 5
net_state_dict = torchopt.extract_state_dict(net, by='reference', detach_buffers=True)
optim_state_dict = torchopt.extract_state_dict(inner_opt, by='reference')
for i in range(task_num):
# Optimize the likelihood of the support set by taking
# gradient steps w.r.t. the model's parameters.
# This adapts the model's meta-parameters to the task.
for _ in range(n_inner_iter):
spt_logits = net(x_spt[i])
spt_loss = F.cross_entropy(spt_logits, y_spt[i])
inner_opt.step(spt_loss)
# The query loss and acc induced by these parameters.
qry_logits = net(x_qry[i]).detach()
qry_loss = F.cross_entropy(qry_logits, y_qry[i])
qry_acc = (qry_logits.argmax(dim=1) == y_qry[i]).float().mean()
qry_losses.append(qry_loss.item())
qry_accs.append(qry_acc.item())
torchopt.recover_state_dict(net, net_state_dict)
torchopt.recover_state_dict(inner_opt, optim_state_dict)
qry_losses = np.mean(qry_losses)
qry_accs = 100.0 * np.mean(qry_accs)
print(f'[Epoch {epoch+1:.2f}] Test Loss: {qry_losses:.2f} | Acc: {qry_accs:.2f}')
log.append(
{
'epoch': epoch + 1,
'loss': qry_losses,
'acc': qry_accs,
'mode': 'test',
'time': time.time(),
},
)
def plot(log):
# Generally you should pull your plotting code out of your training
# script but we are doing it here for brevity.
df = pd.DataFrame(log)
fig, ax = plt.subplots(figsize=(8, 4), dpi=250)
train_df = df[df['mode'] == 'train']
test_df = df[df['mode'] == 'test']
ax.plot(train_df['epoch'], train_df['acc'], label='Train')
ax.plot(test_df['epoch'], test_df['acc'], label='Test')
ax.set_xlabel('Epoch')
ax.set_ylabel('Accuracy')
ax.set_ylim(85, 100)
ax.set_title('MAML Omniglot')
ax.legend(ncol=2, loc='lower right')
fig.tight_layout()
fname = 'maml-accs.png'
print(f'--- Plotting accuracy to {fname}')
fig.savefig(fname)
plt.close(fig)
if __name__ == '__main__':
main()