-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_Greedy.py
203 lines (196 loc) · 10.2 KB
/
Test_Greedy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Test LFW on HashSetNet(Greedy)
# --rn="Run010" --n_classes=32 --m=4 --n_b_valid=2000 --n_batch_verif=4
import os
import torchvision
import torch
from Greedy import HashSetNet, LogisticReg, acc_authentication
from utils_data import BalanceBatchSampler, Reporter
import numpy as np
import torch.nn.functional as F
import yaml
import argparse
from vgg_face2 import VGG_Faces2
import multiprocessing
if __name__ == '__main__':
torch.manual_seed(0)
np.random.seed(0)
torch.multiprocessing.set_start_method('spawn', force=True)
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
# print(ROOT_DIR)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
core_number = multiprocessing.cpu_count()
# print('core number:', core_number)
# --------------------------------------------------------------------------------------
# Arguments
# --------------------------------------------------------------------------------------
with open(r'{}/args.yaml'.format(ROOT_DIR)) as file:
args_list = yaml.load(file, Loader=yaml.FullLoader)
dataroot = args_list['dataroot']
model_type = args_list['model_type']
n_classes = args_list['n_classes']
n_samples = args_list['n_samples']
m_set = args_list['m_set']
run_name = args_list['run_name']
exp_name = args_list['exp_name']
n_batches_valid = args_list['n_batches_valid']
upper_vgg = args_list['upper_vgg']
lossFun = args_list['loss']
num_workers = args_list['num_workers']
num_clusters = args_list['num_clusters']
vlad_v2 = args_list['vlad_v2']
vlad_dim = args_list['vlad_dim']
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', '--model', type=str, default=model_type,
help='model name (default: "resnet50_128")')
parser.add_argument('--run_name', '--rn', type=str, default=run_name,
help='The name for this run (default: "Run01")')
parser.add_argument('--m_set', '--m', type=int, default=m_set,
help='the group size')
parser.add_argument('--n_batches_valid', '--n_b_valid', type=int, default=n_batches_valid,
help='Number of batches per epoch for validation')
parser.add_argument('--upper_vgg', '--u_vgg', type=int, default=upper_vgg,
help='Number of images loaded from VGG-Face2')
parser.add_argument('--n_batch_verif', '--n_batch_verif', type=int,
help='Number of batches for verification')
parser.add_argument('--loss', '--loss', type=str, default=lossFun,
help='loss function (default: "loss_bc")')
parser.add_argument('--pooling', '--pooling', type=str, default='vlad',
help='pooling method (default: "vlad")')
parser.add_argument('--n_classes', '--n_classes', type=int, default=n_classes,
help='Number of classes in batch (default: 32)')
args = parser.parse_args()
model_type = args.model_type
run_name = args.run_name
m_set = args.m_set
n_batches_valid = args.n_batches_valid
upper_vgg = args.upper_vgg
n_batch_verif = args.n_batch_verif
lossFun = args.loss
pooling = args.pooling
n_classes = args.n_classes
if lossFun == 'loss_bc':
from loss import loss_bc as loss_fn
elif lossFun == 'loss_auc_max_v1':
from loss import loss_auc_max_v1 as loss_fn
elif lossFun == 'loss_AUCPRHingeLoss':
from loss import loss_AUCPRHingeLoss as loss_fn
if n_batches_valid == 0:
n_batches_valid = None
if upper_vgg == 0:
upper_vgg = None
# --------------------------------------------------------------------------------------
# Load datasets
# --------------------------------------------------------------------------------------
print('1')
exp_name = 'celeba' # 'vgg2'
test_name = 'lfw'
mean_rgb = (0.485, 0.456, 0.406) # (0.5, 0.5, 0.5) (0.485, 0.456, 0.406)
std_rgb = (0.229, 0.224, 0.225) # (0.5, 0.5, 0.5) (0.229, 0.224, 0.225)
preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=mean_rgb, std=std_rgb),
])
if test_name == 'celeba':
dataroot = '/nfs/nas4/marzieh/marzieh/celebA/'
dataset_validation = torchvision.datasets.CelebA(root=dataroot, split='test',
target_type='identity', transform=preprocess) # split='test' 'valid'
elif test_name == 'lfw':
dataroot = '/nfs/nas4/marzieh/marzieh/VGG_Face2/lfw/lfw-deepfunneled/'
dataset_validation = torchvision.datasets.ImageFolder(root=dataroot, transform=preprocess)
elif test_name == 'cfp':
dataroot = '/nfs/nas4/marzieh/marzieh/cfp/cfpf-dataset/Data/Images/'
dataset_validation = torchvision.datasets.ImageFolder(root=dataroot, transform=preprocess)
elif test_name == 'casia':
dataroot = '/nfs/nas4/marzieh/marzieh/CASIA/CASIA-WebFace/'
dataset_validation = torchvision.datasets.ImageFolder(root=dataroot, transform=preprocess)
elif test_name == 'vgg2':
validation_dataset_root = '/nfs/nas4/marzieh/marzieh/VGG_Face2/test/'
dataset_validation = VGG_Faces2(validation_dataset_root, split='validation', upper=upper_vgg)
# --------------------------------------------------------------------------------------
# Batch Sampling: n_samples * n_samples
# --------------------------------------------------------------------------------------
print('2')
batch_size = n_classes * n_samples
batch_sampler_v = BalanceBatchSampler(dataset=dataset_validation, n_classes=n_classes, n_samples=n_samples,
n_batches_epoch=n_batches_valid)
validation_loader = torch.utils.data.DataLoader(dataset_validation, batch_sampler=batch_sampler_v,
num_workers=num_workers)
batch_sampler_H0v = BalanceBatchSampler(dataset=dataset_validation, n_classes=n_classes * 2, n_samples=1,
n_batches_epoch=n_batch_verif)
H0_loader_validation = torch.utils.data.DataLoader(dataset_validation, batch_sampler=batch_sampler_H0v,
num_workers=num_workers)
H0_id_v, H0_data_v = [], []
dataloader_H0_v = iter(H0_loader_validation)
for i in range(n_batch_verif):
data = next(dataloader_H0_v)
H0_id_v.append(data[1])
H0_data_v.append(data[0])
# --------------------------------------------------------------------------------------
# Model Definitions
# --------------------------------------------------------------------------------------
print('3')
model = HashSetNet(base_model_architecture=model_type, num_clusters=num_clusters, vset_dim=vlad_dim,
vlad_v2=vlad_v2, pooling=pooling)
logisticReg = LogisticReg()
model.to(device)
logisticReg.to(device)
# --------------------------------------------------------------------------------------
# Loading the model
# --------------------------------------------------------------------------------------
# reporter.monitor = 'auc' or 'acc' ????????????
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp=exp_name, monitor='acc')
best_model_filename = reporter.select_best(run=run_name).selected_ckpt
# print(best_model_filename)
model.load_state_dict(torch.load(best_model_filename)['model_state_dict'])
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp=exp_name, monitor='acc')
best_model_filename = reporter.select_best(run=run_name + '_lr').selected_ckpt
# print(best_model_filename)
logisticReg.load_state_dict(torch.load(best_model_filename)['model_state_dict'])
# model.eval()
# logisticReg.eval()
tot_loss, tot_acc = 0, 0
n_batches = len(validation_loader)
Ptp01, Ptp05, Ptp1, AUC = np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif), np.zeros(
n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif)
vs, vf, tg = [], [], []
idx = -1
print('4')
with torch.no_grad():
for batch_idx, value in enumerate(validation_loader):
print('5')
data = value[0]
target = value[1]
data_set = data[np.arange(0, batch_size, n_samples)].to(device)
data_query = data[np.arange(1, batch_size, n_samples)].to(device)
v_set, code_set = model(data_set, m=m_set) # single vector per set
v_f, code_f = model(data_query, m=1) # single vector per query
Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
output = logisticReg(Sim.unsqueeze(-1)).squeeze()
loss1, accuracy = loss_fn(output, len(code_f), m_set)
# h = torch.cat([v_set, v_f], dim=0)
# loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
# loss_outputs = loss1 + alpha * loss2
tot_acc += accuracy
# tot_loss += loss_outputs
vs.append(code_set)
vf.append(code_f)
tg.append(target)
if (batch_idx + 1) % n_batch_verif == 0:
idx += 1
vs = torch.stack(vs).flatten(start_dim=0, end_dim=1)
vf = torch.stack(vf).flatten(start_dim=0, end_dim=1)
tg = torch.stack(tg).flatten(start_dim=0, end_dim=1)
Ptp01[idx], Ptp05[idx], Ptp1[idx], AUC[idx] = acc_authentication(model, logisticReg, H0_id_v, H0_data_v,
tg, vf.size(0), vs, vf, m_set,
n_batch_verif)
vs, vf, tg = [], [], []
avg_loss = tot_loss / n_batches
avg_acc = tot_acc / n_batches
print('Evaluation --->avg_loss: %.3f' % avg_loss, 'avg_acc: %.3f' % avg_acc,
' ptp01: %.3f' % np.mean(Ptp01), 'ptp05: %.3f' % np.mean(Ptp05)
, 'ptp1: %.3f' % np.mean(Ptp1), ' auc: %.3f' % np.mean(AUC))