-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp1.py
501 lines (481 loc) · 27.9 KB
/
temp1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import os
import torchvision
import torch
from Greedy import HashSetNet, get_clusters, LogisticReg, acc_authentication
from AggNet import SetNet
from utils_data import BalanceBatchSampler, Reporter
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
import yaml
import argparse
from checkpoint import CheckPoint
from history import History
import time
import dill
from vgg_face2 import VGG_Faces2
from itertools import chain
import h5py
import multiprocessing
torch.manual_seed(0)
if __name__ == '__main__':
torch.multiprocessing.set_start_method('spawn', force=True)
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
# print(ROOT_DIR)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
core_number = multiprocessing.cpu_count()
print('core number:', core_number)
# --------------------------------------------------------------------------------------
# Arguments
# --------------------------------------------------------------------------------------
with open(r'{}/args.yaml'.format(ROOT_DIR)) as file:
args_list = yaml.load(file, Loader=yaml.FullLoader)
dataroot = args_list['dataroot']
model_type = args_list['model_type']
n_epoch = args_list['n_epoch']
n_classes = args_list['n_classes']
n_samples = args_list['n_samples']
m_set = args_list['m_set']
lr = args_list['lr']
vlad_dim = args_list['vlad_dim']
run_name = args_list['run_name']
exp_name = args_list['exp_name']
num_workers = args_list['num_workers']
n_save_epoch = args_list['n_save_epoch']
n_batches_train = args_list['n_batches_train']
n_batches_valid = args_list['n_batches_valid']
upper_vgg = args_list['upper_vgg']
num_clusters = args_list['num_clusters']
clustering = args_list['clustering']
vlad_v2 = args_list['vlad_v2']
lossFun = args_list['loss']
alpha = args_list['alpha']
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', '--model', type=str, default=model_type,
help='model name (default: "resnet50_128")')
parser.add_argument('--run_name', '--rn', type=str, default=run_name,
help='The name for this run (default: "Run01")')
parser.add_argument('--num_workers', '--nw', type=int, default=num_workers,
help='number of workers for Dataloader (num_workers: 8)')
parser.add_argument('--start', '--start', type=int, default=1,
help='Start from scratch (default: 1)')
parser.add_argument('--vlad_dim', '--dim', type=int, default=vlad_dim,
help='the dimension of vlad descriptors (dim: 128)')
parser.add_argument('--m_set', '--m', type=int, default=m_set,
help='the group size')
parser.add_argument('--n_batches_train', '--n_b_train', type=int, default=n_batches_train,
help='Number of batches per epoch for training')
parser.add_argument('--n_batches_valid', '--n_b_valid', type=int, default=n_batches_valid,
help='Number of batches per epoch for validation')
parser.add_argument('--n_epoch', '--n_epoch', type=int, default=n_epoch,
help='Number of epochs')
parser.add_argument('--upper_vgg', '--u_vgg', type=int, default=upper_vgg,
help='Number of images loaded from VGG-Face2')
parser.add_argument('--num_clusters', '--n_clusters', type=int, default=num_clusters,
help='Number of clusters for VLAD')
parser.add_argument('--vlad_v2', '--vlad_v2', type=int, default=vlad_v2,
help='Use VLAD version 2 (default: 0)')
parser.add_argument('--clustering', '--clustering', type=int, default=clustering,
help='Apply Clustering for initializing NetVLAD (default: 0)')
parser.add_argument('--n_batch_verif', '--n_batch_verif', type=int,
help='Number of batches for verification (default: 8)')
parser.add_argument('--loss', '--loss', type=str, default=lossFun,
help='loss function (default: "loss_bc")')
parser.add_argument('--alpha', '--alpha', type=float, default=alpha,
help='Regularization for Greedy loss (default: "alpha")')
parser.add_argument('--lr', '--lr', type=float, default=lr,
help='learning rate')
parser.add_argument('--pooling', '--pooling', type=str, default='vlad',
help='pooling method (default: "vlad")')
parser.add_argument('--n_classes', '--n_classes', type=int, default=n_classes,
help='Number of classes in batch (default: 32)')
args = parser.parse_args()
model_type = args.model_type
run_name = args.run_name
num_workers = args.num_workers
start = args.start
vlad_dim = args.vlad_dim
m_set = args.m_set
n_batches_train = args.n_batches_train
n_batches_valid = args.n_batches_valid
upper_vgg = args.upper_vgg
n_epoch = args.n_epoch
num_clusters = args.num_clusters
clustering = args.clustering
vlad_v2 = args.vlad_v2
n_batch_verif = args.n_batch_verif
lossFun = args.loss
alpha = args.alpha # 0.1 1
lr = args.lr
pooling = args.pooling
n_classes = args.n_classes
if lossFun == 'loss_bc':
from loss import loss_bc as loss_fn
elif lossFun == 'loss_auc_max_v1':
from loss import loss_auc_max_v1 as loss_fn
elif lossFun == 'loss_AUCPRHingeLoss':
from loss import loss_AUCPRHingeLoss as loss_fn
if n_batches_train == 0:
n_batches_train = None
if n_batches_valid == 0:
n_batches_valid = None
if upper_vgg == 0:
upper_vgg = None
# --------------------------------------------------------------------------------------
# Load train dataset
# --------------------------------------------------------------------------------------
training_dataset_root = '/nfs/nas4/marzieh/marzieh/VGG_Face2/train/'
dataset_train = VGG_Faces2(training_dataset_root, split='train', upper=upper_vgg)
if exp_name == 'lfw':
mean_rgb = (0.485, 0.456, 0.406) # (0.5, 0.5, 0.5)
std_rgb = (0.229, 0.224, 0.225) # (0.5, 0.5, 0.5)
dataset_validation = torchvision.datasets.ImageFolder(root=dataroot,
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=mean_rgb,
std=std_rgb)]
))
elif exp_name == 'vgg2':
validation_dataset_root = '/nfs/nas4/marzieh/marzieh/VGG_Face2/test/'
dataset_validation = VGG_Faces2(validation_dataset_root, split='validation', upper=upper_vgg)
# --------------------------------------------------------------------------------------
# Batch Sampling: n_samples * n_samples
# --------------------------------------------------------------------------------------
batch_size = n_classes * n_samples
batch_sampler_t = BalanceBatchSampler(dataset=dataset_train, n_classes=n_classes, n_samples=n_samples,
n_batches_epoch=n_batches_train)
train_loader = torch.utils.data.DataLoader(dataset_train, batch_sampler=batch_sampler_t, num_workers=num_workers)
batch_sampler_v = BalanceBatchSampler(dataset=dataset_validation, n_classes=n_classes, n_samples=n_samples,
n_batches_epoch=n_batches_valid)
validation_loader = torch.utils.data.DataLoader(dataset_validation, batch_sampler=batch_sampler_v,
num_workers=num_workers)
batch_sampler_H0t = BalanceBatchSampler(dataset=dataset_train, n_classes=n_classes * 2, n_samples=1,
n_batches_epoch=n_batch_verif)
H0_loader_train = torch.utils.data.DataLoader(dataset_train, batch_sampler=batch_sampler_H0t,
num_workers=num_workers)
# batch_sampler_H0v = BalanceBatchSampler(dataset=dataset_validation, n_classes=n_classes * 2, n_samples=1,
# n_batches_epoch=n_batch_verif)
# H0_loader_validation = torch.utils.data.DataLoader(dataset_validation, batch_sampler=batch_sampler_H0v,
# num_workers=num_workers)
batch_sampler_H0v = BalanceBatchSampler(dataset=dataset_train, n_classes=n_classes * 2, n_samples=1,
n_batches_epoch=n_batch_verif)
H0_loader_validation = torch.utils.data.DataLoader(dataset_train, batch_sampler=batch_sampler_H0v,
num_workers=num_workers)
H0_id_t, H0_data_t, H0_id_v, H0_data_v = [], [], [], []
dataloader_H0_t = iter(H0_loader_train)
dataloader_H0_v = iter(H0_loader_validation)
for i in range(n_batch_verif):
data = next(dataloader_H0_t)
H0_id_t.append(data[1])
H0_data_t.append(data[0])
data = next(dataloader_H0_v)
H0_id_v.append(data[1])
H0_data_v.append(data[0])
# --------------------------------------------------------------------------------------
# Model Definitions
# --------------------------------------------------------------------------------------
# Loading SetNet
model = HashSetNet(base_model_architecture=model_type, num_clusters=num_clusters, vset_dim=vlad_dim,
vlad_v2=vlad_v2, pooling=pooling)
logisticReg = LogisticReg()
# # Initialize NetVLAD
# if clustering:
# get_clusters(dataset_train, num_clusters, model_type=model_type, batch_size=64, n_batches=50000)
# if start and pooling == 'vlad':
# initcache = os.path.join(ROOT_DIR, 'centroids',
# model_type + '_' + '_' + str(num_clusters) + '_desc_cen.hdf5')
# with h5py.File(initcache, mode='r') as h5:
# clsts = h5.get("centroids")[...]
# traindescs = h5.get("descriptors")[...]
# model.net_vlad.init_params(clsts, traindescs)
# del clsts, traindescs
# for param in model.base_model.parameters(): # freeze base model
# param.requires_grad = False
model.to(device)
logisticReg.to(device)
if start:
# load SetNet
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp='vgg2', monitor='acc') # monitor='auc'
best_model_filename = reporter.select_best(run='Run006').selected_ckpt
model.load_state_dict(torch.load(best_model_filename)['model_state_dict'])
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp='vgg2', monitor='acc') # monitor='auc'
best_model_filename = reporter.select_best(run='Run006' + '_lr').selected_ckpt
logisticReg.load_state_dict(torch.load(best_model_filename)['model_state_dict'])
optimizer_model = torch.optim.SGD(chain(model.parameters(), logisticReg.parameters()),
lr=lr, momentum=0.9, weight_decay=0.001)
model.train()
logisticReg.train()
# --------------------------------------------------------------------------------------
# Resume training if start is False
# --------------------------------------------------------------------------------------
if not start:
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp=exp_name, monitor='acc')
last_model_filename = reporter.select_last(run=run_name).selected_ckpt
last_epoch = int(reporter.select_last(run=run_name).last_epoch)
loss0 = reporter.select_last(run=run_name).last_loss
loss0 = float(loss0[:-4])
model.load_state_dict(torch.load(last_model_filename)['model_state_dict'])
reporter = Reporter(ckpt_root=os.path.join(ROOT_DIR, 'ckpt'),
exp=exp_name, monitor='acc')
last_model_filename = reporter.select_last(run=run_name + '_lr').selected_ckpt
logisticReg.load_state_dict(torch.load(last_model_filename)['model_state_dict'])
reporter.monitor = 'auc'
auc_last = reporter.select_last(run=run_name).last_loss
auc_last = float(auc_last[:-4])
else:
last_epoch = -1
loss0 = 0
auc_last = 0
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_model, mode="min",
factor=0.1, patience=0, verbose=True, min_lr=1e-8, threshold=0.00001, threshold_mode='abs')
path_ckpt = '{}/ckpt/{}'.format(ROOT_DIR, exp_name)
# learning checkpointer
ckpter = CheckPoint(model=model, optimizer=optimizer_model, path=path_ckpt,
prefix=run_name, interval=1, save_num=n_save_epoch, loss0=loss0)
ckpter_lr = CheckPoint(model=logisticReg, optimizer=optimizer_model, path=path_ckpt,
prefix=run_name + '_lr', interval=1, save_num=n_save_epoch, loss0=loss0)
ckpter_auc = CheckPoint(model=model, optimizer=optimizer_model, path=path_ckpt,
prefix=run_name, interval=1, save_num=n_save_epoch, loss0=auc_last)
ckpter_auc_lr = CheckPoint(model=logisticReg, optimizer=optimizer_model, path=path_ckpt,
prefix=run_name + '_lr', interval=1, save_num=n_save_epoch, loss0=auc_last)
train_hist = History(name='train_hist' + run_name)
validation_hist = History(name='validation_hist' + run_name)
# if start:
# # --------- Training logs before start training -----------------
# # model.eval()
# # logisticReg.eval()
# with torch.no_grad():
# tot_loss, tot_acc = 0, 0
# n_batches = len(train_loader)
# Ptp01, Ptp05, AUC = np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif)
# vs, vf, tg = [], [], []
# idx = -1
# for batch_idx, (data, target, img_file, class_id) in enumerate(train_loader):
# data_set = data[np.arange(0, batch_size, n_samples)].to(device)
# data_query = data[np.arange(1, batch_size, n_samples)].to(device)
# v_set, code_set = model(data_set, m=m_set) # single vector per set
# v_f, code_f = model(data_query, m=1) # single vector per query
# Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
# output = logisticReg(Sim.unsqueeze(-1)).squeeze()
# loss1, accuracy = loss_fn(output, len(code_f), m_set)
#
# h = torch.cat([v_set, v_f], dim=0)
# loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
# loss_outputs = loss1 + alpha * loss2
# tot_acc += accuracy
# tot_loss += loss_outputs
#
# vs.append(code_set)
# vf.append(code_f)
# tg.append(target)
# if (batch_idx + 1) % n_batch_verif == 0:
# idx += 1
# vs = torch.stack(vs).flatten(start_dim=0, end_dim=1)
# vf = torch.stack(vf).flatten(start_dim=0, end_dim=1)
# tg = torch.stack(tg).flatten(start_dim=0, end_dim=1)
# Ptp01[idx], Ptp05[idx], AUC[idx] = acc_authentication(model, logisticReg, H0_id_t, H0_data_t,
# tg, vf.size(0), vs, vf, m_set, n_batch_verif)
# vs, vf, tg = [], [], []
#
# avg_loss = tot_loss / n_batches
# avg_acc = tot_acc / n_batches
# print('Training log before start training--->avg_loss: %.3f' % avg_loss, 'avg_acc: %.3f' % avg_acc,
# ' ptp01: %.3f' % np.mean(Ptp01), 'ptp05: %.3f' % np.mean(Ptp05)
# , ' auc: %.3f' % np.mean(AUC))
# train_logs = {'loss': avg_loss, 'acc': avg_acc, 'ptp01': np.mean(Ptp01),
# 'ptp05': np.mean(Ptp05), 'auc': np.mean(AUC)}
# train_hist.add(logs=train_logs, epoch=0)
# # --------- Validation logs before start training -----------------
# # model.eval()
# # logisticReg.eval()
# tot_loss, tot_acc = 0, 0
# n_batches = len(validation_loader)
# Ptp01, Ptp05, AUC = np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif)
# vs, vf, tg = [], [], []
# idx = -1
# with torch.no_grad():
# for batch_idx, (data, target, img_file, class_id) in enumerate(validation_loader):
# data_set = data[np.arange(0, batch_size, n_samples)].to(device)
# data_query = data[np.arange(1, batch_size, n_samples)].to(device)
# v_set, code_set = model(data_set, m=m_set) # single vector per set
# v_f, code_f = model(data_query, m=1) # single vector per query
# Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
# output = logisticReg(Sim.unsqueeze(-1)).squeeze()
# loss1, accuracy = loss_fn(output, len(code_f), m_set)
#
# h = torch.cat([v_set, v_f], dim=0)
# loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
# loss_outputs = loss1 + alpha * loss2
# tot_acc += accuracy
# tot_loss += loss_outputs
#
# vs.append(code_set)
# vf.append(code_f)
# tg.append(target)
# if (batch_idx + 1) % n_batch_verif == 0:
# idx += 1
# vs = torch.stack(vs).flatten(start_dim=0, end_dim=1)
# vf = torch.stack(vf).flatten(start_dim=0, end_dim=1)
# tg = torch.stack(tg).flatten(start_dim=0, end_dim=1)
# Ptp01[idx], Ptp05[idx], AUC[idx] = acc_authentication(model, logisticReg, H0_id_v, H0_data_v,
# tg, vf.size(0), vs, vf, m_set, n_batch_verif)
# vs, vf, tg = [], [], []
# avg_loss = tot_loss / n_batches
# avg_acc = tot_acc / n_batches
# print('Validation log before start training--->avg_loss: %.3f' % avg_loss, 'avg_acc: %.3f' % avg_acc,
# ' ptp01: %.3f' % np.mean(Ptp01), 'ptp05: %.3f' % np.mean(Ptp05)
# , ' auc: %.3f' % np.mean(AUC))
# validation_logs = {'loss': avg_loss, 'acc': avg_acc, 'ptp01': np.mean(Ptp01),
# 'ptp05': np.mean(Ptp05), 'auc': np.mean(AUC)}
# validation_hist.add(logs=validation_logs, epoch=0)
# else:
# train_hist = dill.load(open(ROOT_DIR + "/ckpt/" + exp_name + train_hist.name + ".pickle", "rb"))
# validation_hist = dill.load(open(ROOT_DIR + "/ckpt/" + exp_name + validation_hist.name + ".pickle", "rb"))
# --------------------------------------------------------------------------------------
# Training
# --------------------------------------------------------------------------------------
for epoch in range(last_epoch + 1, n_epoch):
t11 = time.time()
print('Training epoch', epoch + 1)
tot_loss, tot_acc = 0, 0
n_batches = len(train_loader)
epoch_time_start = time.time()
model.train()
logisticReg.train()
for batch_idx, (data, target, img_file, class_id) in enumerate(train_loader):
# data: (batch_size,3,224,224)
data_set = data[np.arange(0, batch_size, n_samples)].to(device)
data_query = data[np.arange(1, batch_size, n_samples)].to(device)
v_set, code_set = model(data_set, m=m_set) # single vector per set
v_f, code_f = model(data_query, m=1) # single vector per query
# Sim = torch.mm(code_set, code_f.t())
Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
output = logisticReg(Sim.unsqueeze(-1)).squeeze()
loss1, accuracy = loss_fn(output, len(code_f), m_set)
h = torch.cat([v_set, v_f], dim=0)
loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
loss_outputs = loss1 + alpha * loss2
tot_acc += accuracy
tot_loss += loss_outputs
optimizer_model.zero_grad()
# print('device:', loss_outputs.device, 'type:', loss_outputs.dtype, 'value:', loss_outputs)
loss_outputs.backward()
optimizer_model.step()
print('t_train', time.time() - t11)
avg_loss_train = tot_loss / n_batches
avg_acc_train = tot_acc / n_batches
# --------------------------------------------------------------------------------------
# Validation History
# --------------------------------------------------------------------------------------
# --------- Validation logs -----------------
print('Computing Validation logs')
# model.eval()
# logisticReg.eval()
tot_loss, tot_acc = 0, 0
n_batches = len(validation_loader)
Ptp01, Ptp05, AUC = np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif)
vs, vf, tg = [], [], []
idx = -1
with torch.no_grad():
for batch_idx, (data, target, img_file, class_id) in enumerate(validation_loader):
# data: (batch_size,3,224,224)
data_set = data[np.arange(0, batch_size, n_samples)].to(device)
data_query = data[np.arange(1, batch_size, n_samples)].to(device)
v_set, code_set = model(data_set, m=m_set) # single vector per set
v_f, code_f = model(data_query, m=1) # single vector per query
Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
output = logisticReg(Sim.unsqueeze(-1)).squeeze()
loss1, accuracy = loss_fn(output, len(code_f), m_set)
h = torch.cat([v_set, v_f], dim=0)
loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
loss_outputs = loss1 + alpha * loss2
tot_acc += accuracy
tot_loss += loss_outputs
vs.append(code_set)
vf.append(code_f)
tg.append(target)
if (batch_idx + 1) % n_batch_verif == 0:
idx += 1
vs = torch.stack(vs).flatten(start_dim=0, end_dim=1)
vf = torch.stack(vf).flatten(start_dim=0, end_dim=1)
tg = torch.stack(tg).flatten(start_dim=0, end_dim=1)
Ptp01[idx], Ptp05[idx], AUC[idx] = acc_authentication(model, logisticReg, H0_id_v, H0_data_v,
tg, vf.size(0), vs, vf, m_set, n_batch_verif)
vs, vf, tg = [], [], []
avg_loss = tot_loss / n_batches
avg_acc = tot_acc / n_batches
print('avg_loss: %.4f' % avg_loss, 'avg_acc: %.3f' % avg_acc,
' --->ptp01: %.3f' % np.mean(Ptp01), 'ptp05: %.3f' % np.mean(Ptp05)
, ' auc: %.3f' % np.mean(AUC))
validation_logs = {'loss': avg_loss, 'acc': avg_acc, 'ptp01': np.mean(Ptp01),
'ptp05': np.mean(Ptp05), 'auc': np.mean(AUC)}
validation_hist.add(logs=validation_logs, epoch=epoch + 1)
if (epoch+1) % 10 == 0:
print('Computing Training logs')
# model.eval()
# logisticReg.eval()
tot_loss, tot_acc = 0, 0
n_batches = len(train_loader)
Ptp01, Ptp05, AUC = np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif), np.zeros(n_batches // n_batch_verif)
vs, vf, tg = [], [], []
idx = -1
with torch.no_grad():
for batch_idx, (data, target, img_file, class_id) in enumerate(train_loader):
data_set = data[np.arange(0, batch_size, n_samples)].to(device)
data_query = data[np.arange(1, batch_size, n_samples)].to(device)
v_set, code_set = model(data_set, m=m_set) # single vector per set
v_f, code_f = model(data_query, m=1) # single vector per query
Sim = torch.mm(F.normalize(code_set, p=2, dim=1), F.normalize(code_f, p=2, dim=1).t())
output = logisticReg(Sim.unsqueeze(-1)).squeeze()
loss1, accuracy = loss_fn(output, len(code_f), m_set)
h = torch.cat([v_set, v_f], dim=0)
loss2 = torch.mean(torch.abs(torch.pow(torch.abs(h) - Variable(torch.ones(h.size()).cuda()), 3)))
loss_outputs = loss1 + alpha * loss2
tot_acc += accuracy
tot_loss += loss_outputs
vs.append(code_set)
vf.append(code_f)
tg.append(target)
if (batch_idx + 1) % n_batch_verif == 0:
idx += 1
vs = torch.stack(vs).flatten(start_dim=0, end_dim=1)
vf = torch.stack(vf).flatten(start_dim=0, end_dim=1)
tg = torch.stack(tg).flatten(start_dim=0, end_dim=1)
Ptp01[idx], Ptp05[idx], AUC[idx] = acc_authentication(model, logisticReg, H0_id_t, H0_data_t,
tg, vf.size(0), vs, vf, m_set, n_batch_verif)
vs, vf, tg = [], [], []
avg_loss = tot_loss / n_batches
avg_acc = tot_acc / n_batches
print('avg_loss: %.4f' % avg_loss, 'avg_acc: %.3f' % avg_acc,
' --->ptp01: %.3f' % np.mean(Ptp01), 'ptp05: %.3f' % np.mean(Ptp05)
, ' auc: %.3f' % np.mean(AUC))
train_logs = {'loss': avg_loss, 'acc': avg_acc, 'ptp01': np.mean(Ptp01),
'ptp05': np.mean(Ptp05), 'auc': np.mean(AUC)}
train_hist.add(logs=train_logs, epoch=epoch + 1)
epoch_time_end = time.time()
print(
'Epoch {}:\tAverage Loss: {:.4f}\tAverage Accuracy: {:.3f}\tEpoch Time: {:.3f} hours'.format(
epoch + 1,
avg_loss_train, avg_acc_train,
(epoch_time_end - epoch_time_start) / 3600,
)
)
if lr_scheduler is not None:
lr_scheduler.step(validation_logs['loss'])
if epoch > 0:
ckpter.last_delete_and_save(epoch=epoch, monitor='acc', loss_acc=validation_logs)
ckpter_lr.last_delete_and_save(epoch=epoch, monitor='acc', loss_acc=validation_logs)
ckpter_auc.last_delete_and_save(epoch=epoch, monitor='auc', loss_acc=validation_logs)
ckpter_auc_lr.last_delete_and_save(epoch=epoch, monitor='auc', loss_acc=validation_logs)
ckpter.check_on(epoch=epoch, monitor='acc', loss_acc=validation_logs)
ckpter_lr.check_on(epoch=epoch, monitor='acc', loss_acc=validation_logs)
ckpter_auc.check_on(epoch=epoch, monitor='auc', loss_acc=validation_logs)
ckpter_auc_lr.check_on(epoch=epoch, monitor='auc', loss_acc=validation_logs)
dill.dump(train_hist, file=open(ROOT_DIR + "/ckpt/" + exp_name + train_hist.name + ".pickle", "wb"))
dill.dump(validation_hist, file=open(ROOT_DIR + "/ckpt/" + exp_name + validation_hist.name + ".pickle", "wb"))