-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredection.py
79 lines (54 loc) · 2.07 KB
/
predection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import tensorflow.keras
import numpy as np
import cv2
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def image_resize(image, height, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
r = height / float(h)
dim = (int(w * r), height)
resized = cv2.resize(image, dim, interpolation=inter)
return resized
# this function crops to the center of the resize image
def cropTo(img):
size = 224
height, width = img.shape[:2]
sideCrop = (width - 224) // 2
return img[:, sideCrop : (width - sideCrop)]
def predict(image_path):
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = tensorflow.keras.models.load_model("keras_model.h5", compile=False)
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
# image = Image.open(image_path)
image = cv2.imread(image_path)
image = image_resize(image, height=224)
image = cropTo(image)
# flips the image
image = cv2.flip(image, 1)
# resize the image to a 224x224 with the same strategy as in TM2:
# resizing the image to be at least 224x224 and then cropping from the center
# size = (224, 224)
# image = ImageOps.fit(image, size, Image.ANTIALIAS)
# turn the image into a numpy array
# image_array = np.asarray(image)
# display the resized image
# image.show()
# Normalize the image
normalized_image_array = (image.astype(np.float32) / 127.0) - 1
# print(normalized_image_array)
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
print(prediction)
prediction = "number" if prediction[0][0] > prediction[0][1] else "star"
return prediction
if __name__ == "__main__":
print(predict("captcha_solved/captcha0.png"))