forked from xavysp/DexiNed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
129 lines (102 loc) · 4.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import tensorflow as tf
from PIL import Image
from models.dexined import dexined
# from models.dexinedBs import dexined
from utls.utls import *
from utls.dataset_manager import data_parser,get_single_image,\
get_testing_batch
class m_tester():
def __init__(self, args):
self.args = args
def setup(self, session):
try:
if self.args.model_name=='DXN':
self.model = dexined(self.args)
else:
print_error("Error setting model, {}".format(self.args.model_name))
if self.args.trained_model_dir is None:
meta_model_file = os.path.join(
self.args.checkpoint_dir, os.path.join(
self.args.model_name + '_' + self.args.train_dataset,
os.path.join('train',
'{}-{}'.format(self.args.model_name, self.args.test_snapshot))))
else:
meta_model_file = os.path.join(
self.args.checkpoint_dir, os.path.join(
self.args.model_name + '_' + self.args.train_dataset,
os.path.join(self.args.trained_model_dir,
'{}-{}'.format(self.args.model_name, self.args.test_snapshot))))
saver = tf.train.Saver()
saver.restore(session, meta_model_file)
print_info('Done restoring DexiNed model from {}'.format(meta_model_file))
except Exception as err:
print_error('Error setting up DexiNed traied model, {}'.format(err))
def run(self, session):
self.model.setup_testing(session)
if self.args.use_dataset:
test_data= data_parser(self.args)
n_data = len(test_data[1])
else:
test_data=get_single_image(self.args)
n_data = len(test_data)
print_info('Writing PNGs at {}'.format(self.args.base_dir_results))
if self.args.batch_size_test==1 and self.args.use_dataset:
for i in range(n_data):
im, em, file_name = get_testing_batch(self.args,
[test_data[0][test_data[1][i]], test_data[1][i]], use_batch=False)
self.img_info = file_name
edgemap = session.run(self.model.predictions, feed_dict={self.model.images: [im]})
self.save_egdemaps(edgemap, single_image=True)
print_info('Done testing {}, {}'.format(self.img_info[0], self.img_info[1]))
# for individual images
elif self.args.batch_size_test==1 and not self.args.use_dataset:
for i in range(n_data):
im, file_name = get_single_image(self.args,file_path=test_data[i])
self.img_info = file_name
edgemap = session.run(self.model.predictions, feed_dict={self.model.images: [im]})
self.save_egdemaps(edgemap, single_image=True)
print_info('Done testing {}, {}'.format(self.img_info[0], self.img_info[1]))
def save_egdemaps(self, em_maps, single_image=False):
""" save_edgemaps descriptios
:param em_maps:
:param single_image:
save predicted edge maps
"""
result_dir = 'DexiNed_'+self.args.train_dataset+'2'+self.args.test_dataset
if self.args.base_dir_results is None:
res_dir = os.path.join('results', result_dir)
else:
res_dir = os.path.join(self.args.base_dir_results,result_dir)
gt_dir = os.path.join(res_dir,'gt')
all_dir = os.path.join(res_dir,'pred-h5')
resf_dir = os.path.join(res_dir,'pred-f')
resa_dir = os.path.join(res_dir,'pred-a')
os.makedirs(resf_dir, exist_ok=True)
os.makedirs(resa_dir, exist_ok=True)
os.makedirs(gt_dir, exist_ok=True)
os.makedirs(all_dir, exist_ok=True)
if single_image:
em_maps = [e[0] for e in em_maps]
em_a = np.mean(np.array(em_maps), axis=0)
em_maps = em_maps + [em_a ]
em = em_maps[len(em_maps)-2]
em[em < self.args.testing_threshold] = 0.0
em_a[em_a < self.args.testing_threshold] = 0.0
em = 255.0 * (1.0 - em)
em_a = 255.0 * (1.0 - em_a)
em = np.tile(em, [1, 1, 3])
em_a = np.tile(em_a, [1, 1, 3])
em = Image.fromarray(np.uint8(em))
em_a = Image.fromarray(np.uint8(em_a))
tmp_name = os.path.basename(self.img_info[0])
tmp_name = tmp_name[:-4]
tmp_size = self.img_info[-1][:2]
tmp_size = (tmp_size[1],tmp_size[0])
em_f = em.resize(tmp_size)
em_a = em_a.resize(tmp_size)
em_f.save(os.path.join(resf_dir, tmp_name + '.png'))
em_a.save(os.path.join(resa_dir, tmp_name + '.png'))
em_maps =tensor_norm_01(em_maps)
save_variable_h5(os.path.join(all_dir, tmp_name + '.h5'), np.float16(em_maps))
else:
pass