forked from xavysp/DexiNed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
150 lines (129 loc) · 6.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tensorflow as tf
import matplotlib.pyplot as plt
from models.dexined import dexined
# from models.dexinedBs import dexined
from utls.utls import *
from utls.dataset_manager import (data_parser,
get_training_batch,get_validation_batch, visualize_result)
class m_trainer():
def __init__(self,args ):
self.init = True
self.args = args
def setup(self):
try:
if self.args.model_name=='DXN':
self.model = dexined(self.args)
else:
print_error("Error setting model, {}".format(self.args.model_name))
print_info("DL model Set")
except Exception as err:
print_error("Error setting up DL model, {}".format(err))
self.init=False
def run(self, sess):
if not self.init:
return
train_data = data_parser(self.args)
self.model.setup_training(sess)
if self.args.lr_scheduler is not None:
global_step = tf.Variable(0, trainable=False, dtype=tf.int64)
if self.args.lr_scheduler is None:
learning_rate = tf.constant(self.args.learning_rate, dtype=tf.float16)
else:
raise NotImplementedError('Learning rate scheduler type [%s] is not implemented',
self.args.lr_scheduler)
opt = tf.train.AdamOptimizer(learning_rate)
trainG = opt.minimize(self.model.loss)# like hed
saver = tf.train.Saver(max_to_keep=7)
sess.run(tf.global_variables_initializer())
# here to recovery previous training
if self.args.use_previous_trained:
if self.args.dataset_name.lower()!='biped': # using biped pretrained to use in other dataset
model_path = os.path.join(self.args.checkpoint_dir,self.args.model_name+
'_'+self.args.train_dataset,'train')
else:
model_path = os.path.join(self.args.checkpoint_dir, self.args.model_name + '_' + self.args.train_dataset)
model_path = os.path.join(model_path, 'train')
if not os.path.exists(model_path) or len(os.listdir(model_path))==0: # :
ini = 0
maxi = self.args.max_iterations+1
print_warning('There is not previous trained data for the current model... and')
print_warning('*** The training process is starting from scratch ***')
else:
# restoring using the last checkpoint
assert (len(os.listdir(model_path)) != 0),'There is not previous trained data for the current model...'
last_ckpt = tf.train.latest_checkpoint(model_path)
saver.restore(sess,last_ckpt)
ini=self.args.max_iterations
maxi=ini+self.args.max_iterations+1 # check
print_info('--> Previous model restored successfully: {}'.format(last_ckpt))
else:
print_warning('*** The training process is starting from scratch ***')
ini = 0
maxi = ini + self.args.max_iterations
prev_loss=1000.
prev_val = None
# directories for checkpoints
checkpoint_dir = os.path.join(
self.args.checkpoint_dir, self.args.model_name + '_' + self.args.train_dataset,
self.args.model_state)
os.makedirs(checkpoint_dir,exist_ok=True)
fig = plt.figure()
for idx in range(ini, maxi):
x_batch, y_batch,_ = get_training_batch(self.args, train_data)
run_metadata = tf.RunMetadata()
_, summary, loss,pred_maps= sess.run(
[trainG, self.model.merged_summary, self.model.loss, self.model.predictions],
feed_dict={self.model.images: x_batch, self.model.edgemaps: y_batch})
if idx%5==0:
self.model.train_writer.add_run_metadata(run_metadata,
'step{:06}'.format(idx))
self.model.train_writer.add_summary(summary, idx)
print(time.ctime(), '[{}/{}]'.format(idx, maxi), ' TRAINING loss: %.5f' % loss,
'prev_loss: %.5f' % prev_loss)
# saving trained parameters
save_inter = ini+self.args.save_interval
if prev_loss>loss:
saver.save(sess, os.path.join(checkpoint_dir, self.args.model_name), global_step=idx)
prev_loss = loss
print("Weights saved in the lowest loss",idx, " Current Loss",prev_loss)
if idx % self.args.save_interval == 0:
saver.save(sess, os.path.join(checkpoint_dir, self.args.model_name), global_step=idx)
prev_loss = loss
print("Weights saved in the interval", idx, " Current Loss",prev_loss)
# ********* for validation **********
if (idx+1) % self.args.val_interval== 0:
pause_show=0.01
imgs_list = []
img = x_batch[2][:,:,0:3]
gt_mp= y_batch[2]
imgs_list.append(img)
imgs_list.append(gt_mp)
for i in range(len(pred_maps)):
tmp=pred_maps[i][2,...]
imgs_list.append(tmp)
vis_imgs = visualize_result(imgs_list, self.args)
fig.suptitle("Iterac:" + str(idx + 1) + " Loss:" + '%.5f' % loss + " training")
fig.add_subplot(1,1,1)
plt.imshow(np.uint8(vis_imgs))
print("Evaluation in progress...")
plt.draw()
plt.pause(pause_show)
im, em, _ = get_validation_batch(self.args, train_data)
summary, error, pred_val = sess.run(
[self.model.merged_summary, self.model.error, self.model.fuse_output],
feed_dict={self.model.images: im, self.model.edgemaps: em})
if error<=0.08:
saver.save(sess, os.path.join(checkpoint_dir, self.args.model_name), global_step=idx)
prev_loss = loss
print("Parameters saved in the validation stage when its error is <=0.08::", error)
self.model.val_writer.add_summary(summary, idx)
print_info(('[{}/{}]'.format(idx, self.args.max_iterations),'VALIDATION error: %0.5f'%error,
'pError: %.5f'%prev_loss))
if (idx+1) % (self.args.val_interval*150)== 0:
print('updating visualisation')
plt.close()
fig = plt.figure()
saver.save(sess, os.path.join(checkpoint_dir, self.args.model_name), global_step=idx)
print("Final Weights saved", idx, " Current Loss", loss)
self.model.train_writer.close()
sess.close()