-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdataset.py
195 lines (166 loc) · 7.62 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import pandas as pd
import numpy as np
import random
from PIL import Image, ImageFile, ImageFilter
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.transforms.functional import hflip, to_tensor
from torch.distributions.multivariate_normal import MultivariateNormal
class QualityMapDataset(Dataset):
def __init__(self, path, cropsize=256, mode='train', level_range=(0, 100), level=0, p=0.2):
df = pd.read_csv(path)
self.paths = df['path'].tolist()
self.map_paths = df['seg_path'].tolist() if 'seg_path' in df else None
self.cropsize = cropsize
self.mode = mode
self.level_range = level_range
self.level = level
self.p = p
self.grid = self._get_grid((self.cropsize, cropsize))
assert self.map_paths is None or len(self.paths) == len(self.map_paths)
assert level_range[0] == 0 and level_range[1] == 100
if self.mode == 'train':
print(f'[{mode}set] {len(self.paths)} images')
elif self.mode == 'test':
print(f'[{mode}set] {len(self.paths)} images for quality {level/100}')
self.paths.sort()
def __len__(self):
return len(self.paths)
def _get_crop_params(self, img):
w, h = img.size
if w == self.cropsize and h == self.cropsize:
return 0, 0, h, w
if self.mode == 'train':
top = random.randint(0, h - self.cropsize)
left = random.randint(0, w - self.cropsize)
else:
# center
top = int(round((h - self.cropsize) / 2.))
left = int(round((w - self.cropsize) / 2.))
return top, left
def _get_grid(self, size):
x1 = torch.tensor(range(size[0]))
x2 = torch.tensor(range(size[1]))
grid_x1, grid_x2 = torch.meshgrid(x1, x2)
grid1 = grid_x1.view(size[0], size[1], 1)
grid2 = grid_x2.view(size[0], size[1], 1)
grid = torch.cat([grid1, grid2], dim=-1)
return grid
def __getitem__(self, idx):
img = Image.open(self.paths[idx]).convert('RGB')
segmap = Image.open(self.map_paths[idx]) if self.map_paths else Image.fromarray(
np.zeros(img.size[::-1], dtype=np.uint8))
# crop if training
if self.mode == 'train':
top, left = self._get_crop_params(img)
region = (left, top, left + self.cropsize, top + self.cropsize)
img = img.crop(region)
segmap = segmap.crop(region)
# horizontal flip
if random.random() < 0.5 and self.mode == 'train':
img = hflip(img)
segmap = hflip(segmap)
# filter segmap to remove some artifacts
segmap = segmap.filter(ImageFilter.MedianFilter(7))
# random rate for each class
segmap = np.array(segmap)
qmap = np.zeros_like(segmap, dtype=float)
uniques = np.unique(segmap)
if self.mode == 'train':
sample = random.random()
if sample < self.p:
# uniform
if random.random() < 0.01:
qmap[:] = 0
else:
qmap[:] = (self.level_range[1] + 1) * random.random()
elif sample < 2 * self.p:
# uniform for each class
for v in uniques:
level = (self.level_range[1] + 1) * random.random()
qmap[segmap == v] = level
elif sample < 3 * self.p:
# gradation between two levels
v1 = random.random() * self.level_range[1]
v2 = random.random() * self.level_range[1]
qmap = np.tile(np.linspace(v1, v2, self.cropsize), (self.cropsize, 1)).astype(float)
if random.random() < 0.5:
qmap = qmap.T
else:
# gaussian kernel
gaussian_num = int(1 + random.random() * 20)
for i in range(gaussian_num):
mu_x = self.cropsize * random.random()
mu_y = self.cropsize * random.random()
var_x = 2000 * random.random() + 1000
var_y = 2000 * random.random() + 1000
m = MultivariateNormal(torch.tensor([mu_x, mu_y]), torch.tensor([[var_x, 0], [0, var_y]]))
p = m.log_prob(self.grid)
kernel = torch.exp(p).numpy()
qmap += kernel
qmap *= 100 / qmap.max() * (0.5 * random.random() + 0.5)
else:
uniques.sort()
if self.level == -100:
w, h = img.size
# gradation
if idx % 3 == 0:
v1 = idx/len(self.paths) * self.level_range[1]
v2 = (1-idx/len(self.paths)) * self.level_range[1]
qmap = np.tile(np.linspace(v1, v2, w), (h, 1)).astype(float)
# gaussian kernel
else:
gaussian_num = 1
for i in range(gaussian_num):
mu_x = h / 4 + (h/2)*idx/len(self.paths)
mu_y = w / 4 + (w/2)*(1-idx/len(self.paths))
var_x = 20000 * (1-idx/len(self.paths)) + 5000
var_y = 20000 * idx/len(self.paths) + 5000
m = MultivariateNormal(torch.tensor([mu_x, mu_y]), torch.tensor([[var_x, 0], [0, var_y]]))
grid = self._get_grid((h, w))
p = m.log_prob(grid)
kernel = torch.exp(p).numpy()
qmap += kernel
qmap *= 100 / qmap.max() * (0.4 * idx/len(self.paths) + 0.6)
else:
# uniform level
qmap[:] = self.level
# to tensor
img = to_tensor(img)
qmap = torch.FloatTensor(qmap).unsqueeze(dim=0)
qmap *= 1 / self.level_range[1] # 0~100 -> 0~1
return img, qmap
class ImagenetDataset(Dataset):
def __init__(self, path, transform=None):
df = pd.read_csv(path)
self.paths = df['path'].tolist()
self.labels = df['label'].tolist()
self.transform = transform
print(f'[dataset] {len(self.paths)} images.')
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
img = Image.open(self.paths[idx]).convert('RGB')
if self.transform:
img = self.transform(img)
label = torch.FloatTensor([self.labels[idx]])
return img, label
def get_dataloader(config, L=10):
train_dataset = QualityMapDataset(config['trainset'], config['patchsize'], mode='train', p=config['p'])
train_dataloader = DataLoader(train_dataset, batch_size=config['batchsize'], shuffle=True,
num_workers=config['worker_num'], pin_memory=True)
levels = [-100] + [int(100*(i/L)) for i in range(L+1)]
test_dataloaders = []
for level in levels:
test_dataset = QualityMapDataset(config['testset'], config['patchsize'], mode='test', p=config['p'], level=level)
test_dataloader = DataLoader(test_dataset, batch_size=config['batchsize_test'], shuffle=False,
num_workers=config['worker_num'], pin_memory=True)
test_dataloaders.append(test_dataloader)
return train_dataloader, test_dataloaders
def get_test_dataloader_compressai(config):
test_dataset = QualityMapDataset(config['testset'], mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=config['batchsize_test'], shuffle=False,
num_workers=2)
return test_dataloader