-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathnccl.py
186 lines (155 loc) · 7.27 KB
/
nccl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
'''
Copyright 2020 The Microsoft DeepSpeed Team
'''
import torch
import torch.distributed as dist
import time
import cupy
import numpy as np
from deepspeed.runtime.compression.cupy import CupyBackend
class NcclBackend(object):
def __init__(self, mpu=None):
if mpu is None:
self.world_group = dist.new_group(ranks=range(dist.get_world_size()))
else:
self.mpu = mpu
self.world_group = self.mpu.get_data_parallel_group()
self.rank = dist.get_rank(group=self.world_group)
self.size = dist.get_world_size(group=self.world_group)
self.compression_backend = CupyBackend()
def my_igather(self, rank, size, group, sendbuf, recvbuf, root):
req = []
if rank == root:
for idx in range(size):
if idx != rank:
req.append(dist.irecv(recvbuf[idx], src=idx, group=group))
else:
recvbuf[rank] = sendbuf
else:
req.append(dist.isend(sendbuf, group=group, dst=root))
return req
def my_gather(self, rank, size, group, sendbuf, recvbuf, root):
if rank == root:
for idx in range(size):
if idx != rank:
dist.recv(recvbuf[idx], src=idx, group=group)
else:
recvbuf[rank] = sendbuf
else:
dist.send(sendbuf, group=group, dst=root)
def compressed_allreduce(self,
buffer_m: torch.tensor,
worker_error,
server_error,
local_rank):
# all_start_time = time.time()
original_shape = buffer_m.size()
if len(original_shape) > 1:
buffer_m = torch.flatten(buffer_m)
original_size = buffer_m.numel()
worker_error_size = worker_error.numel()
cupy.cuda.Device(local_rank).use()
if original_size != worker_error_size:
empty_tensor = torch.zeros(worker_error_size - original_size,
device=buffer_m.device)
buffer_m = torch.cat([buffer_m, empty_tensor])
buffer_m.add_(worker_error)
worker_scale = torch.norm(buffer_m) / np.sqrt(torch.numel(buffer_m))
worker_error.set_(buffer_m - worker_scale *
buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
cupy_sign_list_packed = self.compression_backend.compress_by_chunk(
self.compression_backend.torch2cupy(buffer_m.sign_().add_(1).bool()),
self.size)
cupy_worker_scale = self.compression_backend.torch2cupy(worker_scale)
cupy_recvbuf_sign = cupy.zeros(
[self.size,
cupy_sign_list_packed[self.rank].size],
dtype=cupy_sign_list_packed[0].dtype)
# cupy_recvbuf_scale = cupy.zeros([self.size, 1], dtype=cupy_worker_scale.dtype)
sign_list_packed = [
self.compression_backend.cupy2torch(cupy_sign_list_packed[idx])
for idx in range(self.size)
]
# worker_scale = self.compression_backend.cupy2torch(cupy_worker_scale)
recvbuf_sign = self.compression_backend.cupy2torch(cupy_recvbuf_sign)
#recvbuf_scale = self.compression_backend.cupy2torch(cupy_recvbuf_scale)
recvbuf_scale = [
torch.zeros(1,
dtype=worker_scale.dtype,
device=torch.device(local_rank)) for i in range(self.size)
]
# communication phase 1
# gather_start = time.time()
# Alltoall for sign
dist.all_to_all_single(recvbuf_sign,
torch.stack(sign_list_packed),
group=self.world_group)
# Allgather for scale
dist.all_gather(recvbuf_scale, worker_scale, group=self.world_group)
# gather_end = time.time()
# cupy_sign_list_packed, sign_list_packed, cupy_worker_scale, worker_scale = None, None, None, None
cupy_sign_list_packed = None
cupy_recvbuf_sign = self.compression_backend.torch2cupy(recvbuf_sign)
#cupy_recvbuf_scale = self.compression_backend.torch2cupy(torch.stack(recvbuf_scale))
compensated_server_m = self.compression_backend.cupy2torch(
(cupy.unpackbits(cupy_recvbuf_sign.flatten())).reshape(
self.size,
-1)).float().add_(-0.5).mul_(2.0).mul_(
torch.stack(recvbuf_scale).mul_(1 / self.size)).sum(0)
compensated_server_m.add_(server_error)
server_scale = torch.norm(compensated_server_m) / np.sqrt(
compensated_server_m.numel())
server_error.set_(
compensated_server_m - server_scale *
compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
# cupy_server_scale = self.compression_backend.torch2cupy(server_scale)
cupy_server_sign_packed = self.compression_backend.compress_by_chunk(
self.compression_backend.torch2cupy(
compensated_server_m.sign_().add_(1).bool()),
1)
compensated_server_m = None
cupy_recvbuf_sign_server = cupy.zeros(
[self.size,
cupy_server_sign_packed[0].size],
dtype=cupy_recvbuf_sign.dtype)
# cupy_recvbuf_sign, recvbuf_sign = None, None
cupy_recvbuf_sign = None
server_sign_packed = [
self.compression_backend.cupy2torch(cupy_server_sign_packed[0])
]
recvbuf_sign_server = [
self.compression_backend.cupy2torch(cupy_recvbuf_sign_server[idx])
for idx in range(self.size)
]
# server_scale = self.compression_backend.cupy2torch(cupy_server_scale)
cupy_recvbuf_scale_server = cupy.zeros([self.size,
1],
dtype=cupy_worker_scale.dtype)
# cupy_recvbuf_scale, recvbuf_scale = None, None
recvbuf_scale_server = [
self.compression_backend.cupy2torch(cupy_recvbuf_scale_server[idx])
for idx in range(self.size)
]
# Communication Phase 2
dist.all_gather(recvbuf_sign_server,
server_sign_packed[0],
group=self.world_group)
dist.all_gather(recvbuf_scale_server, server_scale, group=self.world_group)
cupy_server_sign_packed = None
# need to convert from a tensor list to a single tensor
# dist.all_gather only provides a tensor list as the recv/output buffer
recvbuf_sign_server = torch.stack(recvbuf_sign_server)
cupy_recvbuf_sign_server = self.compression_backend.torch2cupy(
recvbuf_sign_server)
buffer_m.data.copy_(
self.compression_backend.cupy2torch(
(cupy.unpackbits(cupy_recvbuf_sign_server.flatten())).reshape(
self.size,
-1)).float().add_(-0.5).mul_(2.0).mul_(
self.compression_backend.cupy2torch(
cupy_recvbuf_scale_server)).flatten().data)
if original_size != worker_error_size:
buffer_m = buffer_m[0:original_size]
if len(original_shape) > 1:
buffer_m = buffer_m.reshape(original_shape)
return buffer_m