diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index 6708aa97..d8b9824b 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -144,7 +144,7 @@ jobs: # We don't run pytest for Linux py3.8 since we do coverage for that case. - name: Test with pytest if: ${{ matrix.python-version != '3.8' || startsWith(matrix.os, 'ubuntu') != true }} - run: pytest -k test_extra_trees_tvm_tree_trav_regressor_converter -s + run: pytest -v # Run and push coverage only for Linux py3.8 - name: Coverage 3.8 Linux if: ${{ matrix.python-version == '3.8' && startsWith(matrix.os, 'ubuntu') }} diff --git a/tests/test_sklearn_decision_tree_converter.py b/tests/test_sklearn_decision_tree_converter.py index 14477a97..abfa5d69 100644 --- a/tests/test_sklearn_decision_tree_converter.py +++ b/tests/test_sklearn_decision_tree_converter.py @@ -130,16 +130,13 @@ def test_random_forest_perf_tree_trav_classifier_shifted_labels_converter(self): def _run_tree_regressor_converter(self, model_type, num_classes, backend="torch", extra_config={}, **kwargs): warnings.filterwarnings("ignore") for max_depth in [1, 3, 8, 10, 12, None]: - print(f"max_depth: {max_depth}") model = model_type(max_depth=max_depth, **kwargs) np.random.seed(0) X = np.random.rand(100, 200) X = np.array(X, dtype=np.float32) y = np.random.randint(num_classes, size=100) - print(" start training on skl") model.fit(X, y) - print(" convert skl model with HB") torch_model = hummingbird.ml.convert(model, backend, X, extra_config=extra_config) self.assertIsNotNone(torch_model) np.testing.assert_allclose(model.predict(X), torch_model.predict(X), rtol=1e-06, atol=1e-06)