diff --git a/docs/en_US/TrialExample/SklearnExamples.md b/docs/en_US/TrialExample/SklearnExamples.md index 4790123a15..0c481ee2ac 100644 --- a/docs/en_US/TrialExample/SklearnExamples.md +++ b/docs/en_US/TrialExample/SklearnExamples.md @@ -20,7 +20,7 @@ nnictl create --config ./config.yml This example uses the dataset of digits, which is made up of 1797 8x8 images, and each image is a hand-written digit, the goal is to classify these images into 10 classes. -In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "keral", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html). +In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "kernel", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html). ### 2.2 regression @@ -64,7 +64,7 @@ It is easy to use NNI in your scikit-learn code, there are only a few steps. ```json { "C": {"_type":"uniform","_value":[0.1, 1]}, - "keral": {"_type":"choice","_value":["linear", "rbf", "poly", "sigmoid"]}, + "kernel": {"_type":"choice","_value":["linear", "rbf", "poly", "sigmoid"]}, "degree": {"_type":"choice","_value":[1, 2, 3, 4]}, "gamma": {"_type":"uniform","_value":[0.01, 0.1]}, "coef0 ": {"_type":"uniform","_value":[0.01, 0.1]} @@ -76,7 +76,7 @@ It is easy to use NNI in your scikit-learn code, there are only a few steps. ```python params = { 'C': 1.0, - 'keral': 'linear', + 'kernel': 'linear', 'degree': 3, 'gamma': 0.01, 'coef0': 0.01