-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrise_test.py
252 lines (193 loc) · 8.74 KB
/
rise_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import socket
import time
# import pandas as pd
import config
from captum.attr._utils.attribution import Attribution, LayerAttribution
from torch.utils.data.dataset import Subset
from tqdm import tqdm
import torchvision
from pathlib import Path
import torch
import models
from captum import attr
from utils.util import FilteredDatasetFolder,WrappedModel
from interpretability.activation_clustering import plot_activation_clusters, plot_activation_nmf
from interpretability.saliency import plot_activations,plot_average_saliency,plot_saliency_paper
import numpy as np
from rise import RISE
import matplotlib.pyplot as plt
import torch.nn.functional as F
class PerformanceStatistics():
def __init__(self,id) -> None:
self.id=id
self.times=[]
def update(self,time):
self.times.append(time)
def mean_std(self):
times = np.array(self.times)
return times.mean(),times.std()
class AttributionAggregator:
def __init__(self,name) -> None:
self.name=name
self.sums = 0.0
self.all = []
self.model = model
def update(self,value):
value = value.detach().cpu().numpy().transpose(1,2,0)
self.sums += value
self.all.append(value)
def average(self):
return self.sums/len(self.all)
#===========================================================================#
def generate_visualizations(model, encoder,dataloader, device,inverse_normalization,id,class_name,k_clustering):
folder = output_folder/id
folder.mkdir(exist_ok = True,parents=True)
def wrapped_model(inp):
# print("old shape", inp.shape)
# inp = torch.nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)(inp) #upsample from 640 to 1280
# inp = F.interpolate(inp, scale_factor=0.5, mode='bilinear', align_corners=False) #downsample from 1280 to 640
inp = inp.half()
# print("new shape", inp.shape)
return model(inp)[1]
model.eval()
n_samples = len(dataloader)
i=0
# TODO this is really ugly, refactor and put computation of attributions in classes, each of which outputs an Aggregator
aggregators= [AttributionAggregator("Image"),
AttributionAggregator("Gradient"),
AttributionAggregator("GradCAM"),
AttributionAggregator("Occlusion"),
AttributionAggregator("RISE"),
]
statistics = {agg.name:PerformanceStatistics(agg.name) for agg in aggregators}
# remove image_agg
image_agg = aggregators[0]
aggregators = aggregators[1:]
rise = RISE(wrapped_model)
saliency = attr.Saliency(wrapped_model)
layer_activation = attr.LayerActivation(wrapped_model,encoder)
gradcam = attr.LayerGradCam(wrapped_model,encoder)
occlusion = attr.Occlusion(wrapped_model)
blur_transformation = torchvision.transforms.GaussianBlur(kernel_size=(63,63), sigma=(60, 60))
for inputs, labels in tqdm(dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
inputs.requires_grad=True
# Time use of model
t0 = time.perf_counter()
wrapped_model(inputs)
t1 = time.perf_counter()
statistics["Image"].update(t1-t0)
t0 = time.perf_counter()
gradient_maps = saliency.attribute(inputs, target=labels,abs=False)
t1 = time.perf_counter()
statistics["Gradient"].update(t1-t0)
t0 = time.perf_counter()
gradcam_maps = gradcam.attribute(inputs,target=labels)
t1 = time.perf_counter()
statistics["GradCAM"].update(t1-t0)
## resize gradcam to match input size
gradcam_maps = LayerAttribution.interpolate(gradcam_maps, inputs.shape[2:4])
inputs.requires_grad=False
# OCCLUSION
baselines = inputs.clone().detach()
for j in range(baselines.shape[0]):
baselines[j,]=blur_transformation(baselines[j,])*0.5
t0 = time.perf_counter()
occlusion_maps = occlusion.attribute(inputs,target=labels,sliding_window_shapes=(3,240,240),strides=(3,120,120),baselines=baselines,show_progress=False)
t1 = time.perf_counter()
statistics["Occlusion"].update(t1-t0)
# RISE
inputs = (inputs,)
n_masks = 2048
initial_mask_shape = (5,5)
t0 = time.perf_counter()
importance_maps = rise.attribute(inputs, n_masks=n_masks, initial_mask_shapes=(initial_mask_shape,), target=labels, show_progress=True)
t1 = time.perf_counter()
statistics["RISE"].update(t1-t0)
inputs = inputs[0]
for j in range(inputs.shape[0]):
if hasattr(model,"encoder_reshape"):
# activations=activations.view(*model.encoder_reshape[1:])
gradcam_maps = gradcam_maps.view(*model.encoder_reshape[1:])
pass
image, label= inputs[j,],labels[j]
importance_maps = importance_maps[None, :, :] * np.ones(3, dtype=int)[:, None, None] #torch.Size([1, 3, 640, 640])
# normalize to [-1,1]
importance_maps -= importance_maps.min()
importance_maps /= importance_maps.max()
# importance_maps *= 2
# importance_maps -= 1
maps = [gradient_maps,gradcam_maps,occlusion_maps,importance_maps]
# torch.save(maps, folder / f'{id}_sample{i}_attribution_tensors.pt')
with torch.no_grad():
image = inverse_normalization(image)
image_agg.update(image)
image = image_agg.all[-1]
for agg,value in zip(aggregators,maps):
agg.update(value[j,])
saliency_filepath = folder / f"{id}_sample{i}_attribution.png"
values, names = [agg.all[-1] for agg in aggregators], [agg.name for agg in aggregators]
plot_saliency_paper(saliency_filepath,image,values,names,class_name)
# activations_filepath = folder / f"{id}_sample{i}_activations.png"
# plot_activations(activations_filepath,image,label,activation,id)
i += 1
average_filepath = output_folder/f"{id}_average.png"
values, names = [agg.average() for agg in aggregators], [agg.name for agg in aggregators]
plot_saliency_paper(average_filepath,image_agg.average(),values,names,class_name)
for agg in aggregators:
all = np.stack([v.sum(axis=2) for v in agg.all],axis=0)
plot_activation_clusters(all,output_folder/f"{id}_cluster_{agg.name.lower()}.png",k_clustering)
plot_activation_nmf(all,output_folder/f"{id}_nmf_{agg.name.lower()}.png",k_clustering)
statistics_file = output_folder/f"{socket.gethostname()}_{id}_statistics.txt"
text=""
for k,ps in statistics.items():
mean,std = ps.mean_std()
n = len(ps.times)
coefficient_variation = (1+1/(4*n))*(std/mean)
text += f"{k}:{mean:.4f} ({std:.5f},)\n"
statistics_file.write_text(text)
# ================================================================ #
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
output_folder = config.base_output_folder/"rise"
Path(output_folder).mkdir(parents=True,exist_ok=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_names = [
# "FGRNET",
# 'UNet',
# 'UNetNoDecoder',
"vgg16patch"
]
n_samples=4#50
k_clustering = 2
for model_name in model_names:
for class_index,class_name in enumerate(config.class_names):
def filter_sample(fc):
# return True
f,c=fc
return c==class_index
dataset = FilteredDatasetFolder(config.data_dir,filter_sample,config.test_transformation)
n_class = len(dataset)
if n_class<n_samples:
print(f"Class {class_name} has {n_class} samples, less than the required {n_samples}, skipping..")
continue
else:
print(f"Class {class_name} has {n_class} samples, more than the required {n_samples}, computing..")
# print("Samples: ",image_dataset.samples)
if not n_samples is None:
classes = dataset.classes
dataset = Subset(dataset,list(range(n_samples)))
dataset.classes = classes
dataloader= torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=3,drop_last=False)
id = f'{model_name.replace("/","_")}_class{class_index}'
print(f"Generating saliency maps for {id} (class {class_name})...")
model,encoder = models.create_model(model_name,device,len(config.class_names))
model.load_state_dict(torch.load('checkpoint/'+model_name+'/best_model_state.ckpt',map_location=config.device))
model.name=model_name
pytorch_total_params = sum(p.numel() for p in model.parameters())
print(pytorch_total_params)
model.half() #fp16
opt_model = model#torch.compile(model) #, mode="max-autotune", fullgraph=True)
generate_visualizations(opt_model,encoder,dataloader, device,config.inverse_normalize_transform,id,class_name,k_clustering)