
Electronics & Computer Science
Faculty of Physical and Applied Sciences

University of Southampton

Miles Hampton-Armstrong

April 26, 2014

Resurrecting the Rabbit:
A pervasive computing device

8 years on

First Examiner: Dr. Kirk Martinez

Second Examiner: Dr. Klaus-Peter Zauner

A Project Report
Submitted For The Award Of:

Masters in Computer Science

Abstract

The Nabaztag, a Wi-Fi enabled smart rabbit, was a once popular foray into
the world of Pervasive Computing. Part toy, part personal assistant, it was
designed to be a friendly electronic companion that could convey a variety of
information to the user using lights, sound, and motion. Whilst it was a rea-
sonably successful product, technical issues plagued the cloud architecture
supporting it, until eventually its creator Violet filed for bankruptcy. This re-
port details the process of resurrecting a single Nabaztag:tag device through
a combination of replacement hardware and software. By using the emerg-
ing WebSocket protocol as a medium for publish-subscribe communication,
and by developing a RESTful API for the device itself, the Nabaztag:tag is
brought up to date as a modern, internet connected ‘thing’.

i

Acknowledgements

I would like to thank Dr. Kirk Martinez, my project supervisor, for his help
and guidance, many interesting discussions, and the loan of his Nabaztag.

I would also like to thank Tyler Ward and Philip Basford for their invaluable
electronics advice and access to their lab whilst I created Nabaztag’s new
hardware, and my second examiner, Dr. Klaus-Peter Zauner for sharing his
insights on the project.

ii

Final Report iii

Contents

Abstract . i

Acknowledgements . ii

Contents . iii

List of Figures . vi

List of Tables . vi

Nomenclature . vii

1 The Nabaztag & Pervasive Computing 1

2 Project Goals . 2

3 Background Reading . 2
3.1 Literature Review . 2
3.2 Original Use Cases . 4

4 Hardware . 5
4.1 Original Hardware Analysis . 5
4.2 Requirements of Replacement Hardware 6

4.2.1 Electrical Requirements . 6
4.2.2 Input/Output Requirements 6

4.3 Design of Replacement Hardware 7
4.3.1 Arduino Duemilanove . 7
4.3.2 BeagleBone Black . 7
4.3.3 Using the Arduino Duemilanove 8
4.3.4 Custom AVR Board . 8

4.4 Prototyping . 9
4.5 Final Circuit . 10
4.6 Assembly . 10

5 Software . 11
5.1 Original Software Analysis . 11
5.2 Requirements . 12

5.2.1 Requirement 1 . 13
5.2.2 Requirement 2 . 14
5.2.3 Requirements 3, 4 & 5 . 14
5.2.4 Requirement 6 . 15
5.2.5 Requirement 7 . 16

5.3 Design . 17
5.3.1 System Architecture . 17
5.3.2 Django Application . 18

Final Report iv

5.3.3 Nabaztag:tag Client . 19
5.3.4 RESTful API . 20

5.4 Deployment . 21
5.4.1 Django Application . 21
5.4.2 Nabaztag:tag Client . 22
5.4.3 RESTful API . 23

5.5 Testing . 23
5.5.1 Logging & Debugging . 23
5.5.2 Unit Tests . 23
5.5.3 Integration Testing . 24

6 Project Management . 24
6.1 Version Control . 24
6.2 Risk Assessment . 25

6.2.1 Risks . 25
6.2.2 Assessment . 26

6.3 Final Project Gantt Charts . 27

7 Critical Evaluation . 30
7.1 Goal One . 30
7.2 Goal Two . 30
7.3 Goal Three . 31
7.4 Time Management . 31

8 Conclusions and Future Work . 31
8.1 Conclusions . 31
8.2 Future Work . 32

Bibliography . 33

Appendices . 38

A ATMega328-P Pinout . 38

B Custom AVR Board Schematic . 39

C Custom AVR Board Prototype . 40

D Components List . 41

E Serial Communication Protocol Example 42

F Interrupt Routine Example . 43

G Assembled Nabaztag:tag . 44

H Web Application Control Page . 46

I Sample API documentation . 47

Final Report v

J Unit Test Results . 48

K Initial Gantt Charts . 49

L Design Archive Listing . 51

M Original Project Brief . 52

Final Report vi

List of Figures
1 A Nabaztag rabbit . 1
2 Initial overview of replacement hardware for Nabaztag:tag 8
3 Revised overview of replacement hardware for Nabaztag:tag 9
4 Completed custom AVR board . 10
5 A captured Nabaztag:tag XMPP message 11
6 A comparison between XML and JSON 14
7 The publish-subscribe model . 15
8 Overview of system architecture for Nabaztag:tag 17
9 Class diagram for Django model classes 18
10 Class diagram for the Nabaztag client application 19
11 Class diagram for the RESTful API 21
12 Deployment diagram for Django application 22
13 Git commit graph . 25
14 Revised Semester 1 Gantt chart . 28
15 Revised Semester 2 Gantt chart . 29
16 ATMega168/328 pinout . 38
17 Schematic for custom AVR board 39
18 Prototype of custom AVR board . 40
19 Example of Arduino serial command protocol 42
20 Example of Arduino ISR code . 43
21 Assembled Nabaztag:tag 1 . 44
22 Assembled Nabaztag:tag 2 . 45
23 Nabaztag:tag web application — Control page 46
24 Example of documentation page for Nabaztag:tag REST API 47
25 Unit test results for Nabaztag:tag client application 48
28 Directory listing for project files included in Design Archive 51

List of Tables
1 Original Nabaztag:tag use cases . 4
2 Requirements of existing & replacement components 6
3 Requirements of replacement software architecture 13
4 Code statistics . 25
5 Risk assesment calculations & mitigation techniques 27
6 Breakdown of components required for project 41

Final Report vii

Nomenclature

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
BBB BeagleBone Black
DC Direct Current
DNS-SD Domain Name System Service Discovery
DOM Document Object Model
DWR django-websocket-redis
GPS Global Positioning System
HCI Human Computer Interaction
HTTPS HTTP Secure
HTTP HyperText Transmission Protocol
I/O Input/Output
IDE Integrated Development Environment
IETF Internet Engineering Task Force
IM Instant Messaging
IoT ‘Internet of Things’
IR Infrared
ISR Interrupt Service Routine
JSON JavaScript Object Notation
LED Light Emitting Diode
MAC Media Access Control
MVC Model-View-Controller
PCB Printed Circuit Board
REST Representational State Transfer
RFC Request for Comments
RFID Radio Frequency Identification
RGB Red, Green & Blue
SMD Surface Mount Device
TTS Text-to-Speech
URL Uniform Resource Locator
USB Universal Serial Bus
VM Virtual Machine
WoT ‘Web of Things’
WSGI Web Server Gateway Interface
XHR XMLHttpRequest
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

Final Report 1

1 The Nabaztag & Pervasive Computing

Ubiquitous or Pervasive Computing is a concept first introduced by Weiser in his
seminal paper ‘The Computer for the 21st Century’ [75]. He describes a future
where computers will cease to be seen as distinct devices, and will instead become
part of the environment, fading into the background and becoming “so ubiquitous
that no one will notice their presence” [75]. He argues that this will occur as a
natural result of human psychology, stating that “whenever people learn something
sufficiently well, they cease to be aware of it” [75].

In 2005, nearly 15 years later, the Nabaztag, shown in Figure 1, was first released.
Developed by a French company, Violet [74], it was different from the concepts of
inch-scale ‘tabs’, foot-scale ‘pads’ and yard-scale ‘boards’, the three categories of
Ubiquitous Computing devices proposed by Weiser [75]. A Wi-Fi enabled smart
device designed to look like a rabbit, it could convey information to the user
through a combination of light, sound and movement. The intention was that,
as a fun and friendly companion, the technology behind the Nabaztag would be
irrelevant to its users and they would use it to complete day to day tasks, such as
checking the weather, without considering it as a computer at all.

Figure 1: A Nabaztag rabbit (from [76])

During its lifetime, the Nabaztag has been through three iterations. The original
Nabaztag was the simplest device, offering five Red, Green & Blue (RGB) Light
Emitting Diodes (LEDs), motorised ears, a speaker with a volume control, and
a Wi-Fi connection. Released a year later in 2006, the Nabaztag:tag [72] added
a microphone and a Radio Frequency Identification (RFID) reader, as well as
an improved Wi-Fi card. The final iteration, available in 2012, was renamed to
‘Karotz’ [73], and added a webcam, and the ability to run from battery or Universal
Serial Bus (USB) power.

All versions of the Nabaztag relied on communication with servers operated by
Violet, which stored the configuration information for each device, providing the
only way for a Nabaztag owner to alter the behaviour of their device. In December
2006, when large numbers of purchased Nabaztag devices were activated simulta-
neously, Violet’s infrastructure was unable to cope with the demand [14], and there

Final Report 2

were service disruptions for both new and existing Nabaztag owners.

In October 2009, after a long period of technical troubles, Violet declared bankruptcy
and was purchased by a Dutch software house, Mindscape [23]. In July 2011, Mind-
scape ended support for the Nabaztag [1], and renamed the product to ‘Karotz’,
releasing the previously closed-source code to the public [77]. Efforts to understand
the Nabaztag code have been hindered by poor documentation, much of which is
in French.

Several open source projects have attempted to create new cloud architectures
for the Nabaztag [54, 56], but they suffer from the requirement that they must
interface with the original firmware running on the microcontroller at the heart
of the device. Whilst compatibility with the client software on the Nabaztag is
necessary to allow existing Nabaztag owners to return functionality to their devices
without any complex modifications, it limits the potential to experiment with new
and improved technologies which could be used to develop new use cases for the
Nabaztag.

2 Project Goals

1. Examine the existing hardware of a Nabaztag:tag, to determine how it could
be replaced with an open hardware platform, whilst maintaining as much
original functionality as possible.

2. Develop a software infrastructure to restore core features of the device, such
as control from a web application.

3. Implement a novel feature for the Nabaztag:tag that was not previously
possible due to software constraints.

3 Background Reading

3.1 Literature Review

It is evident that the history of the Nabaztag was not particularly easy to follow.
Many of the original websites pertaining to the product no longer exist and as
a result, much of the information was sourced from third party news sites and
internet archive services. Only a handful of papers have been written on the
Nabaztag, and these discuss the device from a Human Computer Interaction (HCI)
perspective.

In ‘Can Your Pet Rabbit Read Your Email?’ [42], Huang, Bardzell, and Terrell
report on their experiences gained from a years worth of use of the Nabaztag:tag.
They conclude that “Nabaztag seems to have too many functions for its own good”
[42], suggesting that there is a problematic conflict between its intended use as an
“ambient information display” and the strong “pet metaphor” conveyed by the

Final Report 3

design and marketing of the device [42]. They found that the undefined user ex-
perience did eventually settle, but leaned heavily towards use of the Nabaztag:tag
as an information display, a task which they felt it performed intrusively, suf-
fering from a lack of contextual awareness and often interrupting the user with
unexpected auditory alerts [42].

In ‘Ambient Conversations Using a Physical Avatar’ [52], Lund, Coulton, and Ed-
wards propose a mobile phone application allowing direct interaction with a Nabaz-
tag:tag device through Violet’s original Application Programming Interface (API).
An initial review of their application was undertaken by a family, in which one
Nabaztag:tag device was left in the family home, and one in the office of the Fa-
ther. The study showed that the children in the family preferred using the the
Text-to-Speech (TTS) functionality, where they could send a message to a Nabaz-
tag:tag and it would read it out, over typical text based Instant Messaging (IM)
applications to contact the Father. From this, they suggest that “The Nabaztag
and similar ambient devices present a new method of disseminating information in
an integrated, ubiquitous manner” [52], and discuss the sense of community around
the device, suggesting that this kind of technology may enable “more accessible
and dynamic social interactions” [52]. They conclude that ‘widgets’ similar to
their application will, in the future, provide an important way of interacting with
ubiquitous devices [52].

Today, looking at some emerging ubiquitous devices such as the LIFX Smart Bulb
[15] and the Nest Thermostat [26], we can see that, although they differ from the
Nabaztag due to their lack of personification or emotional connection to the user,
similar areas of importance can be identified. Nest is a replacement thermostat
for the home, fulfilling the need for ‘contextual awareness’ recognised by Huang,
Bardzell, and Terrell [42] through its ability to monitor a user’s temperature ad-
justments and create a schedule by learning their habits, and by its ability to
determine if a home is empty based on movement, and reduce the temperature ac-
cordingly. The LIFX Smart Bulb is a device that really deserves the ‘ubiquitous’
moniker, there are few things more commonplace than lightbulbs. It demonstrates
the importance of ‘widgets’, identified by Lund, Coulton, and Edwards [52], by
providing a fun and engaging smartphone application enabling the user to choose
from 16 million possible light colours, enable a ‘sunrise’ alarm clock feature, or set
the LIFX bulbs to react to music.

In order to introduce some new terminology to this discussion, it is useful to con-
sider the progress made in the area of Ubiquitous Computing since Weiser’s initial
paper. When he proposed the concept the Internet was in its infancy and although
he mentions the need for “a network that ties them [the ubiquitous devices] all to-
gether” [75], there is no mention of that network being the Internet. Instead he
speaks of networks that are “capable of supporting hundreds of devices in a single
room” [75].

Twenty years later, the concept of Ubiquitous Computing in the age of the Internet
has become known as the ‘Internet of Things’ (IoT), a term coined by Kevin
Ashton. Explaining what he meant by the term, Ashton, whose main work at

Final Report 4

the time was with RFID technology, offered “Ideas and information are important,
but things matter much more. [...] If we had computers that knew everything
there was to know about things — using data they gathered without any help
from us — we would be able to track and count everything, and greatly reduce
waste, loss and cost.” [11]. Many other definitions have been given, with Butgereit,
Coetzee, and Smith offering “The phenomenon of an increasing number of physical
objects (things) having the ability to connect to the Internet” [17], and Tan and
Wang suggesting that “things have identities and virtual personalities operating
in smart spaces using intelligent interfaces to connect and communicate within
social, environment, and user contexts” [66].

Under these definitions, the three ubiquitous devices considered previously —
Nabaztag:tag, LIFX and Nest — could also been seen as IoT devices, as every-
day objects that have been connected to the internet in order to offer ‘smart’
functionality and contextual awareness.

3.2 Original Use Cases

In researching the Nabaztag:tag, it is useful to look at some of the original use
cases for the device, shown in Table 1. These provide a better understanding of
the required functionality of the device than hardware specifications alone.

No. Use Case Details
1 Email & social

media notifications
Different combinations of LED colours and ear
movements could be performed when a
monitored email account or social network was
updated.

2 Weather
information

By configuring the Nabaztag:tag with location
information, it was possible for it to deliver
weather updates at a glance using different
combinations of LED colours.

3 RFID Nano:ztags &
Zstamps

These were accessories for the Nabaztag:tag,
Nano:ztags were mini Nabaztag rabbits, and
Zstamps were stickers, both containing RFID
chips. The user could configure actions to be
performed when a particular RFID tag was
registered by the device.

4 TTS functionality Violet hosted a TTS service, allowing
Nabaztag:tag devices to download and play MP3
files of TTS audio.

5 Pairing between
Nabaztag:tags

Actions performed on one Nabaztag:tag, such as
manually moving the ears, could be mirrored on
a paired Nabaztag:tag, allowing simple
communication between Nabaztag:tag owners.

Table 1: Original Nabaztag:tag use cases

Final Report 5

4 Hardware

The first stage of the project was to remove the original hardware from the Nabaz-
tag:tag, determine its characteristics, and design a replacement hardware system
that would restore as much of the original functionality as possible.

4.1 Original Hardware Analysis

The Nabaztag:tag was the most popular iteration of the Nabaztag, and as such
there are several detailed hardware investigations available online [69, 53]. Un-
fortunately, these mostly focus on the components making up the main Printed
Circuit Board (PCB). A third investigation [55] was more useful, focusing mainly
on the Input/Output (I/O) hardware. With the exception of the RGB LEDs, the
I/O hardware is attached to the main PCB via leads terminating in female 2.54mm
headers, so it is easy to remove the PCB whilst leaving other components intact.
The following information is a combination of the author’s own investigations, and
information from [55].

Ears

• Each ear is driven independently, through a belt and gearbox system,
using a Direct Current (DC) motor.

• An ear’s position is determined using an Infrared (IR) encoder. A
toothed cog is attached to the ear shaft, and the teeth pass between
an IR LED and a phototransistor, alternately blocking and unblocking
the IR beam as the ear turns.

• The cogs in the Nabaztag:tag ears have a tooth missing to enable the
absolute position of the ears to be determined.

LEDs

• The 5 RGB LEDs are Surface Mount Device (SMD) components, sol-
dered directly to the main PCB. Because of this, the LEDs will need
to be replaced when replacing the main PCB.

• Black plastic cones act as light guides for the LEDs, so the light forms
circles on the case of the Nabaztag.

Audio

• The volume is controlled by a user-adjustable potentiometer.

• There is a simple rear facing speaker.

• There is an 3.5mm audio output jack on the rear of the Nabaztag:tag.

• There is a front-facing microphone.

Final Report 6

Head Button

• There is a momentary push switch on top of the Nabaztag:tag, between
the ears.

RFID Reader

• The RFID antenna and supporting circuitry is mounted on a separate
PCB, raised so it sits just beneath the front surface of the plastic shell
of the Nabaztag:tag.

4.2 Requirements of Replacement Hardware

In order to determine a suitable replacement electrical architecture, the require-
ments of the existing I/O components were considered. It was decided to leave the
RFID reader as an extension task to be performed if time permitted, and to limit
the number of RGB LEDs to reduce the current requirements.

4.2.1 Electrical Requirements

After determining the hardware in use within the Nabaztag:tag, the components
requiring power were monitored whilst in operation to determine their voltage and
current requirements. The measurements taken can be seen in Table 2. Also in
the table are the characteristics of the RGB LEDs [45] chosen to replace the SMD
LEDs soldered to the main PCB.

Component Quantity Voltage (V) Current (mA)
Ear Motor 2 3.2 15
IR LED 2 1.2 15
RGB LED 2 2.5(R), 4(G, B) 30 (R, G, B)

Table 2: Requirements of existing & replacement components

Although the DC motors have a low current draw, they should not be driven
directly by a microcontroller. A motor driver circuit should be used to protect the
controlling hardware from large current draws and from voltage spikes generated
by the user of the Nabaztag:tag moving the ears manually.

4.2.2 Input/Output Requirements

A total of ten digital outputs, three interrupt inputs, and one analog input are
required. The breakdown is given below:

Ears

• One digital output per ear to control starting and stopping of the motor.

Final Report 7

• One digital output per ear to control IR LED.

• One interrupt input per ear to receive signals from the phototransistor
as the ear turns.

LEDs

• Three digital outputs per LED to control RGB channels.

Head Button

• One interrupt input to monitor button presses.

Volume Control

• One analog input to read the value of the potentiometer.

4.3 Design of Replacement Hardware

4.3.1 Arduino Duemilanove

“Arduino is an open-source electronics prototyping platform based on flexible, easy-
to-use hardware and software” [7]. There are a variety of different Arduino boards
based on different AVR microcontrollers, each providing easy access to analog and
digital I/O, as well as advanced features such as external interrupts. There is an
Integrated Development Environment (IDE) provided [8], and the many tutorials
and libraries make it simple to quickly prototype circuits and logic to control a
wide variety of components.

The Arduino Duemilanove [5] runs at 5V, and features an ATMega328-P micro-
controller [9], running at 16MHz . It provides fourteen digital I/O pins and six
analog inputs. Two of the digital pins can be used to receive external interrupts,
and a further two pins can be used for a 5V serial connection. Additionally, all
pins can receive pin change interrupts, a less versatile form of interrupt which is
sufficient for a button press event.

4.3.2 BeagleBone Black

“BeagleBone Black is a [...] community-supported development platform for de-
velopers and hobbyists” [31]. It is capable of operating from a 5V power supply,
and can run Linux based operating systems from its onboard flash storage. Access
to the Linux kernel provides networking functionality and USB support, so the
outdated 802.11b/g Wi-Fi capabilities of the original PCB can be replaced using
an 802.11n USB adapter. It also provides access to the Python language, which is
well suited for communicating with the Arduino over a serial connection.

Final Report 8

4.3.3 Using the Arduino Duemilanove

An initial architecture is proposed in Figure 2, using the Arduino Duemilanove to
control the Nabaztag:tag hardware, and the BeagleBone Black (BBB) to enable
connection to the internet and audio capabilities. Whilst attaching components
directly to the Arduino is useful at the prototyping stage, the size constraints of the
Nabaztag:tag make it infeasible to fit both the BBB and the full size Duemilanove
board inside. A further complication arises from the Duemilanove board’s use
of 5V serial logic. As the BBB can only accept 3.3V serial signals [32], a logic
level shifter would be required to transform the signal. Lastly, as controlling the
Nabaztag:tag’s hardware requires additional components, including male headers
for the female I/O headers, a third board would be needed to hold these.

Wi-Fi Audio
In

Audio
Out

BeagleBone Black 3.3V
Serial

Serial
Logic
Level
Shifter

5.0V
Serial

Head
Button

Volume
Control

2 RGB
LEDs

Arduino Duemilanove
w/ ATMega328-P

2 DC
Motors

2 IR
LEDs

2 Photo
Diodes

Figure 2: Initial high level overview of the replacement hardware for the Nabaztag:tag

4.3.4 Custom AVR Board

To overcome the issues with using the full size Duemilanove board, it was decided
to create a custom AVR board using the ATMega328-P microcontroller from the
Duemilanove. The ATMega328-P can operate at lower voltages, and at 3.3V can
sustain an 8MHz operating frequency using its internal oscillator, which will be
sufficient for this project. This also means that the serial logic level will be 3.3V, so
no logic level shifter is required. The revised architecture can be seen in Figure 3.

The microcontroller is removable, so can be programmed whilst on the Duemi-
lanove board, using the USB serial connection, before being removed and placed
in the custom circuit for testing. Designing a custom board will enable all addi-
tional required components to be placed in a way that minimises the size of the
board, meaning both the board and the BBB will fit in the Nabaztag:tag.

Final Report 9

Wi-Fi Audio
In

Audio
Out

BeagleBone Black 3.3V Serial

Head
Button

Volume
Control

2 RGB
LEDs

Custom AVR Board
w/ ATMega328-P

2 DC
Motors

2 IR
LEDs

2 Photo
Diodes

Figure 3: Revised high level overview of the replacement hardware for the Nabaztag:tag

From this outline design, a schematic was created for the custom AVR board using
Cadsoft’s Eagle PCB Software [18]. The original Arduino Duemilanove schematic
[6] and the ATMega328-P pinout (Figure 16 in Appendix A) were used for guid-
ance. The schematic (Figure 17 in Appendix B) integrates the additional circuitry
required to control the ears, LEDs, head button and volume control. A list of
parts used in the schematic is available in Table 6 in Appendix D.

4.4 Prototyping

Using the schematic as a guide, the various parts of the circuit were laid out on a
breadboard (Figure 18 in Appendix C), and tested by connecting to the relevant
female headers on the Nabaztag:tag hardware.

In order to test the prototype, code was written for the ATMega328-P in the
Arduino IDE, and flashed to the chip through the Duemilanove. Each section of the
code was first tested using the relevant hardware from the Nabaztag:tag connected
directly to the Arduino Duemilanove, and then retested with the ATMega328-P
in the prototype board, and the relevant Nabaztag:tag hardware connected to the
board.

Figure 19 in Appendix E shows a code example for serial communication with
the ATMega328-P. It uses the SerialCommand library [20] to parse commands
sent over the serial connection and call the relevant method, which then extracts
arguments and performs the action. In the example given, sending EARPOS L would
return the position of the left ear over the serial connection.

Figure 20 in Appendix F shows a code example for an Interrupt Service Routine
(ISR) to handle moving the left ear. In this example, EARMOV is called using a
serial command such as EARMOV L 10, which will move the left ear to the tenth
tooth on the encoder cog. When this command is issued, moveLeftEar is set as
the ISR for interrupt input one, and the ear is set in motion. Each time a tooth of

Final Report 10

the encoder cog breaks the IR beam, an interrupt is triggered and moveLeftEar
is called. It increments the variable storing the encoder tooth position, and stops
the ear motor when the correct tooth, in this case 10, is reached. To enable a more
logical control of ear position, the function translates a position of 0 to the actual
upright position of the ear, which is at encoder tooth 2.

4.5 Final Circuit

With prototyping showing the design was correct, the circuit was transferred to
perfboard for installation in the Nabaztag:tag. The completed board is shown in
Figure 4.

Figure 4: Completed custom AVR board. The headers are used as follows: 1) Right
ear, 2) Left ear, 3) Serial connection to BBB, 4) Bottom LED, 5) Top LED, 6) Head
button, 7) Volume control - unused, 8) DC input.

4.6 Assembly

The final task after completion of the custom AVR circuit was to connect it with
the BBB and install them in the Nabaztag:tag shell. This also required finding
a way to add audio functionality back to the Nabaztag:tag, and it was decided
the simplest way to achieve this was to attach a USB soundcard to the BBB.
This added an additional requirement of a small USB hub as the BBB has only
a single USB port, in use by the Wi-Fi adapter. Two different soundcards and
two different small USB hubs were ordered using the project budget to determine
which would best fit in the Nabaztag:tag. Once these items were obtained, the
assembly of the device was completed, as shown in Appendix G in Figure 21 and
Figure 22. Although the circuit design included a header for the volume control,
volume control functionality was not re-implemented.

Final Report 11

5 Software

With the Nabaztag:tag re-assembled, attention moved to the software side of the
project. A replacement software architecture was required to support both basic
and more advanced functionality of the device.

5.1 Original Software Analysis

Alongside the Nabaztag:tag hardware investigations used for reference earlier in
the report, several projects have attempted to understand the software architec-
ture which supported the Nabaztag ecosystem [13, 47, 48, 49, 58]. Beausset and
Soumoy captured the traffic passing between a Nabaztag:tag and Violet’s servers,
identifying the protocol used to carry the messages as the Extensible Messaging
and Presence Protocol (XMPP) [13]. XMPP provides push, request-response, and
publish-subscribe paradigms for message delivery, using Extensible Markup Lan-
guage (XML) streams [62]. The technology was originally developed for Jabber,
an open IM service, whose core protocols were later standardised as XMPP by the
Internet Engineering Task Force (IETF) [61].

1 <iq from="net.violet.platform@xmpp.nabaztag.com/sources"
2 to="0019db9ed017@xmpp.nabaztag.com/boot" id="3" type="result">
3 <query xmlns="violet:iq:sources">
4 <packet xmlns="violet:packet" format="1.0" ttl="604800">
5 fwQAAAx////+BAAFAA7/CAALAAABAP8=
6 </packet>
7 </query>
8 </iq>

Figure 5: A captured XMPP message, sent from Violet’s servers to a specific Nabaztag
device (from [13]). The <iq /> stanza within the XMPP specification is a “request-
response mechanism, similar in many ways to HTTP, that lets entities make requests of
and receive responses from each other” [62]

The XMPP client software on the Nabaztag:tag ran entirely inside a purpose-
made Virtual Machine (VM), whose bootcode was retrieved from Violet’s servers
with an initial HyperText Transmission Protocol (HTTP) request each time the
Nabaztag:tag was turned on [58]. Once the VM had booted, an authenticated
XMPP stream was established with Violet’s servers, using the Media Access Con-
trol (MAC) address of the Nabaztag:tag device as an identifier, and instructions
for the device were sent over the stream as <iq /> or <message /> stanzas [58].

It is no longer possible to access the original Violet servers and there is no informa-
tion available as to the specific reasons for the failing of the original architecture.
A close approximation to the original architecture involved using an unaltered

Final Report 12

Nabaztag:tag with an open source server, Nabaztaglives [56], but the experience
was a frustrating one. Messages sent from the server often took a long period of
time to reach the device, and were sometimes lost.

It was decided that rather than attempting to recreate the XMPP architecture,
other technologies should be explored in the hope of achieving improved perfor-
mance.

5.2 Requirements

Based on the information from Section 1 and Section 5.1, a list of requirements
for the software side of the project, shown in Table 3, was drawn up. The choices
made to meet the requirements are addressed in Sections 5.2.1 to Section 5.2.5

No. Requirement Details
1 A new

communication
protocol to replace
XMPP.

Due to the shortcomings of the previous
infrastructure, where communication was
performed over XMPP, it was decided to explore
a different technology for communication.

2 A simple, consistent
message format.

To help with development, and provide
opportunities for expansion of functionality, a
simple and human readable message format with
low overhead should be used.

3 A web interface able
to send control
messages to the
Nabaztag:tag.

For basic functionality, a simple web application
should be created to control features of the
Nabaztag:tag, e.g. control of the ears, LEDs and
TTS functionality.

4 Push
communication of
messages from
server to
Nabaztag:tag.

A major issue with Violet’s infrastructure was
the slow delivery of messages from the server to
the device, a replacement system should attempt
to solve this issue.

5 Pairings should be
possible between
Nabaztag:tag
devices.

To show more advanced functionality can be
supported using the web application, pairings
should be possible, where actions such as ear
movements or button presses performed on one
device are mirrored on any devices that are
paired with it. This feature was advertised for
the original Nabaztag:tag, but was very
temperamental.

6 The Nabaztag:tag
should be location
aware

The original Nabaztag:tag had no location
awareness, so information such as weather was
not available without the user configuring the
location of the device.

Continued on next page

Final Report 13

Table 3 — Continued from previous page
No. Requirement Details
7 An advanced

feature not seen
before on the
Nabaztag:tag
should be
implemented.

With a new open hardware and software system
in place, a new feature should be implemented
that would improve user interaction with the
Nabaztag:tag and bring it more in line with
current internet connected devices.

Table 3: Requirements of replacement software architecture

5.2.1 Requirement 1

The initial requirement is to find a suitable alternative to XMPP. We require
full-duplex communication over a long-lived channel, allowing messages to be sent
from the server to the Nabaztag:tag, and vice versa, with minimal overhead. We
look to HTTP and its various mechanisms for achieving such communication.

WebSocket is a relatively young protocol, standardised by the IETF in 2011 in
Request for Comments (RFC) 6455 [28]. It defines a bi-directional communica-
tion protocol over a single TCP connection. Whilst it was primarily designed for
sending real-time data to web browsers, WebSocket clients can be implemented
outside the browser in standalone applications.

Other methods do exist for creating long-lived connections over HTTP, such as
long-polling and XMLHttpRequest (XHR)-polling (often collectively referred to
as Comet methods), but a number of papers have discussed the performance im-
provements of the newer WebSocket protocol over such methods.

Gutwin, Lippold, and Graham compared WebSockets to Comet methods in the
context of browser-based collaborative applications, stating that “real-time inter-
action has much stricter network requirements (in terms of update rate, message
throughput, and latency) than semi-synchronous applications” [38]. They found
that round-trip latencies were between two and six times lower using WebSock-
ets than with any of the Comet methods, with WebSockets showing the highest
message per second throughput of any of the methods tested [38].

Agarwal showed that whilst XHR-polling was limited to 44kbits/s, WebSockets
were able to achieve a throughput of 66 kbits/s [3]. He found that “XHR-polling
imposes a large overhead of up to 5x” because “each interaction between a client and
server is expressed in the form of HTTP requests and responses [...] for example,
browser cookies and HTTP headers are included in each request and response” [3].
By contrast he found only “a 1.16x overhead in the case of HTML5 WebSockets”
(the baseline is the performance of a raw TCP socket) [3].

Final Report 14

A third comparison was performed by Puranik, Feiock, and Hill in the context
of a real-time monitoring system. They compared Asynchronous JavaScript and
XML (AJAX), a technology making use of XHR-polling, and WebSockets, finding
that “WebSockets can send up to 215.44% more data samples when consuming the
same amount of network bandwidth as AJAX” [57].

Given the results presented in these papers, it seems clear that the WebSocket pro-
tocol provides better performance than other long-lived HTTP connection meth-
ods, and would be a suitable replacement for XMPP in the Nabaztag:tag system.

5.2.2 Requirement 2

As highlighted in Section 5.1, the original Nabaztag:tag used XMPP, meaning
that messages were sent to and from the device in XML. Whilst XML is human-
readable, parsing is expensive, requiring use of the Document Object Model (DOM)
[51]. JavaScript Object Notation (JSON) [44] is a lightweight alternative to XML
introduced in 2001 [64]. Figure 6 shows an example message in both XML and
JSON.

1 <message>
2 <ear>L</ear>
3 <pos>10></pos>
4 </message>

1 {
2 "ear": "L",
3 "pos": 10
4 }

Figure 6: A comparison between XML (left) and JSON (right)

In a comparison betwen XML and JSON, Lin et al. found that for JSON and
XML objects representing the same data, the JSON object could be transmitted
30 − 35% faster, due to reduced redundancy in describing the data [51]. They
also showed that, as the object size increases, the time taken to de-serialise JSON
remains reasonably constant, whilst the time taken to de-serialise the equivalent
object in XML increases significantly [51].

JSON will be used as a replacement for XML in sending messages over the Web-
Socket connection between the server and the Nabaztag:tag.

5.2.3 Requirements 3, 4 & 5

A web application meeting Requirement 3 will provide an easy to use interface for
interacting with and managing Nabaztag:tag devices. The decision was made to
use the Django Web Framework [33] as the author is familiar with the framework,
having used it for a previous project. Django is written in Python, meaning the
same programming language will be used for both client and server applications,
aiding consistency in programming style.

Final Report 15

In order to improve the quality of interactions with the Nabaztag:tag, it is im-
portant that messages sent to the device through the web application are seen
to arrive instantaneously. Combined with Requirements 1 and 2, Requirement 4
identifies the need for a technology that is able to push messages in JSON format
from the server to a Nabaztag:tag connected via a WebSocket connection. Brustel
and Preuss describe push communication as being “based on the general publish-
and-subscribe model” [16], in which a Subscriber subscribes to Topics offered by
a Broker, and a Publisher publishes messages to the same topics. The diagram
used in their explanation is reproduced in Figure 7. In this example, a message
for Topic B is published to the Broker, and any Subscribers subscribed to Topic
B receive the message.

Publisher
Message

to Topic B

Broker

Queue for Topic B

Queue for Topic A Subscribes
to Topic A

Subscriber

Subscribes
to Topic B

Subscriber

Receives
message

Figure 7: The publish-subscribe model (reproduced from [16])

With the decision to use Django to create the web application, a Django plu-
gin, django-websocket-redis (DWR) [59], was found that enables publish-subscribe
behaviour over WebSocket connections. It uses Redis [63], a key-value store, to
provide the message queues. A client connects to its ownWebSocket using a unique
identifier, and any messages placed by Django into a Redis queue with the same
identifier are sent across the WebSocket to the client.

Requirement 5 can also be fulfilled as a consequence of using Django for the server
application. Its use of the Model-View-Controller (MVC) paradigm means that a
class can be created to model a Nabaztag:tag, and separate instances of the class
can be stored as pairs in a relation in Django’s database.

5.2.4 Requirement 6

A general shortcoming of the Nabaztag:tag, identified by Huang, Bardzell, and
Terrell [42], was a lack of contextual awareness. An example of this was the de-
vice’s weather information feature. As stated in Table 1 in Section 3.2, although
the Nabaztag:tag did provide weather information, the user had to manually con-
figure their location for this feature to work. Abowd et al. define context as “any
information that can be used to characterise the situation of [...] a computational

Final Report 16

object” [2], with the contextual information used to “make its [the object’s] be-
haviour more relevant to the situation in which it is being used” [2].

With the advent of smartphones offering both Wi-Fi and Global Positioning Sys-
tem (GPS) technologies, companies such as Apple and Google have been able to
collect large amounts of anonymised Wi-Fi base station addresses with associ-
ated GPS co-ordinates. Google offers access to their version of this data using
their GeoLocation API [35]. Using the Wi-Fi capabilities of the new Nabaztag:tag
hardware, we can automatically obtain a reasonably accurate estimation of the
Nabaztag:tag’s current location, removing a user configuration step and improv-
ing the contextual awareness of the device.

5.2.5 Requirement 7

The final requirement is open-ended, we must add a feature to the Nabaztag:tag
that was previously not possible, but that adds some utility or function. The major
shortcoming of the Nabaztag:tag was its complete reliance on Violet’s supporting
infrastructure. The eventual failure of this infrastructure resulted in thousands of
owners with useless Nabztag:tag devices, and drove the more technically minded
to the projects mentioned in Section 1 in attempts to bring their devices back to
life.

A truly useful feature, then, would be to enable direct communication with the
Nabaztag:tag, removing the central point of failure, and allowing infinitely more
customisable interactions with the device. The concept of the IoT was introduced
in Section 3.1, and to meet Requirement 7 we turn to a specific embodiment of this
idea termed the ‘Web of Things’ (WoT), which is simply the IoT concept applied
specifically to the Web and Web technologies. Gupta, Goldman, and Udupi define
the WoT as “everyday objects [...] seamlessly integrated into the World Wide Web
(WWW) using its well-known standards and blueprints, e.g. URIs, HTTP and
REST.” [37].

Representational State Transfer (REST) is an architectural style for the Web in-
troduced by Roy Fielding in his Doctoral Thesis [29]. Guinard et al. offered that
“the essence of REST is to focus on creating loosely coupled services on the Web,
so that they can be easily reused.” [36]. Following the principles of REST, the
aim is to allow the resources of the Nabaztag:tag to be easily accessed and used
by its owners.

To fulfil this requirement, the Nabaztag:tag’s resources, e.g. ears, LEDs, location
awareness, and TTS will be made available via an API residing on the device.
It will make use of two of HTTP’s four main methods to interact with resources
— GET and PUT. This will enable easy use of the resources, and enable third
party applications to be created with full access to the Nabaztag:tag’s features.
Although there are Django plugins available for creating RESTful APIs, Django
is unnecessarily heavyweight for a simple API such as this, especially as it will be
running on the BBB. Flask [60] is a lightweight web framework, enabling quick
creation of RESTful APIs, and the Flask-RESTful plugin [68] adds support for

Final Report 17

class-based creation of APIs. Again the framework is written in Python, which
benefits development and code consistency.

5.3 Design

With the requirements of the system outlined, and major choices of frameworks
and libraries made, we move on to the design of the system.

5.3.1 System Architecture

Nabztag

BeagleBone Black

Serial

Custom AVR
Board w/

ATMega328-P

WebSocket

POST
requests

Server

Django Server

HTTP
Requests

Web Application

3rd Party
Application

REST
API

Figure 8: High level overview of the proposed system architecture for the Nabaztag:tag

Using the choices identified in Sections 5.2.1 to 5.2.5 a high level architecture is
proposed for the system in Figure 8. In this design, a bi-directional WebSocket
connection is established between a client running on the BBB in the Nabaztag:tag,
and a Django server instance running the DWR plugin. The user of the Nabaz-
tag:tag can interact with the device through a web application, their actions in
the application are sent to the Django server as HTTP requests, then transformed
to corresponding JSON messages for transmission over the WebSocket. The BBB
converts the JSON message to a serial string suitable for the SerialCommand li-
brary running on the ATMega328-P AVR.

For events occurring on the Nabaztag:tag, such as the user moving the ears or
pressing the head button, a JSON message is created on the AVR, sent to the
BBB via the serial connection, and then forwarded on to the Django server us-
ing a HTTP POST request for processing. In this case the Django application
will determine if any Nabaztag:tags are paired with the sender of the message,
and update them accordingly. Although ideally the design would fully utilise the
bi-directional nature of the WebSocket in order to send updates to the server,
the DWR library chosen doesn’t currently support this behaviour, only allowing

Final Report 18

messages placed into the WebSocket by the client to be stored in Redis, and not
allowing them to trigger actions in the Django event loop [59]. This library is
under active development, so this feature may be available in the future.

Finally, a RESTful API also runs on the BBB. HTTP requests to the API end-
points are transformed to serial strings suitable for the SerialCommand library
running on the ATMega328-P AVR.

5.3.2 Django Application

The Django application is relatively simple, the database stores information for
each registered Nabaztag:tag device, and its structure is created from the model
classes shown in Figure 9 using Django’s syncdb tool. Each Nabaztag:tag device
is represented within the application by a Nabaztag class instance, and a pairing
between registered Nabaztag:tags by a PairedNabaztags class instance.

Django Models

Nabaztag

id : CharField
name : CharField
left_ear_pos : IntegerField
right_ear_pos : IntegerField
top_led_color : RGBColorField
bottom_led_color : RGBColorField
latitude : DecimalField
longitude : DecimalField

get_pairing(self : dict)
move_ear(self, ear, position : void)
change_led(self, led, color : void)
speak_message(self, text : void)

PairedNabaztags

nabaztag : Nabaztag
paired_nabaztag : Nabaztag

Figure 9: Class diagram for Django model classes, showing the properties and methods
of a Nabaztag object, and the pairing relationship between two Nabaztags.

It was decided to continue to use the MAC address of a Nabaztag:tag as its iden-
tifier when registering it with the Django application.

Webpages in the application are handled by defined view classes with associ-
ated templates that are instantiated when a particular Uniform Resource Loca-
tor (URL) pattern is matched. Visiting the root of the site displays an index page
where a list of registered Nabaztag:tags is displayed.

Selecting a Nabaztag:tag takes the user to a page, shown in Appendix H in Fig-
ure 23, where they can view information about the device and control it. There
are a variety of forms controlling different functions of the device. When a form
is submitted, the appropriate notification method in the Nabaztag class instance
is called, e.g. move_ear, change_led or speak_message, which converts the com-
mand to a JSON message and places it in the Redis queue identified by the ID of

Final Report 19

the Nabaztag:tag. If a Nabaztag:tag client is connected via a WebSocket with a
matching ID, it will receive the message.

In order to handle updates via POST requests from Nabaztag:tag devices, an API
was created using the Django REST Framework plugin [19]. This plugin provides
class-based API creation, where the developer creates methods, such as post and
get that they wish to provide functionality for. Three POST methods are provided
by the API:

• /update/<id>/ear - If an ear was moved on the device.

• /update/<id>/button - If the head button was pressed on the device

• /update/<id>/location - To allow the device to update its current location.

5.3.3 Nabaztag:tag Client

Creating the web application was fairly simple as Django handles much of the
heavy lifting, however there was no similar framework available to help develop
the client application, the classes of which are shown in Figure 10.

Nabaztag Client

WSClient
name : String
update_queue : Queue.Queue
serial_queue : Queue.Queue

__init__(self, url, serial_queue, update_queue, name)
opened(self : void)
received(self, message : void)
closed(self, code, reason=None : void)
initialise(self : void)
update_server_location(self : void)
json_to_serial(json_message : String)

UpdateThread

post_url : String
update_queue : Queue.Queue

__init__(self, url, update_queue, name)
generate_url(update, baseurl : String)
log_update_response(self, update, response, url : void)

SerialWriter
port : pyserial.Serial
serial_queue : Queue.Queue

__init__(self, port, serial_queue, name)
run(self : void)

SerialReader
port : pyserial.Serial
update_queue : Queue.Queue

__init__(self, port, update_queue, name)
run(self : void)

Figure 10: Class diagram for the Nabaztag client application. Shows the use of callback
methods in the WSClient class, and shows use of threads and queues in other parts of
the application

Two key communication protocols had to be incorporated into the application. Se-
rial communication with the BBB is provided by the pyserial library [50], whilst
WebSocket communication with the Django application is provided by the ws4py
library [41]. This was found to be the simplest WebSocket library to work with,

Final Report 20

allowing inheritance from a threaded WebSocketClient class and simply requir-
ing the developer to override the necessary callback methods such as opened(),
received_message() and closed(). These methods are then performed upon
successful opening of the WebSocket connection, upon receipt of each message,
and upon an expected (or unexpected) termination of the connection respectively.
Other WebSocket libraries available either had more dependencies or required that
callbacks be registered when initialising the class, making for more complex code.

The methods provided by pyserial for reading from and writing to the serial
port are blocking, so it was decided to perform serial reads and writes in separate
threads, both distinct from the WebSocket thread. Using Python’s core Queue
library, two queues were created to achieve communication between the separate
threads. One queue handles messages arriving from the server over the WebSocket
connection, and the other handles messages arriving from the AVR over the serial
connection. The library provides the necessary locking to ensure the queues are
thread safe.

A WSClient instance receives JSON messages, e.g. {"ear": "L", "pos": 10},
from the server and converts them to serial messages, e.g. EARMOV L 10, before
placing them in the serial_queue queue. This is monitored by a SerialWriter
instance, and messages are taken from the queue and written to the serial port, to
be received by the AVR.

A SerialReader instance receives JSON messages from the AVR and places them
in the update_queue queue. This is monitored by an UpdateThread instance,
which takes messages from the queue and sends POST requests containing the
message to the correct API method in the Django application.

5.3.4 RESTful API

The use of Flask with the Flask-Restful plug-in allowed the API to be created
quickly using knowledge learnt from developing the two previous parts of the sys-
tem. Here the pyserial library is still required to send messages to the AVR, but
a WebSocket connection is no longer required, so ws4py is not used.

Similar to the approach used in the Django REST Framework, an API resource
is created by inheriting from a Resource class and overriding the methods which
should be made available as API endpoints. Figure 11 shows the five endpoints
provided by the Nabaztag:tag API and the HTTP methods available for each. The
parameters of the methods, e.g. ear in NabaztagEar’s put(self, ear) method
are defined in the URL for the resource, e.g /nabaztag/api/ear/<string:ear>,
so a PUT request made to /nabaztag/api/ear/left would call the put method
of the NabaztagEar class, with ear="left". All requests to and responses from
the API are in JSON format.

By specifying an instance of the RequestParser class for each method to parse the
body of a received request, Flask-Restful can handle many common errors auto-
matically. It can detect if parameters are of the wrong type or are not present, and

Final Report 21

return an error to the user of the API. Other checks were manually implemented,
such as ensuring ear position values and colour values were within allowed ranges.

REST API Classes

NabaztagEar

put(self, ear : dict)

NabaztagLED

put(self, led : dict)

NabaztagLocation

get(self : dict)

NabaztagWeather

get(self : dict)

NabaztagSpeech

put(self : dict)

Weather
__init__(self, lat_lon, units=None)
get_weather(self : dict)

WeatherError

GeoLocate
__init__(self, interface)
get_location(self : dict)

LocationError

Figure 11: Class diagram for the Nabaztag:tag RESTful API

The Weather and GeoLocate classes interact with the OpenWeatherMap API [24]
and Google’s GeoLocate API [35] respectively, parsing the results and making
them available through the Nabaztag:tag’s API. In case either third party service
returns an error, custom Python errors WeatherError or LocationError are raised
so that the API can act accordingly.

During development of the API, a markdown-based language called API Blueprint
[4] was used to describe its structure. This enabled full documentation, in the form
of a static webpage, to be created easily using a tool called Aglio [67]. This doc-
umentation was made available directly from the Nabaztag:tag device, from the
root of the API, so Nabaztag:tag users can access the documentation from a URL
following a similar pattern to the API itself. An example section of this documen-
tation for the NabaztagEar API method is shown in Appendix I in Figure 24.

5.4 Deployment

Deployment of the system is treated separately for each application, as each re-
quires a different configuration.

5.4.1 Django Application

Following the deployment instructions given in the documentation for the DWR
plugin [59], the most scalable deployment solution was chosen, with the structure
shown in Figure 12. An open-source HTTP server, Nginx [21], is used as a front-
end proxy server. Nginx version 1.4 introduced support for proxying WebSocket

Final Report 22

connections. Web Server Gateway Interface (WSGI) is a specification for interfac-
ing between Python applications and web servers, and uWSGI [70] is a popular
implementation of this, encapsulating applications like Django and allowing HTTP
servers to talk to them using WSGI.

Browser
HTTP

Nabaztag

WebSocket

HTTP

Nginx

WSGI

WSGI

HTTP

uWSGI
running
DWR

uWSGI
running
Django

Static
Files

Redis

Figure 12: Deployment diagram for Django application (adapted from [59])

The configuration works as follows:

• Static files needed for the Django application, such as stylesheet and image
files, are served directly by Nginx.

• A URL path of /ws/ is defined in the Nginx configuration, and requests to
URLs matching this are proxied by Nginx to a uWSGI instance running the
DWR plugin.

• All other requests, which are for pages generated by Django, are proxied by
Nginx to a uWSGI instance running the Django application.

• The Django application communicates with the DWR plugin solely through
Redis message queues.

uWSGI provides a tool called emperor, which can monitor a directory for con-
figuration files, and start a separate uWSGI instance for each one. The emperor
tool is configured to run on startup using Ubuntu’s upstart utility, and con-
figuration files for the Django and DWR uWSGI instances are placed in the
directory it monitors, ensuring they are run on startup. All configuration files
and a readme for this deployment are available in the submitted archive, in the
nabaztagserver/deployment directory.

5.4.2 Nabaztag:tag Client

The client application is also deployed using the upstart utility, which registers
it as a system service, allowing it to be started and stopped by the user. It is

Final Report 23

automatically started on boot, reading its configuration information from a file.

TTS is provided by Festival [65], which provides reasonable speech quality, without
the slowdown experienced from fetching a TTS audio file from a third party API.

5.4.3 RESTful API

The API is deployed in a similar way to the Django application, although the
configuration is considerably less complicated. Tornado [25], another WSGI con-
tainer application, serves the API to localhost only. Nginx then serves the API
documentation as a static webpage at the root of the API, and proxies all other
requests to the localhost port for processing as API requests.

To enable easy access to the API, the Ubuntu avahi-daemon [46] is installed.
This provides zero configuration networking services, enabling the Nabaztag:tag
to broadcast a Domain Name System Service Discovery (DNS-SD) address of
nabaztag.local to its subnet. http://nabaztag.local serves the API docu-
mentation, and the API itself is at http://nabaztag.local/nabaztag/api.

5.5 Testing

During the project, several techniques were employed to test functionality of code
and help assist debugging.

5.5.1 Logging & Debugging

For the Django application, the django-debug-toolbar plugin [43] was used, which
provides a browser-based utility displaying useful debugging information when vis-
iting the webpages served by the application. Additionally, when the DEBUG=True
flag is set in the Django application settings, verbose debugging messages are dis-
played instead of the usual HTTP error pages.

For the Nabaztag:tag client and REST API applications, the Python core logging
library was used to record actions taken, messages received, and requests received
by the applications. These logfiles, stored in /var/log/nabaztag/, could be mon-
itored interactively using the Unix tail -f command, and this was invaluable in
determining how messages were sent and received by different parts of the system.

5.5.2 Unit Tests

The Python core unittest library was used to perform unit testing on the Nabaz-
tag:tag client application. This is a testing method where small sections of the
code, responsible for a single function, are tested for success, failure and edge cases
using automated test scripts. Also used were the httpretty library [27], which

Final Report 24

allows mocking of HTTP responses for testing, and mock [30], which allows mock-
ing of methods and classes for testing. Mocking ensures that the tests are only
dependent on the code they are testing, and not on API responses or the behaviour
of other methods or classes.

15 tests were created in total, with 89% of the code of the client application covered
by the tests, as measured by the coverage tool [12]. Results of these tests are
shown in Appendix J in Figure 25. Some issues were encountered when testing the
serial classes SerialReader and SerialWriter, due to use of threads and infinite
while-loops, so results for these classes are not included.

5.5.3 Integration Testing

To ensure that all parts of the system functioned correctly once communicating
with one another, various integration level tests were carried out. Two main tech-
niques are detailed.

In order to test and be able to demonstrate the pairing functionality, a Raspberry
Pi [71] with attached Berryclip [39] was used to represent another Nabaztag:tag
in the system. The client software was modified slightly in order to control the
LEDs of the Berryclip, using them to represent ears, and to treat the button as if
it were the head button of a Nabaztag:tag. The two devices can then be registered
as Nabaztags and paired in the Django application, and it can be demonstrated
both visually and through monitoring of logs that actions performed on one device
are relayed to the other.

Another useful testing utility was the Unix cURL tool [40]. This enables HTTP
requests to be made from the command-line, useful when sending and receiving
JSON requests and responses to and from the RESTful API. Correct, incorrect
and malformed requests can be made, and the responses examined.

6 Project Management

Project management is essential for any medium or longer length projects with
multiple deadlines and tasks. To ensure that the project remained on track and
that any incidents were dealt with, various project management techniques and
exercises were undertaken.

6.1 Version Control

A private Git repository, hosted on GitHub, was used to hold and track changes
to all project files. This allowed easy access to the project from any computer, as
well as providing a backup of the project, and a detailed version history so that
any erroneous modifications or deletions could be reverted.

Final Report 25

During the course of the project, there were 255 commits to the repository. Fig-
ure 13 shows the commits for the software implementation stage of the project
which occurred during the months of February and March. There were 173 com-
mits in this period.

03 Feb 10 Feb 17 Feb 24 Feb 03 Mar 10 Mar 17 Mar 24 Mar 31 Mar

2
4
6
8

10
12
14
16
18

Date

C
om

m
it
C
ou

nt

Figure 13: A graph showing frequency of commits during the implementation stage

The code breakdown for the project, calculated using cloc [22], is given in Table 4.

Language Files Comments Lines of Code
Python 20 370 1034
HTML 3 6 317
Arduino Sketch 1 75 183

Table 4: Count of line of code in the project.

6.2 Risk Assessment

In order to identify and prepare for issues arising during the course of the project,
a risk assessment was carried out. Major risks were first identified, then given an
impact score and a rough likelihood of occurrence. The findings of the assessment
and the steps taken to mitigate the risks are found in Table 5.

6.2.1 Risks

• My main development machine will be my personal iMac, which could suffer
data corruption or hardware failure.

• I have only basic knowledge of electronics, so may find the hardware aspects
of the project difficult.

• Software development will be largely in Python, however I have only a little
experience developing in Python.

Final Report 26

• Whilst disassembling and testing the hardware of the Nabaztag:tag, I may
inadvertently damage it.

• Given the length of the project, it is likely that I will be ill at least once
during the project, which may affect my project progress.

• During the course of the project, I will also be expected to complete course-
work for other modules, as well as sitting my January exams.

6.2.2 Assessment

Event Loss
(1-5)

Probability
(1-10)

Risk
(L*P)

Steps to Mitigate Risk

Illness and
Other
Deadlines

5 8 40 Plan my project time
carefully, ensuring
awareness of other
commitments such as
examinations and
coursework deadlines. If ill,
attempt to complete work
at home.

Difficulty
with
electronics

3 9 27 I have access to a lab, led
by Dr. Martinez, with two
postgraduate students who
will be able to assist me in
identifying and interfacing
with components of the
Nabaztag.

Develop-
ment in a
new
language

4 5 20 Within ECS, there are
students who have
experience in Python from
whom I will be able to seek
advice.

Damage to
Nabaztag
hardware

3 4 12 Dr. Martinez has a second
Nabaztag device from which
spare parts could be sourced
if necessary.

Continued on next page

Final Report 27

Table 5 — Continued from previous page
Event Loss

(1-5)
Probability
(1-10)

Risk
(L*P)

Steps to Mitigate Risk

Computer
Failure or
Data
Corruption

5 2 8 If my main personal
development machine fails, I
can use any ECS lab
machine. All source code for
the project will be version
controlled in Git, and
hosted on GitHub. Other
project work will be stored
in Dropbox, so accessible on
any machine. Additionally, I
have an external hard drive
attached to my development
machine performing daily
backups.

Table 5: Risk assesment calculations & mitigation techniques

6.3 Final Project Gantt Charts

In October, Gantt charts covering the entire duration of the project, shown in
Appendix K in Figure 26 and Figure 27, were created to monitor progress and
avoid clashes with other deadlines. The schedule set out in the charts was followed
largely successfully throughout the project, with several exceptions. Due to the
pressure of other deadlines at the start of December, the software design was not
carried out, and was instead completed at the start of Semester 2. Prototyping of
hardware was performed earlier than expected, but took longer than anticipated,
and again the deadline pressure in the first week of December meant that there
was a gap of several weeks where no work was performed for the project.

Due to deliberation around whether to re-implement the audio output functionality
of the device, the Onecall order for a USB soundcard and USB hub was not placed
until the 05/02/14. An error was made when ordering which resulted in a lengthy
delay, and the goods were not received until the 28/02/14. This meant several
days had to be found at the start of March to find a way to fit these devices into
the Nabaztag:tag and finish the assembly of the hardware. This was successfully
completed alongside the software implementation process due to relatively little
other work.

Finally, software testing was not as thorough as desired, and only took place at
the end of March.

These changes are reflected in revised Gantt charts in Figure 14 and Figure 15,
with any activities that changed highlighted by a diagonal pattern.

Final Report 28

20
13

O
ct

N
ov

D
ec

30
/0

9
07

/1
0

14
/1

0
21

/1
0

28
/1

0
04

/1
1

11
/1

1
18

/1
1

25
/1

1
02

/1
2

09
/1

2
16

/1
2

23
/1

2

R
es

ea
rc

h
N
ab

az
ta
g
B
ac
kg

ro
un

d
O
ri
gi
na

lH
ar
dw

ar
e

P
os
si
bl
e
A
rc
hi
te
ct
ur
es

D
es

ig
n

IN
FO

30
05

D
ea
dl
in
e

C
O
M
P
30
01

D
ea
dl
in
e

M
A
N
G
30
55

D
ea
dl
in
e

H
ar
dw

ar
e

Im
p
le

m
en

ta
ti

on
P
ro
to
ty
pi
ng

H
ar
dw

ar
e

F
in
al

H
ar
dw

ar
e

M
A
N
G
30
55

D
ea
dl
in
e

C
O
M
P
30
32

D
ea
dl
in
e

IN
FO

30
05

D
ea
dl
in
e

R
ep

or
t

W
ri

ti
n
g

P
ro
gr
es
s
R
ep

or
t

P
ro
gr
es
s
R
ep
or
t
D
ue

F
ig

u
re

14
:
R
ev
is
ed

Se
m
es
te
r
1
G
an

tt
ch
ar
t

Final Report 29

20
14

Ja
n

Fe
b

M
ar

A
pr

30
/1

2
06

/0
1
13

/0
1
20

/0
1
27

/0
1
03

/0
2
10

/0
2
17

/0
2
24

/0
2
03

/0
3
10

/0
3
17

/0
3
24

/0
3
31

/0
3
07

/0
4
14

/0
4
21

/0
4

E
xa

m
P
er

io
d

E
xa

m
R
ev
is
io
n

IN
FO

30
05

E
xa
m

C
O
M
P
30
32

E
xa
m

M
A
N
G
30
55

E
xa
m

D
es

ig
n

So
ft
w
ar
e

Im
p
le

m
en

ta
ti

on
H
ar
dw

ar
e
A
ss
em

bl
y

So
ft
w
ar
e

Te
st
in
g

C
O
M
P
30
08

D
ea
dl
in
e

R
ep

or
t

W
ri

ti
n
g

F
in
al

R
ep

or
t

F
in
al

R
ep
or
t
D
ue

F
ig

u
re

15
:
R
ev
is
ed

Se
m
es
te
r
2
G
an

tt
ch
ar
t

Final Report 30

7 Critical Evaluation

In order to evaluate the success of the project, we refer back to the project goals
in Section 2, and the project brief in Appendix M.

7.1 Goal One

The first goal deals with examination and replacement of the Nabaztag:tag’s hard-
ware. Using a variety of investigations found online, plus the author’s own exam-
inations, the components making up the hardware of the device were identified
and their characteristics, with the exception of the RFID reader, discovered. The
ear movement and LEDs were reimplemented using a custom designed AVR-based
circuit, with the internet connectivity and TTS capabilities provided using a BBB
with attached USB Wi-Fi adapter and soundcard.

A number of compromises were made, due to time constraints and minimal elec-
tronics knowledge, to allow the hardware section of the project to be completed in
the first semester. The number of available LEDs was reduced from five to two,
and the 3.5mm audio output, volume control and RFID reader were not reimple-
mented. Because of this, the initial goal is only partially met, but it was felt that
the functionality that was restored would be sufficient to showcase the software
system that was the main focus of the project. An additional issue, identified too
late in the project to rectify, was the very low volume audio output from the USB
soundcard. Although this was considered the simplest way to reimplement audio
output via the speaker in the device, a more advanced solution would have used
the BBB directly for audio output and incorporated an amplifier circuit.

7.2 Goal Two

The second goal focuses on creation of a general software infrastructure to sup-
port the device. The original brief suggested a client application running on the
Nabaztag:tag, along with a server application connected to the Nabaztag:tag using
a push architecture. To achieve this goal, a web application was developed using
the Django framework, and a client application was developed in Python. The
two were linked by a combination of a WebSocket connection and an HTTP API.
This enabled messages to be delivered almost instantaneously over the WebSocket
from the web application to the Nabaztag:tag client, and allowed updates from
the Nabaztag:tag device to be sent to the server using the API. Requirement 4 in
Table 3 specified that the replacement system should attempt to rectify the speed
issues of the previous infrastructure. Whilst no formal tests were performed, it
seems that the replacement system is responsive, with sub-second message deliv-
ery times routinely observed. The goal also explicitly mentions control from a web
application, and this has been reimplemented in a simple manner, allowing control
of one function at a time.

Final Report 31

As this goal neared completion, several possibilities for improvement were identi-
fied with the architecture. A major concern is the lack of security consideration
whilst developing the system. All messages sent from the server to a Nabaztag:tag
are in plaintext, and thus readable with packet sniffing tools such as Wireshark
[34]. Although the WebSocket protocol does provide a secure connection with
wss://, this could not be implemented as it was not supported by the DWR plu-
gin. Additionally, no authentication mechanism has been implemented for the API
running on the server, so anyone discovering the identifier of a Nabaztag:tag device
could pose as that device, sending spurious updates to the server and potentially
abusing the pairing functionality. Finally, it is clear that more functionality could
be added to the web application itself, including features such as user accounts,
ability for users to register Nabaztag:tags and ability to script actions or set timed
events for the Nabaztag:tag.

7.3 Goal Three

The final goal, not suggested in the project brief but added as a goal during
the first semester, was to implement a new feature for the Nabaztag:tag enabled
by the new hardware and software. This feature was chosen to be a RESTful
API, running directly on the Nabaztag:tag itself. This was not previously possible
due to the closed nature of the original hardware, but successfully removes the
reliance on the server application for control of the device. The API exposes all
restored functionality through five API endpoints, with detailed documentation
also available from the device itself. Although the goal was deliberately vague, it
is felt to be adequately addressed by the functionality implemented.

7.4 Time Management

Throughout the project, time was well managed with minimal deviations from
the initial schedule, and no major issues or incidents occurred. Due to user error,
there was a delay in the delivery of ordered components, but the use of the schedule
meant that this delay was managed and did not affect other parts of the project.

8 Conclusions and Future Work

8.1 Conclusions

In this project, a single Nabaztag:tag device was revived through a combination
of replacement hardware and software. The hardware part of the project was
successfully completed in the first semester, with the software part completed in
good time during the second semester. The end result is a functional Nabaztag:tag
with many of the major features re-implemented, demonstrating the use of several
current technologies for IoT devices. Areas for improvement have been identified,

Final Report 32

and the project has raised some possible areas for continuing development, detailed
in Section 8.2.

The project was an enjoyable and educational experience, greatly furthering the
author’s electronics knowledge, and improving their project management skills and
Python programming ability.

8.2 Future Work

During this project, several potential areas for further work were identified:

BeagleBone Black Cape — The custom AVR board plus USB hub, soundcard,
and Wi-Fi dongle were challenging to fit into the case of the Nabaztag:tag, and the
nature of the modifications mean they would be difficult to repeat. The process
could be greatly simplified by the creation of a cape for the BBB, which would
attach to its headers and provide the sound, Wi-Fi and connections for the Nabaz-
tag:tag’s hardware in one package. The total modifications to the Nabaztag:tag
would then be limited to removing the old PCB, then fitting the BBB and cape
and attaching the Nabaztag:tag’s hardware.

Framework for WebSocket-based IoT devices — Despite the issues men-
tioned in the evaluation, the overall architecture developed for push communi-
cation to an IoT device is successful. To provide a reusable way to apply this
architecture, a general framework could be created, solving issues such as:

• Secure communications.

• WebSockets used for communication in both directions, as intended.

• Support for applications other than Redis to provide the message queue.

• Support for multiple message formats.

Discovering APIs on WoT devices — As the WoT grows, our home and office
networks will contain more and more devices offering APIs. Whilst REST provides
a standard for interacting with these APIs over HTTP, automatic discovery of the
APIs will also become important, e.g. when adding a new device to the network or
when a new client joins the network and wishes to see available APIs. This could
be combined with a standard way for devices to provide documentation for their
API using the same service.

Final Report 33

References

Articles, Books & Proceedings

[2] Gregory D. Abowd et al. “Towards a better understanding of context and
context-awareness”. In: Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing. 1999, pp. 304–307.

[3] Sachin Agarwal. “Real-TimeWeb Application Roadblock: Performance Penalty
of HTML Sockets”. In: 2012 IEEE International Conference on Communi-
cations. 2012, pp. 1225–1229.

[11] Kevin Ashton. That ‘Internet of Things’ Thing. [Accessed Oct. 15, 2014].
June 2009. url: http://www.rfidjournal.com/articles/view?4986.

[13] Clément Beausset and Pierre Soumoy. Construction d’un Proxy XMPP pour
un Nabaztag. Tech. rep. [Accessed Oct. 10, 2013]. Telecom SudParis, 2009.
url: http://www-public.it-sudparis.eu/~leriche/projetud/XMPP-
Nabaztag/RapportPFE_Nabaztag.pdf.

[16] Jonas Brustel and Thomas Preuss. “A Universal Push Service for Mobile
Devices”. In: Sixth International Conference on Complex, Intelligent, and
Software Intensive Systems. 2012, pp. 40–45.

[17] Laurie Butgereit, Louis Coetzee, and Andrew C. Smith. “Turn Me On! Using
the "Internet of Things" to Turn Things On and Off”. In: Proceedings of
the 6th International Conference on Pervasive Computing and Applications.
2011, pp. 4–10.

[29] Roy T. Fielding. “Architectural styles and the Design of Network-Based Soft-
ware Architectures”. PhD thesis. University of California, Irvine, 2000.

[36] Dominique Guinard et al. “From the Internet of Things to the Web of Things:
Resource-Oriented Architecture and Best Practices”. In: Architecting the In-
ternet of Things. Ed. by Dieter Uckelmann, Mark Harrison, and Florian
Michahelles. 2011. Chap. 5, pp. 97–129.

[37] Vipul Gupta, Ron Goldman, and Poornaprajna Udupi. “A Network Archi-
tecture for the Web of Things”. In: Proceedings of the Second International
Workshop on Web of Things. 2011, 3:1–3:6.

[38] Carl Gutwin, Michael Lippold, and TC Graham. “Real-Time Groupware
in the Browser: Testing the Performance of Web-Based Networking”. In:
Proceedings of the ACM 2011 conference on Computer supported cooperative
work. 2011, pp. 167–176.

[42] Chung-Ching Huang, Jeffrey Bardzell, and Jennifer Terrell. “Can Your Pet
Rabbit Read Your Email?: A Critical Analysis of the Nabaztag Rabbit”. In:
Proceedings of the 2011 Conference on Designing Pleasurable Products and
Interfaces. 2011, 25:1–25:8.

[51] Boci Lin et al. “Comparison between JSON and XML in Applications Based
on AJAX”. In: 2012 International Conference on Computer Science and Ser-
vice System. 2012, pp. 1174–1177.

[52] Kate Lund, Paul Coulton, and Reuben Edwards. “Ambient Conversations
Using a Physical Avatar”. In: Proceedings of the 13th International MindTrek
Conference: Everyday Life in the Ubiquitous Era. 2009, pp. 11–14.

http://www.rfidjournal.com/articles/view?4986
http://www-public.it-sudparis.eu/~leriche/projetud/XMPP-Nabaztag/RapportPFE_Nabaztag.pdf
http://www-public.it-sudparis.eu/~leriche/projetud/XMPP-Nabaztag/RapportPFE_Nabaztag.pdf

Final Report 34

[57] Darshan G. Puranik, Dennis C. Feiock, and James H. Hill. “Real-Time Mon-
itoring using AJAX and WebSockets”. In: 20th IEEE International Con-
ference and Workshops on Engineering of Computer Based Systems. 2013,
pp. 110–118.

[62] Peter Saint-Andre. “Streaming XML with Jabber/XMPP”. In: Internet Com-
puting, IEEE 9.5 (2005), pp. 82–89.

[64] Charles Severance. “Discovering JavaScript Object Notation”. In: Computer,
IEEE 45.4 (2012), pp. 6–8.

[66] Lu Tan and Neng Wang. “Future internet: The Internet of Things”. In: 3rd
International Conference on Advanced Computer Theory and Engineering.
Vol. 5. 2010, pages.

[75] Mark Weiser. “The Computer for the 21st Century”. In: Scientific American
265.3 (1991), pp. 66–75.

RFCs

[28] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC 6455 (Pro-
posed Standard). Internet Engineering Task Force, Dec. 2011. url: http:
//www.ietf.org/rfc/rfc6455.txt.

[61] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 6120 (Proposed Standard). Internet Engineering Task Force, Mar.
2011. url: http://www.ietf.org/rfc/rfc6120.txt.

Datasheets & Schematics

[6] Arduino. Arduino Duemilanove Schematic. [Accessed Oct. 29, 2013]. 2009.
url: http://arduino.cc/en/uploads/Main/arduino- duemilanove-
schematic.pdf.

[9] Arduino. ATMega 328 Datasheet. [Accessed Oct. 28, 2013]. 2009. url: http:
//www.atmel.com/Images/doc8161.pdf.

[10] Arduino. ATmega168/328 - Arduino Pin Mapping. [Accessed Oct. 28, 2013].
2013. url: http://arduino.cc/en/Hacking/PinMapping168.

[32] BeagleBoard.org Foundation. BeagleBone Black Reference Manual. [Accessed
Oct. 15, 2013]. 2013. url: http://www.farnell.com/datasheets/1701090.
pdf.

[45] Kingbright. T-1 3/4 (5mm) FULL COLOR LED LAMP. [Accessed Oct. 16,
2013]. 2012. url: http://www.farnell.com/datasheets/1683536.pdf.

Websites

[1] 01net. Nabaztag, le Lapin est Mort ce Soir. [Accessed Oct. 3, 2013]. 2011.
url: http://www.01net.com/editorial/536566/nabaztag-le-lapin-
est-mort-ce-soir/.

http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6120.txt
http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.pdf
http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.pdf
http://www.atmel.com/Images/doc8161.pdf
http://www.atmel.com/Images/doc8161.pdf
http://arduino.cc/en/Hacking/PinMapping168
http://www.farnell.com/datasheets/1701090.pdf
http://www.farnell.com/datasheets/1701090.pdf
http://www.farnell.com/datasheets/1683536.pdf
http://www.01net.com/editorial/536566/nabaztag-le-lapin-est-mort-ce-soir/
http://www.01net.com/editorial/536566/nabaztag-le-lapin-est-mort-ce-soir/

Final Report 35

[4] Apiary.io. API Blueprint. [Accessed Mar. 25, 2014]. 2014. url: http://
apiblueprint.org/.

[5] Arduino. Arduino Duemilanove. [Accessed Oct. 15, 2013]. 2009. url: http:
//arduino.cc/en/Main/ArduinoBoardDuemilanove.

[7] Arduino. Arduino - HomePage. [Accessed Oct. 15, 2013]. 2013. url: http:
//arduino.cc/.

[8] Arduino. Arduino - Software. [Accessed Oct. 15, 2013]. 2013. url: http:
//arduino.cc/en/Main/Software.

[12] Ned Batchelder. Coverage. [Accessed Apr. 6, 2014]. 2014. url: http://
nedbatchelder.com/code/coverage/.

[14] Nabaztag Blog. Paris Tuesday, December 26, 2006. Press release from Vi-
olet. [Accessed Oct. 5, 2013]. 2006. url: http://web.archive.org/web/
20070104232121/http://blog.nabaztag.com/2006/12/paris_tuesday_
d.html.

[15] Philip Boshua. LIFX - The Lightbulb Reinvented. [Accessed Nov. 18, 2013].
2013. url: http://lifx.co.

[18] CadSoft. EAGLE PCB Software. [Accessed Nov. 01, 2013]. 2013. url: http:
//www.cadsoftusa.com/eagle-pcb-design-software/?language=en.

[19] Tom Christie. Django REST Framework. [Accessed Mar. 25, 2014]. 2014.
url: http://www.django-rest-framework.org/.

[20] Sean Cogswell. ArduinoSerialCommand. [Accessed Oct. 15, 2013]. 2012. url:
https://github.com/scogswell/ArduinoSerialCommand/.

[21] Nginx Community. Nginx. [Accessed Mar. 25, 2014]. 2014. url: http://
wiki.nginx.org/Main.

[22] Al Danial. Cloc. [Accessed Apr. 6, 2014]. 2014. url: http://cloc.sourceforge.
net/.

[23] DMEUROPE. Mindscape buys Violet out of receivership. [Accessed Oct. 4,
2013]. 2009. url: http://www.siptrunkingreport.com/news/2009/10/
21/4435681.htm.

[24] Extreme Electronics. Open Weather Map API. [Accessed Mar. 25, 2014].
2014. url: http://openweathermap.org/API.

[25] Facebook. Tornado. [Accessed Mar. 25, 2014]. 2014. url: http://www.
tornadoweb.org/en/stable/.

[26] Tony Fadell. Nest Thermostat. [Accessed Nov. 18, 2013]. 2013. url: https:
//nest.com/thermostat/life-with-nest-thermostat/.

[27] Gabriel Falcao. HTTPretty. [Accessed Apr. 6, 2014]. 2014. url: https://
github.com/gabrielfalcao/HTTPretty.

[30] Michael Foord. Mock. [Accessed Apr. 6, 2014]. 2014. url: http://www.
voidspace.org.uk/python/mock/.

[31] BeagleBoard.org Foundation. BeagleBone Black. [Accessed Oct. 15, 2013].
2013. url: http://beagleboard.org/products/beaglebone%20black.

[33] Django Software Foundation. Django. [Accessed Mar. 25, 2014]. 2014. url:
https://www.djangoproject.com/.

[34] Wireshark Foundation.Wireshark. [Accessed Apr. 6, 2014]. 2014. url: http:
//www.wireshark.org/download.html.

http://apiblueprint.org/
http://apiblueprint.org/
http://arduino.cc/en/Main/ArduinoBoardDuemilanove
http://arduino.cc/en/Main/ArduinoBoardDuemilanove
http://arduino.cc/
http://arduino.cc/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/
http://web.archive.org/web/20070104232121/http://blog.nabaztag.com/2006/12/paris_tuesday_d.html
http://web.archive.org/web/20070104232121/http://blog.nabaztag.com/2006/12/paris_tuesday_d.html
http://web.archive.org/web/20070104232121/http://blog.nabaztag.com/2006/12/paris_tuesday_d.html
http://lifx.co
http://www.cadsoftusa.com/eagle-pcb-design-software/?language=en
http://www.cadsoftusa.com/eagle-pcb-design-software/?language=en
http://www.django-rest-framework.org/
https://github.com/scogswell/ArduinoSerialCommand/
http://wiki.nginx.org/Main
http://wiki.nginx.org/Main
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://www.siptrunkingreport.com/news/2009/10/21/4435681.htm
http://www.siptrunkingreport.com/news/2009/10/21/4435681.htm
http://openweathermap.org/API
http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/
https://nest.com/thermostat/life-with-nest-thermostat/
https://nest.com/thermostat/life-with-nest-thermostat/
https://github.com/gabrielfalcao/HTTPretty
https://github.com/gabrielfalcao/HTTPretty
http://www.voidspace.org.uk/python/mock/
http://www.voidspace.org.uk/python/mock/
http://beagleboard.org/products/beaglebone%20black
https://www.djangoproject.com/
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

Final Report 36

[35] Google.Google GeoLocation API. [Accessed Mar. 25, 2014]. 2014. url: https:
//developers.google.com/maps/documentation/business/geolocation/.

[39] Matt Hawkins. Berryclip. [Accessed Apr. 6, 2014]. 2014. url: http://www.
raspberrypi-spy.co.uk/berryclip-6-led-add-on-board/.

[40] Haxx. cURL. [Accessed Apr. 6, 2014]. 2014. url: http://curl.haxx.se/.
[41] Sylvain Hellegouarch. Websocket for Python. [Accessed Mar. 25, 2014]. 2014.

url: https://github.com/Lawouach/WebSocket-for-Python.
[43] Rob Hudson. Django Debug Toolbar. [Accessed Apr. 6, 2014]. 2014. url:

https://github.com/django-debug-toolbar/django-debug-toolbar.
[44] json.org. JSON. [Accessed Mar. 25, 2014]. 2014. url: http://www.json.

org/.
[46] Oliver Kurth. Avahi-Daemon. [Accessed Mar. 25, 2014]. 2014. url: http:

//manpages.ubuntu.com/manpages/raring/man8/avahi-daemon.8.html.
[47] Mathieu Lesniak. Le Nabaztag, comment ça marche? Partie 1: Le boot. [Ac-

cessed Mar. 8, 2014]. 2011. url: http://www.eskuel.net/le-nabaztag-
comment-ca-marche-partie-1-le-boot-1484.

[48] Mathieu Lesniak. Le Nabaztag, comment ça marche? Partie 2: L’authentification
et la fin du boot. [Accessed Mar. 8, 2014]. 2011. url: http://www.eskuel.
net/le-nabaztag-comment-ca-marche-partie-2-lauthentification-
et-la-fin-du-boot-1485.

[49] Mathieu Lesniak. Le Nabaztag, comment ça marche? Partie 3: Communiquer
avec un lapin. [Accessed Mar. 8, 2014]. 2011. url: http://www.eskuel.
net/le-nabaztag-comment-ca-marche-partie-3-communiquer-avec-
un-lapin-1486.

[50] Chris Liechti. Pyserial. [Accessed Mar. 25, 2014]. 2014. url: http://pyserial.
sourceforge.net/.

[53] IHS Electronics & Media. Violet Nabaztagtag Wireless Device Teardown. [Ac-
cessed Oct. 10, 2013]. 2007. url: http://electronics360.globalspec.
com/article/3643/violet-nabaztagtag-wireless-device-teardown.

[54] OpenJabNab. OpenJabNab. [Accessed Oct. 5, 2013]. 2012. url: https://
github.com/OpenJabNab/OpenJabNab.

[55] Oripy. Nabaztag Hardware Investigation. [Accessed Oct. 6, 2013]. 2012. url:
https://github.com/Oripy/Rabbity-Pi/wiki/Nabaztag-hardware-
investigation.

[56] Pokey.NabaztagLives. [Accessed Oct. 5, 2013]. 2013. url: http://sourceforge.
net/projects/nabaztaglives/.

[58] Queaker. Nabaztag. [Accessed Mar. 8, 2014]. 2008. url: https://www.c3pb.
de/wiki/nabaztag.

[59] Jacob Rief. Django-Websocket-Redis. [Accessed Mar. 25, 2014]. 2014. url:
http://django-websocket-redis.readthedocs.org/en/latest/.

[60] Armin Ronacher. Flask Web Framework. [Accessed Mar. 25, 2014]. 2014.
url: https://github.com/mitsuhiko/flask.

[63] Salvatore Sanfilippo. Redis. [Accessed Mar. 25, 2014]. 2014. url: http://
redis.io/.

[65] The Centre for Speech Technology Research. Festival. [Accessed Mar. 25,
2014]. 2014. url: http://www.cstr.ed.ac.uk/projects/festival/.

https://developers.google.com/maps/documentation/business/geolocation/
https://developers.google.com/maps/documentation/business/geolocation/
http://www.raspberrypi-spy.co.uk/berryclip-6-led-add-on-board/
http://www.raspberrypi-spy.co.uk/berryclip-6-led-add-on-board/
http://curl.haxx.se/
https://github.com/Lawouach/WebSocket-for-Python
https://github.com/django-debug-toolbar/django-debug-toolbar
http://www.json.org/
http://www.json.org/
http://manpages.ubuntu.com/manpages/raring/man8/avahi-daemon.8.html
http://manpages.ubuntu.com/manpages/raring/man8/avahi-daemon.8.html
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-1-le-boot-1484
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-1-le-boot-1484
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-2-lauthentification-et-la-fin-du-boot-1485
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-2-lauthentification-et-la-fin-du-boot-1485
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-2-lauthentification-et-la-fin-du-boot-1485
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-3-communiquer-avec-un-lapin-1486
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-3-communiquer-avec-un-lapin-1486
http://www.eskuel.net/le-nabaztag-comment-ca-marche-partie-3-communiquer-avec-un-lapin-1486
http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/
http://electronics360.globalspec.com/article/3643/violet-nabaztagtag-wireless-device-teardown
http://electronics360.globalspec.com/article/3643/violet-nabaztagtag-wireless-device-teardown
https://github.com/OpenJabNab/OpenJabNab
https://github.com/OpenJabNab/OpenJabNab
https://github.com/Oripy/Rabbity-Pi/wiki/Nabaztag-hardware-investigation
https://github.com/Oripy/Rabbity-Pi/wiki/Nabaztag-hardware-investigation
http://sourceforge.net/projects/nabaztaglives/
http://sourceforge.net/projects/nabaztaglives/
https://www.c3pb.de/wiki/nabaztag
https://www.c3pb.de/wiki/nabaztag
http://django-websocket-redis.readthedocs.org/en/latest/
https://github.com/mitsuhiko/flask
http://redis.io/
http://redis.io/
http://www.cstr.ed.ac.uk/projects/festival/

Final Report 37

[67] Daniel Taylor. Aglio. [Accessed Mar. 25, 2014]. 2014. url: https://github.
com/danielgtaylor/aglio.

[68] Twilio. Flask-RESTful. [Accessed Mar. 25, 2014]. 2014. url: https : / /
github.com/twilio/flask-restful.

[69] Peter Tyser. Nabaztagtag (Nabaztag v2) Dissection. [Accessed Oct. 6, 2013].
2007. url: http : / / www . petertyser . com / 2007 / 03 / 11 / nabaztag -
nabaztagtag-dissection/.

[70] Unbit. uWSGI. [Accessed Mar. 25, 2014]. 2014. url: http://projects.
unbit.it/uwsgi/.

[71] Eben Upton. Raspberry Pi. [Accessed Apr. 6, 2014]. 2014. url: http://
www.raspberrypi.org/.

[72] Violet. And Now, He Has a Belly Button. [Accessed Oct. 3, 2013]. 2006. url:
http://www.regaletes.com/images/mascotaselectronicas/nabaztag_
EN.pdf.

[73] Violet. Karotz, Smart Wi-Fi Rabbit, New Version of Nabaztag. [Accessed
Oct. 3, 2013]. 2013. url: http://store.karotz.com/en_GB/.

[74] Violet. Violet - Let All Things Be Connected. [Accessed Oct. 5, 2013]. 2009.
url: http://web.archive.org/web/20090206020240/http://www.
violet.net/index_en.html.

[76] Wikipedia. Nabaztag. [Accessed Mar. 25, 2014]. 2014. url: http://nl.
wikipedia.org/wiki/Nabaztag.

[77] Business Wire. Karotz, the Intelligent Rabbit from Mindscape, to Make North
American Debut at Consumer Electronics Show. [Accessed Oct. 4, 2013].
2011. url: http://www.businesswire.com/news/home/20101209006448/
en/Karotz-Intelligent-Rabbit-Mindscape-North-American-Debut.

https://github.com/danielgtaylor/aglio
https://github.com/danielgtaylor/aglio
https://github.com/twilio/flask-restful
https://github.com/twilio/flask-restful
http://www.petertyser.com/2007/03/11/nabaztag-nabaztagtag-dissection/
http://www.petertyser.com/2007/03/11/nabaztag-nabaztagtag-dissection/
http://projects.unbit.it/uwsgi/
http://projects.unbit.it/uwsgi/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://www.regaletes.com/images/mascotaselectronicas/nabaztag_EN.pdf
http://www.regaletes.com/images/mascotaselectronicas/nabaztag_EN.pdf
http://store.karotz.com/en_GB/
http://web.archive.org/web/20090206020240/http://www.violet.net/index_en.html
http://web.archive.org/web/20090206020240/http://www.violet.net/index_en.html
http://nl.wikipedia.org/wiki/Nabaztag
http://nl.wikipedia.org/wiki/Nabaztag
http://www.businesswire.com/news/home/20101209006448/en/Karotz-Intelligent-Rabbit-Mindscape-North-American-Debut
http://www.businesswire.com/news/home/20101209006448/en/Karotz-Intelligent-Rabbit-Mindscape-North-American-Debut

Final Report 38

Appendices

A ATMega328-P Pinout

Figure 16: ATMega168/328 pinout (from [10])

Final Report 39

B Custom AVR Board Schematic

Figure 17: Schematic for custom AVR circuit created to control original I/O hardware.

Final Report 40

C Custom AVR Board Prototype

Figure 18: Protoype board created using schematic from Appendix B

Final Report 41

D Components List

Component Qty. Function Source
BeagleBone Black 1 Main hardware Dr. Martinez
BeagleBone
Power Supply

1 Main hardware Dr. Martinez

USB Wi-Fi
Dongle

1 Wi-Fi Dr. Martinez

USB Sound Card 1 Sound Purchased using
budget, cost £7.96

USB Sound Card 1 Sound Purchased using
budget, cost £11.86

4 Port USB Hub 1 Port expansion Purchased using
budget, cost £4.75

2 Port USB Hub 1 Port expansion Purchased using
budget, cost £7.10

Arduino
Duemilanove

1 Prototyping Owned personally

ATMega328-PU 1 Microcontroller From Arduino
Duemilanove

ATMega328-PU 2 Microcontroller Purchased using
budget for spares, cost
£7.22

100nF Capacitor 1 Power circuit UG Electronics Lab
1µF Capacitor 2 Motor circuits UG Electronics Lab
100µF Capacitor 1 Power circuit UG Electronics Lab
100Ω Resistor 4 RGB LEDs Dr. Martinez
270Ω Resistor 7 RGB & IR LEDs, Ears

& Power Circuit
Dr. Martinez

1KΩ Resistor 2 Ears Dr. Martinez
10KΩ Resistor 4 Ears & Switches Dr. Martinez
RGB LED 2 LEDs Dr. Martinez
Red LED 1 Power circuit Dr. Martinez
3.3v Regulator 1 Power circuit Dr. Martinez
BC547 NPN
Transistor

2 Motor circuits UG Electronics Lab

1N4004 Diode 3 Power & motor circuits UG Electronics Lab
Momentary
Switch

1 AVR Reset Dr. Martinez

Table 6: Breakdown of components required for project. Total budget use: £38.89

Final Report 42

E Serial Communication Protocol Example

1 include <SerialCommand.h>
2 SerialCommand sCmd;
3

4 volatile int leftPinPosition, rightPinPosition;
5

6 void setup() {
7 Serial.begin(9600);
8 sCmd.addCommand("EARPOS", EARPOS);
9 }

10

11 void loop() {
12 sCmd.readSerial();
13 }
14

15 /*
16 EARPOS is called when receiving serial commands of the form
17 EARPOS [R|L], it returns the position of the ear over the
18 serial port.
19 */
20 void EARPOS()
21 {
22 char *arg;
23 char earPos;
24

25 arg = sCmd.next();
26 if (arg != NULL) {
27 earPos = *arg;
28 }
29

30 switch(earPos){
31 case "R":
32 Serial.println(rightPinPosition);
33 break;
34 case "L":
35 Serial.println(leftPinPosition);
36 break;
37 }
38 }

Figure 19: Code excerpt demonstrating use of the SerialCommand [20] serial protocol
library.

Final Report 43

F Interrupt Routine Example

1 /*
2 EARMOV controls movement of an individual ear.
3 The correct interrupt for the ear is enabled, and
4 variables for correct functioning of the interrupt are set.
5 */
6 void EARMOV(char earSide, int targetPosition){
7 int rotaryPin = (targetPosition + 2) % 17;
8 switch(earSide){
9 case LEFT:

10 attachInterrupt(LEFTEAR_INTERRUPT,moveLeftEar,RISING);
11 leftEarTargetPosition = rotaryPin;
12 seenLeftGap = false;
13 leftInterruptTime = millis();
14 digitalWrite(LEFTEAR_MOTOR, HIGH);
15 break;
16 // Repeated case for right ear omitted.
17 }
18 }
19

20 /*
21 Interrupt routine for setting the position of the left ear.
22 This takes into account the reference gap to ensure that the
23 pin position remains correct, e.g. 0-17 (inclusive)
24 */
25 void moveLeftEar(){
26 leftPinPosition++;
27 leftLastInterruptTime = leftInterruptTime;
28 leftInterruptTime = millis();
29 leftPulseWidth = leftInterruptTime - leftLastInterruptTime;
30

31 if(leftPulseWidth > 500){
32 leftPinPosition = 0;
33 }
34

35 if(leftPinPosition == leftEarTargetPosition){
36 digitalWrite(LEFTEAR_MOTOR, LOW);
37 sendEarPosition(LEFT, leftPinPosition);
38 attachInterrupt(LEFTEAR_INTERRUPT, leftEarMoved, RISING);
39 }
40 }

Figure 20: Code excerpt demonstrating use of interrupts to change ear position.

Final Report 44

G Assembled Nabaztag:tag

Figure 21: The final assembled form of the Nabaztag:tag replacement hardware. 1)
Custom AVR circuit board, 2) USB sound card.

Final Report 45

Figure 22: The final assembled form of the Nabaztag:tag replacement hardware. 3)
USB Wi-Fi adapter, 4) BeagleBone Black.

Final Report 46

H Web Application Control Page

Figure 23: An example of the information and control page for a Nabaztag:tag

Final Report 47

I Sample API documentation

Figure 24: An example of the API documentation available from the root of the Nabaz-
tag:tag’s API

Final Report 48

J Unit Test Results

Figure 25: Unit test results for Nabaztag:tag client application

Final Report 49

K Initial Gantt Charts
2
01

3

O
ct

N
ov

D
ec

30
/0

9
07

/1
0

14
/1

0
2
1/

1
0

2
8/

1
0

0
4/

1
1

1
1/

1
1

1
8/

1
1

2
5/

1
1

0
2/

1
2

0
9
/
1
2

16
/
12

23
/
12

R
e
se

a
rc

h

N
ab

az
ta

g
B

ac
k
gr

ou
n
d

O
ri

gi
n
al

H
ar

d
w

ar
e

P
os

si
b
le

A
rc

h
it

ec
tu

re
s

D
e
si

g
n

IN
F
O

30
05

D
ea

d
li
n
e

C
O

M
P
30

01
D

ea
d
li
n
e

M
A

N
G

30
55

D
ea

d
li
n
e

H
ar

d
w

ar
e

S
of

tw
ar

e

Im
p
le

m
e
n
ta

ti
o
n

P
ro

to
ty

p
in

g
H

ar
d
w

ar
e

F
in

al
H

ar
d
w

ar
e

M
A

N
G

30
55

D
ea

d
li
n
e

C
O

M
P
30

32
D

ea
d
li
n
e

IN
F
O

30
05

D
ea

d
li
n
e

R
e
p
o
rt

W
ri

ti
n
g

P
ro

gr
es

s
R

ep
or

t

P
ro

gr
es

s
R
ep

or
t
D

u
e

F
ig

u
re

26
:
O
ri
gi
na

lS
em

es
te
r
1
G
an

tt
ch
ar
t

Final Report 50

20
14

J
an

F
eb

M
ar

A
p
r

30
/1

2
06

/0
1

1
3/

01
2
0/

01
2
7/

01
03

/0
2

10
/0

2
17

/0
2

24
/0

2
03

/0
3

10
/0

3
17

/0
3

2
4/

03
3
1
/
0
3

0
7
/
0
4

1
4
/
0
4

2
1
/
0
4

E
x
a
m

P
e
ri

o
d

E
x
am

R
ev

is
io

n

IN
F
O

30
05

E
xa

m

C
O

M
P
30

32
E
xa

m

M
A

N
G

30
55

E
xa

m

Im
p
le

m
e
n
ta

ti
o
n

S
of

tw
ar

e

T
es

ti
n
g

R
e
p
o
rt

W
ri

ti
n
g

F
in

al
R

ep
or

t

F
in

al
R
ep

or
t
D

u
e

F
ig

u
re

27
:
O
ri
gi
na

lS
em

es
te
r
2
G
an

tt
ch
ar
t

Final Report 51

L Design Archive Listing

avr_setup
boards.txt
nabaztag_avr.ino

beaglebone_setup
BB-UART1.dts
LED_blink_test.py
LED_fade_test.py
README.md
dtc_patcher.sh

nabaztagclient
beaglebone

__init__.py
nabaztag_client.py
nabaztag_serial.py
nabaztag_update.py
nabaztag_upstart.conf
nabaztag_websocket.py

nabaztagconfig.yaml
pi

pi_button.py
pi_client.py
pi_update.py
pi_upstart.conf
pi_websocket.py

restapi
documentation

nabaztagapi_blueprint.md
nabaztatgapi_static.html

nabaztagapi_geolocate.py
nabaztagapi_nginx.conf
nabaztagapi_server.py
nabaztagapi_upstart.conf
nabaztagapi_weather.py

unit_tests.py

nabaztagserver
deployment

README.md
django_uwsgi.ini
nginx.conf
uwsgi.conf
uwsgi_params
websocket_uwsgi.ini

manage.py
nabaztag

__init__.py
admin.py
forms.py
models.py
templates

control.html
index.html

urls.py
views.py

nabaztagserver
__init__.py
settings.py
urls.py
wsgi_django.py
wsgi_websocket.py

Figure 28: Directory listing for project files included in Design Archive

Final Report 52

M Original Project Brief

This was the initial brief submitted for the project, it is included for
reference:

The Nabaztag, developed by Violet and first released in 2005, was an attempt
at introducing pervasive computing to the masses. A wi-fi enabled smart device,
shaped to look like a rabbit, with a variety of functions. Nabaztag could convey
information through 5 multicoloured LEDs, motorised ears, and built-in speaker,
and could receive input from its environment using a push button, a microphone,
an RFID reader and by manual adjustment of the position of its ears.

Nabaztag relied heavily on communication with servers operated by Violet, which
stored the majority of its configuration information, and provided the only way
for a Nabaztag owner to alter the behaviour of their device. In December 2006,
when large numbers of purchased Nabaztag devices were activated simultaneously,
Violet’s infrastructure was unable to cope with the demand, and there were service
disruptions for both new and existing Nabaztag owners. In October 2009, after a
long period of technical troubles, Violet declared bankruptcy and was purchased
by an Australian software house, Mindscape. In July 2011, Mindscape stopped
maintaining the Nabaztag, and released the previously closed source code to the
public. Efforts to understand the Nabaztag architecture have been hindered by
the poor documentation, and by existing documentation being in French.

Several open source projects have attempted to create new web interfaces for the
Nabaztag, but they suffer from the requirement that they must interact with the
original software running on the proprietary, single-board computer that is at the
heart of the Nabaztag. While compatibility with the client software on the Nabaz-
tag is necessary to allow existing Nabaztag owners to return functionality to their
devices without any complex modifications, it limits the potential to experiment
with new and improved technologies which might be used to address the original
issues with the Nabaztag architecture.

In this project, I intend to bring a single Nabaztag back to life. I wish to as a
minimum restore its previous functionality, and potentially add new functionality
not present on the original device. To achieve this, broadly I will:

• Replace the single-board computer in the Nabaztag with a modern open
hardware device such as the BeagleBone Black, whilst maintaining all the
original input and output hardware of the Nabaztag.

• Develop a client application, able to run on the open hardware device and
control all functionality of the Nabaztag,.

• Develop a server application, able to communicate with the client application
using a push notification architecture.

• Develop a web interface to the server application, allowing users to interact
with their Nabaztag by pushing updates and configuration changes from
server to client.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	The Nabaztag & Pervasive Computing
	Project Goals
	Background Reading
	Literature Review
	Original Use Cases

	Hardware
	Original Hardware Analysis
	Requirements of Replacement Hardware
	Electrical Requirements
	Input/Output Requirements

	Design of Replacement Hardware
	Arduino Duemilanove
	BeagleBone Black
	Using the Arduino Duemilanove
	Custom AVR Board

	Prototyping
	Final Circuit
	Assembly

	Software
	Original Software Analysis
	Requirements
	Requirement 1
	Requirement 2
	Requirements 3, 4 & 5
	Requirement 6
	Requirement 7

	Design
	System Architecture
	Django Application
	Nabaztag:tag Client
	RESTful API

	Deployment
	Django Application
	Nabaztag:tag Client
	RESTful API

	Testing
	Logging & Debugging
	Unit Tests
	Integration Testing

	Project Management
	Version Control
	Risk Assessment
	Risks
	Assessment

	Final Project Gantt Charts

	Critical Evaluation
	Goal One
	Goal Two
	Goal Three
	Time Management

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	ATMega328-P Pinout
	Custom AVR Board Schematic
	Custom AVR Board Prototype
	Components List
	Serial Communication Protocol Example
	Interrupt Routine Example
	Assembled Nabaztag:tag
	Web Application Control Page
	Sample API documentation
	Unit Test Results
	Initial Gantt Charts
	Design Archive Listing
	Original Project Brief

