-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
522 lines (440 loc) · 17.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms.functional as TF
import numpy as np
import os
import math
import random
import logging
import logging.handlers
from matplotlib import pyplot as plt
from scipy.ndimage import zoom
import SimpleITK as sitk
from medpy import metric
def set_seed(seed):
# for hash
os.environ['PYTHONHASHSEED'] = str(seed)
# for python and numpy
random.seed(seed)
np.random.seed(seed)
# for cpu gpu
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# for cudnn
cudnn.benchmark = False
cudnn.deterministic = True
def get_logger(name, log_dir):
'''
Args:
name(str): name of logger
log_dir(str): path of log
'''
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
info_name = os.path.join(log_dir, '{}.info.log'.format(name))
info_handler = logging.handlers.TimedRotatingFileHandler(info_name,
when='D',
encoding='utf-8')
info_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
info_handler.setFormatter(formatter)
logger.addHandler(info_handler)
return logger
def log_config_info(config, logger):
config_dict = config.__dict__
log_info = f'#----------Config info----------#'
logger.info(log_info)
for k, v in config_dict.items():
if k[0] == '_':
continue
else:
log_info = f'{k}: {v},'
logger.info(log_info)
def get_optimizer(config, model):
assert config.opt in ['Adadelta', 'Adagrad', 'Adam', 'AdamW', 'Adamax', 'ASGD', 'RMSprop', 'Rprop', 'SGD'], 'Unsupported optimizer!'
if config.opt == 'Adadelta':
return torch.optim.Adadelta(
model.parameters(),
lr = config.lr,
rho = config.rho,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'Adagrad':
return torch.optim.Adagrad(
model.parameters(),
lr = config.lr,
lr_decay = config.lr_decay,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'Adam':
return torch.optim.Adam(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay,
amsgrad = config.amsgrad
)
elif config.opt == 'AdamW':
return torch.optim.AdamW(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay,
amsgrad = config.amsgrad
)
elif config.opt == 'Adamax':
return torch.optim.Adamax(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'ASGD':
return torch.optim.ASGD(
model.parameters(),
lr = config.lr,
lambd = config.lambd,
alpha = config.alpha,
t0 = config.t0,
weight_decay = config.weight_decay
)
elif config.opt == 'RMSprop':
return torch.optim.RMSprop(
model.parameters(),
lr = config.lr,
momentum = config.momentum,
alpha = config.alpha,
eps = config.eps,
centered = config.centered,
weight_decay = config.weight_decay
)
elif config.opt == 'Rprop':
return torch.optim.Rprop(
model.parameters(),
lr = config.lr,
etas = config.etas,
step_sizes = config.step_sizes,
)
elif config.opt == 'SGD':
return torch.optim.SGD(
model.parameters(),
lr = config.lr,
momentum = config.momentum,
weight_decay = config.weight_decay,
dampening = config.dampening,
nesterov = config.nesterov
)
else: # default opt is SGD
return torch.optim.SGD(
model.parameters(),
lr = 0.01,
momentum = 0.9,
weight_decay = 0.05,
)
def get_scheduler(config, optimizer):
assert config.sch in ['StepLR', 'MultiStepLR', 'ExponentialLR', 'CosineAnnealingLR', 'ReduceLROnPlateau',
'CosineAnnealingWarmRestarts', 'WP_MultiStepLR', 'WP_CosineLR'], 'Unsupported scheduler!'
if config.sch == 'StepLR':
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size = config.step_size,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'MultiStepLR':
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones = config.milestones,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'ExponentialLR':
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'CosineAnnealingLR':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max = config.T_max,
eta_min = config.eta_min,
last_epoch = config.last_epoch
)
elif config.sch == 'ReduceLROnPlateau':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode = config.mode,
factor = config.factor,
patience = config.patience,
threshold = config.threshold,
threshold_mode = config.threshold_mode,
cooldown = config.cooldown,
min_lr = config.min_lr,
eps = config.eps
)
elif config.sch == 'CosineAnnealingWarmRestarts':
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer,
T_0 = config.T_0,
T_mult = config.T_mult,
eta_min = config.eta_min,
last_epoch = config.last_epoch
)
elif config.sch == 'WP_MultiStepLR':
lr_func = lambda epoch: epoch / config.warm_up_epochs if epoch <= config.warm_up_epochs else config.gamma**len(
[m for m in config.milestones if m <= epoch])
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_func)
elif config.sch == 'WP_CosineLR':
lr_func = lambda epoch: epoch / config.warm_up_epochs if epoch <= config.warm_up_epochs else 0.5 * (
math.cos((epoch - config.warm_up_epochs) / (config.epochs - config.warm_up_epochs) * math.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_func)
return scheduler
def save_imgs(img, msk, msk_pred, i, save_path, datasets, threshold=0.5, test_data_name=None):
img = img.squeeze(0).permute(1,2,0).detach().cpu().numpy()
img = img / 255. if img.max() > 1.1 else img
if datasets == 'retinal':
msk = np.squeeze(msk, axis=0)
msk_pred = np.squeeze(msk_pred, axis=0)
else:
msk = np.where(np.squeeze(msk, axis=0) > 0.5, 1, 0)
msk_pred = np.where(np.squeeze(msk_pred, axis=0) > threshold, 1, 0)
plt.figure(figsize=(7,15))
plt.subplot(3,1,1)
plt.imshow(img)
plt.axis('off')
plt.subplot(3,1,2)
plt.imshow(msk, cmap= 'gray')
plt.axis('off')
plt.subplot(3,1,3)
plt.imshow(msk_pred, cmap = 'gray')
plt.axis('off')
if test_data_name is not None:
save_path = save_path + test_data_name + '_'
plt.savefig(save_path + str(i) +'.png')
plt.close()
class BCELoss(nn.Module):
def __init__(self):
super(BCELoss, self).__init__()
self.bceloss = nn.BCELoss()
def forward(self, pred, target):
size = pred.size(0)
pred_ = pred.view(size, -1)
target_ = target.view(size, -1)
return self.bceloss(pred_, target_)
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, pred, target):
smooth = 1
size = pred.size(0)
pred_ = pred.view(size, -1)
target_ = target.view(size, -1)
intersection = pred_ * target_
dice_score = (2 * intersection.sum(1) + smooth)/(pred_.sum(1) + target_.sum(1) + smooth)
dice_loss = 1 - dice_score.sum()/size
return dice_loss
class nDiceLoss(nn.Module):
def __init__(self, n_classes):
super(nDiceLoss, self).__init__()
self.n_classes = n_classes
def _one_hot_encoder(self, input_tensor):
tensor_list = []
for i in range(self.n_classes):
temp_prob = input_tensor == i # * torch.ones_like(input_tensor)
tensor_list.append(temp_prob.unsqueeze(1))
output_tensor = torch.cat(tensor_list, dim=1)
return output_tensor.float()
def _dice_loss(self, score, target):
target = target.float()
smooth = 1e-5
intersect = torch.sum(score * target)
y_sum = torch.sum(target * target)
z_sum = torch.sum(score * score)
loss = (2 * intersect + smooth) / (z_sum + y_sum + smooth)
loss = 1 - loss
return loss
def forward(self, inputs, target, weight=None, softmax=False):
if softmax:
inputs = torch.softmax(inputs, dim=1)
target = self._one_hot_encoder(target)
if weight is None:
weight = [1] * self.n_classes
assert inputs.size() == target.size(), 'predict {} & target {} shape do not match'.format(inputs.size(), target.size())
class_wise_dice = []
loss = 0.0
for i in range(0, self.n_classes):
dice = self._dice_loss(inputs[:, i], target[:, i])
class_wise_dice.append(1.0 - dice.item())
loss += dice * weight[i]
return loss / self.n_classes
class CeDiceLoss(nn.Module):
def __init__(self, num_classes, loss_weight=[0.4, 0.6]):
super(CeDiceLoss, self).__init__()
self.celoss = nn.CrossEntropyLoss()
self.diceloss = nDiceLoss(num_classes)
self.loss_weight = loss_weight
def forward(self, pred, target):
loss_ce = self.celoss(pred, target[:].long())
loss_dice = self.diceloss(pred, target, softmax=True)
loss = self.loss_weight[0] * loss_ce + self.loss_weight[1] * loss_dice
return loss
class BceDiceLoss(nn.Module):
def __init__(self, wb=1, wd=1):
super(BceDiceLoss, self).__init__()
self.bce = BCELoss()
self.dice = DiceLoss()
self.wb = wb
self.wd = wd
def forward(self, pred, target):
bceloss = self.bce(pred, target)
diceloss = self.dice(pred, target)
loss = self.wd * diceloss + self.wb * bceloss
return loss
class GT_BceDiceLoss(nn.Module):
def __init__(self, wb=1, wd=1):
super(GT_BceDiceLoss, self).__init__()
self.bcedice = BceDiceLoss(wb, wd)
def forward(self, gt_pre, out, target):
bcediceloss = self.bcedice(out, target)
gt_pre5, gt_pre4, gt_pre3, gt_pre2, gt_pre1 = gt_pre
gt_loss = self.bcedice(gt_pre5, target) * 0.1 + self.bcedice(gt_pre4, target) * 0.2 + self.bcedice(gt_pre3, target) * 0.3 + self.bcedice(gt_pre2, target) * 0.4 + self.bcedice(gt_pre1, target) * 0.5
return bcediceloss + gt_loss
class myToTensor:
def __init__(self):
pass
def __call__(self, data):
image, mask = data
return torch.tensor(image).permute(2,0,1), torch.tensor(mask).permute(2,0,1)
class myResize:
def __init__(self, size_h=256, size_w=256):
self.size_h = size_h
self.size_w = size_w
def __call__(self, data):
image, mask = data
return TF.resize(image, [self.size_h, self.size_w]), TF.resize(mask, [self.size_h, self.size_w])
class myRandomHorizontalFlip:
def __init__(self, p=0.5):
self.p = p
def __call__(self, data):
image, mask = data
if random.random() < self.p: return TF.hflip(image), TF.hflip(mask)
else: return image, mask
class myRandomVerticalFlip:
def __init__(self, p=0.5):
self.p = p
def __call__(self, data):
image, mask = data
if random.random() < self.p: return TF.vflip(image), TF.vflip(mask)
else: return image, mask
class myRandomRotation:
def __init__(self, p=0.5, degree=[0,360]):
self.angle = random.uniform(degree[0], degree[1])
self.p = p
def __call__(self, data):
image, mask = data
if random.random() < self.p: return TF.rotate(image,self.angle), TF.rotate(mask,self.angle)
else: return image, mask
class myNormalize:
def __init__(self, data_name, train=True):
if data_name == 'isic18':
if train:
self.mean = 157.561
self.std = 26.706
else:
self.mean = 149.034
self.std = 32.022
elif data_name == 'isic17':
if train:
self.mean = 159.922
self.std = 28.871
else:
self.mean = 148.429
self.std = 25.748
elif data_name == 'isic18_82':
if train:
self.mean = 156.2899
self.std = 26.5457
else:
self.mean = 149.8485
self.std = 35.3346
def __call__(self, data):
img, msk = data
img_normalized = (img-self.mean)/self.std
img_normalized = ((img_normalized - np.min(img_normalized))
/ (np.max(img_normalized)-np.min(img_normalized))) * 255.
return img_normalized, msk
from thop import profile ## 导入thop模块
def cal_params_flops(model, size, logger):
input = torch.randn(1, 3, size, size).cuda()
flops, params = profile(model, inputs=(input,))
print('flops',flops/1e9) ## 打印计算量
print('params',params/1e6) ## 打印参数量
total = sum(p.numel() for p in model.parameters())
print("Total params: %.2fM" % (total/1e6))
logger.info(f'flops: {flops/1e9}, params: {params/1e6}, Total params: : {total/1e6:.4f}')
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0 and gt.sum()>0:
dice = metric.binary.dc(pred, gt)
hd95 = metric.binary.hd95(pred, gt)
return dice, hd95
elif pred.sum() > 0 and gt.sum()==0:
return 1, 0
else:
return 0, 0
def test_single_volume(image, label, net, classes, patch_size=[256, 256],
test_save_path=None, case=None, z_spacing=1, val_or_test=False):
image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy()
if len(image.shape) == 3:
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
if x != patch_size[0] or y != patch_size[1]:
slice = zoom(slice, (patch_size[0] / x, patch_size[1] / y), order=3) # previous using 0
input = torch.from_numpy(slice).unsqueeze(0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
outputs = net(input)
out = torch.argmax(torch.softmax(outputs, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
if x != patch_size[0] or y != patch_size[1]:
pred = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)
else:
pred = out
prediction[ind] = pred
else:
input = torch.from_numpy(image).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
out = torch.argmax(torch.softmax(net(input), dim=1), dim=1).squeeze(0)
prediction = out.cpu().detach().numpy()
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(prediction == i, label == i))
if test_save_path is not None and val_or_test is True:
img_itk = sitk.GetImageFromArray(image.astype(np.float32))
prd_itk = sitk.GetImageFromArray(prediction.astype(np.float32))
lab_itk = sitk.GetImageFromArray(label.astype(np.float32))
img_itk.SetSpacing((1, 1, z_spacing))
prd_itk.SetSpacing((1, 1, z_spacing))
lab_itk.SetSpacing((1, 1, z_spacing))
sitk.WriteImage(prd_itk, test_save_path + '/'+case + "_pred.nii.gz")
sitk.WriteImage(img_itk, test_save_path + '/'+ case + "_img.nii.gz")
sitk.WriteImage(lab_itk, test_save_path + '/'+ case + "_gt.nii.gz")
# cv2.imwrite(test_save_path + '/'+case + '.png', prediction*255)
return metric_list