-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdagstat-2022.qmd
819 lines (608 loc) · 17.9 KB
/
dagstat-2022.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
---
title: "an educator's perspective of the tidyverse"
subtitle: "[bit.ly/tidyperspective-dagstat](https://bit.ly/tidyperspective-dagstat)"
author: "mine çetinkaya-rundel"
format:
revealjs:
theme: theme.scss
transition: fade
background-transition: fade
highlight-style: ayu-mirage
code-link: true
execute:
echo: true
freeze: auto
---
# introduction
```{r}
#| echo: false
library(tidyverse)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
options(dplyr.print_min = 6, dplyr.print_max = 6)
theme_set(theme_gray(base_size = 18))
```
## collaborators
- Johanna Hardin, Pomona College
- Benjamin S. Baumer, Smith College
- Amelia McNamara, University of St Thomas
- Nicholas J. Horton, Amherst College
- Colin W. Rundel, Duke University
## setting the scene
::: columns
::: {.column width="50%" style="text-align: center;"}
![](images/icons8-code-64.png)
**Assumption 1:**
Teach authentic tools
:::
::: {.column width="50%" style="text-align: center;"}
![](images/icons8-code-R-64.png)
**Assumption 2:**
Teach R as the authentic tool
:::
:::
## takeaway
<br><br>
> The tidyverse provides an effective and efficient pathway for undergraduate students at all levels and majors to gain computational skills and thinking needed throughout the data science cycle.
::: aside
Çetinkaya-Rundel, M., Hardin, J., Baumer, B. S., McNamara, A., Horton, N. J., & Rundel, C.
(2021).
An educator's perspective of the tidyverse.
arXiv preprint arXiv:2108.03510.
[arxiv.org/abs/2108.03510](https://arxiv.org/abs/2108.03510)
:::
# principles of the tidyverse
## tidyverse
::: columns
::: {.column width="80%"}
- meta R package that loads eight core packages when invoked and also bundles numerous other packages upon installation
- tidyverse packages share a design philosophy, common grammar, and data structures
:::
::: {.column width="20%"}
![](images/tidyverse.png){fig-align="center"}
:::
:::
![](images/data-science.png){fig-align="center"}
## setup
**Data:** Thousands of loans made through the Lending Club, a peer-to-peer lending platform available in the **openintro** package, with a few modifications.
```{r}
library(tidyverse)
library(openintro)
loans <- loans_full_schema %>%
mutate(
homeownership = str_to_title(homeownership),
bankruptcy = if_else(public_record_bankrupt >= 1, "Yes", "No")
) %>%
filter(annual_income >= 10) %>%
select(
loan_amount, homeownership, bankruptcy,
application_type, annual_income, interest_rate
)
```
## start with a data frame
```{r}
loans
```
## tidy data
1. Each variable forms a column
2. Each observation forms a row
3. Each type of observational unit forms a table
::: aside
Wickham, H.
. (2014).
Tidy Data.
*Journal of Statistical Software*, *59*(10), 1--23.
[doi.org/10.18637/jss.v059.i10](https://doi.org/10.18637/jss.v059.i10).
:::
## task: calculate a summary statistic
::: goal
Calculate the mean loan amount.
:::
```{r}
loans
```
. . .
```{r}
#| eval: false
mean(loan_amount)
```
. . .
```{r}
#| error: true
#| echo: false
mean(loan_amount)
```
## accessing a variable
**Approach 1:** With `attach()`:
```{r}
attach(loans)
mean(loan_amount)
```
. . .
<br>
*Not recommended.* What if you had another data frame you're working with concurrently called `car_loans` that also had a variable called `loan_amount` in it?
```{r}
#| echo: false
detach(loans)
```
## accessing a variable
**Approach 2:** Using `$`:
```{r}
mean(loans$loan_amount)
```
. . .
<br>
**Approach 3:** Using `with()`:
```{r}
with(loans, mean(loan_amount))
```
## accessing a variable
**Approach 4:** The tidyverse approach:
```{r}
loans %>%
summarise(mean_loan_amount = mean(loan_amount))
```
. . .
- More verbose
- But also more expressive and extensible
## the tidyverse approach
::: incremental
- tidyverse functions take a `data` argument that allows them to localize computations inside the specified data frame
- does not muddy the concept of what is in the current environment: variables always accessed from within in a data frame without the use of an additional function (like `with()`) or quotation marks, never as a vector
:::
# teaching with the tidyverse
## task: grouped summary
::: goal
Based on the applicants' home ownership status, compute the average loan amount and the number of applicants.
Display the results in descending order of average loan amount.
:::
<br>
::: small
```{r}
#| echo: false
loans %>%
group_by(homeownership) %>%
summarize(
avg_loan_amount = mean(loan_amount),
n_applicants = n()
) %>%
arrange(desc(avg_loan_amount)) %>%
mutate(
n_applicants = number(n_applicants, big.mark = ","),
avg_loan_amount = dollar(avg_loan_amount, accuracy = 1)
) %>%
kable(
col.names = c("Homeownership", "Number of applicants", "Average loan amount"),
align = "lrr"
)
```
:::
## break it down I
::: columns
::: {.column width="40%"}
Based on the applicants' home ownership status, compute the average loan amount and the number of applicants.
Display the results in descending order of average loan amount.
:::
::: {.column width="60%"}
```{r}
loans
```
:::
:::
## break it down II
::: columns
::: {.column width="40%"}
[Based on the applicants' home ownership status]{style="font-weight:bold;background-color:#ccddeb;"}, compute the average loan amount and the number of applicants.
Display the results in descending order of average loan amount.
:::
::: {.column width="60%"}
::: {.fragment fragment-index="2"}
::: in-out
**\[input\]** data frame
:::
:::
::: {.fragment fragment-index="3"}
```{r}
#| code-line-numbers: "2"
loans %>%
group_by(homeownership)
```
:::
::: {.fragment fragment-index="4"}
::: {.in-out style="text-align: right;"}
data frame **\[output\]**
:::
:::
:::
:::
## break it down III
::: columns
::: {.column width="40%"}
Based on the applicants' home ownership status, [compute the average loan amount]{style="font-weight:bold;background-color:#ccddeb;"} and the number of applicants.
Display the results in descending order of average loan amount.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "3-5"
loans %>%
group_by(homeownership) %>%
summarize(
avg_loan_amount = mean(loan_amount)
)
```
:::
:::
## break it down IV
::: columns
::: {.column width="40%"}
Based on the applicants' home ownership status, compute the average loan amount and [the number of applicants]{style="font-weight:bold;background-color:#ccddeb;"}.
Display the results in descending order of average loan amount.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "5"
loans %>%
group_by(homeownership) %>%
summarize(
avg_loan_amount = mean(loan_amount),
n_applicants = n()
)
```
:::
:::
## break it down V
::: columns
::: {.column width="40%"}
Based on the applicants' home ownership status, compute the average loan amount and the number of applicants.
[Display the results in descending order of average loan amount.]{style="font-weight:bold;background-color:#ccddeb;"}
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "7"
loans %>%
group_by(homeownership) %>%
summarize(
avg_loan_amount = mean(loan_amount),
n_applicants = n()
) %>%
arrange(desc(avg_loan_amount))
```
:::
:::
## putting it back together
::: in-out
**\[input\]** data frame
:::
```{r}
loans %>%
group_by(homeownership) %>%
summarize(
avg_loan_amount = mean(loan_amount),
n_applicants = n()
) %>%
arrange(desc(avg_loan_amount))
```
::: in-out
**\[output\]** data frame
:::
## grouped summary with `aggregate()`
```{r}
res1 <- aggregate(loan_amount ~ homeownership,
data = loans, FUN = length)
res1
names(res1)[2] <- "n_applicants"
res1
```
## grouped summary with `aggregate()`
```{r}
res2 <- aggregate(loan_amount ~ homeownership,
data = loans, FUN = mean)
names(res2)[2] <- "avg_loan_amount"
res2
```
. . .
```{r}
res <- merge(res1, res2)
res[order(res$avg_loan_amount, decreasing = TRUE), ]
```
## grouped summary with `aggregate()`
::: small
```{r}
#| eval: false
res1 <- aggregate(loan_amount ~ homeownership, data = loans, FUN = length)
names(res1)[2] <- "n_applicants"
res2 <- aggregate(loan_amount ~ homeownership, data = loans, FUN = mean)
names(res2)[2] <- "avg_loan_amount"
res <- merge(res1, res2)
res[order(res$avg_loan_amount, decreasing = TRUE), ]
```
:::
. . .
- **Good:** Inputs and outputs are data frames
- **Not so good:** Need to introduce
- formula syntax
- passing functions as arguments
- merging datasets
- square bracket notation for accessing rows
## grouped summary with `tapply()`
```{r}
sort(
tapply(loans$loan_amount, loans$homeownership, mean),
decreasing = TRUE
)
```
. . .
<br>
**Not so good:**
- passing functions as arguments
- distinguishing between the various `apply()` functions
- ending up with a new data structure (`array`)
- reading nested functions
## task: data visualization
::: goal
Create side-by-side box plots that shows the relationship between loan amount and application type, faceted by homeownership.
:::
```{r}
#| echo: false
#| fig-align: center
#| fig-width: 12
ggplot(loans,
aes(x = application_type, y = loan_amount)) +
geom_boxplot() +
facet_wrap(~ homeownership) +
theme_minimal(base_size = 18) +
scale_y_continuous(labels = label_dollar()) +
labs(x = "Application type", y = "Loan amount")
```
## break it down I
::: columns
::: {.column width="40%"}
[Create side-by-side box plots that shows the relationship between annual income and application type]{style="font-weight:bold;background-color:#ccddeb;"}, faceted by homeownership.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "1"
ggplot(loans)
```
:::
:::
## break it down II
::: columns
::: {.column width="40%"}
[Create side-by-side box plots that shows the relationship between annual income and application type]{style="font-weight:bold;background-color:#ccddeb;"}, faceted by homeownership.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "2"
ggplot(loans,
aes(x = application_type))
```
:::
:::
## break it down III
::: columns
::: {.column width="40%"}
[Create side-by-side box plots that shows the relationship between annual income and application type]{style="font-weight:bold;background-color:#ccddeb;"}, faceted by homeownership.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "3"
ggplot(loans,
aes(x = application_type,
y = loan_amount))
```
:::
:::
## break it down IV
::: columns
::: {.column width="40%"}
[Create side-by-side box plots that shows the relationship between annual income and application type]{style="font-weight:bold;background-color:#ccddeb;"}, faceted by homeownership.
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "4"
ggplot(loans,
aes(x = application_type,
y = loan_amount)) +
geom_boxplot()
```
:::
:::
## break it down IV
::: columns
::: {.column width="40%"}
Create side-by-side box plots that shows the relationship between annual income and application type, [faceted by homeownership.]{style="font-weight:bold;background-color:#ccddeb;"}
:::
::: {.column width="60%"}
```{r}
#| code-line-numbers: "5"
ggplot(loans,
aes(x = application_type,
y = loan_amount)) +
geom_boxplot() +
facet_wrap(~ homeownership)
```
:::
:::
## plotting with `ggplot()`
```{r}
#| eval: false
ggplot(loans,
aes(x = application_type, y = loan_amount)) +
geom_boxplot() +
facet_wrap(~ homeownership)
```
. . .
- Each layer produces a valid plot
- Faceting by a third variable takes only one new function
## plotting with `boxplot()`
```{r}
levels <- sort(unique(loans$homeownership))
levels
loans1 <- loans[loans$homeownership == levels[1],]
loans2 <- loans[loans$homeownership == levels[2],]
loans3 <- loans[loans$homeownership == levels[3],]
```
## plotting with `boxplot()`
```{r}
par(mfrow = c(1, 3))
boxplot(loan_amount ~ application_type,
data = loans1, main = levels[1])
boxplot(loan_amount ~ application_type,
data = loans2, main = levels[2])
boxplot(loan_amount ~ application_type,
data = loans3, main = levels[3])
```
## visualizing a different relationship
::: goal
Visualize the relationship between interest rate and annual income, conditioned on whether the applicant had a bankruptcy.
:::
```{r}
#| echo: false
#| fig-align: center
#| fig-width: 12
ggplot(loans,
aes(y = interest_rate, x = annual_income,
color = bankruptcy)) +
geom_point(alpha = 0.1) +
geom_smooth(method = "lm", linewidth = 2, se = FALSE) +
scale_x_log10(labels = scales::label_dollar()) +
scale_y_continuous(labels = scales::label_percent(scale = 1)) +
scale_color_OkabeIto() +
labs(x = "Annual Income", y = "Interest Rate",
color = "Previous\nBankruptcy") +
theme_minimal(base_size = 18)
```
## plotting with `ggplot()`
```{r}
#| fig-align: center
#| fig-width: 12
#| code-line-numbers: "|4|5|6"
ggplot(loans,
aes(y = interest_rate, x = annual_income,
color = bankruptcy)) +
geom_point(alpha = 0.1) +
geom_smooth(method = "lm", linewidth = 2, se = FALSE) +
scale_x_log10()
```
## further customizing `ggplot()`
```{r}
#| fig-align: center
#| fig-width: 12
#| code-line-numbers: "|6|7|8|9,10|11"
ggplot(loans,
aes(y = interest_rate, x = annual_income,
color = bankruptcy)) +
geom_point(alpha = 0.1) +
geom_smooth(method = "lm", linewidth = 2, se = FALSE) +
scale_x_log10(labels = scales::label_dollar()) +
scale_y_continuous(labels = scales::label_percent(scale = 1)) +
scale_color_OkabeIto() +
labs(x = "Annual Income", y = "Interest Rate",
color = "Previous\nBankruptcy") +
theme_minimal(base_size = 18)
```
## plotting with `plot()`
```{r}
#| label: base-r-viz-extend
#| fig-show: hide
# From the OkabeIto palette
cols = c(No = "#e6a003", Yes = "#57b4e9")
plot(
loans$annual_income,
loans$interest_rate,
pch = 16,
col = adjustcolor(cols[loans$bankruptcy], alpha.f = 0.1),
log = "x",
xlab = "Annual Income ($)",
ylab = "Interest Rate (%)",
xaxp = c(1000, 10000000, 1)
)
lm_b_no = lm(
interest_rate ~ log10(annual_income),
data = loans[loans$bankruptcy == "No",]
)
lm_b_yes = lm(
interest_rate ~ log10(annual_income),
data = loans[loans$bankruptcy == "Yes",]
)
abline(lm_b_no, col = cols["No"], lwd = 3)
abline(lm_b_yes, col = cols["Yes"], lwd = 3)
legend(
"topright",
legend = c("Yes", "No"),
title = "Previous\nBankruptcy",
col = cols[c("Yes", "No")],
pch = 16, lwd = 1
)
```
## plotting with `plot()`
```{r}
#| ref.label: base-r-viz-extend
#| echo: false
```
## beyond wrangling, summaries, visualizations
Modeling and inference with **tidymodels**:
- A unified interface to modeling functions available in a large variety of packages
- Sticking to the data frame in / data frame out paradigm
- Guardrails for methodology
# pedagogical strengths of the tidyverse
## consistency
- No matter which approach or tool you use, you should strive to be consistent in the classroom whenever possible
- tidyverse offers consistency, something we believe to be of the utmost importance, allowing students to move knowledge about function arguments to their long-term memory
## teaching consistently
- Challenge: Google and Stack Overflow can be less useful -- demo problem solving
- Counter-proposition: teach *all* (or multiple) syntaxes at once -- trying to teach two (or more!) syntaxes at once will slow the pace of the course, introduce unnecessary syntactic confusion, and make it harder for students to complete their work.
- "Disciplined in what we teach, liberal in what we accept"
::: aside
Postel, J.
(1980).
DoD standard internet protocol.
ACM SIGCOMM Computer Communication Review, 10(4), 12-51.
[datatracker.ietf.org/doc/html/rfc760](https://datatracker.ietf.org/doc/html/rfc760)
:::
## mixability
- Mix with base R code or code from other packages
- In fact, you can't not mix with base R code!
## scalability
Adding a new variable to a visualization or a new summary statistic doesn't require introducing a numerous functions, interfaces, and data structures
## user-centered design
- Interfaces designed with user experience (and learning) in mind
- Continuous feedback collection and iterative improvements based on user experiences improve functions' and packages' usability (and learnability)
## readability
Interfaces that are designed to produce readable code
## community
- The encouraging and inclusive tidyverse community is one of the benefits of the paradigm
- Each package comes with a website, each of these websites are similarly laid out, and results of example code are displayed, and extensive vignettes describe how to use various functions from the package together
## shared syntax
Get SQL for free with **dplyr** verbs!
# final thoughts
## building a curriculum
- Start with `library(tidyverse)`
- Teach by learning goals, not packages
## keeping up with the tidyverse
- Blog posts highlight updates, along with the reasoning behind them and worked examples
- [Lifecycle stages](https://lifecycle.r-lib.org/articles/stages.html) and badges
![](images/lifecycle.png)
## coda {.smaller}
::: columns
::: {.column width="60%"}
> We are all converts to the tidyverse and have made a conscious choice to use it in our research and our teaching.
> We each learned R without the tidyverse and have all spent quite a few years teaching without it at a variety of levels from undergraduate introductory statistics courses to graduate statistical computing courses.
> This paper is a synthesis of the reasons supporting our tidyverse choice, along with benefits and challenges associated with teaching statistics with the tidyverse.
:::
::: {.column width="40%"}
![](images/paper.png)
:::
:::
::: aside
Çetinkaya-Rundel, M., Hardin, J., Baumer, B. S., McNamara, A., Horton, N. J., & Rundel, C.
(2021).
An educator's perspective of the tidyverse.
arXiv preprint arXiv:2108.03510.
[arxiv.org/abs/2108.03510](https://arxiv.org/abs/2108.03510)
:::
# thank you!
[bit.ly/tidyperspective-dagstat](https://bit.ly/tidyperspective-dagstat)