-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathChatGLM_model_engine.py
164 lines (123 loc) · 6.34 KB
/
ChatGLM_model_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import torch
import transformers
import bitsandbytes as bnb
from dataclasses import dataclass, field
from typing import Optional, Dict
from transformers import BitsAndBytesConfig
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
from transformers import Trainer
from utils import _get_compute_dtype, print_trainable_parameters
from send_event import capture_event
class ChatGLMEngine:
def __init__(self, model_name, training_config):
if not training_config.training_recipe in ["lora", "full_training"]:
raise Exception(f"{training_config.training_recipe} is not a valid training recipe. Please choose either \"lora\" or \"full_training\"")
self.config = training_config
self.training_recipe = training_config.training_recipe
self.model_name = model_name
def train(self, data_module):
print("config", self.config)
training_args = self.construct_training_arguments()
trainer = Trainer(
model=self.model,
tokenizer=self.tokenizer,
train_dataset=data_module.train_dataset,
data_collator=data_module.data_collator,
args=training_args
)
trainer.train()
capture_event("end-training", {})
def prepare_model_for_training(self):
capture_event("start-training", {})
if self.config.training_recipe == "lora":
self.model = transformers.AutoModelForCausalLM.from_pretrained(
self.model_name,
load_in_4bit=self.config.bits == 4,
load_in_8bit=self.config.bits == 8,
device_map=self._get_device_map(),
torch_dtype=self.config.compute_dtype,
trust_remote_code=self.config.trust_remote_code,
use_auth_token=self.config.use_auth_token,
quantization_config=BitsAndBytesConfig(
load_in_4bit=self.config.bits == 4,
load_in_8bit=self.config.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=self.config.compute_dtype,
bnb_4bit_use_double_quant=self.config.double_quant,
bnb_4bit_quant_type=self.config.quant_type,
trust_remote_code=self.config.trust_remote_code
)
)
elif self.config.training_recipe == "full_training":
self.model = transformers.AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=self._get_device_map(),
torch_dtype=self.config.compute_dtype,
trust_remote_code=self.config.trust_remote_code,
use_auth_token=self.config.use_auth_token
)
self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
if self.training_recipe == "lora":
self.model = prepare_model_for_kbit_training(self.model, use_gradient_checkpointing=self.config.gradient_checkpointing)
if self.config.gradient_checkpointing:
self.model.gradient_checkpointing_enable()
if self.training_recipe == "lora":
modules = self._find_all_linear_names()
lora_config = LoraConfig(
r=self.config.lora_r,
lora_alpha=self.config.lora_alpha,
target_modules=modules,
lora_dropout=self.config.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
self.model = get_peft_model(self.model, lora_config)
print("Model ready for training!")
print_trainable_parameters(self.model)
def _get_device_map(self):
device_map = "auto"
if os.environ.get("LOCAL_RANK") is not None:
device_map = {'': int(os.environ.get('LOCAL_RANK', '0'))}
return device_map
def construct_training_arguments(self):
args=transformers.TrainingArguments(
output_dir = self.config.output_dir,
optim = self.config.optim,
per_device_train_batch_size = self.config.batch_size,
gradient_accumulation_steps = self.config.gradient_accumulation_steps,
num_train_epochs = self.config.n_epochs,
weight_decay = self.config.weight_decay,
learning_rate = self.config.learning_rate,
max_grad_norm = self.config.max_grad_norm,
gradient_checkpointing = self.config.gradient_checkpointing,
do_train = self.config.do_train,
lr_scheduler_type = self.config.lr_scheduler_type,
warmup_ratio = self.config.warmup_ratio,
logging_steps = self.config.logging_steps,
group_by_length = self.config.group_by_length,
save_strategy = self.config.save_strategy,
)
return args
def _find_all_linear_names(self):
cls = bnb.nn.Linear4bit if self.config.bits == 4 else (bnb.nn.Linear8bitLt if self.config.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in self.model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def _smart_tokenizer_and_embedding_resize(self):
if self.tokenizer.pad_token is None:
num_new_tokens = self.tokenizer.add_special_tokens(dict(pad_token="[PAD]"))
self.model.resize_token_embeddings(len(self.tokenizer))
if num_new_tokens > 0:
input_embeddings = self.model.get_input_embeddings().weight.data
output_embeddings = self.model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg