-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
335 lines (297 loc) · 12.9 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import sys
import scipy.io as spio
import numpy as np
import matplotlib.pyplot as plt
import scipy
from scipy.signal import freqz
from scipy.signal import butter, lfilter, lfilter_zi
from scipy.signal import filtfilt
# Load the mat file with data in struct format
def loadmat(filename):
'''
this function should be called instead of direct spio.loadmat
as it cures the problem of not properly recovering python dictionaries
from mat files. It calls the function check keys to cure all entries
which are still mat-objects
'''
data = spio.loadmat(filename, struct_as_record=False, squeeze_me=True)
return _check_keys(data)
def _check_keys(dict):
'''
checks if entries in dictionary are mat-objects. If yes
todict is called to change them to nested dictionaries
'''
for key in dict:
if isinstance(dict[key], spio.matlab.mio5_params.mat_struct):
dict[key] = _todict(dict[key])
return dict
def _todict(matobj):
'''
A recursive function which constructs from matobjects nested dictionaries
'''
dict = {}
for strg in matobj._fieldnames:
elem = matobj.__dict__[strg]
if isinstance(elem, spio.matlab.mio5_params.mat_struct):
dict[strg] = _todict(elem)
else:
dict[strg] = elem
return dict
def get_data(load_file, data_type_name):
mat = loadmat(load_file)
# channel_data will be a list. Every element of the list
# is one trial (an ndarray) containing 8 channels by n number of datapoints
# To get a single decimal datapoint: channel_data[trial][channel][timestep]
channel_data = []
for i in range(len(mat['Data'][data_type_name])):
data = _todict(mat['Data'][data_type_name][i])
channel_data.append(data['PSUEEGData']['Channels'])
try:
trial_type = list(mat['Data']['TrialType'])
except:
print("No trial type data found. Returning empty vector for trial_type.")
trial_type = []
return channel_data, trial_type
# Shift stimulus to t = 0 for each trial, and reflect the last bit of the final trial to keep lengths nearly equal
def reframe(stimulus_delay, data_object, sample_rate):
reformatted_data_object = [[[] for i in range(len(data_object[0]))] for i in range(len(data_object))]
print("Length of reformmatted_data_object: " + str(len(reformatted_data_object)))
print("Reformatting data to adjust for trail start offset.")
for trial in range(len(data_object)-1):
for channel in range(len(data_object[0])):
print("Writing trial " + str(trial+1) + " channel " + str(channel+1))
#test = list(data_object[trial][channel][int(stimulus_delay * sample_rate):]) + list(data_object[trial+1][channel][:int(stimulus_delay * sample_rate)])
#print("Test length: " + str(len(test)))
reformatted_data_object[trial][channel].append(list(data_object[trial][channel][int(stimulus_delay * sample_rate):]) + list(data_object[trial+1][channel][:int(stimulus_delay * sample_rate)]))
last_trial = len(data_object) - 1
for channel in range(len(data_object[last_trial])):
print("Writing trial " + str(last_trial+1) + " channel " + str(channel+1))
reformatted_data_object[last_trial][channel].append(list(data_object[last_trial][channel][int(stimulus_delay * sample_rate):]) + list(reversed(data_object[last_trial][channel][-int(stimulus_delay * sample_rate):])))
return reformatted_data_object
################################################
# Bandpass Filter
################################################
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def bandpass_filt(fs, lowcut, highcut, shifted_data_object):
"""
# Plot the frequency response for a few different orders.
plt.figure(1)
plt.clf()
for order in [3, 6, 9]:
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
w, h = freqz(b, a, worN=2000)
plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="order = %d" % order)
plt.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)],
'--', label='sqrt(0.5)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.grid(True)
plt.legend(loc='best')
plt.show()
"""
# Concatenate all of the trials
# all_data has shape(numchannels, sum_time_all_trials)
all_data = [[] for i in range(len(shifted_data_object[0]))]
print("Appending data into one large vector.")
for trial in shifted_data_object:
print("Iterating trial.")
for i in range(len(trial)):
all_data[i] = list(all_data[i]) + list(trial[i][0])
"""
plt.figure(32)
plt.clf()
plt.plot(all_data[0], 'c-', label=("Prefiltered channel data for channel " + str(1)), linewidth=1.5)
plt.axis('tight')
plt.legend(loc='upper left')
"""
# Get the indices used to compose / decompose the all_data matrix
trial_lengths = []
for trial_num in range(len(shifted_data_object)):
trial_lengths.append(len(shifted_data_object[trial_num][0][0]))
# Plot the function we wish to filter
T = len(all_data[0])/fs
nsamples = int(T * fs)
t = np.linspace(0, T, nsamples, endpoint=False)
# Filter all of the channels individually
b, a = butter_bandpass(lowcut, highcut, fs)
y_filtered = []
for i in range(len(all_data)):
x = all_data[i][:nsamples]
y = filtfilt(b, a, x, padlen = 1000)
## Or, lfilter_zi
#zi = lfilter_zi(b, a)
#y3, zo = lfilter(b, a, x, zi=zi*x[0])
y_filtered.append(y)
"""
plt.figure(33)
plt.clf()
plt.plot(y_filtered[0], 'c-', label=("Post-filtered channel data for channel " + str(1)), linewidth=1.5)
plt.axis('tight')
plt.legend(loc='upper left')
plt.show()
# Plot some of the filtered data
for i in range(len(y_filtered)):
plt.figure(2+i)
plt.clf()
plt.plot(t, y_filtered[i], 'c-', label=("filtfilt signal channel " + str(i+1)), linewidth=1.5)
plt.axis('tight')
plt.legend(loc='upper left')
plt.show()
"""
# But we don't want to return y_filtered, we want to return y_filtered separated by trial
return y_filtered
#####################################
# Bandpower
#####################################
def bandpower(x, fs, fmin, fmax):
f, Pxx = scipy.signal.periodogram(x, fs=fs)
ind_min = scipy.argmax(f > fmin) - 1
ind_max = scipy.argmax(f > fmax) - 1
return scipy.trapz(Pxx[ind_min: ind_max], f[ind_min: ind_max])
# Compute the alpha bandpower for each of the channels for all time recorded
'''def windowed_bandpower(filtered_data, band_low, band_high, windowsize, fs, slice_width):
power_data = [[] for k in range(len(filtered_data))]
windowhalf = int(windowsize/2)
for i in range(len(filtered_data)):
for j in range(windowhalf,int(slice_width/fs)-windowhalf,1):
data_subset = filtered_data[i][(sample_rate*j-(sample_rate*windowhalf)):(sample_rate*j+sample_rate*windowhalf)]
power_out = bandpower(data_subset,sample_rate,band_low,band_high)
power_data[i].append(power_out)
#print("Writing " + str(power_out) + " to power vector " + str(i+1))
return power_data'''
def windowed_bandpower(filtered_data, band_low, band_high, windowsize, windowstep, fs, slice_width):
power_data = [[] for k in range(len(filtered_data))]
windowhalf = windowsize/2
for i in range(len(filtered_data)):
#print(slice_width/fs - windowhalf)
j = windowhalf
while j <= (slice_width/fs - windowhalf):
data_subset = filtered_data[i][int(fs*j-(fs*windowhalf)):int(fs*j+fs*windowhalf)]
power_out = bandpower(data_subset,fs,band_low,band_high)
power_data[i].append(power_out)
j += windowstep
#print("Writing " + str(power_out) + " to power vector " + str(i+1))
return power_data
def mean_slicer(shifted_data_object, filtered_data):
indices = []
for i in range(len(shifted_data_object)):
indices.append(len(shifted_data_object[i][0][0]))
print(indices)
slice_width = min(indices)
print("Slice_width: " + str(slice_width))
slices=[list(np.zeros(slice_width)) for i in range(len(filtered_data))]
slice_width = min(indices)
for j in range(len(filtered_data)):
for i in range(len(indices)):
lower = sum(indices[:i])
upper = lower + slice_width
print("Working on channel " + str(i + 1) + " slices with indices " + str(lower) + " to " + str(upper) + ".")
slices[j] = list(np.array(slices[j]) + np.array(filtered_data[j][lower:upper])/(len(indices)+1))
return slices, slice_width
def trial_slicer(shifted_data_object, filtered_data):
indices = []
for i in range(len(shifted_data_object)):
indices.append(len(shifted_data_object[i][0][0]))
print(indices)
slice_width = min(indices)
print("Slice_width: " + str(slice_width))
all_trials = []
slice_width = min(indices)
for i in range(len(indices)):
trial = []
for j in range(len(filtered_data)):
lower = sum(indices[:i])
upper = lower + slice_width
print("Working on segmenting channel " + str(i + 1) + " slices with indices " + str(lower) + " to " + str(upper) + ".")
trial.append(filtered_data[j][lower:upper])
all_trials.append(trial)
return all_trials, slice_width
def data_subset(dataset, time_window, sample_rate):
t_low = int(time_window[0]*sample_rate)
t_high = int(time_window[1]*sample_rate)
sub_data = []
for trial_num in range(len(dataset)):
trial = []
for channel_num in range(len(dataset[0])):
trial.append(dataset[trial_num][channel_num][t_low:t_high])
sub_data.append(trial)
return sub_data
def trial_type_separator(dataset, trial_labels):
A = []
B = []
for trial_num in range(len(dataset)):
trial = []
for channel_num in range(len(dataset[0])):
trial.append(dataset[trial_num][channel_num])
if trial_labels[trial_num] == 0:
A.append(trial)
else:
B.append(trial)
return A, B
def matrix_plotter(plot_data, plot_label):
for i in range(len(plot_data)):
plt.figure(i+1)
plt.clf()
plt.plot(plot_data[i], 'c-', label=(str(plot_label) + " for channel " + str(i+1)), linewidth=1.5)
plt.axis('tight')
plt.legend(loc='upper left')
plt.show()
def channel_plotter(plot_data, channel_list, plot_title, sample_rate):
fig, ax = plt.subplots()
time_vec = np.asarray(list(range(len(plot_data[0]))))/float(sample_rate)
for channel in range(len(channel_list)):
line_label = "Channel " + str(channel_list[channel])
ax.plot(time_vec, plot_data[channel_list[channel]-1], linewidth=2, label=line_label)
plt.legend(loc='lower right')
plt.title(str(plot_title))
plt.xlabel("Time (s)")
plt.ylabel("EEG Signal")
plt.show()
def channel_remover(dataset, rm_channels_list):
for channel_number in reversed(sorted(rm_channels_list)):
print("removing channel " + str(channel_number))
dataset = dataset[:channel_number - 1] + dataset[channel_number:]
return dataset
def apply_CSP_filter(csp_filter, data):
out_data = np.matmul(csp_filter, data)
return out_data
def mean_of_channels(data, channel_list):
ch_sum = np.asarray(data[channel_list[0]-1])
for i in range(1,len(channel_list)):
ch_sum = ch_sum + np.asarray(data[channel_list[i]-1])
mean = ch_sum / len(channel_list)
return list(mean)
if __name__ == '__main__':
sample_rate = 1000 #Hz
load_file = 'BCI_AlphaBlock_Bruce_180125.mat'
#load_file = 'feb_1_data.mat'
stimulus_delay = 3 #Seconds
low_cut = 2 #Hz
high_cut = 60 #Hz
# Parameters for calculation of bandpower
band_low = 7 #Hz
band_high = 14 #Hz
windowsize = 3 #seconds
windowstep = .2 #seconds
# Load EEG data from .mat file
data_object = get_data(load_file)
# Shift each trial by offset to the left. Last trial will have mirrored end.
shifted_data_object = reframe(stimulus_delay, data_object, sample_rate)
# Apply a bandpass filter and concatenate all trials
filtered_data = bandpass_filt(sample_rate, low_cut, high_cut, shifted_data_object)
# Take the mean of filtered data by trial (now length = min(length(trials)))
mean_trial_data, slice_width = mean_slicer(shifted_data_object, filtered_data)
# Calculate the bandpower for alpha, beta, etc defined by [band_low, band_high]
alpha_power_data = windowed_bandpower(mean_trial_data, band_low, band_high, windowsize, windowstep, sample_rate, slice_width)
# Plot the result
matrix_plotter(alpha_power_data, "alpha bandpower")
sys.stdout.write('Hello World')