-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclassifier.py
62 lines (47 loc) · 1.68 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import urllib
import numpy as np
import tensorflow as tf
## Data sets
#DATA_TRAINING = "data_train.csv"
#DATA_TEST = "data_test.csv"
DATA_TRAINING = "train_2.csv"
DATA_TEST = "test_2.csv"
def main():
# Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=DATA_TRAINING,
target_dtype=np.float32,
features_dtype=np.float32)
test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=DATA_TEST,
target_dtype=np.float32,
features_dtype=np.float32)
# Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=10)]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[40,60,40],
n_classes=2)
# Define the training inputs
def get_train_inputs():
x = tf.constant(training_set.data)
y = tf.constant(training_set.target)
return x, y
# Define the test inputs
def get_test_inputs():
x = tf.constant(test_set.data)
y = tf.constant(test_set.target)
return x, y
for i in range(50):
# Fit model.
classifier.fit(input_fn=get_train_inputs, steps=500)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=get_test_inputs,
steps=1)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
if __name__ == "__main__":
main()