forked from cjf8899/SSD_ResNet_Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
115 lines (80 loc) · 3.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from config import opt
import numpy as np
from lib.res_model import RES18_SSD, RES101_SSD
from lib.vgg_model import VGG_SSD
from lib.resnet import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from lib.utils import detection_collate
from lib.multibox_encoder import MultiBoxEncoder
from lib.ssd_loss import MultiBoxLoss
from voc_dataset import VOCDetection
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def adjust_learning_rate1(optimizer):
lr = opt.lr * 0.1
print('change learning rate, now learning rate is :', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate2(optimizer):
lr = opt.lr * 0.01
print('change learning rate, now learning rate is :', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
print('now runing on device : ', device)
if not os.path.exists(opt.save_folder):
os.mkdir(opt.save_folder)
# model = RES18_SSD(opt.num_classes, opt.anchor_num, pretrain=True)
model = RES101_SSD(opt.num_classes, opt.anchor_num, pretrain=True)
# model = VGG_SSD(opt.num_classes, opt.anchor_num)
# vgg_weights = torch.load(opt.save_folder + opt.basenet)
# print('Loading base network...')
# model.vgg.load_state_dict(vgg_weights)
model.to(device)
model = nn.DataParallel(model)
model.train()
mb = MultiBoxEncoder(opt)
image_sets = [['2007', 'trainval'], ['2012', 'trainval']]
dataset = VOCDetection(opt, image_sets=image_sets, is_train=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, collate_fn=detection_collate, num_workers=4)
criterion = MultiBoxLoss(opt.num_classes, opt.neg_radio).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum,weight_decay=opt.weight_decay)
print('start training........')
for e in range(opt.epoch):
if e == 77:
adjust_learning_rate1(optimizer)
elif e == 96:
adjust_learning_rate2(optimizer)
total_loc_loss = 0
total_cls_loss = 0
total_loss = 0
for i , (img, boxes) in enumerate(dataloader):
img = img.to(device)
gt_boxes = []
gt_labels = []
for box in boxes:
labels = box[:, 4]
box = box[:, :-1]
match_loc, match_label = mb.encode(box, labels)
gt_boxes.append(match_loc)
gt_labels.append(match_label)
gt_boxes = torch.FloatTensor(gt_boxes).to(device)
gt_labels = torch.LongTensor(gt_labels).to(device)
p_loc, p_label = model(img)
loc_loss, cls_loss = criterion(p_loc, p_label, gt_boxes, gt_labels)
loss = loc_loss + cls_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loc_loss += loc_loss.item()
total_cls_loss += cls_loss.item()
total_loss += loss.item()
if i % opt.log_fn == 0:
avg_loc = total_loc_loss / (i+1)
avg_cls = total_cls_loss / (i+1)
avg_loss = total_loss / (i+1)
print('epoch[{}] | batch_idx[{}] | loc_loss [{:.2f}] | cls_loss [{:.2f}] | total_loss [{:.2f}]'.format(e, i, avg_loc, avg_cls, avg_loss))
if e > 100:
torch.save(model.state_dict(), os.path.join(opt.save_folder, 'loss-{:.2f}.pth'.format(total_loss)))