-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
353 lines (242 loc) · 11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from transformers import *
import torchvision
from lib import segmentation
import transforms as T
import utils
import numpy as np
from pycocotools import mask
from scipy.misc import imread
def get_dataset(name, image_set, transform, args):
if name == 'refcoco' or name == 'refcoco+':
if args.baseline_bilstm:
from data.dataset_refer_glove import ReferDataset
else:
from data.dataset_refer_bert import ReferDataset
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
input_size=(256, 448),
eval_mode=True)
num_classes = 2
elif name == 'a2d':
from data.a2d import A2DDataset
ds = A2DDataset(args,
train= image_set == 'train',
db_root_dir= args.a2d_data_root,
transform=transform,
inputRes=(args.size_a2d_x, args.size_a2d_y))
num_classes = 2
elif name == 'davis':
from data.davis2017 import DAVIS17
ds = DAVIS17(args,
train= image_set == 'train',
db_root_dir=args.davis_data_root,
transform=transform,
emb_type=args.emb_type)
num_classes = 2
return ds, num_classes
def evaluate(args, model, data_loader, ref_ids, refer, bert_model, device, num_classes, display=False, baseline_model=None,
objs_ids=None, num_objs_list=None):
model.eval()
confmat = utils.ConfusionMatrix(num_classes)
metric_logger = utils.MetricLogger(delimiter=" ")
refs_ids_list = []
outputs = []
# dict to save results for DAVIS
total_outputs = {}
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
header = 'Test:'
with torch.no_grad():
k = 0
l = 0
for image, target, sentences, attentions in metric_logger.log_every(data_loader, 100, header):
image, target, sentences, attentions = image.to(device), target.to(device), sentences.to(device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
if args.dataset == 'davis' or args.dataset == 'a2d':
sentences = sentences.unsqueeze(-1)
attentions = attentions.unsqueeze(-1)
target = target.cpu().data.numpy()
for j in range(sentences.size(-1)):
refs_ids_list.append(k)
if args.baseline_bilstm:
sent = sentences[:, :, :, j]
att = attentions[:, :, j]
num_tokens = torch.sum(att, dim=-1)
processed_seqs = sent[:num_tokens, :]
hidden_states, cell_states = baseline_model[0](processed_seqs)
hidden_states = hidden_states[0]
processed_hidden_states = hidden_states[:num_tokens, :]
last_hidden_states = torch.mean(processed_hidden_states, dim=0)
last_hidden_states = baseline_model[1](last_hidden_states)
embedding = last_hidden_states.unsqueeze(1)
else:
last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
embedding = last_hidden_states[:, 0, :]
output, _, _ = model(image, embedding.squeeze(1))
output = output['out'].cpu()
output_mask = output.argmax(1).data.numpy()
outputs.append(output_mask)
I, U = computeIoU(output_mask, target)
if U == 0:
this_iou = 0.0
else:
this_iou = I*1.0/U
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
del image, target, attentions
if display:
plt.figure()
plt.axis('off')
if args.dataset == 'refcoco' or args.dataset == 'refcoco+':
ref = refer.loadRefs(ref_ids[k])
image_info = refer.Imgs[ref[0]['image_id']]
for p in range(len(ref[0]['sentences'])):
l += 1
if args.dataset == 'refcoco' or args.dataset == 'refcoco+':
sentence = ref[0]['sentences'][p]['raw']
im_path = os.path.join(refer.IMAGE_DIR, image_info['file_name'])
elif args.dataset == 'davis':
idx = ref_ids[k]
sentence = refer[idx]
im_path = os.path.join(args.davis_data_root, img_list[k])
elif args.dataset == 'a2d':
sentence = refer[k]
image_name = ref_ids[k]
im_path = os.path.join(args.a2d_root_dir, image_name)
im = imread(im_path)
plt.imshow(im)
if args.dataset == 'davis':
if img_list[k] not in total_outputs:
total_outputs[img_list[k]] = {}
o_mask = output_mask.copy()
o_mask = o_mask.astype(int)*int(idx.split('_')[-1])
total_outputs[img_list[k]] = o_mask.squeeze(0)
else:
total_outputs[img_list[k]][output_mask.squeeze(0) == True] = int(idx.split('_')[-1])
plt.text(0, 0, sentence, fontsize=12)
ax = plt.gca()
ax.set_autoscale_on(False)
# mask definition
img = np.ones((im.shape[0], im.shape[1], 3))
color_mask = np.array([0, 255, 0]) / 255.0
for i in range(3):
img[:, :, i] = color_mask[i]
if args.dataset == 'refcoco' or args.dataset == 'refcoco+':
output_mask = outputs[-len(ref[0]['sentences'])+p].transpose(1, 2, 0)
ax.imshow(np.dstack((img, output_mask * 0.5)))
if not os.path.isdir(results_folder):
os.makedirs(results_folder)
figname = os.path.join(args.results_folder, str(l) + '.png')
plt.close()
k += 1
if args.dataset == 'davis':
for r in total_outputs.keys():
new_im = Image.fromarray(total_outputs[r].astype(np.uint8))
file_name = r.split('/')[-1].split('.')[0]
folder_name = r.split('/')[-2]
if not os.path.isdir(os.path.join(submission_path, folder_name)):
os.makedirs(os.path.join(submission_path, folder_name))
new_im.save(os.path.join(args.submission_path, folder_name, file_name + '.png'))
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU*100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
return refs_ids_list, outputs
def get_transform():
transforms = []
transforms.append(T.ToTensor())
transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
return T.Compose(transforms)
# compute IoU
def computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
def main(args):
device = torch.device(args.device)
dataset_test, _ = get_dataset(args.dataset, args.split, get_transform(), args)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, sampler=test_sampler,
num_workers=args.workers, collate_fn=utils.collate_fn_emb_berts)
model = segmentation.__dict__[args.model](num_classes=2,
aux_loss=False,
pretrained=False,
args=args)
model.to(device)
model_class = BertModel
bert_model = model_class.from_pretrained(args.ck_bert)
bert_model.to(device)
if args.baseline_bilstm:
bilstm = torch.nn.LSTM(input_size=300, hidden_size=1000, num_layers=1, bidirectional=True, batch_first=True)
fc_layer = torch.nn.Linear(2000, 768)
bilstm = bilstm.to(device)
fc_layer = fc_layer.to(device)
checkpoint = torch.load(args.resume, map_location='cpu')
bert_model.load_state_dict(checkpoint['bert_model'])
model.load_state_dict(checkpoint['model'])
if args.baseline_bilstm:
bilstm.load_state_dict(checkpoint['bilstm'])
fc_layer.load_state_dict(checkpoint['fc_layer'])
if args.dataset == 'refcoco' or args.dataset == 'refcoco+':
ref_ids = dataset_test.ref_ids
refer = dataset_test.refer
ids = ref_ids
objs_ids = None
num_objs_list = None
elif args.dataset == 'davis':
ids = dataset_test.ids
objs_ids = None
num_objs_list = None
with open(args.davis_annotations_file) as f:
lines = f.readlines()
elif args.dataset == 'a2d':
ids = dataset_test.img_list
objs_ids = dataset_test.objs
num_objs_list = dataset_test.num_objs_list
with open(args.davis_annotations_file) as f:
lines = f.readlines()
if args.dataset == 'davis' or args.dataset == 'a2d':
refer = {}
for l in lines:
words = l.split()
refer[words[0] + '_' + words[1]] = {}
refer[words[0] + '_' + words[1]] = ' '.join(words[2:])[1:-1]
if args.baseline_bilstm:
baseline_model = [bilstm, fc_layer]
else:
baseline_model = None
refs_ids_list, outputs = evaluate(args, model, data_loader_test, ids, refer, bert_model, device=device,
num_classes=2, baseline_model=baseline_model, objs_ids=objs_ids, num_objs_list=num_objs_list)
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
main(args)