-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
468 lines (315 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from functools import reduce #python 3
import operator
from transformers import *
import torchvision
from lib import segmentation
from coco_utils import get_coco
import transforms as T
import utils
import numpy as np
# to visualize the curves
from logger import Logger
import gc
def get_dataset(name, image_set, transform, args):
if name == 'refcoco' or name == 'refcoco+':
if args.baseline_bilstm:
from data.dataset_refer_glove import ReferDataset
else:
from data.dataset_refer_bert import ReferDataset
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
input_size=(256, 448))
num_classes = 2
elif name == 'a2d':
from data.a2d import A2DDataset
ds = A2DDataset(args,
train= image_set == 'train',
db_root_dir= args.a2d_data_root,
transform=transform,
inputRes=(args.size_a2d_x, args.size_a2d_y))
num_classes = 2
elif name == 'davis':
from data.davis2017 import DAVIS17
ds = DAVIS17(args,
train= image_set == 'train',
db_root_dir=args.davis_data_root,
transform=transform,
emb_type=args.emb_type)
num_classes = 2
return ds, num_classes
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr - args.lr_specific_decrease*epoch
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# IoU calculation for proper validation
def IoU(pred, gt):
pred = pred.argmax(1)
intersection = torch.sum(torch.mul(pred, gt))
union = torch.sum(torch.add(pred, gt)) - intersection
if intersection == 0 or union == 0:
iou = 0
else:
iou = float(intersection) / float(union)
return iou
def get_transform(train, base_size=520, crop_size=480):
min_size = int((0.8 if train else 1.0) * base_size)
max_size = int((0.8 if train else 1.0) * base_size)
transforms = []
transforms.append(T.RandomResize(min_size, max_size))
if train:
transforms.append(T.RandomCrop(crop_size))
transforms.append(T.ToTensor())
transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
return T.Compose(transforms)
def criterion(inputs, target, args):
losses = {}
for name, x in inputs.items():
losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)
if len(losses) == 1:
return losses['out']
return losses['out'] + 0.5 * losses['aux']
def evaluate(model, data_loader, args, bert_model, device, num_classes, epoch, logger, baseline_model):
model.eval()
confmat = utils.ConfusionMatrix(num_classes)
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
val_loss = 0
seg_loss = 0
cos_loss = 0
total_its = 0
acc_ious = 0
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
total_its += 1
image, target, sentences, attentions = data
image, target, sentences, attentions = image.to(device), target.to(device), sentences.to(
device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
if args.baseline_bilstm:
num_tokens = torch.sum(attentions, dim=-1)
unbinded_sequences = list(torch.unbind(sentences, dim=0))
processed_seqs = [seq[:num_tokens[i], :] for i, seq in enumerate(unbinded_sequences)]
packed_sentences = torch.nn.utils.rnn.pack_sequence(processed_seqs, enforce_sorted=False)
hidden_states, cell_states = baseline_model[0](packed_sentences)
hidden_states = torch.nn.utils.rnn.pad_packed_sequence(hidden_states, batch_first=True,
total_length=20)
hidden_states = hidden_states[0]
unbinded_hidden_states = list(torch.unbind(hidden_states, dim=0))
processed_hidden_states = [seq[:num_tokens[i], :] for i, seq in enumerate(unbinded_hidden_states)]
mean_hidden_states = [torch.mean(seq, dim=0).unsqueeze(0) for seq in processed_hidden_states]
last_hidden_states = torch.cat(mean_hidden_states, dim=0)
last_hidden_states = baseline_model[1](last_hidden_states)
last_hidden_states = last_hidden_states.unsqueeze(1)
else:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
embedding = last_hidden_states[:, 0, :]
output, vis_emb, lan_emb = model(image, embedding.squeeze(1))
iou = IoU(output['out'], target)
acc_ious += iou
loss = criterion(output, target, args)
output = output['out']
confmat.update(target.flatten(), output.argmax(1).flatten())
confmat.reduce_from_all_processes()
val_loss = val_loss/total_its
iou = acc_ious / total_its
logger.scalar_summary('loss', val_loss, epoch)
logger.scalar_summary('iou', iou, epoch)
return confmat, iou
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args, print_freq, logger,
iterations, bert_model, baseline_model):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
train_loss = 0
total_its = 0
train_emb_loss = 0
train_seg_loss = 0
for data in metric_logger.log_every(data_loader, print_freq, header):
total_its += 1
image, target, sentences, attentions = data
image, target, sentences, attentions = image.to(device), target.to(device), sentences.to(device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
if args.baseline_bilstm:
num_tokens = torch.sum(attentions, dim=-1)
unbinded_sequences = list(torch.unbind(sentences, dim=0))
processed_seqs = [seq[:num_tokens[i], :] for i, seq in enumerate(unbinded_sequences)]
packed_sentences = torch.nn.utils.rnn.pack_sequence(processed_seqs, enforce_sorted=False)
hidden_states, cell_states = baseline_model[0](packed_sentences)
hidden_states = torch.nn.utils.rnn.pad_packed_sequence(hidden_states, batch_first=True, total_length=20)
hidden_states = hidden_states[0]
unbinded_hidden_states = list(torch.unbind(hidden_states, dim=0))
processed_hidden_states = [seq[:num_tokens[i], :] for i, seq in enumerate(unbinded_hidden_states)]
mean_hidden_states = [torch.mean(seq, dim=0).unsqueeze(0) for seq in processed_hidden_states]
last_hidden_states = torch.cat(mean_hidden_states, dim=0)
last_hidden_states = baseline_model[1](last_hidden_states)
last_hidden_states = last_hidden_states.unsqueeze(1)
else:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
embedding = last_hidden_states[:, 0, :]
output, vis_emb, lan_emb = model(image, embedding.squeeze(1))
loss = criterion(output, target, args)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.linear_lr:
adjust_learning_rate(optimizer, epoch, args)
else:
lr_scheduler.step()
train_loss += loss.item()
iterations += 1
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
del image, target, sentences, attentions, loss, embedding, output, vis_emb, lan_emb, last_hidden_states, data
gc.collect()
torch.cuda.empty_cache()
train_loss = train_loss/total_its
logger.scalar_summary('loss', train_loss, epoch)
logger.scalar_summary('lr', optimizer.param_groups[0]["lr"], epoch)
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
device = torch.device(args.device)
dataset, num_classes = get_dataset(args.dataset, "train",
get_transform(train=True, base_size=args.base_size, crop_size=args.crop_size), args=args)
dataset_test, _ = get_dataset(args.dataset, "val",
get_transform(train=False, base_size=args.base_size, crop_size=args.crop_size), args=args)
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn_emb_berts, drop_last=True)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn_emb_berts)
model = segmentation.__dict__[args.model](num_classes=num_classes,
aux_loss=args.aux_loss,
pretrained=args.pretrained,
args=args)
model_class = BertModel
bert_model = model_class.from_pretrained(args.ck_bert)
if args.baseline_bilstm:
bilstm = torch.nn.LSTM(input_size=300, hidden_size=1000, num_layers=1, bidirectional=True, batch_first=True)
fc_layer = torch.nn.Linear(2000, 768)
bilstm = bilstm.cuda()
fc_layer = fc_layer.cuda()
if args.pretrained_refvos:
checkpoint = torch.load(args.ck_pretrained_refvos)
model.load_state_dict(checkpoint['model'])
bert_model.load_state_dict(checkpoint['bert_model'])
elif args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if args.baseline_bilstm:
bilstm.load_state_dict(checkpoint['bilstm'])
fc_layer.load_state_dict(checkpoint['fc_layer'])
model = model.cuda()
bert_model = bert_model.cuda()
model_without_ddp = model
bert_model_without_ddp = bert_model
if args.test_only:
confmat = evaluate(model, data_loader_test, args, bert_model, epoch=0, device=device, num_classes=num_classes, baseline_model=[bilstm, fc_layer])
print(confmat)
return
if args.baseline_bilstm:
params_to_optimize = [
{"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
{"params": [p for p in bilstm.parameters() if p.requires_grad]},
{"params": [p for p in fc_layer.parameters() if p.requires_grad]}
]
else:
params_to_optimize = [
{"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat, [[p for p in bert_model_without_ddp.encoder.layer[i].parameters() if p.requires_grad] for i in range(10)])},
{"params": [p for p in bert_model_without_ddp.pooler.parameters() if p.requires_grad]}
]
if args.aux_loss:
params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
params_to_optimize.append({"params": params, "lr": args.lr * 10})
optimizer = torch.optim.SGD(
params_to_optimize,
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.fixed_lr:
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lambda x: args.lr_specific)
elif args.linear_lr:
lr_scheduler = None
else:
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
model_dir = os.path.join('./models/', args.model_id)
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
os.makedirs(os.path.join(model_dir, 'train'))
os.makedirs(os.path.join(model_dir, 'val'))
logger_train = Logger(os.path.join(model_dir, 'train'))
logger_val = Logger(os.path.join(model_dir, 'val'))
start_time = time.time()
iterations = 0
t_iou = 0
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
if not args.fixed_lr:
if not args.linear_lr:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if args.baseline_bilstm:
baseline_model = [bilstm, fc_layer]
else:
baseline_model = None
for epoch in range(args.epochs):
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args, args.print_freq,
logger_train, iterations, bert_model, baseline_model=baseline_model)
confmat, iou = evaluate(model, data_loader_test, args, bert_model, epoch=epoch, device=device,
num_classes=num_classes, logger=logger_val, baseline_model=baseline_model)
print(confmat)
# only save if checkpoint improves
if t_iou < iou:
print('Better epoch: {}\n'.format(epoch))
if args.baseline_bilstm:
utils.save_on_master(
{
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'bilstm': bilstm.state_dict(),
'fc_layer': fc_layer.state_dict(),
'epoch': epoch,
'args': args,
'lr_scheduler': lr_scheduler.state_dict()
},
os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id)))
else:
dict_to_save = {'model': model_without_ddp.state_dict(),
'bert_model': bert_model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'args': args}
if not args.linear_lr:
dict_to_save['lr_scheduler'] = lr_scheduler.state_dict()
utils.save_on_master(dict_to_save, os.path.join(args.output_dir, 'model_best_{}.pth'.format(args.model_id)))
t_iou = iou
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
main(args)