-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmove_alfs.py
405 lines (325 loc) · 13.4 KB
/
move_alfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
This program generates a toy dataset for uavTracker detector and tracker.
The images are already in a yolo-consistent shape (multiple of 32),
"""
import os
import numpy as np
from skimage.color import hsv2rgb
import cv2
from collections import deque
from scipy.special import softmax
import colorsys
import math
import yaml
import argparse
"""
We have to get RoI analytically because otherwise we cannot have overlapping even if we can resolved which recognised contour is which animals bounding box.
There are two things to do
TODO make it more reasonable padding for every postion of the ellipse
TODO make it work with my expanded conciousness (shape i mean physical shape)
"""
def getRoI(zwk):
sinzwk = zwk.islong * math.sin(np.pi * zwk.angle / 180)
coszwk = zwk.islong * math.cos(np.pi * zwk.angle / 180)
sinzwkw = zwk.iswide * math.sin(np.pi * zwk.angle / 180)
coszwkw = zwk.iswide * math.cos(np.pi * zwk.angle / 180)
tail = (int(zwk.x_pos-coszwk),int(zwk.y_pos-sinzwk))
head = (int(zwk.x_pos+coszwk),int(zwk.y_pos+sinzwk))
c1 = (int(head[0]+sinzwkw),int(head[1]-coszwkw))
c2 = (int(head[0]-sinzwkw),int(head[1]+coszwkw))
c3 = (int(tail[0]-sinzwkw),int(tail[1]+coszwkw))
c4 = (int(tail[0]+sinzwkw),int(tail[1]-coszwkw))
offset = 2 #HACK hardcoded offset
# mins of all
topleft = (np.min([c1[0],c2[0],c3[0],c4[0]])-offset,np.min([c1[1],c2[1],c3[1],c4[1]])-offset)
# maxes of all
bottomright = (np.max([c1[0],c2[0],c3[0],c4[0]])+offset,np.max([c1[1],c2[1],c3[1],c4[1]])+offset)
return (head, topleft, bottomright)
"""
Updates position of all Zwierzaks.
We are allowing them to run on top of each other for now...
"""
def updateZwkPosition(zwk,zwks,side):
zwk.x_prev = zwk.x_pos
zwk.y_prev = zwk.y_pos
cur_pos, is_same_panel = zwk.updatePosition(side)
zwk.angle = zwk.mm.getDirection()
zwk.x_pos = int(cur_pos[0])
zwk.y_pos = int(cur_pos[1])
return zwk, is_same_panel
"""
This movement model need to be just the movement model so my position on the map initis etc have to be moved out of here
"""
class Mooveemodel:
def __init__(self, x_init, y_init, mu_s, sigma_speed, sigma_angular_velocity, theta_speed, theta_angular_velocity):
# [speed and angular velocity]
self.mu = np.array([mu_s,0.])
self.theta = np.array([theta_speed,theta_angular_velocity])
self.sigma = np.array([sigma_speed,sigma_angular_velocity])
self.v = np.array(self.mu)
self.dt = np.ones(2)
self.rng = np.random.default_rng()
self.pos = np.array([x_init,y_init])
self.angle = 0.
self.os = np.array(self.mu)
self.s = 0
self.updateSpeed()
def updateSpeed(self, external_coefficient_of_noise_term=1):
os1 = self.os
mu1 = self.mu
theta1 = self.theta
dt1 = self.dt
sigma1 = self.sigma
rng1 = self.rng
self.os = (os1
+ theta1 * (mu1 - os1) * dt1
+ sigma1 * [external_coefficient_of_noise_term,1] * rng1.normal(0,np.sqrt(dt1),2)
)
self.angle = self.angle + self.os[1] * dt1[1]
#self.s = np.log1p(np.exp(self.os[0])) #softplus cause it to get stuck in 0.
self.s = abs(self.os[0])
self.v[0] = self.s*np.cos(self.angle)
self.v[1] = self.s*np.sin(self.angle)
return self.v
def getDirection(self):
return np.degrees(np.arctan2(self.v[1],self.v[0]))
"""
Our animal can have different colour or the same
"""
class Zwierzak:
def __init__(self, zwkid, x_init,y_init, mm, hue=0, sat=1):
self.mm = mm #movememnt mode, each animus has its own now
self.id = zwkid
self.x_pos=x_init
self.y_pos=y_init
self.x_prev=x_init
self.y_prev=y_init
self.hsv=(hue,sat,0) # initialise as a dim value
self.angle = 0
self.islong = 30 #half of width and height as opencv ellipses measurements defined
self.iswide = 10
self.speed = 2 #shouldn't that be mu_s?
self.rng = np.random.default_rng()
self.state = 0 #we will use state to define our little accelreated moments.
self.state_time = 0
self.external_coefficient_of_noise_term = 1
#unusual numbers to encourage program loudly crashing
self.topleft = -111
self.bottomright = -111
self.topleft_prev = -111
self.bottomright_prev = -111
self.panelswitcher = deque([False, False, False])
"""
In case of periodic border condition we need to be able to always see our animal. However, if there are multiple animals in the scene it means that their relative position is messed up.
It is fine though, we are looking at each 3-frame scenario as a separate tracking problem. Also we exclude frames that have animals close to the border.
"""
def observationPointSwitch(self, is_same_panel):
self.panelswitcher.popleft()
self.panelswitcher.append(is_same_panel)
return np.all(self.panelswitcher)
"""
every now and then our ALF shrinks and gets a 10x boost of the noise term of the speed that should be visible in the rapid change of position in the next frame
"""
def updateState(self):
if self.state == 0:
if self.rng.uniform() > 0.95: #prob of going into special state
self.state = 1
self.islong = 10
self.external_coefficient_of_noise_term = 50
return 0
if self.state == 1:
self.state=0
self.islong=30
self.external_coefficient_of_noise_term = 1
return 0
"""
Update the position and tell us if we have moved past the border. Updating position shouldn't really be job of movement model though....?
"""
def updatePosition(self, side):
self.updateState()
new_pos = self.mm.pos + (self.mm.v * self.mm.dt)
self.mm.pos = new_pos % side
is_same_panel = True if np.all(new_pos == self.mm.pos) else False
self.mm.updateSpeed(self.external_coefficient_of_noise_term)
return self.mm.pos, is_same_panel
"""
This class shows any natural and unnatural boundaries for the environment
"""
class Borders:
x_min=0
y_min=0
x_max=100
y_max=100
def __init__(self, xmi,ymi,xma,yma): #isn't that a dumb constructor syntax, heh?
self.x_min=xmi
self.y_min=ymi
self.x_max=xma
self.y_max=yma
def main(args):
side = 416
# oname = 'xyz'
# ddir = f'output/testrun/'
# dp = 20
# show_img = True
#read from commandline
oname = args.ddir[0]
ddir = f'output/{oname}'
os.makedirs(ddir, exist_ok=True)
dp = args.datapoints[0]
show_img = args.visual
#prepare directories
an_dir = os.path.join(ddir,"annotations")
img_dir = os.path.join(ddir,"subsets")
test_dir = os.path.join(img_dir,"test")
train_dir = os.path.join(img_dir,"train")
gt_dir = os.path.join(ddir,"groundtruths")
video_dir = os.path.join(ddir,"videos")
os.makedirs(an_dir, exist_ok=True)
os.makedirs(gt_dir, exist_ok=True)
os.makedirs(img_dir, exist_ok=True)
os.makedirs(train_dir, exist_ok=True)
os.makedirs(test_dir, exist_ok=True)
os.makedirs(video_dir, exist_ok=True)
annotations_file = an_dir + '/train_data.yml'
sequence_file = an_dir + '/seq_data.yml'
all_imgs = []
all_seq = []
fourCC = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D')
out = cv2.VideoWriter(os.path.join(video_dir,'test.avi'), fourCC, 5, (side,side), True)
borders = Borders(1,1,side-1,side-1)
hdplane = np.zeros((side,side,3),np.uint8)
mr = np.random.default_rng()
x_init, y_init = [side//2,side//2]
mu_s = 3
sigma_speed = 20
sigma_angular_velocity = 0.2
theta_speed = 0.5
theta_angular_velocity = 0.5
alfs = []
for a in range(3):
x_init, y_init = map(int,map(round,mr.uniform(0, side-1, 2)))
mm = Mooveemodel(x_init,y_init,
mr.integers(0,5), #mu_s,
mr.integers(0,30),#sigma_speed,
mr.uniform(0,0.4),#sigma_angular_velocity,
mr.uniform(0,0.8),#theta_speed,
mr.uniform(0,0.7),#theta_angular_velocity
)
curalf = Zwierzak(f'alf{a}',
x_init,
y_init,
mm,
hue=mr.uniform(0,1),
sat=1)
alfs.append(curalf)
#centre, axes W, H, angle, startagnel, endangle, colour, thinkcness
# cv2.ellipse(hdplane,(100,100),(50,10),30,0,360,(255,255,0),-1)
for it in range(dp):
plane_cur = hdplane.copy()
recthosealfs = [] #all animals must be visible and moving within current panel to be useful for training
#saving all the output:
save_name_seed = oname + 'im' + '{:05d}'.format(it)
save_name = save_name_seed + '.jpg'
fname_gt = os.path.join(gt_dir, f'{save_name_seed}.txt')
file_gt = open(fname_gt, 'w')
img_data = {'object':[]}
img_data['filename'] = save_name
img_data['width'] = side
img_data['height'] = side
for alf in alfs:
alf, is_same_panel = updateZwkPosition(alf,alfs,side)
cv2.ellipse(plane_cur,(alf.x_pos,alf.y_pos),(alf.islong,alf.iswide),alf.angle,0,360,colorsys.hsv_to_rgb(alf.hsv[0], alf.hsv[1],255),-1)
(head, r1,r2) = getRoI(alf)
cv2.circle(plane_cur,head,3,(0,255,255))
roiNotOnBorder = True #or beyond....
if \
r1[0]<=0 or \
r1[0]>=side or \
r2[0]<=0 or \
r2[0]>=side or \
r1[1]<=0 or \
r1[1]>=side or \
r2[1]<=0 or \
r2[1]>=side:
roiNotOnBorder = False
recthosealfs.append(alf.observationPointSwitch((is_same_panel and roiNotOnBorder)))
#uncomment the following line to see bounding boxez
# DEBUG cv2.rectangle(plane_cur,r1,r2,(123,20,255),2) # show bounding box
alf.topleft = (float(min(r1[0],r2[0])),float(min(r1[1],r2[1])))
alf.bottomright = (float(max(r1[0],r2[0])),float(max(r1[1],r2[1])))
obj = dict()
obj['name'] = 'alf'
obj['xmin'] = alf.topleft[0]
obj['ymin'] = alf.topleft[1]
obj['xmax'] = alf.bottomright[0]
obj['ymax'] = alf.bottomright[1]
obj['id'] = alf.id
obj['time']=it
img_data['object'] += [obj]
# print("New TL again: {}".format(alf.topleft[0]))
# print("Old TL: {}".format(alf.topleft_prev[0]))
record_the_seq = np.all(recthosealfs)
if record_the_seq:
#DEBUG cv2.putText(plane_cur, "R", (30,30), cv2. FONT_HERSHEY_COMPLEX_SMALL, 1.0, (0,0,250), 2);
seq_data = {'object':[]}
seq_data['filename'] = save_name
seq_data['p1_filename'] = oname + 'im' + '{:05d}'.format(it-1) + '.jpg'
seq_data['p2_filename'] = oname + 'im' + '{:05d}'.format(it-2) + '.jpg'
seq_data['width'] = 416
seq_data['height'] = 416
for alf in alfs:
if record_the_seq:
obj = {}
obj['name'] = 'alf'
obj['xmin'] = alf.topleft[0]
obj['ymin'] = alf.topleft[1]
obj['xmax'] = alf.bottomright[0]
obj['ymax'] = alf.bottomright[1]
obj['pxmin'] = alf.topleft_prev[0]
obj['pymin'] = alf.topleft_prev[1]
obj['pxmax'] = alf.bottomright_prev[0]
obj['pymax'] = alf.bottomright_prev[1]
seq_data['object'] += [obj]
file_gt.write('alf' + " ")
file_gt.write(str(alf.topleft[0]) + " ")
file_gt.write(str(alf.topleft[1]) + " ")
file_gt.write(str(alf.bottomright[0]) + " ")
file_gt.write(str(alf.bottomright[1]))
file_gt.write('\n')
alf.topleft_prev = alf.topleft
alf.bottomright_prev = alf.bottomright
file_gt.close()
if record_the_seq:
all_seq += [seq_data]
if (it < 0.8 * dp):
cv2.imwrite(train_dir + '/' + save_name,plane_cur)
else:
cv2.imwrite(test_dir + '/' + save_name,plane_cur)
out.write(plane_cur)
all_imgs += [img_data]
if show_img:# and record_the_seq:
cv2.imshow("hdplane",plane_cur)
key = cv2.waitKey(0)
if key==ord('q'):
break
with open(annotations_file, 'w') as handle:
yaml.dump(all_imgs, handle)
with open(sequence_file, 'w') as handle:
yaml.dump(all_seq, handle)
# hdplane = showTrace(hsv_plane,alf,side,ch)
# cv2.imshow("hdplane",hdplane)
# cv2.waitKey(0)
print('done and done!')
cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=
'Generate a movement sequence',
epilog=
'Any issues and clarifications: github.com/mixmixmix/moovemoo/issues')
parser.add_argument('--visual', '-v', default=False, action='store_true',
help='Show the process')
parser.add_argument('--datapoints', '-p', default=10, nargs=1, type=int, help='Number of datapoints to produce')
parser.add_argument('--ddir', '-d', required=True, nargs=1, help='Root of your data directory' )
args = parser.parse_args()
main(args)