-
Notifications
You must be signed in to change notification settings - Fork 34
/
databricks.yaml
40 lines (36 loc) · 1.87 KB
/
databricks.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#
# FIXME::REQUIRED: set an MLflow experiment name to track recipe executions and artifacts. On Databricks, an
# experiment name must be a valid path in the workspace.
#
experiment:
name: ""
model_registry:
# FIXME::OPTIONAL: Set the registry server URI, useful if you have a registry server different
# from the tracking server. First create a Databricks Profile, see
# https://github.com/databricks/databricks-cli#installation
# uri: "databricks://DATABRICKS_PROFILE_NAME"
# FIXME::REQUIRED: Specifies the name of the Registered Model to use when registering a trained
# model to the MLflow Model Registry.
model_name: ""
INGEST_CONFIG:
# For different options please read: https://github.com/mlflow/recipes-regression-template#ingest-step
# FIXME::REQUIRED: Specify the format of the training and evaluation dataset. Natively supported
# formats are: parquet, spark_sql, delta.
using: ""
# FIXME::OPTIONAL: Specify the training and evaluation data location. This is usually a DBFS
# location ("dbfs:/...") or a SQL table ("SCHEMA.TABLE").
# location: ""
# INGEST_SCORING_CONFIG:
# For different options please read: https://github.com/mlflow/recipes-regression-template#batch-scoring
# FIXME::OPTIONAL: Specify the format of the scoring dataset. Natively supported formats are:
# parquet, spark_sql, delta.
# using: ""
# FIXME::OPTIONAL: Specify the scoring data location.
# location: ""
# PREDICT_OUTPUT_CONFIG:
# For different options please read: https://github.com/mlflow/recipes-regression-template#predict-step
# FIXME::OPTIONAL: Specify the format of the scored dataset. Natively supported formats are:
# parquet, delta, table.
# using: ""
# FIXME::OPTIONAL: Specify the output location of the batch scoring predict step.
# location: ""