-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdkt.py
304 lines (243 loc) · 10.4 KB
/
dkt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#
# Deep Knowledge Tracing (DKT) Implementation
# Mohammad M H Khajah <[email protected]>
# Copyright (c) 2016 all rights reserved.
#
# How to use:
# python dkt.py dataset.txt dataset_split.txt
#
# Script saves 3 files:
# dataset.txt.model_weights trained model weights
# dataset.txt.history training history (training LL, test AUC)
# dataset.txt.preds predictions for test trials
#
import os
import sys
import numpy as np
from keras.preprocessing import sequence
from keras.utils import np_utils
from keras.models import Sequential, Graph
from keras.layers.core import TimeDistributedDense, Masking
from keras.layers.recurrent import LSTM
from keras import backend as K
from sklearn.metrics import roc_auc_score
import theano.tensor as Th
import random
import math
import argparse
def main():
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--dataset', type=str, help='Dataset file', required=True)
parser.add_argument('--splitfile', type=str, help='Split file', required=True)
parser.add_argument('--hiddenunits', type=int, help='Number of LSTM hidden units.',
default=200, required=False)
parser.add_argument('--batchsize', type=int, help='Number of sequences to process in a batch.',
default=5, required=False)
parser.add_argument('--timewindow', type=int, help='Number of timesteps to process in a batch.',
default=100, required=False)
parser.add_argument('--epochs', type=int, help='Number of epochs.',
default=50, required=False)
args = parser.parse_args()
dataset = args.dataset
split_file = args.splitfile
hidden_units = args.hiddenunits
batch_size = args.batchsize
time_window = args.timewindow
epochs = args.epochs
model_file = dataset + '.model_weights'
history_file = dataset + '.history'
preds_file = dataset + '.preds'
overall_loss = [0.0]
preds = []
history = []
# load dataset
training_seqs, testing_seqs, num_skills = load_dataset(dataset, split_file)
print "Training Sequences: %d" % len(training_seqs)
print "Testing Sequences: %d" % len(testing_seqs)
print "Number of skills: %d" % num_skills
# Our loss function
# The model gives predictions for all skills so we need to get the
# prediction for the skill at time t. We do that by taking the column-wise
# dot product between the predictions at each time slice and a
# one-hot encoding of the skill at time t.
# y_true: (nsamples x nsteps x nskills+1)
# y_pred: (nsamples x nsteps x nskills)
def loss_function(y_true, y_pred):
skill = y_true[:,:,0:num_skills]
obs = y_true[:,:,num_skills]
rel_pred = Th.sum(y_pred * skill, axis=2)
# keras implementation does a mean on the last dimension (axis=-1) which
# it assumes is a singleton dimension. But in our context that would
# be wrong.
return K.binary_crossentropy(rel_pred, obs)
# build model
model = Sequential()
# ignore padding
model.add(Masking(-1.0, batch_input_shape=(batch_size, time_window, num_skills*2)))
# lstm configured to keep states between batches
model.add(LSTM(input_dim = num_skills*2,
output_dim = hidden_units,
return_sequences=True,
batch_input_shape=(batch_size, time_window, num_skills*2),
stateful = True
))
# readout layer. TimeDistributedDense uses the same weights for all
# time steps.
model.add(TimeDistributedDense(input_dim = hidden_units,
output_dim = num_skills, activation='sigmoid'))
# optimize with rmsprop which dynamically adapts the learning
# rate of each weight.
model.compile(loss=loss_function,
optimizer='rmsprop',class_mode="binary")
# training function
def trainer(X, Y):
overall_loss[0] += model.train_on_batch(X, Y)[0]
# prediction
def predictor(X, Y):
batch_activations = model.predict_on_batch(X)
skill = Y[:,:,0:num_skills]
obs = Y[:,:,num_skills]
y_pred = np.squeeze(np.array(batch_activations))
rel_pred = np.sum(y_pred * skill, axis=2)
for b in xrange(0, X.shape[0]):
for t in xrange(0, X.shape[1]):
if X[b, t, 0] == -1.0:
continue
preds.append((rel_pred[b][t], obs[b][t]))
# call when prediction batch is finished
# resets LSTM state because we are done with all sequences in the batch
def finished_prediction_batch(percent_done):
model.reset_states()
# similiar to the above
def finished_batch(percent_done):
print "(%4.3f %%) %f" % (percent_done, overall_loss[0])
model.reset_states()
# run the model
for e in xrange(0, epochs):
model.reset_states()
# train
run_func(training_seqs, num_skills, trainer, batch_size, time_window, finished_batch)
model.reset_states()
# test
run_func(testing_seqs, num_skills, predictor, batch_size, time_window, finished_prediction_batch)
# compute AUC
auc = roc_auc_score([p[1] for p in preds], [p[0] for p in preds])
# log
history.append((overall_loss[0], auc))
# save model
model.save_weights(model_file, overwrite=True)
print "==== Epoch: %d, Test AUC: %f" % (e, auc)
# reset loss
overall_loss[0] = 0.0
# save predictions
with open(preds_file, 'w') as f:
f.write('was_heldout\tprob_recall\tstudent_recalled\n')
for pred in preds:
f.write('1\t%f\t%d\n' % (pred[0], pred[1]))
with open(history_file, 'w') as f:
for h in history:
f.write('\t'.join([str(he) for he in h]))
f.write('\n')
# clear preds
preds = []
def run_func(seqs, num_skills, f, batch_size, time_window, batch_done = None):
assert(min([len(s) for s in seqs]) > 0)
# randomize samples
seqs = seqs[:]
random.shuffle(seqs)
processed = 0
for start_from in xrange(0, len(seqs), batch_size):
end_before = min(len(seqs), start_from + batch_size)
x = []
y = []
for seq in seqs[start_from:end_before]:
x_seq = []
y_seq = []
xt_zeros = [0 for i in xrange(0, num_skills*2)]
ct_zeros = [0 for i in xrange(0, num_skills+1)]
xt = xt_zeros[:]
for skill, is_correct in seq:
x_seq.append(xt)
ct = ct_zeros[:]
ct[skill] = 1
ct[num_skills] = is_correct
y_seq.append(ct)
# one hot encoding of (last_skill, is_correct)
pos = skill * 2 + is_correct
xt = xt_zeros[:]
xt[pos] = 1
x.append(x_seq)
y.append(y_seq)
maxlen = max([len(s) for s in x])
maxlen = round_to_multiple(maxlen, time_window)
# fill up the batch if necessary
if len(x) < batch_size:
for e in xrange(0, batch_size - len(x)):
x_seq = []
y_seq = []
for t in xrange(0, time_window):
x_seq.append([-1.0 for i in xrange(0, num_skills*2)])
y_seq.append([0.0 for i in xrange(0, num_skills+1)])
x.append(x_seq)
y.append(y_seq)
X = pad_sequences(x, padding='post', maxlen = maxlen, dim=num_skills*2, value=-1.0)
Y = pad_sequences(y, padding='post', maxlen = maxlen, dim=num_skills+1, value=-1.0)
for t in xrange(0, maxlen, time_window):
f(X[:,t:(t+time_window),:], Y[:,t:(t+time_window),:])
processed += end_before - start_from
# reset the states for the next batch of sequences
if batch_done:
batch_done((processed * 100.0) / len(seqs))
def round_to_multiple(x, base):
return int(base * math.ceil(float(x)/base))
def load_dataset(dataset, split_file):
seqs, num_skills = read_file(dataset)
with open(split_file, 'r') as f:
student_assignment = f.read().split(' ')
training_seqs = [seqs[i] for i in xrange(0, len(seqs)) if student_assignment[i] == '1']
testing_seqs = [seqs[i] for i in xrange(0, len(seqs)) if student_assignment[i] == '0']
return training_seqs, testing_seqs, num_skills
def read_file(dataset_path):
seqs_by_student = {}
problem_ids = {}
next_problem_id = 0
with open(dataset_path, 'r') as f:
for line in f:
student, problem, is_correct = line.strip().split(' ')
student = int(student)
if student not in seqs_by_student:
seqs_by_student[student] = []
if problem not in problem_ids:
problem_ids[problem] = next_problem_id
next_problem_id += 1
seqs_by_student[student].append((problem_ids[problem], int(is_correct == '1')))
sorted_keys = sorted(seqs_by_student.keys())
return [seqs_by_student[k] for k in sorted_keys], next_problem_id
# https://groups.google.com/forum/#!msg/keras-users/7sw0kvhDqCw/QmDMX952tq8J
def pad_sequences(sequences, maxlen=None, dim=1, dtype='int32',
padding='pre', truncating='pre', value=0.):
'''
Override keras method to allow multiple feature dimensions.
@dim: input feature dimension (number of features per timestep)
'''
lengths = [len(s) for s in sequences]
nb_samples = len(sequences)
if maxlen is None:
maxlen = np.max(lengths)
x = (np.ones((nb_samples, maxlen, dim)) * value).astype(dtype)
for idx, s in enumerate(sequences):
if truncating == 'pre':
trunc = s[-maxlen:]
elif truncating == 'post':
trunc = s[:maxlen]
else:
raise ValueError("Truncating type '%s' not understood" % padding)
if padding == 'post':
x[idx, :len(trunc)] = trunc
elif padding == 'pre':
x[idx, -len(trunc):] = trunc
else:
raise ValueError("Padding type '%s' not understood" % padding)
return x
if __name__ == "__main__":
main()