-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathplace.rs
863 lines (827 loc) · 37.2 KB
/
place.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
// Copyright Kani Contributors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! responsible for handling codegening places.
//!
//! a place is an expression of specifying a location in memory, like a left value. check the cases
//! in [GotocCtx::codegen_place] below.
use super::typ::TypeExt;
use crate::codegen_cprover_gotoc::GotocCtx;
use crate::codegen_cprover_gotoc::codegen::ty_stable::pointee_type;
use crate::codegen_cprover_gotoc::codegen::typ::std_pointee_type;
use crate::codegen_cprover_gotoc::utils::{dynamic_fat_ptr, slice_fat_ptr};
use crate::unwrap_or_return_codegen_unimplemented;
use cbmc::goto_program::{Expr, ExprValue, Location, Stmt, Type};
use rustc_middle::ty::layout::LayoutOf;
use rustc_smir::rustc_internal;
use rustc_target::abi::{TagEncoding, Variants};
use stable_mir::mir::{FieldIdx, Local, Mutability, Place, ProjectionElem};
use stable_mir::ty::{RigidTy, Ty, TyKind, VariantDef, VariantIdx};
use tracing::{debug, trace, warn};
/// A projection in Kani can either be to a type (the normal case),
/// or a variant in the case of a downcast.
#[derive(Copy, Clone, Debug)]
pub enum TypeOrVariant {
Type(Ty),
Variant(VariantDef),
CoroutineVariant(VariantIdx),
}
/// A struct for storing the data for passing to `codegen_unimplemented`
#[derive(Debug)]
pub struct UnimplementedData {
/// The specific operation that is not supported
pub operation: String,
/// URL for issue on Kani github page
pub bug_url: String,
/// The resulting goto type of the operation
pub goto_type: Type,
/// Location of operation
pub loc: Location,
}
impl UnimplementedData {
pub fn new(operation: &str, bug_url: &str, goto_type: Type, loc: Location) -> Self {
UnimplementedData {
operation: operation.to_string(),
bug_url: bug_url.to_string(),
goto_type,
loc,
}
}
}
/// Relevent information about a projected place (i.e. an lvalue).
#[derive(Debug)]
pub struct ProjectedPlace {
/// The goto expression that represents the lvalue
pub goto_expr: Expr,
/// The MIR type of that expression. Normally a type, but can be a variant following a downcast.
pub mir_typ_or_variant: TypeOrVariant,
/// If a fat pointer was traversed during the projection, it is stored here.
/// This is useful if we need to use any of its fields, for e.g. to generate a rvalue ref
/// or to implement the `length` operation.
pub fat_ptr_goto_expr: Option<Expr>,
/// The MIR type of the visited fat pointer, if one was traversed during the projection.
pub fat_ptr_mir_typ: Option<Ty>,
}
/// Getters
#[allow(dead_code)]
impl ProjectedPlace {
pub fn goto_expr(&self) -> &Expr {
&self.goto_expr
}
pub fn mir_typ_or_variant(&self) -> &TypeOrVariant {
&self.mir_typ_or_variant
}
pub fn mir_typ(&self) -> Ty {
self.mir_typ_or_variant.expect_type()
}
pub fn fat_ptr_goto_expr(&self) -> &Option<Expr> {
&self.fat_ptr_goto_expr
}
pub fn fat_ptr_mir_typ(&self) -> &Option<Ty> {
&self.fat_ptr_mir_typ
}
}
/// Constructor
impl ProjectedPlace {
fn check_expr_typ_mismatch(
expr: &Expr,
typ: &TypeOrVariant,
ctx: &mut GotocCtx,
) -> Option<(Type, Type)> {
match typ {
TypeOrVariant::Type(t) => {
let expr_ty = expr.typ().clone();
let type_from_mir = ctx.codegen_ty_stable(*t);
if expr_ty != type_from_mir {
match t.kind() {
// Slice references (`&[T]`) store raw pointers to the element type `T`
// due to pointer decay. They are fat pointers with the following repr:
// SliceRef { data: *T, len: usize }.
// In those cases, the projection will yield a pointer type.
TyKind::RigidTy(RigidTy::Slice(..)) | TyKind::RigidTy(RigidTy::Str)
if expr_ty.is_pointer()
&& expr_ty.base_type() == type_from_mir.base_type() =>
{
None
}
// TODO: Do we really need this?
// https://github.com/model-checking/kani/issues/1092
TyKind::RigidTy(RigidTy::Dynamic(..))
if expr_ty.is_pointer()
&& *expr_ty.base_type().unwrap() == type_from_mir =>
{
None
}
_ => Some((expr_ty, type_from_mir)),
}
} else {
None
}
}
// TODO: handle Variant https://github.com/model-checking/kani/issues/448
TypeOrVariant::Variant(_) | TypeOrVariant::CoroutineVariant(_) => None,
}
}
fn check_fat_ptr_typ(
fat_ptr: &Option<Expr>,
fat_ptr_typ: &Option<Ty>,
ctx: &mut GotocCtx,
) -> bool {
if let Some(fat_ptr) = fat_ptr {
fat_ptr.typ().is_rust_fat_ptr(&ctx.symbol_table)
&& fat_ptr.typ() == &ctx.codegen_ty_stable(fat_ptr_typ.unwrap())
} else {
true
}
}
pub fn try_from_ty(
goto_expr: Expr,
ty: Ty,
ctx: &mut GotocCtx,
) -> Result<Self, UnimplementedData> {
Self::try_new(goto_expr, TypeOrVariant::Type(ty), None, None, ctx)
}
pub fn try_new(
goto_expr: Expr,
mir_typ_or_variant: TypeOrVariant,
fat_ptr_goto_expr: Option<Expr>,
fat_ptr_mir_typ: Option<Ty>,
ctx: &mut GotocCtx,
) -> Result<Self, UnimplementedData> {
if let Some(fat_ptr) = &fat_ptr_goto_expr {
assert!(
fat_ptr.typ().is_rust_fat_ptr(&ctx.symbol_table),
"Expected fat pointer, got {:?} in function {}",
fat_ptr.typ(),
ctx.current_fn().readable_name()
);
}
if let Some((expr_ty, ty_from_mir)) =
Self::check_expr_typ_mismatch(&goto_expr, &mir_typ_or_variant, ctx)
{
let msg = format!(
"Unexpected type mismatch in projection:\n{goto_expr:?}\nExpr type\n{expr_ty:?}\nType from MIR\n{ty_from_mir:?}"
);
warn!("{}", msg);
// TODO: there's an expr type mismatch with the rust 2022-11-20 toolchain
// for simd:
// https://github.com/model-checking/kani/issues/1926
// Disabling it for this specific case.
if !(expr_ty.is_integer() && ty_from_mir.is_struct_tag()) {
debug_assert!(false, "{}", msg);
}
return Err(UnimplementedData::new(
"Projection mismatch",
"https://github.com/model-checking/kani/issues/277",
ty_from_mir,
*goto_expr.location(),
));
}
assert!(
Self::check_fat_ptr_typ(&fat_ptr_goto_expr, &fat_ptr_mir_typ, ctx),
"\n{:?}\n{:?}",
&fat_ptr_goto_expr,
&fat_ptr_mir_typ
);
Ok(ProjectedPlace { goto_expr, mir_typ_or_variant, fat_ptr_goto_expr, fat_ptr_mir_typ })
}
}
impl TypeOrVariant {
pub fn expect_type(&self) -> Ty {
match self {
TypeOrVariant::Type(t) => *t,
TypeOrVariant::Variant(v) => panic!("expect a type but variant is found: {v:?}"),
TypeOrVariant::CoroutineVariant(v) => {
panic!("expect a type but coroutine variant is found: {v:?}")
}
}
}
#[allow(dead_code)]
pub fn expect_variant(&self) -> &VariantDef {
match self {
TypeOrVariant::Type(t) => panic!("expect a variant but type is found: {t:?}"),
TypeOrVariant::Variant(v) => v,
TypeOrVariant::CoroutineVariant(v) => {
panic!("expect a variant but coroutine variant found {v:?}")
}
}
}
}
impl GotocCtx<'_> {
/// Codegen field access for types that allow direct field projection.
///
/// I.e.: Algebraic data types, closures, and coroutines.
///
/// Other composite types such as array only support index projection.
fn codegen_field(
&mut self,
parent_expr: Expr,
parent_ty_or_var: TypeOrVariant,
field_idx: FieldIdx,
field_ty_or_var: TypeOrVariant,
) -> Result<Expr, UnimplementedData> {
match parent_ty_or_var {
TypeOrVariant::Type(parent_ty) => {
match parent_ty.kind() {
TyKind::Alias(..)
| TyKind::RigidTy(RigidTy::Bool)
| TyKind::RigidTy(RigidTy::Char)
| TyKind::RigidTy(RigidTy::Int(_))
| TyKind::RigidTy(RigidTy::Uint(_))
| TyKind::RigidTy(RigidTy::Float(_))
| TyKind::RigidTy(RigidTy::FnPtr(_))
| TyKind::RigidTy(RigidTy::Never)
| TyKind::RigidTy(RigidTy::FnDef(..))
| TyKind::RigidTy(RigidTy::CoroutineWitness(..))
| TyKind::RigidTy(RigidTy::Foreign(..))
| TyKind::RigidTy(RigidTy::Dynamic(..))
| TyKind::Bound(..)
| TyKind::Param(..) => {
unreachable!("type {parent_ty:?} does not have a field")
}
TyKind::RigidTy(RigidTy::Tuple(_)) => {
Ok(parent_expr.member(Self::tuple_fld_name(field_idx), &self.symbol_table))
}
TyKind::RigidTy(RigidTy::Adt(def, _))
if rustc_internal::internal(self.tcx, def).repr().simd() =>
{
Ok(self.codegen_simd_field(
parent_expr,
field_idx,
field_ty_or_var.expect_type(),
))
}
// if we fall here, then we are handling either a struct or a union
TyKind::RigidTy(RigidTy::Adt(def, _)) => {
let fields = def.variants_iter().next().unwrap().fields();
let field = &fields[field_idx];
Ok(parent_expr.member(field.name.to_string(), &self.symbol_table))
}
TyKind::RigidTy(RigidTy::Closure(..)) => {
Ok(parent_expr.member(field_idx.to_string(), &self.symbol_table))
}
TyKind::RigidTy(RigidTy::Coroutine(..)) => {
let field_name = self.coroutine_field_name(field_idx);
Ok(parent_expr
.member("direct_fields", &self.symbol_table)
.member(field_name, &self.symbol_table))
}
TyKind::RigidTy(RigidTy::Str)
| TyKind::RigidTy(RigidTy::Array(_, _))
| TyKind::RigidTy(RigidTy::Slice(_))
| TyKind::RigidTy(RigidTy::RawPtr(..))
| TyKind::RigidTy(RigidTy::Ref(_, _, _)) => {
unreachable!(
"element of {parent_ty:?} is not accessed via field projection"
)
}
TyKind::RigidTy(RigidTy::Pat(..)) => {
// See https://github.com/rust-lang/types-team/issues/126
// for what is currently supported.
unreachable!("projection inside a pattern is not supported, only transmute")
}
}
}
// if we fall here, then we are handling an enum
TypeOrVariant::Variant(parent_var) => {
let fields = parent_var.fields();
let field = &fields[field_idx];
Ok(parent_expr.member(field.name.to_string(), &self.symbol_table))
}
TypeOrVariant::CoroutineVariant(_var_idx) => {
let field_name = self.coroutine_field_name(field_idx);
Ok(parent_expr.member(field_name, &self.symbol_table))
}
}
}
/// This is a SIMD vector, which has 2 possible internal representations:
/// 1- Multi-field representation (original and currently deprecated)
/// In this case, a field is one lane (i.e.: one element)
/// Example:
/// ```ignore
/// pub struct i64x2(i64, i64);
/// fn main() {
/// let v = i64x2(1, 2);
/// assert!(v.0 == 1); // refers to the first i64
/// assert!(v.1 == 2);
/// }
/// ```
/// 2- Array-based representation
/// In this case, the projection refers to the entire array.
/// ```ignore
/// pub struct i64x2([i64; 2]);
/// fn main() {
/// let v = i64x2([1, 2]);
/// assert!(v.0 == [1, 2]); // refers to the entire array
/// }
/// ```
///
/// Note that projection inside SIMD structs may eventually become illegal.
/// See thread <https://github.com/rust-lang/stdarch/pull/1422#discussion_r1176415609>.
///
/// Since the goto representation for both is the same, we use the expected type to decide
/// what to return.
fn codegen_simd_field(&mut self, parent_expr: Expr, field_idx: FieldIdx, field_ty: Ty) -> Expr {
if matches!(field_ty.kind(), TyKind::RigidTy(RigidTy::Array { .. })) {
// Array based
assert_eq!(field_idx, 0);
let field_typ = self.codegen_ty_stable(field_ty);
parent_expr.reinterpret_cast(field_typ)
} else {
// Return the given field.
let index_expr = Expr::int_constant(field_idx, Type::size_t());
parent_expr.index_array(index_expr)
}
}
/// If a local is a function definition, ignore the local variable name and
/// generate a function call based on the def id.
///
/// Note that this is finicky. A local might be a function definition, a
/// pointer to one, or a boxed pointer to one. For example, the
/// auto-generated code for Fn::call_once uses a local FnDef to call the
/// wrapped function, while the auto-generated code for Fn::call and
/// Fn::call_mut both use pointers to a FnDef. In these cases, we need to
/// generate an expression that references the existing FnDef rather than
/// a named variable.
///
/// Recursively finds the actual FnDef from a pointer or box.
fn codegen_local_fndef(&mut self, ty: Ty, loc: Location) -> Option<Expr> {
match ty.kind() {
// A local that is itself a FnDef, like Fn::call_once
TyKind::RigidTy(RigidTy::FnDef(def, args)) => Some(self.codegen_fndef(def, &args, loc)),
// A local can be pointer to a FnDef, like Fn::call and Fn::call_mut
TyKind::RigidTy(RigidTy::RawPtr(inner, _)) => self
.codegen_local_fndef(inner, loc)
.map(|f| if f.can_take_address_of() { f.address_of() } else { f }),
// A local can be a boxed function pointer
TyKind::RigidTy(RigidTy::Adt(def, args)) if def.is_box() => {
let boxed_ty = self.codegen_ty_stable(ty);
// The type of `T` for `Box<T>` can be derived from the first definition args.
let inner_ty = args.0[0].ty().unwrap();
self.codegen_local_fndef(*inner_ty, loc)
.map(|f| self.box_value(f.address_of(), boxed_ty))
}
_ => None,
}
}
/// Codegen for a local
pub fn codegen_local(&mut self, l: Local, loc: Location) -> Expr {
let local_ty = self.local_ty_stable(l);
// Check if the local is a function definition (see comment above)
if let Some(fn_def) = self.codegen_local_fndef(local_ty, loc) {
return fn_def;
}
// Otherwise, simply look up the local by the var name.
let vname = self.codegen_var_name(&l);
Expr::symbol_expression(vname, self.codegen_ty_stable(local_ty))
}
/// A projection is an operation that translates an lvalue to another lvalue.
/// E.g. dereference, follow a field, etc.
/// This function codegens a single step of a projection.
/// `before` is the expression "before" this projection is applied;
/// the return value is the expression after.
fn codegen_projection(
&mut self,
before: Result<ProjectedPlace, UnimplementedData>,
proj: &ProjectionElem,
loc: Location,
) -> Result<ProjectedPlace, UnimplementedData> {
let before = before?;
trace!(?before, ?proj, "codegen_projection");
match proj {
ProjectionElem::Deref => {
let base_type = before.mir_typ();
let inner_goto_expr = if base_type.kind().is_box() {
self.deref_box(before.goto_expr)
} else {
before.goto_expr
};
let inner_mir_typ_internal =
std_pointee_type(rustc_internal::internal(self.tcx, base_type)).unwrap();
let inner_mir_typ = rustc_internal::stable(inner_mir_typ_internal);
let (fat_ptr_mir_typ, fat_ptr_goto_expr) = if self
.use_thin_pointer(inner_mir_typ_internal)
{
(before.fat_ptr_mir_typ, before.fat_ptr_goto_expr)
} else {
(Some(before.mir_typ_or_variant.expect_type()), Some(inner_goto_expr.clone()))
};
// Check that we have a valid trait or slice fat pointer
if let Some(fat_ptr) = fat_ptr_goto_expr.clone() {
assert!(
fat_ptr.typ().is_rust_trait_fat_ptr(&self.symbol_table)
|| fat_ptr.typ().is_rust_slice_fat_ptr(&self.symbol_table),
"Unexpected type: {:?} -- {:?}",
fat_ptr.typ(),
pointee_type(fat_ptr_mir_typ.unwrap()).unwrap().kind(),
);
assert!(
self.use_fat_pointer(rustc_internal::internal(
self.tcx,
pointee_type(fat_ptr_mir_typ.unwrap()).unwrap()
)),
"Unexpected type: {:?} -- {:?}",
fat_ptr.typ(),
fat_ptr_mir_typ,
);
};
let expr = match inner_mir_typ.kind() {
TyKind::RigidTy(RigidTy::Slice(_))
| TyKind::RigidTy(RigidTy::Str)
| TyKind::RigidTy(RigidTy::Dynamic(..)) => {
inner_goto_expr.member("data", &self.symbol_table)
}
TyKind::RigidTy(RigidTy::Adt(..)) | TyKind::RigidTy(RigidTy::Tuple(..))
if self.is_unsized(inner_mir_typ_internal) =>
{
// in tests/kani/Strings/os_str_reduced.rs, we see
// ```
// p.projection = [
// Deref,
// Field(
// field[0],
// [u8],
// ),
// ]
// ```
// This implies that the result of a deref on an ADT fat pointer
// should be the ADT itself. So we need the `.dereference()` here.
// Note that this causes problems in `codegen_rvalue_ref()`.
// See the comment there for more details.
inner_goto_expr
.member("data", &self.symbol_table)
// In the case of a vtable fat pointer, this data member is a void pointer,
// so ensure the pointer has the correct type before dereferencing it.
.cast_to(self.codegen_ty_stable(inner_mir_typ).to_pointer())
.dereference()
}
_ => inner_goto_expr.dereference(),
};
let typ = TypeOrVariant::Type(inner_mir_typ);
ProjectedPlace::try_new(expr, typ, fat_ptr_goto_expr, fat_ptr_mir_typ, self)
}
ProjectionElem::Field(idx, ty) => {
let typ = TypeOrVariant::Type(*ty);
let expr =
self.codegen_field(before.goto_expr, before.mir_typ_or_variant, *idx, typ)?;
ProjectedPlace::try_new(
expr,
typ,
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
ProjectionElem::Index(i) => {
let base_type = before.mir_typ();
let idxe = self.codegen_local(*i, loc);
let typ = match base_type.kind() {
TyKind::RigidTy(RigidTy::Array(elemt, _))
| TyKind::RigidTy(RigidTy::Slice(elemt)) => TypeOrVariant::Type(elemt),
_ => unreachable!("must index an array"),
};
let expr = match base_type.kind() {
TyKind::RigidTy(RigidTy::Array(..)) => {
self.codegen_idx_array(before.goto_expr, idxe)
}
TyKind::RigidTy(RigidTy::Slice(..)) => before.goto_expr.index(idxe),
_ => unreachable!("must index an array"),
};
ProjectedPlace::try_new(
expr,
typ,
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
self.codegen_constant_index(before, *offset, *min_length, *from_end)
}
// Best effort to codegen subslice projection.
// Full support to be added in
// https://github.com/model-checking/kani/issues/707
ProjectionElem::Subslice { from, to, from_end } => {
// https://rust-lang.github.io/rfcs/2359-subslice-pattern-syntax.html
match before.mir_typ().kind() {
TyKind::RigidTy(RigidTy::Array(ty, len)) => {
let len = len.eval_target_usize().unwrap();
let subarray_len = if *from_end {
// `to` counts from the end of the array
len - to - from
} else {
to - from
};
let typ = Ty::try_new_array(ty, subarray_len).unwrap();
let goto_typ = self.codegen_ty_stable(typ);
// unimplemented
Err(UnimplementedData::new(
"Sub-array binding",
"https://github.com/model-checking/kani/issues/707",
goto_typ,
*before.goto_expr.location(),
))
}
TyKind::RigidTy(RigidTy::Slice(_)) => {
let len = if *from_end {
let olen = before
.fat_ptr_goto_expr
.clone()
.unwrap()
.member("len", &self.symbol_table);
let sum = Expr::int_constant(to + from, Type::size_t());
olen.sub(sum) // olen - (to + from) = olen - to - from
} else {
Expr::int_constant(to - from, Type::size_t())
};
let typ = before.mir_typ();
let ptr_typ = Ty::new_ptr(typ, Mutability::Not);
let goto_type = self.codegen_ty_stable(ptr_typ);
let index = Expr::int_constant(*from, Type::ssize_t());
let from_elem = before.goto_expr.index(index);
let data = from_elem.address_of();
let fat_ptr = slice_fat_ptr(goto_type, data, len, &self.symbol_table);
ProjectedPlace::try_new(
fat_ptr.clone(),
TypeOrVariant::Type(ptr_typ),
Some(fat_ptr),
Some(ptr_typ),
self,
)
}
_ => unreachable!("must be array or slice"),
}
}
ProjectionElem::Downcast(idx) => {
// downcast converts a variable of an enum type to one of its discriminated cases
let ty = before.mir_typ();
let ty_kind = ty.kind();
let (case_name, type_or_variant) = match &ty_kind {
TyKind::RigidTy(RigidTy::Adt(def, _)) => {
let variant = def.variant(*idx).unwrap();
(variant.name().into(), TypeOrVariant::Variant(variant))
}
TyKind::RigidTy(RigidTy::Coroutine(..)) => {
let idx_internal = rustc_internal::internal(self.tcx, idx);
(
self.coroutine_variant_name(idx_internal),
TypeOrVariant::CoroutineVariant(*idx),
)
}
_ => unreachable!(
"cannot downcast {:?} to a variant (only enums and coroutines can)",
&ty.kind()
),
};
let layout = self.layout_of(rustc_internal::internal(self.tcx, ty));
let expr = match &layout.variants {
Variants::Single { .. } => before.goto_expr,
Variants::Multiple { tag_encoding, .. } => match tag_encoding {
TagEncoding::Direct => {
let cases = if ty_kind.is_coroutine() {
before.goto_expr
} else {
before.goto_expr.member("cases", &self.symbol_table)
};
cases.member(case_name, &self.symbol_table)
}
TagEncoding::Niche { .. } => {
before.goto_expr.member(case_name, &self.symbol_table)
}
},
};
ProjectedPlace::try_new(
expr,
type_or_variant,
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
ProjectionElem::OpaqueCast(ty) | ProjectionElem::Subtype(ty) => {
ProjectedPlace::try_new(
before.goto_expr.cast_to(self.codegen_ty_stable(*ty)),
TypeOrVariant::Type(*ty),
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
}
}
fn is_zst_object(&self, expr: &Expr) -> bool {
match expr.value() {
ExprValue::Symbol { .. } => expr.typ().sizeof(&self.symbol_table) == 0,
ExprValue::Member { lhs, .. } => self.is_zst_object(lhs),
_ => false,
}
}
/// Codegen the reference to a given place.
/// We currently have a somewhat weird way of handling ZST.
/// - For `*(&T)` where `T: Unsized`, the projection's `goto_expr` is a thin pointer, so we
/// build the fat pointer from there.
/// - For `*(Wrapper<T>)` where `T: Unsized`, the projection's `goto_expr` returns an object,
/// and we need to take it's address and build the fat pointer.
pub fn codegen_place_ref_stable(&mut self, place: &Place, loc: Location) -> Expr {
let place_ty = self.place_ty_stable(place);
let projection =
unwrap_or_return_codegen_unimplemented!(self, self.codegen_place_stable(place, loc));
if self.use_thin_pointer_stable(place_ty) {
// For ZST objects rustc does not necessarily generate any actual objects.
let need_not_be_an_object = self.is_zst_object(&projection.goto_expr);
let address_of = projection.goto_expr.clone().address_of();
if need_not_be_an_object {
// Create a non-deterministic numeric value, assume it is non-zero and (when
// interpreted as an address) of proper alignment for the type, and cast that
// numeric value to a pointer type.
let loc = projection.goto_expr.location();
let (var, decl) =
self.decl_temp_variable(Type::size_t(), Some(Type::size_t().nondet()), *loc);
let assume_non_zero =
Stmt::assume(var.clone().neq(Expr::int_constant(0, var.typ().clone())), *loc);
let layout = self.layout_of_stable(place_ty);
let alignment = Expr::int_constant(layout.align.abi.bytes(), var.typ().clone());
let assume_aligned = Stmt::assume(
var.clone().rem(alignment).eq(Expr::int_constant(0, var.typ().clone())),
*loc,
);
let cast_to_pointer_type = var.cast_to(address_of.typ().clone()).as_stmt(*loc);
Expr::statement_expression(
vec![decl, assume_non_zero, assume_aligned, cast_to_pointer_type],
address_of.typ().clone(),
*loc,
)
} else {
// Just return the address of the place dereferenced.
address_of
}
} else if place_ty == pointee_type(self.local_ty_stable(place.local)).unwrap() {
// Just return the fat pointer if this is a simple &(*local).
projection.fat_ptr_goto_expr.unwrap()
} else {
// Build a new fat pointer to the place dereferenced with the metadata from the
// original fat pointer.
let data = projection_data_ptr(&projection);
let fat_ptr = projection.fat_ptr_goto_expr.unwrap();
let place_type = self.codegen_ty_ref_stable(place_ty);
if self.use_vtable_fat_pointer_stable(place_ty) {
let vtable = fat_ptr.member("vtable", &self.symbol_table);
dynamic_fat_ptr(place_type, data, vtable, &self.symbol_table)
} else {
let len = fat_ptr.member("len", &self.symbol_table);
slice_fat_ptr(place_type, data, len, &self.symbol_table)
}
}
}
/// Given a MIR place, generate a CBMC expression that represents it as a CBMC lvalue.
/// A place is the rust term for an lvalue.
/// Like in "C", a place can be a "projected": e.g. `*x.foo = bar`
/// This function follows the MIR projection to get the final useable lvalue.
/// If it passes through a fat pointer along the way, it stores info about it,
/// which can be useful in reconstructing fat pointer operations.
pub fn codegen_place_stable(
&mut self,
place: &Place,
loc: Location,
) -> Result<ProjectedPlace, UnimplementedData> {
debug!(?place, "codegen_place");
let initial_expr = self.codegen_local(place.local, loc);
let initial_typ = TypeOrVariant::Type(self.local_ty_stable(place.local));
debug!(?initial_typ, ?initial_expr, "codegen_place");
let initial_projection =
ProjectedPlace::try_new(initial_expr, initial_typ, None, None, self);
let result = place
.projection
.iter()
.fold(initial_projection, |accum, proj| self.codegen_projection(accum, proj, loc));
match result {
Err(data) => Err(UnimplementedData::new(
&data.operation,
&data.bug_url,
self.codegen_ty_stable(self.place_ty_stable(place)),
data.loc,
)),
_ => result,
}
}
/// Given a projection, generate an lvalue that represents the given variant index.
pub fn codegen_variant_lvalue(
&mut self,
initial_projection: ProjectedPlace,
variant_idx: VariantIdx,
loc: Location,
) -> ProjectedPlace {
debug!(?initial_projection, ?variant_idx, "codegen_variant_lvalue");
let downcast = ProjectionElem::Downcast(variant_idx);
self.codegen_projection(Ok(initial_projection), &downcast, loc).unwrap()
}
// https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.ProjectionElem.html
// ConstantIndex
// [−]
// These indices are generated by slice patterns. Easiest to explain by example:
// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
fn codegen_constant_index(
&mut self,
before: ProjectedPlace,
offset: u64,
min_length: u64,
from_end: bool,
) -> Result<ProjectedPlace, UnimplementedData> {
match before.mir_typ().kind() {
//TODO, ask on zulip if we can ever have from_end here?
TyKind::RigidTy(RigidTy::Array(elemt, length)) => {
let length = length.eval_target_usize().unwrap();
assert!(length >= min_length);
let idx = if from_end { length - offset } else { offset };
let idxe = Expr::int_constant(idx, Type::ssize_t());
let expr = self.codegen_idx_array(before.goto_expr, idxe);
let typ = TypeOrVariant::Type(elemt);
ProjectedPlace::try_new(
expr,
typ,
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
TyKind::RigidTy(RigidTy::Slice(elemt)) => {
let offset_e = Expr::int_constant(offset, Type::size_t());
//TODO, should we assert min_length? Or is that already handled by the typechecker?
let idxe = if from_end {
let length =
before.fat_ptr_goto_expr.clone().unwrap().member("len", &self.symbol_table);
length.sub(offset_e)
} else {
offset_e
};
let expr = before.goto_expr.plus(idxe).dereference();
let typ = TypeOrVariant::Type(elemt);
ProjectedPlace::try_new(
expr,
typ,
before.fat_ptr_goto_expr,
before.fat_ptr_mir_typ,
self,
)
}
x => unreachable!(
"Only expected constant index for arrays and slices: also found it for:\n\t{:?}",
x
),
}
}
pub fn codegen_idx_array(&mut self, arr: Expr, idx: Expr) -> Expr {
arr.index_array(idx)
}
}
/// Extract the data pointer from a projection.
/// The return type of the projection is not consistent today, so we need to specialize the
/// behavior in order to get a consistent expression that represents a pointer to the projected
/// data. The cases are:
/// - For `dyn T`, the projection already generates a pointer.
/// - For slices, the projection returns a flexible array.
/// - For structs, like `Wrapper<dyn T>`, the projection returns the object.
fn projection_data_ptr(projection: &ProjectedPlace) -> Expr {
let proj_expr = projection.goto_expr.clone();
if proj_expr.typ().is_pointer() {
proj_expr
} else if proj_expr.typ().is_array_like() {
proj_expr.array_to_ptr()
} else {
proj_expr.address_of()
}
}
/// A convenience macro that unwraps a `Result<ProjectPlace<'tcx>,
/// Err<UnimplementedData>` if it is `Ok` and returns an `codegen_unimplemented`
/// expression otherwise.
/// Note that this macro affects the control flow since it calls `return`
#[macro_export]
macro_rules! unwrap_or_return_codegen_unimplemented {
($ctx:expr, $pp_result:expr) => {{
if let Err(err) = $pp_result {
return $ctx.codegen_unimplemented_expr(
err.operation.as_str(),
err.goto_type,
err.loc,
err.bug_url.as_str(),
);
}
$pp_result.unwrap()
}};
}
/// Same as the above macro, but returns a goto program `Stmt` instead
#[macro_export]
macro_rules! unwrap_or_return_codegen_unimplemented_stmt {
($ctx:expr, $pp_result:expr) => {{
if let Err(err) = $pp_result {
return $ctx.codegen_unimplemented_stmt(
err.operation.as_str(),
err.loc,
err.bug_url.as_str(),
);
}
$pp_result.unwrap()
}};
}