-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
740 lines (604 loc) · 35.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import numpy as np
import random
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss, lpips_loss
#from utils.cotrack_utils import filter_trajs, viz_preds, compute_loss, compute_vel_loss
from gaussian_renderer import render, network_gui, get_pos_t0
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams
from torch.utils.data import DataLoader
from utils.timer import Timer
from utils.external import *
import wandb
# import pytorch3d.transforms as transforms
import lpips
import open3d as o3d
from utils.scene_utils import render_training_image
from time import time
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def flow_loss(all_projections=None,visibility_filter_list=None,viewpoint_cams=None):
# flow frame i-1
flow_0 = all_projections[1] - all_projections[0]
# mask s.t. only visible points are used for flow
mask_visibility = visibility_filter_list[0].squeeze(0) & visibility_filter_list[1].squeeze(0)
# mask s.t. only points that are in [H,W] are used for flow
mask_in_image = (all_projections[0,:,0] >= 0) & (all_projections[0,:,0] < viewpoint_cams[0].image_height) & (all_projections[0,:,1] >= 0) & \
(all_projections[0,:,1] < viewpoint_cams[0].image_width)
mask = mask_visibility & mask_in_image
flow_0 = flow_0[mask]
projections_0 = all_projections[0][mask]
raft_flow_0 = torch.tensor(viewpoint_cams[0].flow[0],device="cuda")
raft_flow_0_indexed = raft_flow_0[:,projections_0[:,0].long(),projections_0[:,1].long()].T
## flow frame i
flow_1 = all_projections[2] - all_projections[1]
# mask s.t. only visible points are used for flow
mask_visibility = visibility_filter_list[1].squeeze(0) & visibility_filter_list[2].squeeze(0)
# mask s.t. only points that are in [H,W] are used for flow
mask_in_image = (all_projections[:,1] >= 0) & (all_projections[:,1] < viewpoint_cams[1].image_width) & (all_projections[:,2] >= 0) & \
(all_projections[:,2] < viewpoint_cams[2].image_height)
mask = mask_visibility & mask_in_image
flow_1 = flow_1[mask]
# raft_flow_0 shape 2 x H x W
# all_projections[0] N x 2
# index raft_flow_0 with all_projections[0]
print(raft_flow_0_indexed.shape)
print(flow_0.shape)
print(raft_flow_0_indexed[:3])
raft_flow_1 = viewpoint_cams[1].flow
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, stage, tb_writer, train_iter,timer,user_args=None):
first_iter = 0
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
if user_args.start_from_iter is not None:
first_iter = user_args.start_from_iter
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_psnr_for_log = 0.0
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
first_iter += 1
lpips_model = lpips.LPIPS(net="alex").cuda()
video_cams = scene.getVideoCameras()
o3d_knn_dists, o3d_knn_indices, knn_weights = None, None, None
for iteration in range(first_iter, final_iter+1):
#if iteration == user_args.pyramid_iter:
#user_args.scale = 0.5
#scene = Scene(dataset, gaussians, load_coarse=None, user_args=user_args,freeze_gaussians=True)
#viewpoint_stack = None
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer, ts = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, stage="stage",bounding_box=user_args.bounding_box)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
if user_args.coarse_t0 and stage == "coarse":
viewpoint_stack = scene.getTrainCamerasT0()
else:
viewpoint_stack = scene.getTrainCameras()
batch_size = 1
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=32,collate_fn=list)
loader = iter(viewpoint_stack_loader)
if opt.dataloader:
try:
viewpoint_cams = next(loader)
except StopIteration:
print("reset dataloader")
batch_size = 1
loader = iter(viewpoint_stack_loader)
else:
idx = randint(0, len(viewpoint_stack)-1) # picking a random viewpoint
viewpoint_cams = viewpoint_stack[idx] # returning 3 subsequence timesteps
# preprocess mask in [0,1] range
# add property to gaussian to infer mask 'color'
# train that on static scene
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
images = []
gt_images = []
masks = []
gt_masks = []
radii_list = []
visibility_filter_list = []
viewspace_point_tensor_list = []
all_means_3D_deform = []
all_projections = []
all_rotations = []
all_opacities = []
all_shadows = []
all_shadows_std = []
deformation_table = gaussians._deformation_table
all_rendered_vels = []
prev_projections = None
for viewpoint_cam in viewpoint_cams:
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage,no_shadow=user_args.no_shadow,prev_projections=prev_projections)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
images.append(image.unsqueeze(0))
prev_projections = render_pkg["projections"]
rendered_vels = render_pkg["rendered_velocity"]
if rendered_vels is not None:
all_rendered_vels.append(rendered_vels[None,:2])
masks.append(render_pkg["mask"].unsqueeze(0)[:,0])
if viewpoint_cam.mask is not None:
gt_mask = viewpoint_cam.mask.cuda()
else:
gt_mask = None
gt_masks.append(gt_mask)
gt_image = viewpoint_cam.original_image.cuda()
gt_images.append(gt_image.unsqueeze(0))
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
all_means_3D_deform.append(render_pkg["means3D_deform"][None,deformation_table,:])
all_projections.append(render_pkg["projections"][None,deformation_table,:])
all_rotations.append(norm_quat(render_pkg["rotations"][None,deformation_table,:]))
all_opacities.append(render_pkg["opacities"][None,deformation_table])
shadows = render_pkg["shadows"]
if shadows is not None:
all_shadows.append(shadows[None,:])
all_shadows_std.append(render_pkg["shadows_std"])
all_projections = torch.cat(all_projections,0)
all_rotations = torch.cat(all_rotations,0)
all_opacities = torch.cat(all_opacities,0)
all_means_3D_deform = torch.cat(all_means_3D_deform,0)
if len(all_rendered_vels) > 0:
all_rendered_vels = torch.cat(all_rendered_vels,0)
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
image_tensor = torch.cat(images,0)
gt_image_tensor = torch.cat(gt_images,0)
# Loss
Ll1 = l1_loss(image_tensor, gt_image_tensor)
mask_available = False
# check if masks exist
# if gt_masks has no None in list
if all([mask is not None for mask in gt_masks]):
Lmask = l1_loss(torch.cat(masks,0),torch.cat(gt_masks,0))
if iteration > user_args.mask_loss_from and user_args.lambda_mask > 0:
Ll1 += user_args.lambda_mask * Lmask
mask_available = True
if stage=="fine" and user_args.use_wandb:
wandb.log({"train/mask_loss":Lmask},step=iteration)
# write gt_image tensor to pngs
#gt_image_tensor_np = gt_image_tensor.cpu().numpy()
#gt_image_tensor_np = np.clip(gt_image_tensor_np,0,1)
#gt_image_tensor_np = (gt_image_tensor_np * 255).astype(np.uint8)
#gt_image_tensor_np = gt_image_tensor_np.transpose(0,2,3,1)
#for i in range(gt_image_tensor_np.shape[0]):
#from PIL import Image
#image = gt_image_tensor_np[i]
#image = Image.fromarray(image)
#image.save(f"gt_image_{i}.png")
# Ll1 = l2_loss(image, gt_image)
psnr_ = psnr(image_tensor, gt_image_tensor).mean().double()
# norm
loss = Ll1
preds = [cam.preds for cam in viewpoint_cams]
cotrack_loss = None
# check if preds has no None in list
#if stage=="fine" and all([pred is not None for pred in preds]) and user_args.lambda_cotrack > 0:
#preds_1 = torch.tensor(filter_trajs(viewpoint_cams[:2]),device="cuda")
#loss_1 = compute_vel_loss(all_rendered_vels[0],preds_1)
#preds_2 = torch.tensor(filter_trajs(viewpoint_cams[1:]),device="cuda")
#loss_2 = compute_vel_loss(all_rendered_vels[1],preds_2)
#cotrack_loss = 0.5 * (loss_1 + loss_2)
#if not torch.isnan(cotrack_loss) and iteration > user_args.cotrack_loss_from :
#loss += user_args.lambda_cotrack * cotrack_loss
if user_args.use_wandb and stage == "fine":
wandb.log({"train/psnr":psnr_,"train/loss":loss},step=iteration)
wandb.log({"train/num_gaussians":gaussians._xyz.shape[0]},step=iteration)
#if cotrack_loss and not torch.isnan(cotrack_loss):
#wandb.log({"train/cotrack_loss":cotrack_loss},step=iteration)
n_cams = len(viewpoint_cams)
l_momentum = None
if n_cams >= 3:
## MOMENTUM LOSS
l_momentum = all_means_3D_deform[2,:,:] - 2*all_means_3D_deform[1,:,:] + all_means_3D_deform[0,:,:]
l_momentum = torch.linalg.norm(l_momentum,dim=-1,ord=1).mean() # mean l1 norm
l_deformation_mag = 0.0
if n_cams >= 3:
l_deformation_mag_0 = torch.linalg.norm(all_means_3D_deform[1,:,:] - all_means_3D_deform[0,:,:],dim=-1).mean() # mean l2 norm
l_deformation_mag_1 = torch.linalg.norm(all_means_3D_deform[2,:,:] - all_means_3D_deform[1,:,:],dim=-1).mean() # mean l2 norm
l_deformation_mag = 0.5 * (l_deformation_mag_0 + l_deformation_mag_1)
l_iso, l_rigid, l_shadow_mean, l_shadow_delta, l_spring, l_velocity = None, None, None, None, None, None
diff_dimensions = False
if stage == "fine" and iteration > user_args.reg_iter and not user_args.no_reg:
if o3d_knn_dists is not None and all_means_3D_deform.shape[1]*args.k_nearest != o3d_knn_dists.shape[0]:
diff_dimensions = True
else:
diff_dimensions = False
if iteration % user_args.knn_update_iter == 0 or o3d_knn_dists is None or diff_dimensions:
t_0_pts = get_pos_t0(gaussians).detach().cpu().numpy()
o3d_dist_sqrd, o3d_knn_indices = o3d_knn(t_0_pts, args.k_nearest)
o3d_knn_dists = np.sqrt(o3d_dist_sqrd)
o3d_knn_dists = torch.tensor(o3d_knn_dists,device="cuda").flatten()
o3d_dist_sqrd = torch.tensor(o3d_dist_sqrd,device="cuda").flatten()
knn_weights = torch.exp(-args.lambda_w * o3d_dist_sqrd)
if args.use_wandb and stage == "fine":
wandb.log({"train/o3d_knn_dists":o3d_knn_dists.median()},step=iteration)
print("updating knn's")
## ISOMETRIC LOSS
all_l_iso = []
all_l_spring = []
prev_rotations = None
prev_offsets = None
all_l_rigid = []
prev_knn_dists = None
l_velocity = 0.0
for i in range(n_cams):
# o3d_knn_indices : [N,3], 3 nearest neighbors
# means_3D_deform : [N,3]
# knn_points : [N,3,3]
# compute knn_dists [N,3] distance to KNN
means_3D_deform = all_means_3D_deform[i,:,:]
knn_points = means_3D_deform[o3d_knn_indices]
knn_points = knn_points.reshape(-1,3) # N x 3
means_3D_deform_repeated = means_3D_deform.unsqueeze(1).repeat(1,args.k_nearest,1).reshape(-1,3) # N x 3
curr_offsets = knn_points - means_3D_deform_repeated
knn_dists = torch.linalg.norm(curr_offsets,dim=-1)
if args.use_wandb and stage == "fine":
wandb.log({"train/knn_dists":knn_dists.median()},step=iteration)
if args.lambda_velocity > 0 and i > 0:
l_velocity += torch.linalg.norm(all_means_3D_deform[i,:,:] - all_means_3D_deform[i-1,:,:],dim=-1).mean()
l_iso_tmp = torch.mean(torch.abs(knn_dists-o3d_knn_dists))
#l_iso_tmp = torch.mean(torch.exp(10*torch.abs(knn_dists - o3d_knn_dists))-1.0)
# check if l_iso_tmp is nan
if torch.isnan(l_iso_tmp):
l_iso_tmp = torch.mean(torch.abs(knn_dists - o3d_knn_dists))
if torch.isnan(l_iso_tmp):
l_iso_tmp = 0.0
if prev_knn_dists is not None:
#l_spring_tmp = torch.mean(torch.exp(100*torch.abs(knn_dists - prev_knn_dists))-1.0)
l_spring_tmp = torch.mean(torch.abs(knn_dists - prev_knn_dists))
all_l_spring.append(l_spring_tmp)
prev_knn_dists = knn_dists.clone()
all_l_iso.append(l_iso_tmp)
rotations = all_rotations[i,:,:]
knn_rotations = rotations[o3d_knn_indices].reshape((-1,4))
knn_rotations_inv = quat_inv(knn_rotations)
if prev_rotations is not None:
# compute rigidity loss
# knn_rotation_matrices : [N,3,3], last two dimensions are rotation matrices
rel_rot = quat_mult(prev_rotations,knn_rotations_inv)
rot = build_rotation(rel_rot)
curr_offset_in_prev_coord = torch.bmm(rot, curr_offsets.unsqueeze(-1)).squeeze(-1)
l_rigid_tmp = weighted_l2_loss_v2(curr_offset_in_prev_coord, prev_offsets, knn_weights)
all_l_rigid.append(l_rigid_tmp)
prev_rotations = knn_rotations.clone()
prev_offsets = curr_offsets.clone()
if args.lambda_velocity > 0:
l_velocity = l_velocity / (n_cams-1)
if user_args.use_wandb and stage == "fine":
wandb.log({"train/l_velocity":l_velocity},step=iteration)
l_iso = torch.mean(torch.stack(all_l_iso))
l_spring = torch.mean(torch.stack(all_l_spring))
if user_args.use_wandb and stage == "fine":
wandb.log({"train/l_iso":l_iso},step=iteration)
if user_args.use_wandb and stage == "fine":
wandb.log({"train/l_spring":l_spring},step=iteration)
l_rigid = torch.mean(torch.stack(all_l_rigid))
if user_args.use_wandb and stage == "fine":
wandb.log({"train/l_rigid":l_rigid},step=iteration)
# check if all_shadows is empty
if len(all_shadows) > 0:
all_shadows = torch.cat(all_shadows,0)
all_shadows_std = torch.tensor(all_shadows_std,device="cuda")
mean_shadow = all_shadows.mean()
shadow_std = all_shadows_std.mean()
l_shadow_mean = mean_shadow # incentivize a lower shadow mean
l_shadow_delta = 0.0
if n_cams >= 3:
delta_shadow_0 = torch.linalg.norm(all_shadows[1] - all_shadows[0],dim=-1)
delta_shadow_1 = torch.linalg.norm(all_shadows[2] - all_shadows[1],dim=-1)
l_shadow_delta = 1.0 - 0.5 * (delta_shadow_0 + delta_shadow_1) # incentivize a higher shadow delta
if user_args.use_wandb and stage == "fine":
wandb.log({"train/shadows_mean": mean_shadow,"train/shadows_std":shadow_std,
"train/l_shadow_mean":l_shadow_mean,"train/l_shadow_delta":l_shadow_delta},step=iteration)
## add momentum term to loss
if user_args.lambda_momentum > 0 and stage == "fine" and l_momentum is not None:
loss += user_args.lambda_momentum * l_momentum.mean()
## add isometric term to loss
if user_args.lambda_isometric > 0 and stage == "fine" and l_iso is not None:
loss += user_args.lambda_isometric * l_iso.mean()
if user_args.lambda_rigidity > 0 and stage == "fine" and l_rigid is not None:
loss += user_args.lambda_rigidity * l_rigid.mean()
if user_args.lambda_shadow_mean > 0 and stage == "fine" and l_shadow_mean is not None:
loss += user_args.lambda_shadow_mean * l_shadow_mean.mean()
if user_args.lambda_shadow_delta > 0 and stage == "fine" and l_shadow_delta is not None:
loss += user_args.lambda_shadow_delta * l_shadow_delta.mean()
if user_args.lambda_deformation_mag > 0 and stage == "fine":
loss += user_args.lambda_deformation_mag * l_deformation_mag.mean()
if user_args.lambda_spring > 0 and stage == "fine" and l_spring is not None:
loss += user_args.lambda_spring * l_spring.mean()
if user_args.lambda_velocity > 0 and stage == "fine" and l_velocity is not None:
loss += user_args.lambda_velocity * l_velocity.mean()
if user_args.use_wandb and stage == "fine":
wandb.log({"train/l_momentum":l_momentum,"train/l_deform_mag":l_deformation_mag},step=iteration)
if stage == "fine" and hyper.time_smoothness_weight != 0:
# tv_loss = 0
tv_loss = gaussians.compute_regulation(hyper.time_smoothness_weight, hyper.plane_tv_weight, hyper.l1_time_planes)
loss += tv_loss
if opt.lambda_dssim != 0:
ssim_loss = ssim(image_tensor,gt_image_tensor)
loss += opt.lambda_dssim * (1.0-ssim_loss)
if opt.lambda_lpips !=0:
lpipsloss = lpips_loss(image_tensor,gt_image_tensor,lpips_model)
loss += opt.lambda_lpips * lpipsloss
loss.backward()
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_psnr_for_log = 0.4 * psnr_ + 0.6 * ema_psnr_for_log
total_point = gaussians._xyz.shape[0]
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
"psnr": f"{psnr_:.{2}f}",
"point":f"{total_point}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
timer.pause()
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, [pipe, background], stage,user_args=user_args)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration, stage)
if dataset.render_process:
if (iteration < 1000 and iteration % 10 == 1) \
or (iteration < 3000 and iteration % 50 == 1) \
or (iteration < 10000 and iteration % 100 == 1) \
or (iteration < 60000 and iteration % 100 ==1):
render_training_image(scene, gaussians, video_cams, render, pipe, background, stage, iteration-1,timer.get_elapsed_time())
# total_images.append(to8b(temp_image).transpose(1,2,0))
timer.start()
# Densification
if iteration < opt.densify_until_iter :
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
if stage == "coarse":
opacity_threshold = opt.opacity_threshold_coarse
densify_threshold = opt.densify_grad_threshold_coarse
else:
opacity_threshold = opt.opacity_threshold_fine_init - iteration*(opt.opacity_threshold_fine_init - opt.opacity_threshold_fine_after)/(opt.densify_until_iter)
densify_threshold = opt.densify_grad_threshold_fine_init - iteration*(opt.densify_grad_threshold_fine_init - opt.densify_grad_threshold_after)/(opt.densify_until_iter )
if stage == "fine" and mask_available and iteration % user_args.staticfying_interval == 0 and iteration > user_args.staticfying_from and iteration < user_args.staticfying_until:
gaussians.staticfying(mask_threshold=0.8)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 :
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
if iteration > opt.pruning_from_iter and iteration % opt.pruning_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.prune(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
print("pruning")
if user_args.bounding_box is not None:
gaussians.prune_bounding_box(user_args.bounding_box)
print("pruning box")
opacity_reset = False
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
print("reset opacity")
gaussians.reset_opacity()
opacity_reset = True
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
try:
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt_" + str(iteration) + "_" + stage + ".pth")
except Exception as e:
print("Error saving checkpoint: ", e)
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname,user_args=None):
# first_iter = 0
tb_writer = prepare_output_and_logger(expname)
gaussians = GaussianModel(dataset.sh_degree, hyper)
dataset.model_path = args.model_path
timer = Timer()
scene = Scene(dataset, gaussians, load_coarse=None, user_args=user_args)
timer.start()
if not user_args.no_coarse:
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "coarse", tb_writer, opt.coarse_iterations,timer,user_args=user_args)
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "fine", tb_writer, opt.iterations,timer,user_args=user_args)
def prepare_output_and_logger(expname):
if not args.model_path:
# if os.getenv('OAR_JOB_ID'):
# unique_str=os.getenv('OAR_JOB_ID')
# else:
# unique_str = str(uuid.uuid4())
unique_str = expname
args.model_path = os.path.join("./output/", unique_str)
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, stage,user_args=None):
if tb_writer:
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCamerasIndividual()[idx % len(scene.getTestCamerasIndividual())] for idx in range(10, 5000, 299)]},
{'name': 'train', 'cameras' : [scene.getTrainCamerasIndividual()[idx % len(scene.getTrainCamerasIndividual())] for idx in range(10, 5000, 299)]})
# individual to get only a single view at a time
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, *renderArgs,no_shadow=user_args.no_shadow)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
if user_args.use_wandb and config['name'] == "test" and stage == "fine":
wandb.log({"test/psnr":psnr_test,"test/loss":l1_test},step=iteration)
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(stage + "/"+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(stage+"/"+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram(f"{stage}/scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar(f'{stage}/total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_scalar(f'{stage}/deformation_rate', scene.gaussians._deformation_table.sum()/scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram(f"{stage}/scene/motion_histogram", scene.gaussians._deformation_accum.mean(dim=-1)/100, iteration,max_bins=500)
torch.cuda.empty_cache()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
# torch.set_default_tensor_type('torch.FloatTensor')
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[i*500 for i in range(0,120)])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[2000, 3000, 7_000, 8000, 9000, 14000, 20000, 30_000,45000,60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--expname", type=str, default = "")
parser.add_argument("--configs", type=str, default = "")
parser.add_argument("--three_steps_batch",type=bool,default=True)
parser.add_argument("--use_wandb",action="store_true",default=False)
parser.add_argument("--wandb_project",type=str,default="test_project")
parser.add_argument("--wandb_name",type=str,default="test_name")
parser.add_argument("--start_from_iter",type=int,default=None,help="When loading a checkpoint, you can force training from an iteration not equal to the checkpoint iteration. Only affects iteration counter.")
parser.add_argument("--view_skip",default=1,type=int)
parser.add_argument("--time_skip",type=int,default=1)
### model parameters
# disable shadow net
parser.add_argument("--no_shadow",action="store_true")
parser.add_argument("--no_coarse",action="store_true")
# regularization
# momentum term
parser.add_argument("--reg_iter",default=5000,type=int)
parser.add_argument("--knn_update_iter",default=1000,type=int)
parser.add_argument("--lambda_momentum",default=0.0,type=float)
# isometric loss
parser.add_argument("--lambda_isometric",default=0.0,type=float)
# rigidity loss
parser.add_argument("--lambda_rigidity",default=0.0,type=float)
parser.add_argument("--lambda_velocity",default=0.0,type=float)
# shadow loss
parser.add_argument("--lambda_shadow_mean",default=0.0,type=float)
parser.add_argument("--lambda_shadow_delta",default=0.0,type=float)
parser.add_argument("--lambda_momentum_rotation",default=0.0,type=float)
parser.add_argument("--lambda_deformation_mag",default=0.0,type=float)
parser.add_argument("--lambda_spring",default=0.0,type=float)
parser.add_argument("--lambda_w",default=2000,type=float)
parser.add_argument("--k_nearest",default=20,type=int)
parser.add_argument("--single_cam_video",action="store_true",help='Only render from the first camera for the video viz')
parser.add_argument("--coarse_t0",action="store_true")
parser.add_argument("--staticfying_from",default=5000,type=int)
parser.add_argument("--staticfying_until",default=15000,type=int)
parser.add_argument("--staticfying_interval",default=100,type=int)
parser.add_argument("--no_reg",action="store_true")
parser.add_argument("--scale",default=None,type=float)
parser.add_argument("--bounding_box",nargs='+',type=float,default=None)
parser.add_argument("--mask_loss_from",default = 3000,type=int)
parser.add_argument("--lambda_mask",default=0.1,type=float)
parser.add_argument("--lambda_cotrack",default=0.1,type=float)
parser.add_argument("--cotrack_loss_from",default=0,type=int)
parser.add_argument("--pyramid_iter",default=15000,type=int)
args = parser.parse_args(sys.argv[1:])
if args.use_wandb:
wandb.init(project=args.wandb_project,name=args.wandb_name)
wandb.config.update(args)
args.save_iterations.append(args.iterations)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.cuda.synchronize() # makes dataloader go brr brr
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations,
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname,user_args=args)
# All done
print("\nTraining complete.")