The MTEB Leaderboard is available here. To submit to it:
- Run the desired model on MTEB:
Either use the Python API:
import mteb
# load a model from the hub (or for a custom implementation see https://github.com/embeddings-benchmark/mteb/blob/main/docs/reproducible_workflow.md)
model = mteb.get_model("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
tasks = mteb.get_tasks(...) # get specific tasks
# or
from mteb.benchmarks import MTEB_MAIN_EN
tasks = MTEB_MAIN_EN # or use a specific benchmark
evaluation = mteb.MTEB(tasks=tasks)
evaluation.run(model, output_folder="results")
Or using the command line interface:
mteb run -m {model_name} -t {task_names}
These will save the results in a folder called results/{model_name}/{model_revision}
.
For reference you can also look at scripts/run_mteb_english.py for all MTEB English datasets used in the main ranking, or scripts/run_mteb_chinese.py for the Chinese ones. Advanced scripts with different models are available in the mteb/mtebscripts repo.
- Format the results using the CLI:
mteb create_meta --results_folder results/{model_name}/{model_revision} --output_path model_card.md
If readme of model exists:
mteb create_meta --results_folder results/{model_name}/{model_revision} --output_path model_card.md --from_existing your_existing_readme.md
- Add the frontmatter to model repository:
Copy the content of the model_card.md
file to the top of a README.md
file of your model on the Hub. See here for an example.
- Wait for a refresh the leaderboard:
The leaderboard will then automatically refresh daily so once submitted all you have to do is wait for the automatic refresh.
You can find the workflows for the leaderboard refresh here. If you experience issues with the leaderboard please create an issue.