
Pattern Matching for SchemeAndrew K. Wright and Bruce F. DubaDepartment of Computer ScienceRice UniversityHouston, TX 77251-1892Version 1.12, May 24, 1995Please direct questions or bug reports regarding this software to wright@research.nj.nec.com.The most recent version of this software can be obtained by anonymous FTP from siteftp.nj.nec.com in �le pub/wright/match.tar.gz.1 Pattern Matching for SchemePattern matching allows complicated control decisions based on data structure to be expressed ina concise manner. Pattern matching is found in several modern languages, notably Standard ML,Haskell and Miranda. This document describes several pattern matching macros for Scheme, andan associated mechanism for de�ning new forms of structured data.The basic form of pattern matching expression is:(match exp [pat body] : : :)where exp is an expression, pat is a pattern, and body is one or more expressions (like the bodyof a lambda-expression).1 The match form matches its �rst subexpression against a sequence ofpatterns, and branches to the body corresponding to the �rst pattern successfully matched. Forexample, the following code de�nes the usual map function:(de�ne map(lambda (f l)(match l[() ()][(x . y) (cons (f x) (map f y))])))The �rst pattern () matches the empty list. The second pattern (x : y) matches a pair, binding xto the �rst component of the pair and y to the second component of the pair.1.1 Pattern Matching ExpressionsThe complete syntax of the pattern matching expressions follows:1The notation \hthingi : : :" indicates that hthingi is repeated zero or more times. The notation \hthing1 j thing2i"means an occurrence of either thing1 or thing2. Brackets \[]" are extended Scheme syntax, equivalent to parentheses\()".
1

exp ::= (match exp clause : : :)j (match-lambda clause : : :)j (match-lambda* clause : : :)j (match-let ([pat exp] : : :) body)j (match-let* ([pat exp] : : :) body)j (match-letrec ([pat exp] : : :) body)j (match-let var ([pat exp] : : :) body)j (match-de�ne pat exp)clause ::= [pat body] j [pat (=> identi�er) body]Figure 1 gives the full syntax for patterns. The next subsection describes the various patterns.The match-lambda and match-lambda* forms are convenient combinations of match andlambda, and can be explained as follows:(match-lambda [pat body] : : :) = (lambda (x) (match x [pat body] : : :))(match-lambda* [pat body] : : :) = (lambda x (match x [pat body] : : :))where x is a unique variable. The match-lambda form is convenient when de�ning a single argu-ment function that immediately destructures its argument. The match-lambda* form constructsa function that accepts any number of arguments; the patterns of match-lambda* should be lists.The match-let, match-let*, match-letrec, and match-de�ne forms generalize Scheme's let,let*, letrec, and de�ne expressions to allow patterns in the binding position rather than justvariables. For example, the following expression:(match-let ([(x y z) (list 1 2 3)]) body)binds x to 1, y to 2, and z to 3 in body . These forms are convenient for destructuring the result ofa function that returns multiple values as a list or vector. As usual for letrec and de�ne, patternvariables bound by match-letrec and match-de�ne should not be used in computing the boundvalue.The match, match-lambda, and match-lambda* forms allow the optional syntax (=> iden-ti�er) between the pattern and the body of a clause. When the pattern match for such a clausesucceeds, the identi�er is bound to a failure procedure of zero arguments within the body . If thisprocedure is invoked, it jumps back to the pattern matching expression, and resumes the matchingprocess as if the pattern had failed to match. The body must not mutate the object being matched,otherwise unpredictable behavior may result.1.2 PatternsFigure 1 gives the full syntax for patterns. Explanations of these patterns follow.identi�er (excluding the reserved names ?, $, =, , and, or, not, set!, get!, :::, and ::k for non-negative integers k): matches anything, and binds a variable of this name to the matching valuein the body .: matches anything, without binding any variables.(), #t, #f, string, number , character , 's-expression: These constant patterns match themselves,ie., the corresponding value must be equal? to the pattern.(pat1 : : : patn): matches a proper list of n elements that match pat1 through patn.2

Pattern : Matches :pat ::= identi�er anything, and binds identi�er as a variablej anythingj () itself (the empty list)j #t itselfj #f itselfj string an equal? stringj number an equal? numberj character an equal? characterj 's-expression an equal? s-expressionj 'symbol an equal? symbol (special case of s-expression)j (pat1 : : : patn) a proper list of n elementsj (pat1 : : : patn : patn+1) a list of n or more elementsj (pat1 : : : patn patn+1 ::k) a proper list of n+ k or more elementsaj #(pat1 : : : patn) a vector of n elementsj #(pat1 : : : patn patn+1 ::k) a vector of n+ k or more elementsj #&pat a boxj ($ struct pat1 : : : patn) a structurej (= �eld pat) a �eld of a structurej (and pat1 : : : patn) if all of pat1 through patn matchj (or pat1 : : : patn) if any of pat1 through patn matchj (not pat1 : : : patn) if none of pat1 through patn matchj (? predicate pat1 : : : patn) if predicate true and pat1 through patn all matchj (set! identi�er) anything, and binds identi�er as a setterj (get! identi�er) anything, and binds identi�er as a getterj `qp a quasipatternQuasipattern: Matches :qp ::= () itself (the empty list)j #t itselfj #f itselfj string an equal? stringj number an equal? numberj character an equal? characterj identi�er an equal? symbolj (qp1 : : : qpn) a proper list of n elementsj (qp1 : : : qpn : qpn+1) a list of n or more elementsj (qp1 : : : qpn qpn+1 ::k) a proper list of n+ k or more elementsj #(qp1 : : : qpn) a vector of n elementsj #(qp1 : : : qpn qpn+1 ::k) a vector of n+ k or more elementsj #&qp a boxj ,pat a patternj ,@pat a pattern, splicedFigure 1: Pattern SyntaxaThe notation ::k denotes a keyword consisting of three consecutive dots (ie., \:::"), or two dots and an non-negativeinteger (eg., \::1", \::2"), or three consecutive underscores (ie., \ "), or two underscores and a non-negative integer.The keywords \::k" and \ k" are equivalent. The keywords \:::", \ ", \::0", and \ 0" are equivalent.
3

(pat1 : : : patn : patn+1): matches a (possibly improper) list of at least n elements that ends insomething matching patn+1.(pat1 : : : patn patn+1 :::): matches a proper list of n or more elements, where each element of thetail matches patn+1. Each pattern variable in patn+1 is bound to a list of the matching values. Forexample, the expression:(match '(let ([x 1][y 2]) z)[('let ((binding values) : : :) exp) body])binds binding to the list '(x y), values to the list '(1 2), and exp to 'z in the body of the match-expression. For the special case where patn+1 is a pattern variable, the list bound to that variablemay share with the matched value.(pat1 : : : patn patn+1): This pattern means the same thing as the previous pattern.(pat1 : : : patn patn+1 ::k): This pattern is similar to the previous pattern, but the tail must be atleast k elements long. The pattern keywords ::0 and ::: are equivalent.(pat1 : : : patn patn+1 k): This pattern means the same thing as the previous pattern.#(pat1 : : : patn): matches a vector of length n, whose elements match pat1 through patn.#(pat1 : : : patn patn+1 :::): matches a vector of length n or more, where each element beyond nmatches patn+1.#(pat1 : : : patn patn+1 ::k): matches a vector of length n+ k or more, where each element beyondn matches patn+1.#&pat: matches a box containing something matching pat .($ struct pat1 : : : patn): matches a structure declared with de�ne-structure or de�ne-const-structure. See Section 2.(= �eld pat): is intended for selecting a �eld from a structure. \�eld" may be any expression; itis applied to the value being matched, and the result of this application is matched against pat.(and pat1 : : : patn): matches if all of the subpatterns match. At least one subpattern must bepresent. This pattern is often used as (and x pat) to bind x to to the entire value that matches pat(cf. \as-patterns" in ML or Haskell).(or pat1 : : : patn): matches if any of the subpatterns match. At least one subpattern must bepresent. All subpatterns must bind the same set of pattern variables.(not pat1 : : : patn): matches if none of the subpatterns match. At least one subpattern must bepresent. The subpatterns may not bind any pattern variables.
4

(? predicate pat1 : : : patn): In this pattern, predicate must be an expression evaluating to a singleargument function. This pattern matches if predicate applied to the corresponding value is true,and the subpatterns pat1 : : : patn all match. The predicate should not have side e�ects, as the codegenerated by the pattern matcher may invoke predicates repeatedly in any order. The predicateexpression is bound in the same scope as the match expression, ie., free variables in predicate arenot bound by pattern variables.(set! identi�er): matches anything, and binds identi�er to a procedure of one argument thatmutates the corresponding �eld of the matching value. This pattern must be nested within a pair,vector, box, or structure pattern. For example, the expression:(de�ne x (list 1 (list 2 3)))(match x [(((set! setit))) (setit 4)])mutates the cadadr of x to 4, so that x is '(1 (2 4)).(get! identi�er): matches anything, and binds identi�er to a procedure of zero arguments thataccesses the corresponding �eld of the matching value. This pattern is the complement to set!. Aswith set!, this pattern must be nested within a pair, vector, box, or structure pattern.Quasipatterns: Quasiquote introduces a quasipattern, in which identi�ers are considered to besymbolic constants. Like Scheme's quasiquote for data, unquote (,) and unquote-splicing (,@)escape back to normal patterns.1.3 Match FailureIf no clause matches the value, the default action is to invoke the procedure match:error with thevalue that did not match. The default de�nition of match:error calls error with an appropriatemessage:> (match 1 [2 2])Error: no clause matched 1.For most situations, this behavior is adequate, but it can be changed either by rede�ningmatch:error ,or by altering the value of the variable match:error-control . Valid values for match:error-control are:match:error-control : error action:'error (default) call (match:error unmatched-value)'match call (match:error unmatched-value '(match expression : : :))'fail call match:error or die in car , cdr , ...'unspeci�ed return unspeci�ed valueSetting match:error-control to 'match causes the entire match expression to be quoted and passedas a second argument to match:error . The default de�nition of match:error then prints the matchexpression before calling error ; this can help identify which expression failed to match. This optioncauses the macros to generate somewhat larger code, since each match expression includes a quotedrepresentation of itself.Setting match:error-control to 'fail permits the macros to generate faster and more compact codethan 'error or 'match. The generated code omits pair? tests when the consequence is to fail in caror cdr rather than call match:error .Finally, if match:error-control is set to 'unspeci�ed, non-matching expressions will either fail incar or cdr , or return an unspeci�ed value. This results in still more compact code, but is unsafe.5

2 Data De�nitionThe ability to de�ne new forms of data proves quite useful in conjunction with pattern matching.This macro package includes a slightly altered2 version of Chez Scheme's de�ne-structuremacro forde�ning new forms of data [1], and a similar de�ne-const-structure macro for de�ning immutabledata.The following expression de�nes a new kind of data named struct :(de�ne-structure (struct arg1 : : : argn))A struct is a composite data structure with n �elds named arg1 through argn. The de�ne-structuremacro declares the following procedures for constructing and manipulating data of type struct :Procedure Name: Function:make-struct constructor requiring n argumentsstruct? predicatestruct-arg1, : : : , struct-argn named selectorsset-struct-arg1!, : : : , set-struct-argn! named mutatorsstruct-1, : : : , struct-n numeric selectorsset-struct-1!, : : : , set-struct-n! numeric mutatorsThe �eld name (underscore) is special: no named selectors or mutators are de�ned for such a �eld.Such unnamed �elds can only be accessed through the numeric selectors or mutators, or throughpattern matching.A second form of de�nition:(de�ne-structure (struct arg1 : : : argn) ([init1 exp1] : : : [initm expm]))declares m additional �elds init1 through initm with initial values exp1 through expm. The expres-sions exp1 through expm are evaluated in order each time make-struct is invoked.Finally, the macro de�ne-const-structure:(de�ne-const-structure (struct arg1 : : : argn))(de�ne-const-structure (struct arg1 : : : argn) ([init1 exp1] : : : [initm expm]))is similar to de�ne-structure, but allows immutable �elds. If a �eld name arg i is simply a variable,no (named or numeric) mutator is declared for that �eld. If a �eld name has the form (! x)where x is a variable, then that �eld is mutable. Hence (de�ne-structure (Foo a b)) abbreviates(de�ne-const-structure (Foo (! a) (! b))).By default, structures are implemented as vectors whose �rst component is the name of thestructure as a symbol. Thus a Foo structure of one �eld will match both the patterns ($ Foo x)and #('Foo x). Setting the variable match:structure-control to 'disjoint causes subsequent de�ne-structure de�nitions to create structures that are disjoint from all other data, including vectors.In this case, Foo structures will no longer match the pattern #('Foo x).32This macro generates additional numeric selector and mutator names for use by the pattern matcher, recognizesas an unnamed �eld, and optionally allows structures to be disjoint from vectors. Chez Scheme does not providede�ne-const-structure.3Disjoint structures are implemented as vectors whose �rst component is a unique symbol (an uninterned symbolfor Chez Scheme). The procedure vector? is modi�ed to return false for such vectors (hence the 'disjoint optioncannot be used with Chez Scheme's optimize-level set higher than 1). For completeness the other vector operations(vector-ref, vector-set!, etc.) should also be modi�ed to reject structures, but we don't bother.
6

3 Code GenerationPattern matching macros are compiled into if-expressions that decompose the value being matchedwith standard Scheme procedures, and test the components with standard predicates. Rebinding orlexically shadowing the names of any of these procedures will change the semantics of the matchmacros. The names that should not be rebound or shadowed are:null? pair? number? string? symbol? boolean? char? procedure? vector? box? list?equal?car cdr cadr cdddr ...vector-length vector-refunboxreverse length call/ccAdditionally, the code generated to match a structure pattern like ($ Foo pat1 : : : patn) refers to thenames Foo? , Foo-1 through Foo-n, and set-Foo-1! through set-Foo-n! . These names also shouldnot be shadowed.4 ExamplesThis section illustrates the convenience of pattern matching with some examples. The followingfunction recognizes s-expressions that represent the standard Y operator:(de�ne Y?(match-lambda[('lambda (f1)('lambda (y1)((('lambda (x1) (f2 ('lambda (z1) ((x2 x3) z2))))('lambda (a1) (f3 ('lambda (b1) ((a2 a3) b2)))))y2)))(and (symbol? f1) (symbol? y1) (symbol? x1) (symbol? z1) (symbol? a1) (symbol? b1)(eq? f1 f2) (eq? f1 f3) (eq? y1 y2)(eq? x1 x2) (eq? x1 x3) (eq? z1 z2)(eq? a1 a2) (eq? a1 a3) (eq? b1 b2))][#f]))Writing an equivalent piece of code in raw Scheme is tedious.The following code de�nes abstract syntax for a subset of Scheme, a parser into this abstractsyntax, and an unparser.(de�ne-structure (Lam args body))(de�ne-structure (Var s))(de�ne-structure (Const n))(de�ne-structure (App fun args))
7

(de�ne parse(match-lambda[(and s (? symbol?) (not 'lambda))(make-Var s)][(? number? n)(make-Const n)][('lambda (and args ((? symbol?) : : :) (not (? repeats?))) body)(make-Lam args (parse body))][(f args : : :)(make-App(parse f)(map parse args))][x (error x "invalid expression")]))(de�ne repeats?(lambda (l)(and (not (null? l))(or (memq (car l) (cdr l)) (repeats? (cdr l))))))(de�ne unparse(match-lambda[($ Var s) s][($ Const n) n][($ Lam args body) `(lambda ,args ,(unparse body))][($ App f args) `(,(unparse f) ,@(map unparse args))]))With pattern matching, it is easy to ensure that the parser rejects all incorrectly formed inputs withan error message.With match-de�ne, it is easy to de�ne several procedures that share a hidden variable. Thefollowing code de�nes three procedures, inc, value, and reset , that manipulate a hidden countervariable:(match-de�ne (inc value reset)(let ([val 0])(list(lambda () (set! val (+ 1 val)))(lambda () val)(lambda () (set! val 0)))))Although this example is not recursive, the bodies could recursively refer to each other.The following code is taken from the macro package itself. The procedure match:validate-patternchecks the syntax of match patterns, and converts quasipatterns into ordinary patterns.
8

(de�ne match:validate-pattern(lambda (pattern)(letrec([simple?(lambda (x)(or (string? x) (boolean? x) (char? x) (number? x) (null? x)))][ordinary(match-lambda[(? simple? p) p][' '][(? match:pattern-var? p) p][('quasiquote p) (quasi p)][(and p ('quote)) p][('? pred ps : : :) `(? ,pred ,@(map ordinary ps))][('and ps ..1) `(and ,@(map ordinary ps))][('or ps ..1) `(or ,@(map ordinary ps))][('not ps ..1) `(not ,@(map ordinary ps))][('$ (? match:pattern-var? r) ps : : :) `($,r ,@(map ordinary ps))][(and p ('set! (? match:pattern-var?))) p][(and p ('get! (? match:pattern-var?))) p][(p (? match:dot-dot-k? ddk)) `(,(ordinary p) ,ddk)][(x . y) (cons (ordinary x) (ordinary y))][(? vector? p) (apply vector (map ordinary (vector->list p)))][(? box? p) (box (ordinary (unbox p)))][p (match:syntax-err pattern "syntax error in pattern")])][quasi(match-lambda[(? simple? p) p][(? symbol? p) `(quote ,p)][('unquote p) (ordinary p)][(('unquote-splicing p) . ()) (ordinary p)][(('unquote-splicing p) . y) (append (ordlist p) (quasi y))][(p (? match:dot-dot-k? ddk)) `(,(quasi p) ,ddk)][(x . y) (cons (quasi x) (quasi y))][(? vector? p) (apply vector (map quasi (vector->list p)))][(? box? p) (box (quasi (unbox p)))][p (match:syntax-err pattern "syntax error in pattern")])][ordlist(match-lambda[() ()][(x . y) (cons (ordinary x) (ordlist y))][p (match:syntax-err pattern"invalid use of unquote-splicing in pattern")])])(ordinary pattern))))5 Known BugsA structure pattern like ($ foo a b c) is not checked to ensure that there are enough �elds presentfor a foo object. This should be �xed in the future.9

AcknowledgmentsSeveral members of the Rice programming languages community exercised the implementation andsuggested enhancements. We thank Matthias Felleisen, Cormac Flanagan, Amit Patel, and AmrSabry for their contributions.References[1] Dybvig, R. K. The Scheme Programming Language. Prentice-Hall, Englewood Cli�s, NewJersey, 1987.

10

