Skip to content

Latest commit

 

History

History
315 lines (256 loc) · 11.6 KB

ReadMe.md

File metadata and controls

315 lines (256 loc) · 11.6 KB

🔥 Msnhnet(V2.0 Focusing on Robot Vision)🔥

English| 中文 |CSDN

A mini pytorch inference framework which inspired from darknet.

License c++ Msnhnet

OS supported (you can check other OS by yourself)

windows linux mac Loongnix
checked Windows Windows OSX Loongnix
gpu Windows Linux Mac Loongnix

CPU checked

Intel i7 raspberry 3B raspberry 4B Jeston NX Loongson
checked i7 3B 4B NX Loongson

Features

  • C++ Only. 3rdparty blas lib is optional, also you can use OpenBlas.
  • OS supported: Windows, Linux(Ubuntu checked) and Mac os(unchecked).
  • CPU supported: Intel X86, AMD(unchecked) and ARM(checked: armv7 armv8 arrch64).
  • x86 avx2 supported.(Working....)
  • arm neon supported.(Working....)
  • A cv lib like opencv is supported for msnhnet.(MsnhCV)
  • conv2d 3x3s1 3x3s2 winograd3x3s1 is supported(Arm)
  • Keras to Msnhnet is supported. (Keras 2 and tensorflow 1.x)
  • GPU cuda supported.(Checked GTX1080Ti, Jetson NX)
  • GPU cudnn supported.(Checked GTX1080Ti, Jetson NX)
  • GPU fp16 mode supported.(Checked GTX1080Ti, Jetson NX.)
  • ps. Please check your card wheather fp16 full speed is supported.
  • c_api supported.
  • keras 2 msnhnet supported.(Keras 2 and tensorflow 1.x, part of op)
  • pytorch 2 msnhnet supported.(Part of op, working on it)
  • MsnhnetSharp supported. pic
  • A viewer for msnhnet is supported.(netron like)
  • Working on it...(Weekend Only (╮(╯_╰)╭))

Tested networks

Yolo Test

  • Win10 MSVC 2017 I7-10700F

    net yolov3 yolov3_tiny yolov4
    time 380ms 50ms 432ms
  • ARM(Yolov3Tiny cpu)

    cpu raspberry 3B raspberry 4B Jeston NX
    with neon asm ? 0.432s ?

Yolo GPU Test

  • Ubuntu16.04 GCC Cuda10.1 GTX1080Ti

    net yolov3 yolov3_tiny yolov4
    time 30ms 8ms 30ms
  • Jetson NX

    net yolov3 yolov3_tiny yolov4
    time 200ms 20ms 210ms

Yolo GPU cuDnn FP16 Test

  • Jetson NX
    net yolov3 yolov4
    time 115ms 120ms

Yolov5s GPU Test

  • Ubuntu18.04 GCC Cuda10.1 GTX2080Ti
    net yolov5s yolov5s_fp16
    time 9.57ms 8.57ms

Mobilenet Yolo GPU cuDnn Test

  • Jetson NX
    net yoloface100k yoloface500k mobilenetv2_yolov3_nano mobilenetv2_yolov3_lite
    time 7ms 20ms 20ms 30ms

DeepLabv3 GPU Test

  • Ubuntu18.04 GCC Cuda10.1 GTX2080Ti
    net deeplabv3_resnet101 deeplabv3_resnet50
    time 22.51ms 16.46ms

Requirements

Video tutorials(bilibili)

How to build

  • With CMake 3.15+

  • Viewer can not build with GPU.

  • Options

    ps. You can change omp threads by unchecking OMP_MAX_THREAD and modifying "num" val at CMakeLists.txt:52

  • Windows

  1. Compile opencv4 (optional)
  2. Config environment. Add "OpenCV_DIR" (optional)
  3. Get qt5 and install. http://download.qt.io/ (optional)
  4. Add qt5 bin path to environment (optional).
  5. Get glew for MsnhCV Gui.http://glew.sourceforge.net/ (optional).
  6. Get glfw3 for MsnhCV Gui.https://www.glfw.org/ (optional).
  7. Extract glew, add glew path to "CMAKE_PREFIX_PATH" (optional).
  8. Compile gflw3 with cmake, add gflw3 cmake dir to "GLFW_DIR" (optional).
  9. Then use cmake-gui tool and visual studio to make or use vcpkg.
  • Linux(Ubuntu)

ps. If you want to build with Jetson, please uncheck NNPACK, OPENBLAS, NEON.


sudo apt-get install build-essential
sudo apt-get install qt5-default      #optional
sudo apt-get install libqt5svg5-dev   #optional
sudo apt-get install libopencv-dev    #optional
sudo apt-get install libgl1-mesa-dev libglfw3-dev libglfw3 libglew-dev #optional


#config 
sudo echo /usr/local/lib > /etc/ld.so.conf.d/usrlib.conf
sudo ldconfig

# build Msnhnet
git clone https://github.com/msnh2012/Msnhnet.git
mkdir build 

cd Msnhnet/build
cmake -DCMAKE_BUILD_TYPE=Release ..  
make -j4
sudo make install

vim ~/.bashrc # Last line add: export PATH=/usr/local/bin:$PATH
sudo ldconfig
  • MacOS(MacOS Catalina) Without viewer

PS: XCode should be pre-installed.

Please download cmake from official website with gui support and the source code of yaml and opencv.

# install cmake

vim .bash_profile
export CMAKE_ROOT=/Applications/CMake.app/Contents/bin/
export PATH=$CMAKE_ROOT:$PATH
source .bash_profile

# install brew to install necessary libraries

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

brew install wget
brew install openjpeg
brew install hdf5
brew install gflags
brew install glog
brew install eigen
brew install libomp

# build yaml-cpp
git clone https://github.com/jbeder/yaml-cpp.git
cd yaml-cpp
mkdir build
source .bash_profile
cmake-gui
Set the source code path: ./yaml-cpp
Set the build binary path: ./yaml-cpp/build
configure
CMAKE_BUILD_TYPE = Release
uncheck YAML_CPP_BUILD_TESTS
configure (and continue to debug)
generate
cd ./yaml-cpp/build
sudo make install -j8

# build opencv
# download opencv.zip from official website(Remember to download opencv-contrib together)
cd opencv-4.4.0
mkdir build
source .bash_profile
cmake-gui


Set the source code path: ./opencv-4.4.0
Set the build binary path: ./opencv-4.4.0/build
configure (use default)
search for OPENCV_ENABLE_NONFREE and enable it
seach for OPENCV_EXTRA_MODULES_PATH to the path of opencv-contrib
configure (and continue to debug)
generate
cd ./opencv-4.4.0/build/
sudo make install -j8


# build Msnhnet
git clone https://github.com/msnh2012/Msnhnet.git
mkdir build 

cd Msnhnet/build
cmake -DCMAKE_BUILD_TYPE=Release ..  
make -j4
sudo make install

Test Msnhnet

    1. Download pretrained model and extract. eg.D:/models.
    1. Open terminal and cd "Msnhnet install bin". eg. D:/Msnhnet/bin
    1. Test yolov3 "yolov3 D:/models".
    1. Test yolov3tiny_video "yolov3tiny_video D:/models".
    1. Test classify "classify D:/models".


View Msnhnet

    1. Open terminal and cd "Msnhnet install bin" eg. D:/Msnhnet/bin
    1. run "MsnhnetViewer"


PS. You can double click "ResBlock Res2Block AddBlock ConcatBlock" node to view more detail
ResBlock

Res2Block

AddBlock

ConcatBlock

How to convert your own pytorch network

  • pytorch2msnhnet
  • ps:
  • 1 . Please check out OPs which supported by pytorch2msnhnet before trans.
  • 2 . Maybe some model can not be translated.
  • 3 . If your model contains preprocessors and postprocessors which are quite complicated, please trans backbone first and then add some OPs manually.
  • 4 . As for yolov3 & yolov4, just follow this video. You can find "pytorch2msnhbin" tool here.

About Train

Enjoy it! :D

Acknowledgement

Msnhnet got ideas and developed based on these projects:

3rdparty Libs

加群交流