

Introduction to the
Mathematics of
Operations Research
with Mathematica®

Second Edition

University of California,
San Diego

Rutgers University

Georgia Institute of Technology

University of California,
Berkeley

University of California,
Santa Barbara

Yale University

Cornell University

University of Antwerp,
Belgium

University of Wisconsin,
Madison

Rutgers University

Virginia Polytechnic Institute
and State University

Universität Siegen

University of Wisconsin,
Milwaukee

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

Rutgers University
Piscataway, New Jersey

University of Central Florida
Orlando, Florida

MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS

Recent Titles

F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the
Real Line (2004)

G. S. Ladde and M. Sambandham, Stochastic versus Deterministic Systems of
Differential Equations (2004)

B. J. Gardner and R. Wiegandt, Radical Theory of Rings (2004)

J. Haluska, The Mathematical Theory of Tone Systems (2004)

C. Menini and F. Van Oystaeyen, Abstract Algebra: A Comprehensive Treatment
(2004)

E. Hansen and G. W. Walster, Global Optimization Using Interval Analysis, Second
Edition, Revised and Expanded (2004)

M. M. Rao, Measure Theory and Integration, Second Edition, Revised and Expanded
(2004)

W. J. Wickless, A First Graduate Course in Abstract Algebra (2004)

R. P. Agarwal, M. Bohner, and W-T Li, Nonoscillation and Oscillation Theory for
Functional Differential Equations (2004)

J. Galambos and I. Simonelli, Products of Random Variables: Applications to
Problems of Physics and to Arithmetical Functions (2004)

Walter Ferrer and Alvaro Rittatore, Actions and Invariants of Algebraic Groups (2005)

Christof Eck, Jiri Jarusek, and Miroslav Krbec, Unilateral Contact Problems: Variational
Methods and Existence Theorems (2005)

M. M. Rao, Conditional Measures and Applications, Second Edition (2005)

A. B. Kharazishvili, Strange Functions in Real Analysis, Second Edition (2006)

Vincenzo Ancona and Bernard Gaveau, Differential Forms on Singular Varieties:
De Rham and Hodge Theory Simplified (2005)

Santiago Alves Tavares, Generation of Multivariate Hermite Interpolating Polynomials
(2005)

Sergio Macías, Topics on Continua (2005)

Mircea Sofonea, Weimin Han, and Meir Shillor, Analysis and Approximation of
Contact Problems with Adhesion or Damage (2006)

Marwan Moubachir and Jean-Paul Zolésio, Moving Shape Analysis and Control:
Applications to Fluid Structure Interactions (2006)

Alfred Geroldinger and Franz Halter-Koch, Non-Unique Factorizations: Algebraic,
Combinatorial and Analytic Theory (2006)

Kevin J. Hastings, Introduction to the Mathematics of Operations Research
with Mathematica®, Second Edition (2006)

Kevin J. Hastings
Knox College
Galesburg, Illinois, U.S.A.

Introduction to the
Mathematics of
Operations Research
with Mathematica®

Second Edition

Boca Raton London New York

Chapman & Hall/CRC is an imprint of the
Taylor & Francis Group, an informa business

To my wife Gay Lynn, without whose patience and advice
during the course of a never-ending stream of books, I would

never be able to live as a complete human being.

 vii

PREFACE

In the time that has elapsed since the first edition of the book, titled
Introduction to the Mathematics of Operations Research, was published in
1989, changes have occurred in the discipline of Operations Research. The
field is in the midst of a crisis, partly a result of unnecessarily poor image and
partly because of real problems. The result is that its members question the
future of operations research. Meanwhile, better, faster, and more widely
available technology has made its way into the workplace of the O.R.
professional and into the mathematics curriculum, and lively discussion has
taken place about pedagogy, especially revolving around the passivity of
many students and the need to get them more actively involved with their
courses. I saw that the time had certainly come to revisit the first edition of
this book in an attempt to attune the book to current circumstances.
 The first edition sprang from the following observations (paraphrased
from its preface). In industry, problems involving such areas as
telecommunications, scheduling, inventory, production, transportation, and
finance abound. Besides the inherent interest of these problems, there is also
aesthetic beauty in the mathematics. Operations Research is both an
assemblage of descriptive and analytical techniques to facilitate decision
making in business and industry, and a way of approaching problems. There
are concrete questions such as: what is the best way to schedule servers at a
service facility, what is the best mix of several kinds of products using scarce
raw materials, and how does one best maintain a machine that is deteriorating
with time? But looked at as a problem-solving approach, O.R. involves
defining and modeling the problem precisely, with enough detail to capture its
essence without making the problem intractable; deciding on objectives;
coming up with a solution, often an algorithm to improve a current
configuration; implementing that algorithm; and finally observing the
consequences of the answer. Much as in computer programming, the solution
process is often a cycle in which the researcher goes back to the beginning to
refine the model, the objectives, or the algorithm one or more times. The point
of view taken by the first edition of this book was that the vast assortment of
apparently unrelated questions in the field of O.R. is unified by the common
features of the mathematical models used to describe them, and the way of
going about solving problems. So the text was designed to show the
mathematics that underlies the applied problems, and subsequently to show
the “real-world” problems as examples of the application of the mathematical
and algorithmic thinking that will live on indefinitely as the passage of time
changes the kinds of problems that capture the attention of practitioners.

 ix

Preface x

 Also, it is as true now as it was fifteen years ago that there is a general
shortage of faculty experienced in O.R, especially at the small university and
private college level. The breadth of Operations Research and the
corresponding voluminous nature of most sources add to the difficulty of
course design for the non-specialist. I wanted a concise book whose focus
was on the mathematics of Operations Research, which would be a more
suitable introduction to the subject in a mathematical sciences department
with limited resources than other texts might be.
 There is much in the first edition that remains meaningful, and which
validates the approach, given the criticism that has been leveled from inside
and outside of the field of Operations Research. One hears that Operations
Research groups are being phased out in many organizations because the
groups are not worth the investment. Criticisms usually include: our O.R.
people are trained to execute a few algorithms under stringent assumptions but
when it comes to an actual messy problem that does not fit a stereotype they
are lost; or, O.R. people prefer to do their esoteric research on some little
corner of the field about which only a few people really care. But my first
book took the point of view that a student of Operations Research cannot and
should not simply step through every method for every problem in every
application area without a feel for the core of the field or an understanding of
the complete problem-solving process. I believe that the subject is still vital,
useful, and an excellent part of an undergraduate mathematics major because
it gives deeper perspective on mathematics and its use, it exposes students to
mathematical modeling in situations grounded in reality, and, done correctly,
it greatly enhances their general reasoning and problem-solving ability. Even
if the phrase “Operations Research” dies out and even if O.R. departments
disappear, these kinds of skills will always be valuable to organizations in the
private and public sectors. And at least a few specific topics will always
occupy an important position in applied mathematics: representations of
problems using graphs, optimization of linear functions subject to linear
constraints, modeling and prediction of random events occurring through time,
and the optimal control of such random events. This is, and will remain, the
governing structure of the book: Graph Theory, Linear Programming,
Stochastic Processes, and Dynamic Programming.
 The challenge in producing a new edition was to retain the character of
the book, yet take into account new developments in the spheres of
mathematics pedagogy and the field of O.R. In keeping with the comments
above, the following are the main areas in which the second edition differs
from the first:

1. The book is more interactive. Self-check questions, and suggestions to
investigate the material further are interspersed in the development.

2. Technology is smoothly integrated into the development in such a way as to
expose new issues and possibilities, enhance students’ desire to experiment,
and drastically reduce computational burden.

Preface xi

3. The problem sets emphasize problem solving even more. Longer projects
are included that do not fit into existing molds, for which the students must
develop their own techniques.

4. A few new topics are included for more breadth: the traveling salesman
problem and other famous graph theory problems are introduced briefly in a
new section of Chapter 1, simulation has been integrated into Chapters 4 and
5, and a treatment of Brownian motion has been appended to Chapter 5, which
permits examples of problems in the growing field of mathematical finance to
be presented.

5. The review of topics from probability has been moved to an appendix, so as
not to interrupt the flow unnecessarily. Students taking this course ought to
have a course in probability as a prerequisite anyway.

6. Not the least important, answers to selected exercises are in another
appendix. Publication timing problems in the first edition prevented them
from being included there.

 The integration of technology requires special discussion. At the time I
wrote the first edition there were lots of programs to execute the simplex
algorithm for linear programming, and a few others for other kinds of special
problems, but there was no common environment for doing operations
research, from pictorial representation, to symbolic derivation, to
computation, to technical typesetting of reports. Since then there have arisen
such environments. In fact, it has become possible to have an electronic, fully
executable version of the printed text with which the students can interact
directly; in short, a living textbook. While there are several possible symbolic
algebra-graphical packages that can suffice, and countless other very powerful
and very specialized professional programs, I prefer the one that I think will
be left standing after intense competition: Mathematica. This package is
extremely general, and more importantly, programmable, and with the advent
of its most recent versions (3.0 and higher) it provides the ability for students
to create professionally typeset mathematical documents with text integrated
with computation. Mathematica already has facilities to support much of the
material in the book, and what it does not have directly is easily
programmable. I have found that it helps to teach the meaning of the simplex
algorithm very well, and greatly simplifies the burdensome computations in
graph theory and dynamic programming. Its simulation capability is quite
good because it provides simple tools that students can adapt, and in the
process learn more about model building and better understand the system
they are trying to simulate. I have also found students doing significantly
higher quality work when asked to turn in typeset Mathematica notebooks
than they do by hand. Perhaps the professional appearance of their product
gives them more of a sense of pride in it, which induces them to do even better
work next time. In fact, the program is such an integral part of this second

Preface xii

edition that the title has been modified to: Mathematics of Operations
Research with Mathematica. This is a completely self-contained printed text,
accompanied by an electronic version, together with a package of useful
commands that I have written. The electronic version is in the form of
Mathematica notebooks, one per section, and all Mathematica input cells will
be live, so that the students can reexecute commands, edit them, devise new
ones, etc. In this way, the student can direct his or her own study, which
increases greatly the level of involvement, and one hopes, the level of
comprehension and problem-solving.
 Here are a few of the ways in which Mathematica has significant impact
on the book:

1. A Mathematica tool for drawing labeled graphs allows students to redraw
graphs in graph algorithms conveniently.

2. Students can experiment with large powers of adjacency matrices of large
graphs to verify the theorem about path counting in Chapter 1, and to check
regularity of Markov chains in Chapter 5.

3. Students are asked to implement some algorithms in Mathematica, which
forces more thorough understanding.

4. Students can make good use of Mathematica’s equation-solving tools to
construct feasible regions of linear programming problems in Chapters 2 and
3, and to use the “dictionary” method to solve them without headaches, and
yet with understanding of how the method proceeds from step to step.

5. In Chapters 4 and 5, students can write simulators in Mathematica for
processes such as Markov chains, Poisson processes, and Brownian motions,
not only to observe their properties, but also to aid their understanding of the
defining conditions of those processes.

6. Naturally recursive problems such as first passage times and absorption
probabilities can be solved recursively in Mathematica.

7. Theoretically simple but tedious probabilistic computations regarding
Poisson processes and queues in Chapter 6 are made easier to carry out using
Mathematica’s distribution tools.

8. Mathematica’s symbolic algebra ability can be used to greatly simplify the
task of solving dynamic programming problems, permitting longer time
horizons and larger state and action spaces to be used, and focusing attention
back on the modeling aspect of such problems where it belongs.

9. In general, the shift in emphasis from hand to computer computations
facilitates examination of sensitivity of solutions to parameter changes.

Preface xiii

 It remains true that Operations Research is an endless source of
interesting problems, which has never failed in my experience to stimulate the
students of mathematics who I have taught, and to open their eyes to ideas and
applications that they never before imagined. My wish continues to be that
students take this book as a jumping-off point to further work in Operations
Research or related areas such as Statistics, Management, Applied
Mathematics, or Finance, as many of my students have done.
 Finally, I would like to think the staff at Taylor & Francis publishing,
including Kevin Sequeira and Fred Coppersmith, for all their help in bringing
this project to fruition.

Kevin J. Hastings
Knox College
August 31, 2005

Notes on Electronic Book xv

Note on Mathematica Packages and Electronic Book

This is a book that exists not only in the print medium but also electronically.
The CD that accompanies the print version contains Mathematica notebooks,
one per section, which together contain all of the material in the book and
which should run quite well in Mathematica versions 5.0 or later, and perhaps
(with no guarantees) in earlier versions. It also contains special packages that
I have written with commands to support the book. To use them, simply make
a new folder called KnoxOR in the AddOns/ExtraPackages directory of your
Mathematica folder, and copy into it from the CD the files Graphs.m,
LinearProgramming.m, StochasticProcesses.m, and DynamicProgramming.m.
 When you boot up Mathematica and open one of the notebook files, you
will notice that the output cells are not included; but if you select the Kernel
menu command to execute all initialization cells, then the output that is
contained in the printed text should be regenerated automatically. Some
graphics in GraphicsArray cells will need to be resized to look well, and in
general graphics would need to be sized and centered in order to look
precisely like those in the printed text. The manufacturer of Mathematica,
Wolfram Research, has made some changes since I first started this edition of
the book and wrote the packages, including relocating some of its commands
that my packages call on into different packages, and they may do so again in
the future. So far, these path problems have not affected the notebooks so
badly that any commands would not run, although warning messages are
generated. In particular, the notebooks that use the StochasticProcesses.m
package produce shadowing warnings relative to the names Type,
Distribution, Absolute, and Relative. I decided to leave things as they were so
that the notebooks would run on earlier versions of Mathematica, but if
problems develop, you are encouraged to look using a text editor at the four
".m" packages near the top of the file to see what Mathematica packages are
being loaded in, and correct the names of those packages as the warning
messages indicate.

In its most recent versions, Mathematica has come up with a more
refined ShowGraph command in its DiscreteMath`Combinatorica` package,
which probably outshines the DisplayGraph command in my
KnoxOR`Graphs` package. This change also took place as I was writing. But
instead of rewriting the whole text I decided to stay with my own version,
which is somewhat more attuned to what I wanted to use it for anyway. You
might want to experiment with ShowGraph yourself.
 Finally, bear in mind that the usual copyright privileges apply to the
electronic version; you should no sooner share the notebook files with others
than allow others to duplicate the printed text.

Contents xvii

Contents

Chapter 1 - Graph Theory and Network Analysis 1

1.1 Definitions and Examples .. 2
1.2 Spanning Trees ... 24

Undirected Spanning Trees ... 25
Directed Spanning Trees ... 36

1.3 Minimal Cost Networks .. 47
Undirected Graphs .. 47
Directed Graphs .. 56

1.4 Critical Path Algorithm ... 72
1.5 Maximal Flow Problems ... 91

Problem Description ... 91
Main Results and Algorithm ... 94
Examples .. 102

1.6 Maximum Matching Problems .. 113
Definitions and Problem Description .. 113
Matching Algorithm ... 118
Examples .. 124

1.7 Other Problems of Graph Theory .. 135
Graph Coloring Problem ... 136
Shortest Paths Problem ... 138
Traveling Salesman Problem .. 139

Chapter 2 - Linear Programming ... 143

2.1 Two-Variable Problems ... 145
2.2 Geometry of Linear Programming ... 159
2.3 Simplex Algorithm for the Standard Maximum Problem 170

The Simplex Algorithm .. 170
Special Behavior ... 176
Tableau Method .. 184

2.4 Duality and the Standard Minimum Problem 193

Chapter 3 - Further Topics in Linear Programming 211

3.1 Non-Standard Problems ... 213
3.2 Transportation Problem ... 227
3.3 Sensitivity Analysis ... 242

Discussion of the Problem .. 242
Matrix-Geometric View of the Simplex Method 244
Determining Sensitivity of Parameters ... 249

Contents xviii

Chapter 4 - Markov Chains ... 261
4.1 Definitions and Examples .. 263

Simulation ... 268
4.2 Short-Run Distributions ... 274
4.3 First Passage Times ... 284
4.4 Classification of States .. 292
4.5 Limiting Probabilities .. 303

Main Results ... 303
Long-Run Discounted Cost ... 311

4.6 Absorption Probabilities .. 318

Chapter 5 - Continuous Time Processes ... 327

5.1 Poisson Processes .. 327
Definitions and Main Results .. 327
Examples .. 332

5.2 Birth and Death Processes ... 340
Preliminaries ... 340
Kolmogorov Equations ... 345

5.3 Renewal Processes ... 355
Introduction ... 355
Short-Run Distributions .. 356
Long-Run Results ... 360
Renewal Reward Processes ... 363

5.4 Queueing Theory ... 368
Preliminaries ... 368
Simple Poissonian Queues .. 370
M/G/1 Queue .. 376
G/M/1 Queue .. 380

5.5 Brownian Motion ... 386
Relation to Random Walks ... 386
Definition and Properties of Standard Brownian Motion 389
Brownian Motion with Drift ... 394

Chapter 6 - Dynamic Programming ... 403

6.1 The Markovian Decision Model .. 403
Deterministic Dynamic Programming .. 404
Stochastic Dynamic Programming: The Finite Horizon Problem 406
Examples .. 411

6.2 The Finite Horizon Problem .. 418
Dynamic Programming Algorithm, Stochastic Case 421
Examples .. 425

6.3 The Discounted Reward Problem .. 435
Method of Successive Approximations .. 435
Examples .. 440

6.4 Policy Improvement .. 449
Main Theorem and Policy Improvement Algorithm 449

Contents xix

Examples .. 453
6.5 Optimal Stopping of a Markov Chain .. 461

Dynamic Programming Approach .. 461
Linear Programming Approach .. 468

6.6 Extended Applications ... 476
American Option Problem .. 477
Inventory Problem .. 483
Conclusion .. 494

Appendix A - Probability Review ... 501

Appendix B - Answers to Selected Exercises ... 530

Appendix C - Glossary of Mathematica Commands 547

References ... 558

Index .. 562

1

Graph Theory and Network Analysis

Introduction

In this chapter we are concerned with problems of optimization on a network

of points connected by weighted edges. To illustrate one such problem,

suppose that in Figure 1.1 the points represent stations among which commu-

nication is to be maintained. The weight of a line segment, or edge, is the

cost of direct communication between the two stations connected by the

edge. It might happen that it is impossible for a pair of stations to directly
communicate, so that there may not be an edge between every pair. It is not

even desirable for all stations to be linked directly to all others, as long as

each station can reach each other station through one or more intermediaries.

The problem is to find a set of edges of minimum cost that does not break

communication between any pair of stations in the network.

1

2

3

45

6

1

3

28

3

1 6

27

1

3

6

42

2

4

5

8

7

5

2

3

1

2

1

2

3

4

5

6

7

8

9

10

2

3

4

1

1
2

3

6

2
3

3

4

2

4

 Figure 1.1 – Finding a sparse network Figure 1.2 – Project completion

A second type of problem involving networks is that of finding paths of

maximal weight. In Figure 1.2, suppose that the edges represent tasks and

the weight of an edge is the time required to finish the task. Some tasks may

require the completion of a previous task before they can begin. For this

reason we give a direction to edges; if task x points to a node on the graph,

and task y points away from the same node, then x must be completed before

y. For instance, both of the tasks represented by (2,5) and (3,5) must be done

before the task represented by (5,8). Task (1,2) requires two time units, (1,3)

requires three, etc. The problem is to find a path from node 1 to node 10 with

maximum weight. This sequence of tasks will be such that if there is an

1

unexpected delay at any stage, then the entire project will be delayed.

Another problem of network theory is exemplified by the assignment of
jobs to workers in such a way as to maximize the total effectiveness of all

workers at the jobs assigned to them. In the graph of Figure 1.3, the nodes

on the left are workers, those on the right are jobs, and the weights on the

edges are measures of effectiveness. For instance, worker 1 has a rating of 4

at job 4. We will find a way of matching workers uniquely to jobs to solve

the maximization problem mentioned above, as a specific instance of the

more general class of matching problems for graphs.

1

2

3

4

5

6

4

3 2

1

35

4

4

23

1

5 3

4

 Figure 1.3 – Matching problem

Section 1.1 introduces the basic notions relevant to such graphs as are

depicted in Figures 1.1, 1.2, and 1.3. In Section 1.2, we discuss

spanning trees, which are the sparsest possible connected subgraphs of a

graph. Section 1.3 contains algorithms for the solution of minimal cost

network problems of the sort illustrated by Figure 1.1. The algorithms to

solve the critical path problem of Figure 1.2, and other problems of maximal

flow through a network, are given in Sections 1.4 and 1.5. The matching

problem is solved in Section 1.6. Several other important graph theory

problems, including the so-called traveling salesman problem, are discussed

in the concluding Section 1.7. Along the way we will use Mathematica to

characterize and display graphs, to make computations, and to implement

algorithmic solutions to graph theoretic problems. In the electronic version

of the text, you may want to open up the closed cells preceding each of the

figures above to see the Mathematica code that generated the graphics. We

will learn shortly how to produce such code.

1.1 Definitions and Examples

The intuitive meanings of "graph" and "directed graph" should be clear from

the preceding discussion. A graph is a collection of vertices (or nodes) and

2 Chapter 1 Graph Theory and Network Analysis

edges (or arcs) connecting those vertices. The graph is directed if there is a

notion of direction for its edges. A more precise set–theoretic definition is as

follows.

DEFINITION 1. A graph G is a pair (V , E) where V v1, v2, ..., vn
is a finite set of elements called vertices and E vi, v j is a set of

two-element subsets of V . Each member of E is called an edge. A

directed graph is similar, except that edges are ordered pairs (vi,v j).

We allow the possibility of an empty graph (n = 0), but henceforth we

usually dismiss it as a trivial case without special mention.

Figure 1.1 is a graph with V 1, 2, 3, 4, 5, 6 and edge set

 E = { {1,2},{1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5},

{2,6},{3,4},{4,5}, {5,6} }

Figure 1.2 is a directed graph, with the vertex set

V 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , and edge set

E 1, 2 , 1, 3 , 2, 4 , 2, 5 , 3, 5 , 3, 6 , 3, 7 , 4, 8 , 4, 9 ,

5, 8 , 6, 9 , 7, 9 , 8, 10 , 9, 10

Activity 1 – Write the formal description of the graph in Figure 1.3. Try

to describe carefully what special geometry this graph has.

In the following definitions we use the word "graph" generically to mean

either a directed or an undirected graph, when the item being defined makes

sense in both cases. When necessary we include the adjectives "directed"

and "undirected."

DEFINITION 2. A subgraph of a graph G V , E is another graph

G V , E such that V V and E E. A graph G V , E is

weighted by a weight function w if w : E .

The problems discussed in the introduction involve the location of an

optimal subgraph of a weighted graph, satisfying certain constraints.

A graph may be characterized by a matrix of 0's and 1's. There is a row

and a column for each vertex in the graph, and the matrix has 1 in compo-

nent i, j if and only if there is an edge from vertex i to vertex j in the

graph. We have spoken in the context of directed graphs, but note that an

1.1 Definitions and Examples 3

undirected edge vi, v j may be viewed as two directed edges vi, v j and

v j, vi . Thus, undirected graphs are just special cases of directed graphs in

which v j, vi E whenever vi, v j E.

DEFINITION 3. Vertex v j is adjacent to vi if vi, v j E. The

adjacency matrix of a graph G with n vertices is an n n matrix

A aij with components

ai j
1 if vi, v j E
0 otherwise

The weight matrix of a weighted graph G with n vertices and weight

function w vi, v j is the n n matrix W wij with components

wi j
w vi, v j if vi, v j E
0 otherwise

For example, the graph of Figure 1.3 has adjacency matrix

A

0 0 0 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

By the remark prior to the definition, the adjacency matrix of an undi-

rected graph is symmetric. We have not forbidden vertices to be adjacent to

themselves; indeed, in Chapter 4 we will study transition diagrams of

Markov chains that have this property. But in this chapter we will usually

have no self-loops, that is, edges from a vertex into itself, and hence the

adjacency matrices will usually be zero along their diagonals.

Activity 2 – Write the adjacency matrix for the graph of Figure 1.2

The KnoxOR`Graphs` Mathematica package that is available with the

electronic version of the text contains a function to display graphs. You

should have installed the KnoxOR suite of packages in your ExtraPackages

directory, and to access the commands for graph theory you must load the

package as in the first line of input below. The syntax of the DisplayGraph

function follows. Note that it assumes the graph is represented as an adja-

cency matrix or weight matrix.

4 Chapter 1 Graph Theory and Network Analysis

Needs "KnoxOR`Graphs`"

DisplayGraph graph,options

Options DisplayGraph

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

There are several important options to control the appearance of the

graph. You can set GraphType to Directed to sketch a graph with arrows for

directed edges. VertexLabels can be set to a list of names, one per vertex, in

order that vertices can be displayed with names other than the standard

integer names 1, 2, 3, …, n . In other functions to come, however, when

individual vertices are referred to it is by their number not their name. The

option VertexPositions can be set to a list of pairs x1, y1 , x2, y2 , … ,

which are the coordinates in the plane of the vertices 1, 2, …. Sometimes

graph features can overlap, and so to enhance visibility, the user has some

control over where labels appear. For example, the VertexLabelPositions

option can be set to a list such as {Above, Below, ToLeft, ToRight,...} to

indicate where the vertex labels should appear relative to the vertex dots.

Take care with this and other options to make sure that sizes are consistent;

for example, the value set for VertexLabelPositions should be a list of the

same length as the number of vertices in the graph. EdgeLabels can be set to

a matrix, usually the weight matrix, of labels to place on the edges. Like

VertexLabelPositions, the option EdgeLabelPositions can be set to a matrix

of the same size as the adjacency matrix whose entries are the words Above,

Below, ToLeft, or ToRight to indicate where, relative to the edge midpoint,

the edge labels should appear. The option EdgeStyle can be used to apply a

style to the edges, such as coloration, dashing, or boldfacing. EdgeSepara-

tion controls the space between arrows in a double edge. For graphs that

have self-loops, the options LoopSize and LoopPositions can be used.

LoopSize controls the size of the loops by setting the fraction of the overall

picture size to be used as the loop radius. And LoopPositions, like VertexLa-

1.1 Definitions and Examples 5

belPositions, can be set to a list of entries that can be Above, Below, etc., to

control where the loop appears relative to the vertex. By default, the loop

positions will be above the vertices. The length of the LoopPositions list

should be the same as the number of vertices with self-loops. Standard

options DisplayFunction and AspectRatio, just as in Mathematica's Plot

command, are also accepted. DisplayFunction Identity suppresses printing,

which is handy when you want to produce but not print graphs to combine

later into one picture with the Show command (resetting DisplayFunction to

be $DisplayFunction as a Show option). AspectRatio controls the shape of

the picture, which is sometimes helpful in making a graph more aesthetically

appealing.

EXAMPLE 1. (a) Figure 1.4 is the graph whose adjacency matrix is

A

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

This would be entered into Mathematica as follows, as a list of rows of the

matrix.

adjmatrix 0, 1, 1, 1 ,

1, 0, 0, 1 , 1, 0, 0, 0 , 1, 1, 0, 0 ;

To draw this graph in Mathematica, we first plan out the coordinates of the

vertices against the backdrop of an unseen coordinate system. In this case,

to produce the square shape of the graph in Figure 1.4, we use the VertexPosi-

tions option to place the four vertices at 0, 1 , 1, 1 , 0, 0 , and 1, 0

respectively. For variety we give the vertices labels of v1 through v4 using

the VertexLabels option, and for visibility we use the VertexLabelPositions

option to put the first two labels above the vertices and the second two below

the vertices. Because the graph is undirected and unweighted, we do not

need the GraphType, EdgeLabels, or EdgeLabelPositions options. This plan

leads to the DisplayGraph command below.

DisplayGraph adjmatrix, VertexPositions

0, 1 , 1, 1 , 0, 0 , 1, 0 ,

VertexLabels "v1", "v2", "v3", "v4" ,

VertexLabelPositions

Above, Above, Below, Below , AspectRatio 1 ;

6 Chapter 1 Graph Theory and Network Analysis

v1 v2

v3 v4

 Figure 1.4 – An undirected graph

You can compute that

A2

3 1 0 1
1 2 1 1
0 1 1 1
1 1 1 2

and it is easy to see from the graph that for each pair of vertices i, j ,

A 2 i, j is the number of paths of length 2 from i to j. We will return to this

idea later.

(b) The weight matrix of the graph of Figure 1.1 is below:

 W

0 1 3 2 8 3
1 0 6 2 7 1
3 6 0 4 0 0
2 2 4 0 5 0
8 7 0 5 0 2
3 1 0 0 2 0

Recall that when an edge does not exist in the graph, we adopt the conven-

tion that the corresponding weight in the matrix is zero. The total weight of

the path 1, 2, 3, 4, for example, is 1 6 4 11. If weights are viewed as

costs, then to move from 1 to 4 it is cheaper to use edge 1, 4 than this path.

However it is not cheaper to move directly from 1 to 5 (weight 8) than it is to

use the indirect path 1, 6, 5 (weight 3 2 5). The path 1, 2, 5, 1 is an

example of a path that begins and ends at the same node, and will be called a

cycle (see the definition below).

The following definitions should be self-explanatory.

1.1 Definitions and Examples 7

DEFINITION 4. For m 1, a path of length m from vertex v to vertex

u is a sequence of vertices v v0, v1, v2, ..., vm u such that each

successive pair vi, vi 1 is in the edge set E. A path of length 0 from v0

to itself is the singleton v0. If there is a path from v to u, we call v an

ancestor or predecessor of u, and we call u a descendant of v. If the

graph is weighted by a weight function w, then the weight of the path is

i 0
m 1 w vi, vi 1

A path v0, v1, ..., vm is simple if for all i j, vi v j. A path is a cycle
if it has length at least 3 in the undirected case, and 2 in the directed

case, and v0 vm but no other pair of its vertices is equal.

EXAMPLE 2. Referring to the graph of Figure 1.4, v1, v2, v4 is a simple

path, and v2, v4, v1, v2 is a cycle. The length of this cycle is 3, hence it does

qualify under the definition. The path v1, v2, v1 is not a cycle because of this

length requirement. Without the stipulation that m 3, every edge of an

undirected graph would give rise to a cycle. This is not true in a directed

graph such as the one in Figure 1.5. In this graph, 2, 3, 2 is a cycle, as is 1, 2,

3, 4, 5, 1. The total weight of the latter path is 2 1 3 4 3 13. Pay

attention again to the syntax of the DisplayGraph command. We have

defined the weight matrix as W, placed the five vertices in a roughly pentago-

nal shape with appropriate coordinates using VertexPositions, produced a

directed graph with GraphType, and used the entries of the weight matrix

itself as the EdgeLabels. In addition, we use EdgeLabelPositions to place

the edge labels conveniently.

W 0, 2, 0, 0, 0 , 0, 0, 1, 0, 0 , 0, 1, 0, 3, 5 ,

0, 0, 0, 0, 4 , 3, 0, 0, 7, 0 ;

MatrixForm W

DisplayGraph W, VertexPositions

0, 1 , 2, 2 , 4, 1 , 3, 0 , 1, 0 ,

EdgeLabels W, GraphType Directed,

VertexLabelPositions

ToLeft, Above, ToRight, Below, Below ,

EdgeLabelPositions 0, Above, 0, 0, 0 , 0, 0,

Below, 0, 0 , 0, Above, 0, ToRight, ToLeft ,

0, 0, 0, 0, Above , ToLeft, 0, 0, Below, 0 ,

EdgeSeparation .012 ;

8 Chapter 1 Graph Theory and Network Analysis

0 2 0 0 0
0 0 1 0 0
0 1 0 3 5
0 0 0 0 4
3 0 0 7 0

1

2

3

45

2

1

1

35

4

3

7

 Figure 1.5 – A directed graph

Activity 3 – Try to find the longest path from vertex 1 to vertex 10 in

the graph of Figure 1.2.

The proof of the following is easy, and is left as an exercise for the

reader (see Exercise 2).

THEOREM 1. If there is a path from vertex v to vertex w, then there is also

a simple path from v to w. If the number of vertices in G is n, then this

simple path must have length less than or equal to n 1.

The last of the elementary ideas that we wish to introduce is the degree
of a vertex. We use this concept only in studying undirected graphs; in

particular it comes into play when we look at properties of trees in Section

1.2.

1.1 Definitions and Examples 9

DEFINITION 5. Let v be a vertex of an undirected graph. Then the

degree of v, denoted d v , is the number of edges v, w to which v
belongs.

In Figure 1.4, for example, v1 has degree 3 and v2 has degree 2.

Consider the total of the degrees of all the vertices in a graph

G V , E . Each edge v, w contributes 1 to d v and 1 to d w . Thus,

adding the degrees will double count the edges, and the following relation is

clear:

(1)v V d v 2 number of edges in E

Connectivity

Next we study some ideas pertaining to the connectivity properties of graphs.

DEFINITION 6. A graph is connected if there is a path from every

vertex to every other vertex. A directed graph is called quasi-connected
if, for every pair of vertices u and v, there is a vertex w such that paths

(of length 0 or more) exist from w to u and from w to v. That is, u and v
have a common ancestor w (which might be one of u or v themselves).

EXAMPLE 3. In the case of undirected graphs, the above definition

coincides well with our intuition about the meaning of the word "connected."

The graphs in Figures 1.1 and 1.4 are connected graphs, for example,

because every vertex can be reached from every other vertex. But for

directed graphs, the definition that we have given, usually referred to as

strong connectivity, may be stronger than it would appear to be at first

glance. To see this consider Figure 1.6, in which an undirected graph and a

similar directed graph are displayed. The graph of Figure 1.6(a) is not

connected, since there is no path from 2 to 5, for instance. Both of the two

subgraphs with vertex sets 1, 2, 3 and 4, 5, 6, 7 are connected, however.

These two vertex sets will be called the connected components of the overall

graph. The directed graph in Figure 1.6(b) is not connected, nor are the

aforementioned subgraphs. For example, there is no path from vertex 2 to

vertex 1, and no path from 7 to 6. But the vertex set 4, 5, 7 , together with

the corresponding edge set, does form a connected graph, since paths exist

from every vertex to every other vertex in this subset.

Quasi-connectivity is a weaker condition than connectivity. It is easy to

check in Figure 1.6(b) that 4, 5, 6, 7 forms a quasi-connected graph, since

each pair of vertices has a common ancestor (namely vertex 6).

10 Chapter 1 Graph Theory and Network Analysis

1 2

3 4

5

6

7 1 2

3 4

5

6

7

 (a) (b)

 Figure 1.6 – Two disconnected graphs

Next we investigate the relation between connectivity and the adjacency

matrix.

THEOREM 2. Let A be the adjacency matrix of a graph G of n vertices.

Then Am i, j is the number of paths of length m from vertex i to vertex j.
Thus, G is (strongly) connected if and only if for every pair of vertices i, j ,

Ak i, j 1 for at least one k 1, 2, ..., n.

Proof. The proof of the first statement is by induction on m. When m 1,

the statement is true by the definition of the adjacency matrix. Now assume

that for k 1, 2, . .., m, Ak i, j is the number of paths from i to j of length

k. We have by the definition of matrix multiplication:

Am 1 i, j v V Am i, v A v, j v v, j is an edge Am i, v

The set of paths of length m 1 from i to j can be expressed as the disjoint

union, over the set of vertices v such that v, j E, of the set of paths for

which v precedes j:

Bv v0, v1, ..., vm, vm 1 : v0 i, vm v, vm 1 j

The number of paths of length m 1 from i to j is therefore

v v, j is an edge n Bv

where n Bv is the size of Bv. But Bv is in one-to-one correspondence with

the paths of length m from i to v, hence by induction n Bv Am i, v , from

which the first statement of the theorem follows. The second statement is

true because G is connected iff there is a path of some length k between

every pair of vertices. The longest possible length of such a path is n, in the

1.1 Definitions and Examples 11

case that in order to move from a vertex v back to itself, one must go through

all n vertices and finish at v.

EXAMPLE 4. The graph of Figure 1.6(a) has the adjacency matrix defined

below:

grapha 0, 1, 0, 0, 0, 0, 0 ,

1, 0, 1, 0, 0, 0, 0 , 0, 1, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 1, 0, 1 , 0, 0, 0, 1, 0, 0, 1 ,

0, 0, 0, 0, 0, 0, 1 , 0, 0, 0, 1, 1, 1, 0 ;

MatrixForm grapha

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 1 1 1 0

The second, third, and fourth powers of this adjacency matrix are computed

in Mathematica as:

MatrixForm MatrixPower grapha, 2 ,

MatrixForm MatrixPower grapha, 3 ,

MatrixForm MatrixPower grapha, 4

1 0 1 0 0 0 0
0 2 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 2 1 1 1
0 0 0 1 2 1 1
0 0 0 1 1 1 0
0 0 0 1 1 0 3

,

0 2 0 0 0 0 0
2 0 2 0 0 0 0
0 2 0 0 0 0 0
0 0 0 2 3 1 4
0 0 0 3 2 1 4
0 0 0 1 1 0 3
0 0 0 4 4 3 2

,

2 0 2 0 0 0 0
0 4 0 0 0 0 0
2 0 2 0 0 0 0
0 0 0 7 6 4 6
0 0 0 6 7 4 6
0 0 0 4 4 3 2
0 0 0 6 6 2 11

12 Chapter 1 Graph Theory and Network Analysis

Notice that the structure of these powers remains block diagonal, with a

non-zero block corresponding to the first three vertices, another correspond-

ing to the last four vertices, and zero blocks off the diagonal. This comes

from the fact that vertices 1, 2, and 3 do not communicate with vertices 4, 5,

6, and 7. Inspecting the second power, for example, you see that there are

two paths of length 2 from vertex 4 to itself (namely 4,5,4 and 4,7,4), and

there is just one path of length 2 from vertex 5 to 7 (namely 5,4,7). The third

power tells us, for example, that there are three paths of length 3 from vertex

5 to vertex 4 (try to list them), and two paths of length 3 from vertex 1 to

vertex 2. Another observation that we can make from the fourth power

matrix is that there are numerous paths of length 4 from every vertex in

4, 5, 6, 7 to every other vertex in that set, hence that subgraph is con-

nected. And, inspecting the 1, 2, 3 blocks of the third and fourth power

matrices, we see that there exist paths of length either 3 or 4 from every

vertex in 1, 2, 3 to every other vertex in that set, hence the subgraph

including vertices 1, 2, 3, and the corresponding edges is connected. Exer-

cise 8 asks you to argue from the matrix powers that the graph as a whole

cannot be connected.

In the second part of the statement of Theorem 2, the path length k was

allowed to depend on the vertices being connected. An even stronger sort of

connectivity postulates a path length that is uniformly good for all pairs of

vertices.

DEFINITION 7. A graph is regular if there is m 0 such that

Am i, j 0 (i.e., there is a path of length m from i to j) for all pairs of

vertices i, j .

EXAMPLE 5. The directed graph in Figure 1.7 is clearly regular, since by

inspection the reader can see that there is a path of length 2 from each vertex

to each other vertex. But the graph in Figure 1.8, in which edges are oriented

in a clockwise direction, is not regular, due to the cyclic nature of the edges.

The closed cell above the figures contains the definitions of the adjacency

matrices for the two graphs. You should try raising the adjacency matrix for

Figure 1.7 to the second power to see that all entries are non-zero, and you

should see what happens to the adjacency matrix for Figure 1.8 as you raise

it to higher and higher powers.

One is tempted to guess that if there are n vertices, then to check for

regularity it suffices to check the powers of the adjacency matrix only up to

n. To see that this is not quite the case, examine the graph of Figure 1.9.

There is no path of length 2 from vertex 1 to vertex 2; there is no path of

length 3 from vertex 1 to itself; but there is a path of length 4 between every

pair of vertices. Hence m 4 suffices, but no smaller m. (See Exercise 13.)

1.1 Definitions and Examples 13

1

2

3

1

2

3

 Figure 1.7 – A regular graph Figure 1.8 – A graph that is not regular

1

2

3

Figure 1.9 – Paths of length 4 exist between each pair of vertices

Activity 4 – Use Mathematica to check whether the graph of Figure 1.1

is regular.

Regularity is a property that will be important to the study of limiting

distributions of Markov chains in Chapter 4. In that chapter as well, it will be

helpful to group vertices into subsets, such that all vertices can communicate

with all other vertices in the subset. We are led to the following definition.

DEFINITION 8. A connected component G of a graph G is a maximal

connected subgraph of G.

The word "maximal" in this definition means that there is no strictly

larger connected subgraph containing G' . In Figure 1.6(a), for example, the

set 4, 5, 7 certainly forms a connected set, but since vertex 6 is connected

to these vertices, the subgraph is not maximal. It is clear that the undirected

graph in Figure 1.6(a) can be partitioned into two connected components:

1, 2, 3 and their related edges, and 4, 5, 6, 7 and their edges. Such a

partition is not possible for the directed graph of Figure 1.6(b). There, the set

14 Chapter 1 Graph Theory and Network Analysis

of vertices 4, 5, 7 and their edges form the only connected component.

Next we give an algorithm to find the connected component containing a

given vertex of an undirected graph. The algorithm itself shows the existence

of such a component, and, in so doing, implies that undirected graphs may

be partitioned into connected components. The reason for this is that we can

begin with any vertex, find the connected component containing it using the

algorithm, proceed to another vertex that has not already been used, find its

connected component, and so on, until the supply of vertices is exhausted.

The idea of the algorithm is to begin with the given vertex v, and include all

vertices connected by an edge to v into the current component of v. At each

step, we scan all edges of the graph that have an endpoint at one of the

vertices in the current component, and all of the vertices on the other end of

these new edges. Any new vertices are added to the current component. If no

new vertices are found, then the entire connected component has been

located and the process ends. The reader is asked to prove that the algorithm

works in Exercise 15.

CONNECTED COMPONENTS ALGORITHM
1. Initialize vertex set V0 v .

2. Let m 0.

3. Repeat a – b until Vm Vm 1:

 a. Let m m 1

 b. Let

 Vm Vm 1 w V : there is an edge v, w for some v Vm 1

1 2 3

4 5 6

7 8

e2

e1

e2

e3

e8e1

e6

e7

e6

e5

e8

e3

e7

e4

e5

e4

Figure1.10 – A graph with two connected components

EXAMPLE 6. Let us develop a Mathematica command to implement the

connected components algorithm, and execute it on the graph shown in

1.1 Definitions and Examples 15

Figure 1.10, with initial vertex 1. (In the closed cell above the figure, the

Mathematica name g10 has been given to the adjacency matrix.)

It is an important fact that the practitioner of operations research must

not only understand solution algorithms at a very deep level, but also be able

to convert them to actual programs. This is because many problem situa-

tions require new solutions that existing software is not built to handle. And

the philosophy of this book is that the process of forming such programs

brings you to the deeper level of understanding required. An added benefit

is to be confident that the algorithm will work in the cases that it is meant to

be used for, which only happens after detailed understanding of the algo-

rithm and its implementation.

When one looks carefully at the algorithm, one notices some space and

time inefficiencies that can be remedied in the implementation. For example

the algorithm suggests to keep, for each value m takes on as the loop in step

3 is executed, a set of vertices Vm currently in the component. We do not

really need all of these vertex sets, which have many members in common.

All we really need is the cumulative set of vertices that have been added to

the connected component so far, the most recent set of vertices found on the

previous pass through the loop, and the new candidate vertices that are the

neighbors of the most recent set of vertices, some of which may not yet have

been included into the component, and so should be added in the current

pass. That way, instead of having to reexamine neighbors of vertices added

in past steps, we search only among the most recent vertices, whose neigh-

bors are possible new members of the component. When the set of new

candidate vertices has no vertices that have not already been found, we know

we are done.

The development of a working program requires attention to many

things: the form of the input; assumptions about the input under which the

program should be guaranteed to function properly; what is to be output,

printed, or returned by the program; what local variables, and of what

structure, should be introduced to do the job; and whether it will be helpful

to build supporting programs to do some of the tasks the main program

needs, so that the main program may be made more simple.

For our connected components problem, the program will need the

adjacency matrix of an undirected graph, which we assume is a square,

symmetric matrix of 0's and 1's in the Mathematica form of a list of row lists.

The program will also need the number of the vertex whose component we

are to find. We will assume that the vertices are numbered successively

1, 2, 3, ..., n, and that the vertex number is within the range specified by the

size of the square adjacency matrix. Our goal is to have the program return

the complete list of vertex numbers that make up the connected component.

Because we would like to see something of the sequence of operations, we

will have our program print out the current vertex set and the set of newly

added vertices at every pass through the loop. Local set variables, in the

form of Mathematica lists, will be needed for all vertices in the component

16 Chapter 1 Graph Theory and Network Analysis

so far, the most recently added vertices, and the new vertices to be added. A

utility to return a list of all neighbors of a given vertex, given the adjacency

matrix of the graph, will also help. Fortunately, such a function already

exists in the KnoxOR`Graphs` package:

FindNeighbors adjmatrix,vertex

We will initialize the component, and the most recently added set of

vertices, to be the given vertex. Then at each pass through the main loop, we

find the complete set of neighbors of recent vertices, and determine, by

complementation, which have not yet been added. This becomes the new set

of vertices, which we union with the current component and then reset the

current set of vertices to be the new set in preparation for the next pass

through the loop. The preceding discussion and the comments within the

program below should make the operation of our function clear.

1.1 Definitions and Examples 17

Components thegraph_, vertex_ :

Module component,

currentvertices, newvertices, neighbors ,

begin by adding in the starting vertex

component vertex ;

currentvertices vertex ; newvertices ;

Print component, " ", newvertices ;

While currentvertices ,

neighbors ;

union together the neighbor

sets of all current vertices

Do neighbors Union neighbors, FindNeighbors

thegraph, currentvertices i ,

i, 1, Length currentvertices ;

let newvertices be neighbors that

have not been added in yet

newvertices Complement

neighbors, component ;

add them in

component Union component, newvertices ;

display results of pass

Print component, " ", newvertices ;

reset lists for next pass

currentvertices newvertices;

newvertices ;

at loops end the entire component

has been found, now return it

component

Components g10, 1 ;

1

1, 2, 4 2, 4

1, 2, 4, 5, 7 5, 7

1, 2, 4, 5, 7, 8 8

1, 2, 4, 5, 7, 8

18 Chapter 1 Graph Theory and Network Analysis

As the output shows, for the graph of Figure 1.10, vertices 2 and 4 are found

first, then 5 and 7, and finally 8. A last unsuccessful search produces no new

vertices, so that the connected component containing vertex 1 has vertex set

1, 2, 4, 5, 7, 8 and edge set e1, ..., e7 . Below we execute the command

starting from vertex 3, and find the connected component of 3 to be vertices

3, 6 and edge e8. In the electronic version of the text you should try

issuing similar commands to find the connected component starting with

vertices 2, and then 6. Try also finding the connected components of each of

vertices 1, 2, 3, and 4 in the graph of Figure 1.4. (You may need to reenter

the definition of adjmatrix.)

Components g10, 3 ;

3

3, 6 6

3, 6

Activity 5 – Think about how the FindNeighbors command might be

implemented.

EXAMPLE 7. The algorithm does not quite work in the directed case, as

shown by Figure 1.11. Beginning with vertex 1, we find vertices 2, 3, and 4.

On the next pass, we obtain vertices 5 and 6, then on the third pass, 7 and 8,

and finally we stop after seeing that vertices 7 and 8 have no new neighbors.

But the set of vertices 1, 2, 3, 4, 5, 6, 7, 8 does not form a connected

component because, for instance, vertex 7 cannot reach vertex 1. The

algorithm does return some useful information, however: namely, the set of

vertices reachable from vertex 1, i..e. the descendants of 1. (See Exercise 9.)

This set is closed in the sense that no vertex outside the set can be reached

from a vertex in the set. (See Exercise 16.)

1.1 Definitions and Examples 19

1

2

3

4

5

6

7

8

Figure 1.11 – Connected components algorithm fails for directed graphs

Exercises 1.1

1. (Mathematica) For the graph below, write the adjacency matrix A, com-

pute A3, and verify that for each i and j, A3 i, j is the number of paths from

i to j of length 3 by listing those paths.

1

2 3

4

Exercise 1

2. Prove Theorem 1.

3. Show that the graph whose adjacency matrix is below has no cycles.

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0

4. Show that there is no four-vertex undirected graph with degrees

d v1 3, d v2 2, d v3 2, and d v4 2.

5. (Mathematica) Write a Mathematica command that takes the adjacency

matrix of a graph and a vertex, and returns the degree of that vertex. Test it

on all the vertices of the graph of Figure 1.4.

20 Chapter 1 Graph Theory and Network Analysis

6. Let A be the adjacency matrix of an undirected graph G. Show that

A2 i, i d i .

7. Two graphs G1 V1, E1 and G2 V2, E2 are called isomorphic if there

is a one-to-one onto function f : V1 V2 such that for all v, w V1 edge

v, w E1 if and only if edge f v , f w E2. Show that the two directed

graphs below cannot be isomorphic.

1 2

3

4 5

1

2

3 4

5

Exercise 7

8. Argue, using the adjacency matrix only, that the graph in Figure 1.6(a) is

not connected.

9. (Mathematica) There is a function in the KnoxOR`Graphs` package called

FindChildren adjmatrix,parentlist

This command returns a list of all children of vertices in the given list of

parents, where adjmatrix is the adjacency matrix of a directed graph and a

vertex v is a child of a vertex u iff there is an edge u, v in the graph. Revise

the Components function of Section 1.1 using FindChildren to produce a

function called Descendants[adjmatrix, vertex] that returns the set of all

vertices reachable by some path from the given vertex in the directed graph

characterized by the given adjacency matrix. For each vertex in the graph of

Figure 1.11, use the Descendants function to find the set of all descendants

of that vertex.

10. Prove that if the vertex set of a directed graph can be partitioned into

three subsets V1, V2, and V3 such that edges only exist from V1 into V2, or

from V2 into V3, or from V3 into V1, then the graph is not regular. Give an

example of such a graph with eight vertices.

11. Decide whether the following graph is (a) connected or (b) quasi-con-

nected.

1.1 Definitions and Examples 21

ex12

0, 1, 1, 0, 0 , 0, 0, 1, 1, 0 , 1, 0, 0, 0, 0 ,

0, 0, 0, 0, 1 , 0, 1, 1, 1, 0 ;

DisplayGraph ex12, GraphType Directed,

VertexLabelPositions

ToLeft, Above, Below, Above, ToRight ,

EdgeSeparation .02, AspectRatio .7 ;

1

2

3

4

5

Exercise 11

12. Show that a connected directed graph is quasi-connected. Show that an

undirected graph is quasi-connected if and only if it is connected.

13. (Mathematica) For the graph of Figure 1.9, verify that Am is not entirely

non-zero for any m 4.

14. (Mathematica) Find all connected components of the graph below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Exercise 14

15. Argue that for undirected graphs, the connected components algorithm

does find the connected component of the given initial vertex.

22 Chapter 1 Graph Theory and Network Analysis

16. Prove that for directed graphs, the connected components algorithm finds

the set of vertices that can be reached from a given initial vertex v. Prove that

this set is a closed set (see Example 7), and that if in addition every vertex u
in the set can reach the initial vertex v, then this set is a connected

component.

17. For an undirected graph with the adjacency matrix below, find the

connected components.

0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0

18. (Mathematica) Write a Mathematica command that takes a weight matrix

of a graph, and a list of vertices forming a path in the graph, and returns the

weight of the path.

19. Adjacency matrices are not the only way of representing graphs. An

adjacency list representation of a graph is a list, vertex-by-vertex, of the

vertices that are adjacent to that vertex. For example, for the graph of Figure

1.4 one would have the adjacency list

v1 : v2, v3, v4

v2 : v1, v4

v3 : v1

For graphs with many vertices and not very many edges, this representation

can result in a substantial savings in the amount of information recorded.

Write adjacency lists for the graphs of (a) Figure 1.3; (b) Figure 1.5; (c)

Figure 1.10.

20. (Mathematica) Devise a way of implementing in Mathematica an

adjacency list representation of a graph. (See Exercise 19.) Write a function

that converts an adjacency list to an adjacency matrix.

1.1 Definitions and Examples 23

1.2 Spanning Trees

In many of the network problems that we will consider, the networks are

special types of graphs called trees. These are subgraphs that retain the

connectivity of the original graph, but are sparse in the sense of having as

few edges as possible. In the definition below, the underlying graph of a

directed graph is the undirected graph with the same vertex set, and with

undirected edges v, w for every directed edge v, w in the directed graph.

Loosely speaking, we erase the arrows.

DEFINITION 1. An undirected graph is called a tree if it is connected

and has no cycles. A directed graph is a tree with root (or source) v1 if

its underlying graph is a tree and if v1 is an ancestor of every vertex

v V .

We will occasionally use the word "root" in the sense of this definition

even when the graph is not a tree.

EXAMPLE 1. Figure 1.12 shows an undirected tree. The fact that our

definition requires vertices to have a common ancestor implies that the graph

in Figure 1.13(a) is not a directed tree. The problem is the edge v5, v3 .

Figure 1.13(b) illustrates a directed tree with root v1, in which the direction

of this edge has been reversed to v3, v5 .

v1

v2

v3

v4

Figure 1.12 – An undirected tree

24 Chapter 1 Graph Theory and Network Analysis

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

(a) (b)

Figure 1.13 – (a) Directed graph; not a tree; (b) Directed tree

Activity 1 – Take a moment to draw for yourself some other examples

of directed and undirected trees.

We will usually be considering trees as sparse subgraphs of other larger

graphs, but since we desire connectivity of all vertices in the larger graph,

we are led to make the following definition.

DEFINITION 2. A spanning tree of a graph G is a subgraph G of G
that is a tree containing all vertices of G.

Undirected Spanning Trees

First, consider undirected spanning trees. For example for the graph of

Figure 1.4 in the previous section, the subgraph

G v1, v2, v3, v4 , v1, v3 , v1, v2 , v2, v4

is a spanning tree of the graph G. Recall also the graph of Figure 1.1, where

the vertices represent communication stations, and the weight of an edge is

the cost of setting up direct communication between the stations connected

by the edge. The spanning tree formed by edges 1, 2 , 1, 3 , 1, 4 , 1, 5 ,

and 1, 6 has total cost 17. Another spanning tree has edges 6, 2 , 2, 3 ,

3, 4 , 4, 5 , and 1, 2 and also has total cost 17. [See Figures 1.14(a) and

(b).]

1.2 Spanning Trees 25

1

2

3

45

6

1

3

28

3

1

3

28

3
1

2

3

45

6

11 61 6

44

55

1

(a) (b)

Figure 1.14 – Two spanning trees of graph of Figure 1.1

The interesting questions are: (1) how do we find a spanning tree and (2)

how do we find a spanning tree of minimal cost, if there are edge weights

representing costs? The latter is addressed in the next section. First, we will

develop an algorithm to answer question (1). Theorem 1, to be stated shortly,

supplies a termination condition for the spanning tree algorithm for undi-

rected graphs. The proof of Theorem 1 requires three lemmas that are of

interest in themselves (see [18], Theorems 3.17, 3.18, 3.19).

LEMMA 1. If G is a finite, undirected graph whose vertices each have

degree 2, then G has a cycle.

Proof. We give the idea of the proof and leave the details to the reader.

Begin with any vertex and move to a neighboring vertex. Since this new

vertex has degree 2, we may move along an edge that has not already been

used to another vertex. Continuing in this way, since the graph is finite, we

must eventually return to a vertex already encountered, thus forming a cycle.

LEMMA 2. A tree has at least one vertex of degree 1.

Proof. Since a tree has no cycles, this is an immediate consequence of

Lemma 1.

LEMMA 3. If G is connected and has strictly fewer edges than vertices,

then G has a vertex of degree 1.

Proof. If, on the contrary, all vertices have degree at least 2, then we have

from formula (1) of Section 1.1,

 number of edges 1 2 v V d v 1 2 v V 2 number of vertices

26 Chapter 1 Graph Theory and Network Analysis

which is a contradiction of the hypothesis of the lemma.

We are ready to prove the main theorem characterizing trees ([18],

Theorem 3.20).

THEOREM 1. Suppose G is connected graph of n vertices. Then G is a tree

if and only if G has n 1 edges.

Proof. It helps to restate the theorem slightly. The assertion is that a con-

nected graph is a tree if and only if the number of vertices equals the number

of edges + 1.

We show the forward implication by induction on the number of edges m
of G. Assume G is a tree. When m 1, by connectivity, G must have only

two vertices. (For undirected graphs, we forbid loops from a single vertex to

itself, so there must be more than one vertex.) Suppose now that the theorem

is true when m k, i.e., a tree of k edges has k 1 vertices. Let G be a tree

of k 1 edges. By Lemma 2, G has a vertex v of degree 1. Delete v and the

edge that is incident to it from G, and we still have a connected graph

without cycles, i.e., a tree. The new tree has k edges, hence by the inductive

hypothesis, it has k 1 vertices. Thus, since v was the only vertex deleted,

G has k 2 vertices and the induction is complete.

We leave it to the reader (Exercise 7) to show the converse by a similar

argument based on Lemma 3.

We will not be able to find a spanning tree if the given graph is not

connected. Such a graph would be improper input into the algorithm

described below. The next result shows that for a finite graph, this is the only

kind of improper input.

THEOREM 2. If G is a finite, connected graph, then G has a spanning tree.

Proof. If G has no cycles, then G is already a tree. If there is a cycle, delete

any edge in that cycle and the graph will still be connected (see Figure 1.15).

Continue to delete edges in this way until there are no remaining cycles.

Activity 2 – If, in Theorem 2, the graph G is a directed graph, do you

think the conclusion of the theorem is still true? What sort of connectiv-

ity should the hypothesis of the theorem refer to?

1.2 Spanning Trees 27

1
2

3 4

5

6
7

1
2

3 4

5

6
7

deletedelete

Figure 1.15 – Deleting an edge from a cycle does not disconnect the graph

1 2

3

4

5

6

7

1 2

3

4

5

6

7

insertinsert

Figure 1.16 – Inserting an edge between different components does not create a cycle

The algorithm for finding spanning trees is of the "greedy" variety; that

is, we examine one edge of the graph at a time and include it into the edge

set of the tree if we can. We must therefore have a way of telling whether the

inclusion of an edge would produce a cycle. A useful device is to keep track

of the connected component containing each vertex. If the vertices of the

edge being examined are in different components (each of which had no

cycles), then there will still be no cycles after the edge is included. Figure

1.16 shows this; you are asked for a proof in Exercise 8. If the vertices on

the edge being considered are already in the same component, then adding

the edge would create a cycle, so we should skip the edge. Using this

criterion for including edges, we stop when we reach n 1 included edges.

By construction, our spanning tree candidate T is a graph with no cycles and

n 1 edges. By Theorem 1, it remains only to check that all of the vertices of

G are in a single connected component of T .

The algorithm has at its disposal the number of vertices n of a connected,

undirected graph G and the edge set of G, labeled E 1 , ..., E M . The

vertices have been labeled 1, ..., n, and we will let C i be the current

component to which vertex i belongs. The letter T will stand for the set of

edges currently in the tree candidate, and K will be the number of edges in

the set T (see [18], Algorithm 3.22 and ensuing discussion).

28 Chapter 1 Graph Theory and Network Analysis

UNDIRECTED SPANNING TREE ALGORITHM

1. Initialize: T , K 0, C i i for each i, current edge E 1 .

2. If K n 1, stop; else repeat 3-4 for the current edge until

K n 1.

3. Examine the vertices i and j of the current edge. If

 C i C j , do a-c.

 a. Include the current edge into T .

 b. Add 1 to K.

 c. If C i C j , change C j , and all component

 numbers C k matching C j , to C i ; else change C i ,

 and all component numbers C k matching C i , to C j .

4. Consider the next edge.

Proof that the algorithm yields a spanning tree. We will show that at the end

of execution of the algorithm, v T n, where v T denotes the number of

vertices in the spanning tree candidate, and we will show that the number L
of connected components of T is 1. We do this by finding expressions

relating n, K, L, and v T . To simplify the presentation, we treat the algo-

rithm as if component numbers are not assigned until a vertex is examined.

Then the addition of an edge has three cases, with the changes to v T , K,

and L shown in Figure 1.17. In all cases one new edge is added, so K
increases by 1. If two new vertices that have not yet been included into T are

used, then v T increases by 2; if the added edge links a vertex in T with a

vertex not in T, then v T increases by 1; and if the added edge connects two

old vertices that happened to be in different components, then v T does not

change. You should check the L column for yourself. Let n1, n2, and n3,

respectively, be the numbers of times that edge addition was of type 1, 2, and

3 in the execution of the algorithm. Then

v T 2 n1 n2

K n1 n2 n3

L n1 n3

Certainly n v T , hence

n v T K 1 v T n3 n1 1 L 1 0

Since L 0, it must be that L 1. Therefore all vertices are in the same

connected component at the end. But then the above computation implies

that n v T . Hence the spanning tree candidate spans all vertices, is

connected, and was built in a way that forbade cycles. It is therefore a

spanning tree.

1.2 Spanning Trees 29

Case v T K L
1. new vertex new vertex 2 1 1

2. old vertex new vertex 1 1 0

3. old vertex old vertex 0 1 1

Figure 1.17 – Adding a new edge in the spanning tree algorithm

As we discussed in Section 1.1, it is advantageous both from the pedagog-

ical standpoint and the practical standpoint to be able to implement an

algorithm like this one, and to do so one must consider assumptions, input,

output, structuring of data, local variables, and supporting functions. The

description of the algorithm here suggests that instead of characterizing the

graph as an adjacency matrix, we could instead characterize it by two

variables: the number n of vertices and the list of undirected edges

u1, v1 , u2, v2 , ... , uk, vk . We assume that our input constitutes a

connected, undirected graph, and that the vertex numbers referred to in the

edge list are within the range 1, 2, ... , n. If we would like to use Display-

Graph to show the graph, however, we are forced to produce a utility

function that accepts such a list of edges, and the number of vertices, and

returns the adjacency matrix of the graph. I have already included a function

in the KnoxOR`Graphs` package that does this, as follows:

ConvertToAdjMatrix

edgelist,numberofvertices,opts

Options ConvertToAdjMatrix

GraphType Undirected, Weighted False

If the option GraphType is left at its default value of Undirected, then each

edge u, v in the list will be assumed to be an undirected edge, which

produces two entries in the adjacency matrix in both the u, v and v, u posi-

tions. Otherwise if it is set to Directed only the u, v entry is set. I built the

function so that if each entry in the list of edges has a third component

signifying the weight of the edge, then the weight matrix is returned. This is

the role of the option Weighted in the command; when set to True the input

is expected to be a list of triples and the output will be the weight matrix. In

Exercise 10 you are asked to write a simpler version of ConvertToAdjMatrix

without the options.

Another useful supporting function would have the responsibility of

updating component numbers when a new edge u, v is inserted. The main

algorithm will need to keep track of these component numbers at each step,

30 Chapter 1 Graph Theory and Network Analysis

and therefore we will need as a local variable a list of component numbers,

c1, c2, ... , cn , one for each vertex. I have written another function,

contained in KnoxOR`Graphs`, to do this. For your information, the com-

plete code for AdjustComponents is shown below. You should try running it

on a few sample component lists and vertex numbers. Notice from the code

that after finding the number of vertices n and making a copy of the input

component list, the smaller and larger of the component numbers of the two

vertices u and v are computed. Then a Do loop is used to examine each

member of the component list, changing all that equal the larger component

number to the smaller.

AdjustComponents u,v,components

AdjustComponents u_, v_, components_ :

Module newcomponents, smallcomp, bigcomp, n ,

n Length components ;

newcomponents components;

smallcomp

Min components u , components v ;

bigcomp Max components u ,

components v ;

these are the connected component

numbers of u and v

now cruise through the list making

all elements with the larger

component number have the smaller

component number

Do If newcomponents i bigcomp,

newcomponents i smallcomp ,

i, 1, n ;

newcomponents

The following example call to the function shows that when each of six

vertices has its own component number, and edge 1, 3 is to be added, the

component of vertex 3 is adjusted down to that of vertex 1.

AdjustComponents 1, 3, 1, 2, 3, 4, 5, 6

1, 2, 1, 4, 5, 6

1.2 Spanning Trees 31

You are asked to produce a full program for the undirected spannning

tree problem in Exercise 11. But the KnoxOR`Graphs` package contains a

function called SpanningTreeOneStep that performs one step of the loop in

the algorithm, which we can use sequentially to solve problems.

SpanningTreeOneStep treelist,edgelist,

edgenumber,componentlist, opts

Options SpanningTreeOneStep

ShowTree True, Weighted True,

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,
EdgeLabelPositions Automatic,

EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The full version of SpanningTreeOneStep takes the list of edges cur-

rently in the tree, the complete list of edges in the graph, the number of the

edge in the graph edge list that is currently being considered for addition to

the tree, and the current list of components of the vertices. It returns a pair

{newtreelist, newcomponentlist}, which are the revised lists of tree edges

and vertex components after the current edge has been added (if possible).

SpanningTreeOneStep has options as shown above, which are just the

options of DisplayGraph together with two new ones: ShowTree can be left

at True or set to False, respectively, according to whether you do or do not

want to see the new tree. The option Weighted is True by default to indicate

a weighted graph, in which the edgelist and treelist entries each have a third

component for the weight, or Weighted can be set to False in the case of this

section where there are no weights on the edges. I do not want to load you

down with the details of implementing options in Mathematica, and so in the

cell below we look at just the lines that are directly relevant to the algorithm

rather than the complete function. If you are curious, you can use a text

processor to open up the graphs.m file in the KnoxOR subdirectory of the

Mathematica ExtraPackages directory to see the full code. But read the

stripped-down code below, paying attention to the comments, and relate it to

the algorithm.

32 Chapter 1 Graph Theory and Network Analysis

Important parts of SpanningTreeOneStep

numvertices Length componentlist ;

newcomplist componentlist;

newtreelist treelist;

the new edge to be considered is v1,v2

v1 edgelist edgenumber 1 ;

v2 edgelist edgenumber 2 ;

its current component

numbers are comp1 and comp2

comp1 componentlist v1 ;

comp2 componentlist v2 ;

If comp1 comp2, add the new

edge and adjust component numbers

AppendTo newtreelist, edgelist edgenumber ;

newcomplist

AdjustComponents v1, v2, componentlist ;

prepare the revised tree for display

A ConvertToAdjMatrix newtreelist, numvertices ;

DisplayGraph A ;

return the new tree and component lists

newtreelist, newcomplist

To solve a problem using SpanningTreeOneStep, we would do the

initializations of the algorithm, that is, define the edge list, set the tree list to

be empty, and set the component list to 1, 2, ... , n . Then successively set

{treelist, componentlist} to be the output of SpanningTreeOneStep, stepping

along the index of the edge to be tested, until the full tree is built. We

illustrate with the following example.

EXAMPLE 2. Applying the algorithm to the graph of Figure 1.1, with the

edges labeled in lexicographical order, results in the following sequence of

operations. Here are the initializations:

1.2 Spanning Trees 33

edgelist

1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 , 2, 3 ,

2, 4 , 2, 5 , 2, 6 , 3, 4 , 4, 5 , 5, 6 ;

treelist ;

componentlist 1, 2, 3, 4, 5, 6 ;

vposex2 0, 0 , 0, 1 ,

2, 0 , 1, .5 , 1, .5 , 2, 0 ;

vlabelposex2 Below, Above, ToRight,

Below, Below, ToLeft ;

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 1, componentlist,

Weighted False, VertexPositions vposex2,

VertexLabelPositions vlabelposex2,

AspectRatio .7

1

2

3

45

6

1, 2 , 1, 1, 3, 4, 5, 6

Figure 1.18 – Adding the first edge to a spanning tree

The first edge 1, 2 has been successfully added, and the component number

of vertex 2 was changed to 1. Now we make a similar function call using the

revised tree and component lists and edge 2.

34 Chapter 1 Graph Theory and Network Analysis

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 2, componentlist,

Weighted False, VertexPositions vposex2,

VertexLabelPositions vlabelposex2,

AspectRatio .7

1

2

3

45

6

1, 2 , 1, 3 , 1, 1, 1, 4, 5, 6

Figure 1.19 – Adding the second edge to a spanning tree

Edge 1, 3 has been added. Note that vertices 1, 2, and 3 all belong to

connected component 1, and vertices 4, 5, and 6 belong to their own compo-

nents. The next edges in our list are 1, 4 , 1, 5 , and 1, 6 , and clearly they

can each be added without producing a cycle. Here are the last three steps

with the graphs suppressed:

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 3, componentlist,

Weighted False, ShowTree False

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 4, componentlist,

Weighted False, ShowTree False

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 5, componentlist,

Weighted False, ShowTree False

1, 2 , 1, 3 , 1, 4 , 1, 1, 1, 1, 5, 6

1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 1, 1, 1, 1, 6

1.2 Spanning Trees 35

1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 ,

1, 1, 1, 1, 1, 1

The algorithm therefore finds the spanning tree of Figure 1.14(a). In the

electronic version of the text, the closed cell below contains code to produce

all the intermediate graphs, which can be selected and animated. You will

observe that the spanning tree that is returned by the algorithm is highly

dependent on the order in which the edges of the graph appear in the edgel-

ist. (See Exercise 2.) In the next section we take advantage of this fact to

produce an easy adaptation of our algorithm to the problem of finding

minimal weight spanning trees.

Directed Spanning Trees

The condition characterizing existence of directed spanning trees is a bit

different. As Figure 1.13(a) shows, connectivity of the underlying graph is

not strong enough to guarantee the existence of a directed spanning tree.

Strong connectivity is sufficient, but not the weakest possible sufficient

condition, as Figure 1.13(b) shows. It turns out that quasi-connectivity is the

correct condition. If a directed graph has a spanning tree, then the root of the

tree is a common ancestor of every pair of vertices, and so the graph is

quasi-connected. This is half of Theorem 3 below. The converse will be

proved constructively by devising an algorithm to find a spanning tree,

assuming that the graph is quasi-connected ([47], Theorem 5.5.3).

THEOREM 3. A directed graph has a directed spanning tree if and only if

it is quasi-connected.

We would like to construct an algorithm to produce a directed spanning

tree of a given directed graph, given its root. We should first pay some

attention, however, to the problem of locating the root of a quasi-connected

graph. This is not at all an obvious thing to do, especially for large graphs

such as the one in Figure 1.20.

36 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 1.20 – Where is the root?

We will not give a program to find the root, which is likely to be a very

time-consuming one. However, if you did Exercise 9 of Section 1.1, you

saw how to use a function called FindChildren[adjmatrix, parentlist] con-

tained in KnoxOR`Graphs` to produce a function called

Descendants[adjmatrix, vertex], which returns the set of all descendants of

the given vertex in the directed graph characterized by the given adjacency

matrix. This Descendants function is very much like the Components

function of the last section in the sense that it begins with the vertex and

step-by-step fans out to child vertices of those vertices most recently exam-

ined, labeling those as new descendants. The code for my version of this

function is in the closed cell below this paragraph. If you have a guess at

which vertex is the root, you can then apply Descendants to that vertex, and

if the set of descendants is the entire set of vertices in the graph, then this

vertex is a root. (There may be more than one root.) So this function does

not quite do the complete job of finding the root, but it does provide a useful

check.

Descendants adjmatrix,vertex

1.2 Spanning Trees 37

The adjacency matrix for the graph of Figure 1.20 was defined in the

closed cell above the figure, and was given the name graph120. I designed

that graph to have a root at vertex 14, and the function call below shows that

it is indeed a root because all vertices are descendants of vertex 14.

Descendants graph120, 14

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

Activity 3 – In the electronic version of the text, try to find out what

other vertices are also roots of the graph of Figure 1.20.

Next, to construct a directed spanning tree, we search for vertices,

beginning at the root and fanning out to children of the root, then their

children, etc., much like the connected components algorithm. The directed

spanning tree algorithm requires a quasi-connected, directed graph G of n
vertices and its root w. The set-valued variables KT and ET indicate,

respectively, the current set of vertices in the tree and the current set of edges

in the tree. The variables NEW1 and NEW2, respectively, represent the most

recent set of vertices that has been added and the next set of vertices to be

added. At each pass through the loop in step 2, each vertex in the NEW1 set

is examined, and if its children have not been included into the vertex set of

the tree yet, then those edges are included into the tree and the children are

included into the vertex set and also marked as newly added vertices for the

next pass.

DIRECTED SPANNING TREE ALGORITHM

1. Initialize KT w , ET , NEW1 w , NEW2 .

2. Do a – b while NEW1 .

a. For each v NEW1:

 For each edge v, u such that u KT, include v, u

 into ET and u into NEW2 and KT.

b. Let NEW1 NEW2, NEW2 .

3. Return ET.

The algorithm makes sure that at every stage there are no edges pointing

back into the current set of vertices, hence there are no cycles. The underly-

ing graph is connected at every stage, since all new vertices are added with

the edge connecting them to their parent, who is already connected to the

rest of the graph. Note in particular that there is always a path in the tree

38 Chapter 1 Graph Theory and Network Analysis

from the root to every new vertex that is added. To see that a directed

spanning tree results at the end of the execution of the algorithm, suppose

instead that there is some vertex v G that is never included into KT. Since

G is quasi-connected, there is a path w v0, v1, ..., vm v in G from the

root w to v. Let k be the smallest integer m such that vk is not in KT. Such

a k exists since vm v KT, and k 0 since w v0 KT. Then

v0, ..., vk 1 KT but vk KT. Then vk 1 was in NEW1 for exactly one

execution of step 2. But in that case vk would have been included into KT at

step 2a, which is a contradiction. Therefore, under the assumption of quasi-

connectivity, the algorithm generates a directed spanning tree. We have also

established Theorem 3.

Activity 4 – If a directed graph is strongly connected, can the algorithm

above be applied starting at any vertex w? Why, or why not?

EXAMPLE 3. To illustrate the application of the spanning tree algorithm

for directed graphs, consider the graph of Figure 1.21(a). You can check

that 5 is a root of this graph. The algorithm first includes edges 5, 2 and

5, 4 ; then edges 2, 1 and 4, 3 while ignoring edge 2, 4 ; then it checks

and ignores edges 1, 3 , 1, 4 , 3, 1 , and 3, 4 . We see from this example

that to improve the efficiency of the algorithm, we might add a check on the

size of KT; if it is n, then stop execution. The spanning tree we obtain is

shown in part (b) of the figure.

1.2 Spanning Trees 39

12

34

5 12

34

5

(a) (b)

Figure 1.21 – Finding a directed spanning tree

Let us close this section by developing a Mathematica function for the

directed spanning tree problem. Then we will test it out on the more compli-

cated graph of Figure 1.20.

Because the "fanning out" method, called by the computer scientists

breadth-first search, is used, we will give our function the name BreadthFirst-

Tree. The function will receive the adjacency matrix in the usual form, and

the vertex number w of the root as its input parameters. Our version will

return the edge list of the directed tree. Recall that the ConvertToAdjMatrix

function can be used to change the edge list form of the tree graph to adja-

cency matrix form, in order to prepare it for display if we like. We assume

that the vertex number of the root is in the appropriate range determined by

the dimension of the adjacency matrix, and that the graph is quasi-connected

and the vertex is indeed a root. As local variables we will keep KT, the list

of vertices in the tree so far, ET, the list of edges in the tree so far, and the

lists NEW1 and NEW2 of most recently added and newly added vertices.

The algorithm shows us exactly how to initialize and update these lists. As a

supporting function we can use FindChildren[adjmatrix, parentlist], with one

parent vertex from NEW1 at a time, to find all children of that vertex. Then

we use complementation to pick out those children not already in KT, in

order to add them into KT, add the edge to ET, and mark them as newly

labeled. This entails the creation of other local variables called children and

newchildren to hold onto the lists of all children of the current vertex, and

those that are new. By the end of the loop, ET has the complete list of edges.

Here is the function. Inspect the code carefully to be sure that you know

what each line does and how it relates to the algorithm.

40 Chapter 1 Graph Theory and Network Analysis

BreadthFirstTree adjmatrix_, w_ :

Module numvertices, KT, ET,

NEW1, NEW2, children, newchildren ,

initializations

numvertices Length adjmatrix ;

KT w ; ET ; NEW1 w ; NEW2 ;

While NEW1 && Length KT numvertices ,

for each vertex in NEW1,

scan children for new vertices

Do children FindChildren

adjmatrix, NEW1 vertex ;

newchildren Complement children, KT ;

include the new children

into the tree and the NEW2 set

NEW2 Join NEW2, newchildren ;

KT Join KT, newchildren ;

put edges into ET

Do AppendTo ET,

NEW1 vertex , newchildren i ,

i, 1, Length newchildren ,

vertex, 1, Length NEW1 ;

set up for the next pass

NEW1 NEW2;

NEW2 ;

ET

EXAMPLE 4. Here is the spanning tree of the graph of Figure 1.21(a). Of

course the edges are exactly the ones in Figure 1.21(b).

BreadthFirstTree graph121a, 5

5, 2 , 5, 4 , 2, 1 , 4, 3

Now we apply the function to the graph of Figure 1.20, using vertex 14 as

the root. The tree is displayed in Figure 1.22 using the ConvertToAdjMatrix

function. Notice how the order of edges in the edgelist tells the order in

which the edges were added in; starting from 14 we get 14, 9 and 14, 15 ,

then from vertex 9 we get 9, 4 and 9, 8 , etc. Trace a few more of these

edges on the tree shown in Figure 1.22 to see how the algorithm is fanning

out through the graph breadthwise.

1.2 Spanning Trees 41

edgelist BreadthFirstTree graph120, 14

14, 9 , 14, 15 , 9, 4 , 9, 8 ,
15, 10 , 15, 20 , 4, 3 , 8, 7 , 8, 13 ,
10, 5 , 20, 19 , 20, 25 , 3, 2 , 13, 12 ,

13, 18 , 19, 24 , 2, 1 , 18, 17 , 18, 23 ,
1, 6 , 17, 16 , 17, 22 , 6, 11 , 22, 21

vposits 2, 0 , 1.5, .5 ,

1, 1 , .5, 1.5 , 0, 2 ,

1.5, .5 , 1, 0 , .5, .5 ,

0, 1 , .5, 1.5 ,

1, 1 , .5, .5 , 0, 0 , .5, .5 , 1, 1 ,

.5, 1.5 , 0, 1 ,

.5, .5 , 1, 0 , 1.5, .5 ,

0, 2 , .5, 1.5 , 1, 1 ,

1.5, .5 , 2, 0 ;

amatrix ConvertToAdjMatrix edgelist,

25, GraphType Directed ;

DisplayGraph amatrix, GraphType Directed,

VertexPositions vposits ;

42 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 1.22 – A directed spanning tree for the graph of Figure 1.20

Exercises 1.2

1. Find a spanning tree of the graph below using the undirected spanning

tree algorithm. Work by hand on this problem rather than using Mathemat-
ica. Assume that the order of the edges is:

1, 2 , 2, 5 , 2, 3 , 4, 7 , 2, 6 , 1, 4 , 2, 4 , 3, 4 , 6, 7 , 5, 6 , 4, 5

1

2 3

4

56

7

Exercise 1

2. (Mathematica) Referring to Example 2 of this section, what spanning tree

does the SpanningTreeOneStep function find when the order of edges is:

(a) 5, 6 , 4, 5 , 3, 4 , 2, 6 , 2, 5 ,

2, 4 , 2, 3 , 1, 6 , 1, 5 , 1, 4 , 1, 3 , 1, 2
(b) Determined by increasing order of cost. (See Figure 1.1)

Compute the total edge cost for each of the two spanning trees in (a) and (b).

1.2 Spanning Trees 43

3. Suppose that G V , E is a connected graph and u, v E is an edge in

some cycle. Show that the graph G V , E u, v is connected. (This fact

was used in the proof of Theorem 2.)

4. Prove that a connected, undirected graph G is a tree if and only if for each

edge u, v G, G u, v is not connected.

5. (Mathematica) The graph below shows computer links between an official

vote-tallying center at vertex 1 and several precincts. For the sake of secrecy,

links can be made secure, but since this is an expensive process, it is desired

to secure the minimum possible number of links and let the transmissions

occur only on those links. How should this be done? (Use the SpanningTree-

OneStep function to display intermediate graphs and component lists.)

1

2

3

4

5

678

9

10

Exercise 5

6. Prove that if G is an undirected tree with more than one vertex, then G
contains at least two vertices of degree 1.

7. Finish the proof of Theorem 1, that is, if G is a connected graph with n
vertices and n 1 edges, then G is a tree.

8. Consider two connected components of an undirected graph G, and

suppose each has no cycles. Let G be a new graph whose vertex set is the

union of the vertex sets of the two components and whose edge set is the

union of the two edge sets, together with a single edge u, v , where u is in

one component and v is in the other. Show that G has no cycles.

9. Is it possible to construct an undirected tree whose eight vertices have

degrees 1, 2, 3, 3, 1, 1, 3, and 2, respectively? Why, or why not?

44 Chapter 1 Graph Theory and Network Analysis

10. (Mathematica) Write your own version of the ConvertToAdj-

Matrix[edgelist, n] command without options, which takes a list of edges of

an undirected graph and the number of vertices in the graph, and returns the

adjacency matrix.

11. (Mathematica) Using the work already done in creating the SpanningTree-

OneStep function, write a full, simplified version of the complete undirected

spanning tree algorithm, without the options, which takes the list of edges

and the number of vertices in the graph, and returns the list of edges in a

spanning tree.

12. A complete undirected graph is a graph such that edges exist between

every pair of vertices. Find an upper bound for the number of spanning trees

a complete graph can have.

13. Find a directed spanning tree of the following graph if one exists. Is the

tree unique? Do this by hand and not in Mathematica.

1 2

3

45

6

Exercise 13

14. (Mathematica) Vertices 8 and 18 are also roots in the graph of Figure

1.20. Check this using the Descendants function, and find directed spanning

trees using each of these roots.

15. A forced-air heat distribution system in a building must get heat from the

central furnace at vertex 1 in the figure to each of the rooms located at the

other vertices. It is possible to mount ductwork, assumed unidirectional,

along each of the edges shown on the graph. Find a sparsest possible system

of ductwork to heat the building.

1.2 Spanning Trees 45

1

2
3 4 5

6

7

8 9

10 11 12

Exercise 15

16. (Mathematica) A directed graph has the adjacency matrix below. Use

the BreadthFirstTree function to find a directed spanning tree. Determine

the root using the Descendants function.

A

0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

Exercise 16

 B

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Exercise 17

46 Chapter 1 Graph Theory and Network Analysis

17. (Mathematica) Repeat Exercise 16 for the graph whose adjacency

matrix is above. The root vertex is 7.

18. Prove or disprove. A directed graph is a tree if and only if it is connected

and has no directed cycles.

19. Prove or disprove. A directed graph is a tree if and only if it is quasi-con-

nected and has no directed cycles.

20. Would the directed spanning tree algorithm also find an undirected

spanning tree if the given graph was connected and undirected? Explain.

1.3 Minimal Cost Networks

Undirected Graphs

We now show how to find a minimal cost spanning tree, as defined below,

for a weighted, undirected graph such as that of Figure 1.1. Let G be such a

graph.

DEFINITION 1. A minimal spanning tree for G is a spanning tree

whose total weight is less than or equal to that of any other spanning tree.

The algorithm to find minimal spanning trees is a variation of the

undirected spanning tree algorithm from the last section called

Kruskal ' s algorithm. The idea is that before executing the spanning tree

algorithm, we sort the edges in order of increasing weight. Then, we greedily

pick edges of small weight, without creating a cycle. The input to the

algorithm is: the number n of vertices, the set of edges E 1 , ..., E M ,

and the costs c E i , for i 1, ..., M .

KRUSKAL'S ALGORITHM FOR MINIMAL

UNDIRECTED SPANNING TREES

1. Sort the edges in increasing order of cost, i.e., rename edges such

 that

c E 1 c E 2 ... c E M
2. Execute the spanning tree algorithm to find a spanning tree T .

3. Add c E i for those edges E i T to find the minimal cost.

1.2 Spanning Trees 47

Proof that Kruskal's algorithm yields a minimal undirected spanning tree.

Denote by T the spanning tree found by Kruskal's algorithm. Since there are

only finitely many spanning trees, there must exist at least one of minimal

cost. Let T be a minimal cost spanning tree with the following property: the

intersection of the edge set of T with that of T has at least as many elements

as the intersection of the edge set of T with any other minimal cost span-

ning tree. That is, T is a "best-fitting" minimal cost spanning tree for T . We

prove the optimality of T* by obtaining a contradiction of the assumption

that T T . If the latter is true, then there is an edge e in T T such that

c e c e for all edges e in T T . But we will find an edge

e T T whose cost is strictly less than the cost of e. This contradiction

suffices to prove the result.

By Theorem 1 of Section 1.2, if edge e is included into T , a cycle must

form. Within this cycle, there must be an edge f e that did not belong to

T , else T would have had a cycle. If we form a new graph

T T f e , then T is still a spanning tree and the total tree costs

C T and C T satisfy

C T C T c e c f 0

by the optimality of T . But if equality held in the above, then T would be

optimal and would share one more edge with T than T does, contradicting

our choice of T . Thus, c e c f . Again by Theorem 1, if edge f is

included into T , a cycle forms. Then, just as above, there is an edge e f
in this cycle such that e T T . We must have c e c f , else

Kruskal's algorithm would have added f to T before considering e . But

this means that

c e c f c e

which is the contradiction of the choice of e for which we sought.

Activity 1 – Devise some examples of real problems in which the goal is

to find a minimal spanning tree.

We can again solve problems step-by-step using the SpanningTreeOne-

Step function. Remember that if we leave the option Weighted at its default

value of True, then the command accepts edge lists and tree lists, which are

lists of triples, the third element of which is the weight of the edge deter-

mined by the first two elements. In the initialization phase, we would define

the edge list, sort the edges, set the tree list to be empty, and set the compo-

nent list to 1, 2, ... , n . Then as before, successively set {treelist, compo-

nentlist} to be the output of SpanningTreeOneStep, incrementing the index

of the edge to be tested, until there are n 1 edges.

48 Chapter 1 Graph Theory and Network Analysis

You can either enter the edges manually in increasing order of cost, or

use the following utility in the KnoxOR`Graphs` package.

Needs "KnoxOR`Graphs`"

SortEdges edgelist

SortEdges takes the list of triples and returns a list of the same structure,

with entries sorted in increasing order of the third component.

EXAMPLE 1. Let us apply Kruskal's algorithm to the communications

network of Figure 1.1, redisplayed below for your convenience.

1

2

3

45

6

1

3

28

3

1 6

27

1

3

6

42

2

4

5

8

7

5

2

3

1

2

Figure 1.1 (reprise)

We start with the edges labeled in lexicographical order as in the last section,

then apply SortEdges, and continue.

1.3 Minimal Cost Networks 49

unsortededgelist

1, 2, 1 , 1, 3, 3 , 1, 4, 2 , 1, 5, 8 ,

1, 6, 3 , 2, 3, 6 , 2, 4, 2 , 2, 5, 7 ,

2, 6, 1 , 3, 4, 4 , 4, 5, 5 , 5, 6, 2 ;

edgelist SortEdges unsortededgelist

treelist ;

componentlist 1, 2, 3, 4, 5, 6 ;

vposits 0, 0 , 0, 1 ,

2, 0 , 1, .5 , 1, .5 , 2, 0 ;

vlabelposits Below, Above, ToRight,

Below, Below, ToLeft ;

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 2, 4, 2 ,
5, 6, 2 , 1, 3, 3 , 1, 6, 3 , 3, 4, 4 ,

4, 5, 5 , 2, 3, 6 , 2, 5, 7 , 1, 5, 8

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 1,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 1, 1, 3, 4, 5, 6

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 2,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 1, 3, 4, 5, 1

50 Chapter 1 Graph Theory and Network Analysis

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 3,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 1, 1, 3, 1, 5, 1

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 4,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 1, 1, 3, 1, 5, 1

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 5,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 5, 6, 2 ,
1, 1, 3, 1, 1, 1

1.3 Minimal Cost Networks 51

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 6,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

EdgeLabelPositions elabelpos,

AspectRatio .7

1

2

3

45

6

1

3

2

11

3

22

1

2

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 5, 6, 2 , 1, 3, 3 ,

1, 1, 1, 1, 1, 1

Figure 1.23 – A minimal undirected spanning tree

In order, we add edges 1, 2 , 2, 6 , and 1, 4 , then skip edge 2, 4 , which

would form a cycle. Edges 5, 6 and 1, 3 complete the tree. The total cost

of this minimal spanning tree is 1 1 2 2 3 9.

There is a command in the KnoxOR`Graphs` package called Kruskal.

The details follow

Kruskal edgelist,n,opts

52 Chapter 1 Graph Theory and Network Analysis

Options Kruskal

ShowTree True, Weighted True,
GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,

DisplayFunction Display $Display, #1 & ,
AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

Kruskal performs the full algorithm described above for minimal undirected

spanning trees, given the weighted edge list and the number of vertices. It

accepts the ShowTree and Weighted options as in SpanningTreeOneStep,

and the options of DisplayGraph. Apart from the complications involved in

implementing the options, Kruskal is a straightforward program that does the

initializations with which we are familiar, sorts the edge list, and repeatedly

examines edges, adding them to the tree and adjusting component numbers

when the edge does not form a cycle. We illustrate its use in the next exam-

ple.

Activity 2 – Open the closed cell below this in the electronic text to

study the code for the Kruskal command.

EXAMPLE 2. A manufacturing plant is installing a computer network in

the facility so that employees can enter quality control data directly at their

stations. The costs of connecting various neighboring stations are given in

the graph below.

1.3 Minimal Cost Networks 53

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18

5
4

5

5
2

3

4

2

3 3

2

5
3

2

3

2

4

4

3
2

4

6

5

5

6 5
8

5

5

3

3
3

4

5
3

44

5

6

7

8

8

3 4
3

5

4

6

6

6

77 7

4
8

4

3 13

2
2

1

2
42 4

Figure 1.24 – Finding an optimal computer network

We must produce the initial list of weighted edges, in any order, to use as the

first argument in Kruskal. We use lexicograhic ordering to define edges24

below. The second argument in Kruskal is the number of vertices, which is

18. (In the closed cell that generated the graph in Figure 1.24, the VertexPosi-

tions option has been set to a list called vertpos, the VertexLabelPositions

option is vertlabelpos, the EdgeLabels are in a matrix called graph24, and

the EdgeLabelPositions option has been set to elabelpos. These graph

options will be passed to Kruskal below.)

54 Chapter 1 Graph Theory and Network Analysis

edges24 1, 2, 5 , 1, 3, 4 ,

1, 4, 5 , 2, 3, 2 , 2, 6, 3 , 3, 4, 3 ,

3, 5, 3 , 3, 6, 2 , 4, 5, 2 , 5, 6, 4 ,

5, 9, 4 , 6, 7, 6 , 6, 8, 5 , 6, 9, 5 ,

7, 8, 5 , 7, 11, 8 , 8, 9, 3 , 8, 11, 3 ,

8, 12, 3 , 9, 10, 4 , 10, 12, 5 ,

10, 13, 6 , 10, 14, 7 , 10, 15, 8 ,

11, 12, 4 , 12, 13, 6 , 13, 14, 7 ,

14, 15, 4 , 15, 16, 3 , 15, 17, 1 ,

16, 17, 2 , 16, 18, 2 , 17, 18, 4 ;

Kruskal edges24, 18, VertexPositions vertpos,

VertexLabelPositions vertlabelpos,

EdgeLabels graph24, EdgeLabelPositions

elabelpos, AspectRatio .7 ;

Edges in minimal spanning tree:

15, 17 , 2, 3 , 3, 6 , 4, 5 , 16, 17 , 16, 18 ,

3, 4 , 8, 9 , 8, 11 , 8, 12 , 1, 3 , 5, 9 ,

9, 10 , 14, 15 , 7, 8 , 10, 13 , 10, 14

Total weight of spanning tree: 57

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18

4
2

4
2

3

2

3

22

4

2

55

3

3
3

4

3

44
6

7

3
3

6

7

44
1

2
2

1

2
2

Figure 1.25 – Minimal spanning tree for computer network

The Kruskal function finds the minimal spanning tree shown in Figure 1.25.

If you inspect the list of edges, you see that Kruskal first picks the only edge

of cost 1, namely 15, 17 , then puts in all of the cost 2 edges,

2, 3 , 3, 6 , 4, 5 , 16, 17 , and 16, 18 , then moves on to whichever cost

3 edges it can include without creating a cycle, then passes to the cost 4

1.3 Minimal Cost Networks 55

edges, etc. Exercise 3 asks you to compare the cost of this minimal tree, 57,

to those of two other spanning trees. In situations where the cost is actually

in units of thousands of dollars or greater, the savings achieved by designing

a network using a minimal spanning tree can be substantial.

Directed Graphs

A second type of minimal cost network problem involves weighted directed

graphs. Suppose that vertex 1 in Figure 1.26 represents a production center,

and the directed edges are possible routes to locations 2, 3, etc. that are to

receive items from the production center, and then act as distributors to other

locations to which they are connected. The weights, as usual, are transporta-

tion costs. All vertices except the root vertex 1 must be serviced, but it is

superfluous for a location to be serviced by more than one previous distribu-

tion location. Hence the problem is to find a directed tree rooted at 1 that

supplies every station and minimizes the transportation cost to every station.

1

2

3

4

5

6

7

8

9

10

2

4

3

1

2

4

5

2
4

4

3

2
1

2

1 6

1

3

4

Figure 1.26 – A directed distribution system

DEFINITION 2. Let G be a quasi-connected, weighted, directed graph

of n vertices rooted at v1. A minimal directed spanning tree T is a

directed tree of n vertices rooted at v1 such that for all vertices vk,

k 2, ..., n, the weight of the path in T from v1 to vk is smaller than or

equal to the weight of any other path in G from v1 to vk.

Observe that if T is a directed spanning tree rooted at v1, then for any

vertex v in G there is a unique path in T , denoted by P v , from v1 to v. We

can clearly characterize such a tree by its paths to each vertex. If we denote

the cost of a path from v1 to v by C P v , then we can restate the problem in

56 Chapter 1 Graph Theory and Network Analysis

the following form. Find a directed spanning tree T rooted at v1 with paths

P v , such that for each v v2, ..., vn ,

(1)C P v = inf C P v : P v is a path in G from v1 to v

An algorithm will be given in which we begin with an arbitrary directed

spanning tree, and then improve it step-by-step until optimality is reached.

To see the idea behind this successive improvement strategy, we need the

following theorem. It gives an example of an equation called a

dynamic programming equation. The algorithm based on the theorem

illustrates policy improvement for dynamic programming problems. The idea

behind the DP equation is that the optimal cost to a position should be the

smallest possible sum of the optimal cost to a predecessor position, plus the

one-step cost from the predecessor to the current position. We will see much

more of this idea in Chapter 6.

THEOREM 1. A directed spanning tree T rooted at v1 is minimal if and

only if for all vertices v v1 the paths P v in the tree from the root to v
satisfy

(2)C P v inf
u,v E

C P u c u, v

where c u, v denotes the cost of edge u, v . (As usual, E is the edge set of

the graph G.)

Proof. Let T be a minimal tree, and suppose that there is an edge u, v
such that

(3)C P v C P u c u, v

But then the path P u ,v from the root v1 to v has smaller total cost than

P v , contradicting the optimality of T . Thus,

(4)C P v C P u c u, v

for all edges u, v . Equality occurs for those edges u, v in T . This proves

equation (2).

Conversely, suppose equation (2) holds for a directed spanning tree T ,

but suppose by contradiction that T is not optimal. Then there is a path, say,

P v : v1 w1, w2, ..., wm v

1.3 Minimal Cost Networks 57

such that C P v C P v . There is a smallest integer k such that

C P wk C P wk , since the set of all such k is a non-empty bounded

set of positive integers. Then,

C P wk C P wk

C P wk 1 c wk 1, wk

C P wk 1 c wk 1, wk

which contradicts equation (2). Therefore, the tree T is optimal.

Equation (2) suggests an algorithm to find minimal cost directed span-

ning trees. Begin with an arbitrary directed spanning tree, say T , rooted at v1.

Breadth-first search will locate such a tree if one exists. If for all edges
u, v G

(5)C P v C P u c u, v

then by Theorem 1 the tree T is already optimal. Otherwise, there is at least

one edge such that the slack of the edge is positive, where the slack S u, v
of the edge is the difference between the path cost to v and the sum of the

path cost to u and the cost of edge u, v , i.e.,

(6)S u, v C P v C P u c u, v 0

Since the edge set is finite, there is an edge u, v of maximum slack. This

edge is not already in the edge set of the tree T because the slack of all edges

in T is clearly 0 (since the path to v is just the path to u with edge u, v
adjoined). So, adjoin the edge u, v to T , while deleting the edge u0, v in

T that had pointed to v (see Figure 1.27). We prove shortly that this results in

a strict improvement of cost. This is important because it implies that the

policy improvement cannot cycle, hence the finiteness of the graph forces

convergence to an optimal tree T . Repeat the process of edge substitution

until equation (5) is true (equivalently S u, v 0) for all edges u, v .

58 Chapter 1 Graph Theory and Network Analysis

v1

z

w

u0

u

v

v1

z

w

u0

u

v

v1

z

w

u0

u

v

v1

z

w

u0

u

v

Figure 1.27 – Edge substitution in the minimal directed spanning tree algorithm

Activity 3 – When edge substitution occurs as shown in Figure 1.27,

which vertices can and which cannot have their path costs changed?

Bear in mind that there may be more to the graph than the small piece

shown.

The input to the following algorithm is (1) the vertex set {v1, . . . , vn} of

G, where v1 is the root; (2) the edge sets of G and the initial tree T , denoted

by EG and ET, respectively; and (3) the costs c u, v of all edges in G. The

quantities P v and C P v are as described above.

MINIMAL DIRECTED SPANNING TREE ALGORITHM

1. Repeat steps a–d until the maximum slack in the current tree is

less than or equal to 0.

a. For all vertices v v1, find the path P v in T and calculate

 C P v .

b. Find an edge u, v EG ET of maximum slack M .

c. If M 0, then do step d.

d. Find the edge u0, v ET, and let

 ET ET u0, v u, v .

Proof that algorithm yields a minimal directed spanning tree. Recall that we

begin with a quasi-connected graph, so that an initial directed spanning tree

can be found. We show that the loop a–d can only be executed finitely many

times.

When edge u0, v is replaced by edge u, v in step d, the only path costs

that change are the ones whose terminal vertices are descendants of v
(including v itself). Let w be one such vertex. Denote by Pnew w the new

path to w, as usual let P w denote the old path to w, and denote by P v, w

1.3 Minimal Cost Networks 59

the path from v to w, which does not change during the substitution of u, v
for u0, v . Then,

C Pnew w C P u c u, v C P v, w
C P v C P v, w
C P w

by the fact that edge u, v has positive slack. Thus, descendants of v receive

strictly smaller costs as a result of the change in edges, and all other vertices

maintain the same path cost. But there are only finitely many possible path

costs to each vertex. This implies that loop a–d of the algorithm is only

executed finitely many times. Since the only means of exiting the loop is by

achieving the condition M 0, we have at the end of execution S u, v 0

for all edges u, v . By Theorem 1, this implies that the final tree is minimal.

Since the computations involved in carrying out the minimal directed

spanning tree algorithm are simple, but very tedious, I have included a

function in KnoxOR`Graphs` that performs one step of the process and

graphs the new tree.

DirectedSpanningTreeOneStep

theGraph,theTree,root,newedge,opts

Options DirectedSpanningTreeOneStep

ShowTree True, GraphType Undirected,
VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The arguments of DirectedSpanningTreeOneStep are the adjacency matrix

of the full directed graph, the adjacency matrix of the current spanning tree,

the number of the vertex that is the root, and the edge u, v that is to be

inserted to form the next tree. It returns the next tree in adjacency matrix

form, and if the option ShowTree is left at its default value of True, the tree

will be also be displayed with unused edges shown dashed, and new slack

60 Chapter 1 Graph Theory and Network Analysis

values computed and shown next to the unused edges. The command

accepts the options of DisplayGraph to control the design. To go from step

to step in the policy improvement algorithm, we need to inspect the graph of

the previous tree to find an edge with the highest positive slack, if any, and

let that edge be the fourth argument in the next call to DirectedSpanningTree-

OneStep.

Since it is also tedious to set up the first graph and compute and display

the slack values upon which the first edge substitution decision is made,

there is a similar command, DirectedSpanningTreeFirstStep shown below, to

display the first directed spanning tree. It takes the adjacency matrices of the

complete graph and initial directed spanning tree as its first two arguments,

the root of the tree as the third argument, and it has the same options as

DirectedSpanningTreeOneStep. You will get a display of the initial tree,

with edges that have been omitted from the full graph shown dashed and

annotated by their slack values. For both of these functions, each vertex will

be also be annotated with the total path cost to that vertex from the root.

DirectedSpanningTreeFirstStep

theGraph,initTree,root,opts

We illustrate with the next example.

EXAMPLE 3. Let us use the policy improvement algorithm to find an

optimal distribution network for the graph of Figure 1.26. Begin with the

tree in Figure 1.28, generated by the breadth-first search spanning tree

algorithm. The dashed edges are those not in ET and the solid edges are in

ET. For example, the slack of the omitted edge 2, 3 is 1, because the

current path to 3 has length 4, and the cost of the current path to 2 plus the

edge cost of edge 2, 3 is 2 1 3, hence the difference is positive 1. You

should check all of the other slack values yourself. The adjacency matrix of

the full graph was given the name adjmatrix24 in the closed cell that gener-

ated Figure 1.26, and the VertexPositions, VertexLabelPositions, and

EdgeLabelPositions options were given the values vertpos, vlabelpos, and

elabelpos, which you see in the options to our DirectedSpanningTree

functions.

1.3 Minimal Cost Networks 61

initialTree 0, 2, 4, 3, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 2, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 5, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 4, 3, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 2, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 6 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

DirectedSpanningTreeFirstStep adjmatrix24,

initialTree, 1, VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 11

10 14

2

4

3

2

5

4

3

2

6

1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 11

10 14

1

4

1

2

7

3

2

3

4

1

Figure 1.28 – Initial spanning tree for graph of Figure 1.26

In the first step, we include edge 8, 10 and discard edge 7, 10 because

among the unused edges, 8, 10 has the largest positive slack of 4. In

preparation for the next step, we let currTree receive the value returned by

DirectedSpanningTreeOneStep, that is, the new tree adjacency matrix.

62 Chapter 1 Graph Theory and Network Analysis

currTree DirectedSpanningTreeOneStep

adjmatrix24, initialTree, 1,

8, 10 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 11

10 10

2

4

3

2

5

4

3

2

3
1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 11

10 10

1

4

1

2

7

3

2
4

3 5

Figure 1.29 – Second spanning tree for graph of Figure 1.26

Next, since the largest positive slack on an unused edge is 3 on edge 8, 9 ,

we discard edge 6, 9 in favor of 8, 9 . The new tree is in Figure 1.30.

1.3 Minimal Cost Networks 63

currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 8, 9 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 8

10 10

2

4

3

2

5

4

3

1

3
1 0

2 2

3 4

4 3

5 4

6 9

7 8

8 7

9 8

10 10

1

4

1

2

7

3

3

2
4

2

Figure 1.30 – Third spanning tree for graph of Figure 1.26

Two more steps of the same sort suffice: first add edge 4, 6 then add 2, 3 .

The final tree is in Figure 1.32. Observe that all slacks are now negative,

which by Theorem 1 implies that the tree is optimal. Shortest paths in the

original network are found by following the tree edges, and the figure also

reports the lengths of those paths.

64 Chapter 1 Graph Theory and Network Analysis

currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 4, 6 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0

2 2

3 4

4 3

5 4

6 7

7 8

8 7

9 8

10 10

2

4

3

2

4

4

3

1

3
1 0

2 2

3 4

4 3

5 4

6 7

7 8

8 7

9 8

10 10

1

4

2

1

5

1

1

2
4

2

Figure 1.31 – Fourth spanning tree for graph of Figure 1.26

1.3 Minimal Cost Networks 65

currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 2, 3 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0

2 2

3 3

4 3

5 4

6 7

7 8

8 7

9 8

10 10

2

3

1

2

4

4

3

1

3
1 0

2 2

3 3

4 3

5 4

6 7

7 8

8 7

9 8

10 10
1

3

1

2

5

1

1

2
4

2

Figure 1.32 – Final spanning tree for graph of Figure 1.26

The whole process may be automated, of course, but by doing so you do

not get the educational benefit of choosing the edge substitutions yourself.
Nevertheless I have also placed in the KnoxOR`Graphs` package the com-

mand DirectedSpanningTree, whose full documentation appears after the

query below. It takes the same arguments as DirectedSpanningTreeFirst-

Step. I encourage you not to use it to do problems, but to read the code in

the package to see how it was put together. You may also use it as a check

on your work, or to experiment easily with what happens when the algorithm

starts with different initial spanning trees.

66 Chapter 1 Graph Theory and Network Analysis

?DirectedSpanningTree

DirectedSpanningTree theGraph,initialTree,

theRoot,opts takes a given initial spanning

tree of a given directed, quasi connected graph,

both in adjacency matrix form, and the vertex

number of the root of the tree. It performs the

full minimal directed spanning tree algorithm,

displaying all intermediate graphs unless the

option ShowTree is set to False, and returns the

minimal spanning tree in adjacency matrix form. The

display options of DisplayGraph may be passed in.

Activity 4 – What is the implication of having an edge with slack 0 in

the final minimal directed spanning tree?

Exercises 1.3

1. Use Kruskal's algorithm to find a minimal cost spanning tree for a graph

whose vertices are labeled {1, 2,..., 8} and whose edges have the costs below:

edge cost edge cost

1, 2 2 3, 7 4

1, 3 2 4, 5 5

1, 4 1 4, 6 3

2, 3 2 5, 6 6

3, 4 3 6, 7 1

3, 6 2 7, 8 2

– 2 – 4 – – – – –
2 – 6 3 5 8 – – –
– 6 – – – 1 – – –
4 3 – – 4 – 3 – –
– 5 – 4 – 3 2 1 4
– 8 1 – 3 – – – 6
– – – 3 2 – – 2 –
– – – – 1 – 2 – 5
– – – – 4 6 – 5 –

 Exercise 1 Exercise 2

2. Cables are to connect several components of a sound system. The vertices

in the graph below represent the components, and the edges are possible

connections. The matrix above gives the lengths of cable required to connect

each pair of components. Find the system of connections that requires the

least total amount of cable.

1.3 Minimal Cost Networks 67

1

2

3

4

5

6

7

8

9

Exercise 3

3. In Example 2 compute the cost of the spanning trees formed by (a)

breadth-first search; (b) ordering edges lexicographically. By how much do

these costs differ from the total cost of the minimal spanning tree?

4. (Mathematica) Suppose that the distances between fifteen cities are as in

the table below, An airline wishes to institute service among these cities.

Assuming that flight cost is directly proportional to distance, find an optimal

routing system that provides service to all cities.

City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 24 20 22 15 60 20 24 31 34 36 27 28 29 34
2 32 45 12 21 14 50 41 34 40 18 20 25 37
3 14 20 35 80 46 35 28 49 38 57 35 41
4 18 20 26 40 35 72 26 47 22 36 46
5 31 19 30 46 38 35 27 21 50 43
6 20 40 34 58 25 32 18 33 60
7 35 31 27 36 22 47 61 35
8 25 17 32 43 71 54 43
9 25 30 32 40 45 21
10 15 26 29 33 36
11 27 29 31 40
12 24 16 19
13 31 26
14 23

5. Show that if a weighted, undirected graph G is connected and no two of

its edges have the same cost, then there is a unique minimal spanning tree.

6. Explain why every vertex has component number 1 at the end of execu-

tion of Kruskal's algorithm.

68 Chapter 1 Graph Theory and Network Analysis

7. Prove or disprove. Let T be a minimal spanning tree of an undirected

graph G and fix a vertex v0. Then for each vertex u v0, the cost of the path

in T from v0 to u is minimal among all paths in G from v0 to u.

8. (Mathematica) An amusement park wishes to run a tram line among

several of its rides. The rides are nodes in the graph below, and the weights

of the edges are distances between the nodes. Design a connecting system

such that the least possible length of track will be used.

A

B

C

D

E

F

G

H

I

J

2

4

1

2 3

4 3

1

3

3

5

4

8

5 4

6

4 3

7

8

4

3

3

6

2

3

2

3

7

3

Exercise 8

9. (Mathematica) An alternative algorithm for finding a minimal undirected

spanning tree of a graph of n vertices is called Prim' s algorithm. Begin with

a single vertex. At any stage, check edges not in the spanning tree that have

one vertex in the current incomplete tree (and one not in it). Add the edge of

smallest cost of this kind, and add the new vertex of that edge to the vertex

set. Continue until the candidate has n 1 edges. Write a command in

Mathematica to implement Prim's algorithm, and use your command to find

a minimal spanning tree in the graph of Figure 1.1.

10. Prove that Prim's algorithm of Exercise 9 yields a minimal spanning tree

if the graph is connected. (Hint: Prove by induction that at each step the

subgraph created by Prim's algorithm is connected and has no cycles, hence

it is a tree, and moreover the Prim tree is contained in some minimal span-

ning tree.)

11. (Mathematica) Information is to flow from a source v0 to each of seven

other locations labeled v1,..., v7 in the diagram below. Find a least costly way

1.3 Minimal Cost Networks 69

of doing this if the edge weights represent the costs of direct communication

between nodes.

v0

v1

v2

v3

v4

v5

v6

v7

1

4

2

1

5

2

3

3

1

2

3

2

1

Exercise 11

12. (Mathematica) The matrix below gives the weights of directed edges

connecting certain pairs of vertices in a directed graph. List shortest possible

paths from vertex 1 to each other vertex in the network.

– 4 3 4 2 – – – – –
– – – – – 3 – – – –
– – – – – 6 2 2 – –
– – – – – – – 1 – –
– – – – – – – 5 2 –
– – – – – – – – – 4
– – – – – – – – – 2
– – – – – – – – – 3
– – – – – – – – – 4
– – – – – – – – – –

13. The vertices in the graph below are grain elevators, some of which can

be connected by chutes to neighboring elevators, for the purpose of shifting

grain from one location to another. The edges are directed because the chutes

are inclined, to allow passage of grain by gravity in only one direction. Find

a chute system that allows each elevator to be reached from the main eleva-

tor at vertex 1 with the shortest possible path. Is the solution unique? Do

this problem by hand, rather than with Mathematica.

70 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

5

6

4

4

6

7

2

3

2

5

4

Exercise 13

14. (Mathematica) An alternative algorithm for finding the shortest path

from the root v0 to each vertex v in a directed graph, called Dijkstra' s
algorithm, is as follows. Initialize the cost C v of a path to vertex v to be

c v0, v if there is such an edge, and + otherwise. Initialize a "special" set

of vertices S to be {v0}, and initialize the predecessor of v to be P v v0 for

all v v0. Then do the following loop n 1 times, i.e., until S contains all

vertices:

1. Select a vertex w S such that C w is minimized.

2. Put w into S.

3. Revise the costs C v for v S (to reflect any cost reduction) by

C v min C v , C w c w, v
 if there is an edge w, v .

4. For each v S, if the minimum in step 3 is C w c w, v (i.e.,

cost was reduced), then label the predecessor of v as P v w.

Then, to find the minimal path to each v, trace the path from v0 to v by

backtracking through predecessors: P v , P P v , ..., v0. Write a Mathemat-
ica command to implement Dijkstra's algorithm. (Hint: To break down this

rather difficult program into manageable pieces, consider writing some

supporting functions to do smaller tasks that the main Dijkstra program

needs, such as revising the costs and predecessors in steps 3 and 4, and

producing the path to each vertex given the predecessor list, etc.)

15. Prove that if a quasi-connected, directed graph with root v0 and positive

costs is input to Dijkstra's algorithm (see Exercise 14), then for each v v0,

a shortest path from v0 to v is returned. (Hint: Show inductively on the

number of vertices added to S that the path found by Dijkstra to each vertex

in S is the shortest possible.

1.3 Minimal Cost Networks 71

16. Use Dijkstra's algorithm (see Exercise 14) to list shortest paths to all

vertices v1,...,v7 in the graph of Exercise 11. Do this by hand, rather than

with Mathematica.

17. (Mathematica) A reservoir at vertex 1 in the diagram below is to supply

water to several pumping stations. The edge weights are costs of laying pipe

from one station to another. How should the pipe be laid so that all stations

are served, but cost is minimized? Use (a) the policy improvement algorithm

and (b) Dijkstra's algorithm (see Exercise 14).

1

2

3

4

5

6

7

8

9

3

6

4

3

4

2

2

1

2

1 5

4

3

2

3

Exercise 17

1.4 Critical Path Algorithm

We now turn to the maximum weight path problem that was discussed in the

introduction in the context of the completion time of a multiple stage project.

Recall that in graphs such as Figure 1.2, displayed again below for your

convenience, we think of edges as tasks. Vertices are present primarily to

link edges, showing when one task must be preceded by another. Edge

weights are task completion times. The problem is to find sequences of tasks

that are the most time-consuming.

72 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

5

6

7

8

9

10

2

3

4

1

1

2

3

6

2
3

3

4

2

4

Figure 1.2 – Project completion

To avoid certain problems involving nonexistence of a solution, and to

specialize to directed graphs of the form of Figure 1.2, we define the follow-

ing special type of directed graph.

DEFINITION 1. A directed network with root (or source) r and

terminus (or sink) t is a quasi-connected, directed graph with no directed

cycles such that r is an ancestor of each vertex and t is a descendant of

each vertex.

To say that a directed network has no directed cycles is not the same as

to say that it is a directed tree in the earlier sense. As Figure 1.2 shows, the

underlying graph is permitted to have undirected cycles. But if, as in Figure

1.33, we permit directed cycles, then paths of arbitrarily large cost could be

created and logically difficulties would result. Note that task 2, 3 precedes

task 3, 4 , which precedes task 4, 2 . By using the cycle 2, 3, 4, 2 arbi-

trarily often, paths of arbitrarily large cost from vertex 1 to vertex 5 can

result, but even more troubling is that one can never do task 2, 3 because it

requires 4, 2 and hence 3, 4 to be done, but 3, 4 cannot be done until

2, 3 is done. Physically, we do not wish the completion of several tasks to

depend on one another in a cyclic way, else the project could not be com-

pleted at all.

1.4 Critical Path Algorithm 73

1 2 3

4

5

Figure 1.33 – Cyclic task dependence

In the rest of this section, G is a directed network with root r v1,

terminus t vn, and other vertices v2, ..., vn 1. The cost of an edge is

denoted by c u, v . The path P v from the root r to vertex v and the total cost

C P v of the path are as defined in the last section. E G and E T will

denote the edge sets of the full graph and a spanning tree, respectively.

DEFINITION 2. A critical path of G is a path P t from the root r to

the terminus t that has the longest possible total path cost among all

paths from r to t.

Note that in the case where an edge cost represents time to completion of

a task, such a path P t gives a sequence of tasks of maximal total comple-

tion time. Therefore, if any of the tasks in P t are delayed, the entire

project will be delayed. It is possible to have more than one critical path in a

directed network, as discussed below.

To find critical paths, we will use an algorithm similar to the minimal

directed tree algorithm of Section 1.3. The quasi-connectivity of the graph

implies as before that a directed spanning tree exists. The algorithm will find

a maximal directed tree just as the earlier algorithm found a minimal tree. It

is fairly clear what we mean by "maximal directed tree"; in Definition 2 of

Section 1.3, simply replace the words "smaller than" by "greater than." Then

the unique path from r to t in the maximal directed tree is a critical path. If,

however, there is another maximal tree, then there may be a different critical

path, and hence we are obliged to investigate the problem of non-uniqueness.

First, we have a counterpart to the dynamic programming equation of

Section 1.3.

THEOREM 1. A directed spanning tree T with paths P v is maximal if

and only if for all vertices v r,

74 Chapter 1 Graph Theory and Network Analysis

(1)
C P v sup

u,v EG
C P u c u, v

Activity 1 – Try to construct a proof of this theorem similar to that of

Theorem 1 of the last section for minimal directed spanning trees. The

idea, once again, is that for the tree to be maximal, the cost of the path to

v must be the largest possible sum of the maximal cost to a predecessor

vertex u, plus the cost from u to v.

The policy improvement algorithm is also similar to the one for the

minimal tree problem. The only change is that an edge of minimal (negative)

slack is sought for the purpose of substitution. After the maximal tree is

found, we need only trace the path from the root to the terminus. The

algorithm assumes that an initial directed spanning tree T has been found.

The notation is as usual, and recall that the slack of edge u, v is defined as

before, namely, the difference between the cost of the current path to v and

the sum of the current path cost to u and the cost of edge u, v :

(2)S u, v C P v C P u c u, v

CRITICAL PATH ALGORITHM

1. Repeat steps a–d until the minimum slack in the current tree is

greater than or equal to 0.

a. For all vertices v r, find the path P v in T and calculate

 C P v .

b. Find an edge u, v EG ET of minimum slack M .

c. If M 0, then do step d.

d. Substitute u, v for the edge u0, v currently pointing to v in

 T .

2. Find and return the path from r to t.

Activity 2 – Explain why the critical path algorithm looks for edges of

minimal negative slack to use in edge substitution.

For the problem of finding the time of completion of a project repre-

sented by a directed network, it is useful to know the final slack values:

S u, v C P v C P u c u, v

for the edges not in the maximal tree. This is because S u, v is the difference

between the critical time to v and the critical time to u plus the completion

1.4 Critical Path Algorithm 75

time of task u, v . Task u, v may then be delayed by this amount without

delaying the project.

In the minimization problem, uniqueness of the optimal directed span-

ning tree is not very important. To find one best network is enough. But here

we are really interested in finding all delay-causing paths, so that the issue of

uniqueness deserves closer study. The key to an understanding of non-unique-

ness lies in the unused slack zero edges in the final tree, as the following

theorem shows.

THEOREM 2. (a) If P t is a critical path, then there is a maximal directed

tree containing it.

(b) Suppose T is a maximal directed tree. Let E0 be the set of edges u, v
not in T such that S u, v 0. Then, given any maximal directed tree T ,

there exists a subset E1 of E0 such that

T T E1 u0, v T : u, v E1

In other words, all maximal trees, and therefore all critical paths, may be

found by beginning with one maximal tree and performing all possible

combined substitutions of slack zero edges for edges in the current maximal

tree.

Proof. (a) Let P t be a maximal path from r to t that traverses the vertices

u0 r, u1, ..., um t. We claim first that the subpath P ui is maximal for

each i 1, ..., m. Assuming the contrary, there is i 1, m 1 such that

P ui is not maximal. Therefore, there is a path P ui such that

C P ui C P u j . Then the path P t formed by following P from r
to ui, then following P from ui to t, has higher cost than P t , a contradic-

tion of the choice of P . Hence, P must be maximal to each vertex on its

path.

It is easy to see from the breadth-first search algorithm (see the Directed

Spanning Tree Algorithm in Section 1.2) that if we first initialize KT and
NEW1 to the set of vertices in the path P t and initialize ET to the set of

edges in P t , then a spanning tree containing P t will result. That is, there

is a spanning tree T containing this path. We claim furthermore that the

Critical Path Algorithm applied to the initial tree T must preserve all of the

edges in the path P t , resulting in a maximal spanning tree containing P t ,

as desired. To show this, we need only show that at any stage of execution of

loop a–d such that P t is still within the current tree, P t will remain

within the tree after the choice of a new edge. Suppose the current tree has

paths P v , and consider an edge w, ui pointing to a vertex ui in the path

P t . We have

76 Chapter 1 Graph Theory and Network Analysis

S w, ui C P ui C P w c w, ui

C P ui C P w c w, ui

0

since P ui is a maximal path to ui. Since only edges of negative slack are

selected for substitution, w, ui will not be substituted for ui 1, ui in step d

of the algorithm. This proves that P t will be contained in the final tree

returned by the Critical Path Algorithm, which finishes the proof of part (a).

(b) Let a maximal directed spanning tree T with paths P v be given.

To prove part (b), it suffices to show that for an arbitrary edge u, v not in

T ,

1. If S u, v 0, then u, v cannot be contained in any maximal tree; and

2. If S u, v 0, then the spanning tree created by substituting u, v for

the edge u0, v currently in T is maximal.

Thus, the only possible maximal directed spanning trees are formed by

substitutions of zero slack edges for corresponding edges in T .

To prove assertion 1, suppose on the contrary that there is a maximal tree

T with paths P w , to which u, v belongs. Since both T and T have

maximal paths to u and to v, and since S u, v 0, we can write:

C P v C P u c u, v
C P u c u, v
C P v

which contradicts optimality of T ; thus assertion 1 is established.

The proof of assertion 2 is left to the reader as Exercise 5.

In summary, part (a) of the theorem says that our search for all maximal

paths may be confined to a search for all maximal trees. Part (b) implies that

we may find all maximal trees simply by starting with one, say T , generated

by the Critical Path Algorithm, and exhausting all substitutions of slack zero

edges not in T for edges that point to the same vertex in T . Note, inciden-

tally, that Theorem 2 yields a necessary and sufficient condition for unique-

ness of a maximal path, namely, the condition that the slack S u, v 0 for

all edges u, v not in T .

It may have already occurred to you that the same Mathematica tools

that we used in the last section for minimal directed spanning trees can be

used here too. DirectedSpanningTreeFirstStep shows initial slack values for

a given initial tree. In DirectedSpanningTreeOneStep it is our choice which

edge to substitute in; so instead of choosing the one with the largest

(positive) slack, for the maximum problem we choose the one with the

smallest (negative) slack. Again there is a tool in KnoxOR`Graphs` that

executes the whole algorithm, as described in the documentation below, but I

1.4 Critical Path Algorithm 77

suggest that you run through the step-by-step procedure to solve problems,

for the most educational benefit.

? MaximalDirectedSpanningTree

MaximalDirectedSpanningTree theGraph,initialTree,

theRoot,opts takes a given initial spanning

tree of a given directed, quasi connected graph,

both in adjacency matrix form, and the vertex

number of the root of the tree. It performs the

full maximal directed spanning tree algorithm,

displaying all intermediate graphs unless the

option ShowTree is set to False, and returns the

maximal spanning tree in adjacency matrix form. The

display options of DisplayGraph may be passed in.

EXAMPLE 1. The table below shows the tasks necessary to proceed from

the raw ingredients of a turkey dinner, with stuffing, mashed potatoes, and

gravy, to the finished product. (Invaluable technical advice for this example

was provided by Mrs. Lois L. Hastings.) Our goal is to find the most time-

consuming sequence of tasks.

Task Predecessor Time min.
A. Defrost turkey none 480
B. Break bread for stuffing none 15
C. Peel potatoes none 15
D. Remove and boil innards A 60
E. Make stuffing B, D 20
F. Stuff turkey E 10
G. Boil potatoes C 40
H . Bake turkey F 240
I. Mash potatoes G 10
J . Make gravy H 15
K. Remove stuffing from turkey H 5
L. Slice turkey K 15
M . Serve potatoes I 1
N . Serve turkey L 1
P. Serve stuffing K 1
Q. Put gravy on potatoes J , M 1

Some experimental artwork is usually necessary to obtain a convenient

graphical representation of the dependencies among tasks. A good place to

begin is to draw a root, out of which point edges corresponding to tasks that

have no predecessors. For us, these are A, B, and C. Examine tasks one by

one, drawing an edge that points away from the vertex to which its predeces-

sor points. For instance, in the graph below, D follows A, and G follows C.

For an edge like E, which has two predecessors D and B, the predecessors

must both be drawn so as to point into the vertex away from which E points.

78 Chapter 1 Graph Theory and Network Analysis

With some care, we obtain the graph in Figure 1.34. The Mathematica name

of the overall graph is turkey, and for the display options we have used

vertpos34 for VertexPositions, vlabpos34 for VertexLabelPositions, and

turkeytasklabelpositions for the EdgeLabelPositions, as you may see by

opening the closed cell below this paragraph.

1

2

3

4

5

6

7

8

9

10

11

12

13

A

B

C

D

E

G

F

I

H

M

J

K

Q

L

P

N

Figure 1.34 – Project graph for making a turkey dinner

We select an initial directed spanning tree, compute the path costs using

the completion times in the table, and we compute the slack values for the

unused edges. These are shown in Figure 1.35. The edge of minimum slack

is D = 2, 3 , which we substitute for edge B = 1, 3 in the spanning tree to

produce the new tree in Figure 1.36.

Two similar edge substitutions, first N = 12, 13 for Q = 10, 13 , then J
= 9, 10 for M = 8, 10 , produce the next tree in Figure 1.37 and the final

tree in Figure 1.38. Since all slacks are non-negative and there are no unused

edges of slack zero, this is the unique maximal tree. The critical sequence of

tasks is therefore A, D, E, F, H, K, L, N. Most of these involve direct opera-

tions on the turkey, which is no surprise to anyone who has practical experi-

ence with this problem. Additional information we can gather from the final

tree, for example, is that the sequence of operations C, G, I, M involving the

potatoes can be delayed for as long as 759 minutes without delaying the

meal. Also, it requires 831 minutes from the time when the defrosting starts

until the time when the meal is ready.

1.4 Critical Path Algorithm 79

initturkeytree

0, 480, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 240, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

DirectedSpanningTreeFirstStep turkey,

initturkeytree, 1, AspectRatio .5,

VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions turkeytasklabelpositions ;

1 0

2 480

3 15

4 15

5 35

6 55

7 45

8 65

9 285

10 66

11 290

12 305

13 67

480

15

15

20

40

10

10

240

1

5

1

15

1 0

2 480

3 15

4 15

5 35

6 55

7 45

8 65

9 285

10 66

11 290

12 305

13 67

525

234

224

239

Figure 1.35 – Turkey dinner, step 1

80 Chapter 1 Graph Theory and Network Analysis

currturkeytree DirectedSpanningTreeOneStep

turkey, initturkeytree, 1, 2, 3 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 67

480

15

60

20

40

10

10

240

1

5

1

15

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 67

525

759

749

764

Figure 1.36 – Turkey dinner, step 2

currturkeytree DirectedSpanningTreeOneStep

turkey, currturkeytree, 1, 12, 13 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;

1.4 Critical Path Algorithm 81

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 831

480

15

60

20

40

10

10

240

1

5 15

1

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 831

525

759

764

15

Figure 1.37 – Turkey dinner, step 3

currturkeytree DirectedSpanningTreeOneStep

turkey, currturkeytree, 1, 9, 10 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 825

11 815

12 830

13 831

480

15

60

20

40

10

10

240

15

5 15

1

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 825

11 815

12 830

13 831

525

759

5

15

Figure 1.38 – Turkey dinner, step 4 and last

82 Chapter 1 Graph Theory and Network Analysis

Activity 3 – Make up your own project example, and try to produce the

project graph.

A C

F

B D

Figure 1.39 – Inserting a dummy edge into a project graph

REMARK 1. In forming the original graph, a special situation can arise that

bears mentioning. If task A must precede each of tasks C and D, but task B
precedes D only, then in order to represent these constraints, a dummy edge

F may be inserted, as shown in Figure 1.39. We need to then take steps to

be sure that the dummy edge, which is not really a part of the original

project, is not included in any maximal directed spanning tree. One way to

ensure this is by observing that the slack of an edge u, v is found by

subtracting c u, v C P u from C P v , so that if the cost c u, v of a

dummy edge is taken to be a large magnitude negative number, larger in

magnitude than any path cost C P u could be, then a negative number is

subtracted from C P v , so that a positive slack must be attached to the

dummy edge. Thus, it will never be swapped in.

REMARK 2. Tasks may also be represented on vertices instead of edges, in

which case the technical difficulties mentioned in Remark 1 do not arise. A

solution algorithm can be developed, but we do not discuss it here. The

project with the dependencies in Figure 1.39 above, with A preceding both C
and D, and B preceding D, would be represented with tasks on vertices as in

Figure 1.40.

1.4 Critical Path Algorithm 83

A

B

C

D

Figure 1.40 – Project graph with tasks on vertices

EXAMPLE 2. Several years ago there was a major renovation of the small

library in my office building. The library was on two levels, and the major

work was the replacement of the rickety spiral stairway leading to the second

level by a large new stairway and front desk unit, and the construction of

built-in study carrells on both levels. Some wood trim work was also done,

the carpet was replaced, and the walls were painted. To do all this however,

the library had to be emptied and old fixtures torn out. The 17 tasks into

which the whole project breaks down are listed below, as well as time

estimates, in days, of how long the tasks take. You should carefully go over

the list of predecessor tasks to see that they make logical sense. For

instance, workers cannot tear up the old carpet until the old shelving fixtures

are moved out, the new carpet should not be laid until the staining and

painting is done, etc. Let us use the critical path method to find how many

days the project will take, and make note of possible delay-causing tasks.

Task Time Predecessor
A. box books 8 none
B. move books 2 A
C. move old fixtures 1 B
D. tear up old carpet 3 C
E. remove spiral staircase 2 C
F. do upstairs carpentry 15 C
G. build new staircase 20 D, E
H . build new front desk 5 G
I. build new downstairs carrells 8 D, E
J . build new upstairs carrells 8 F
K. paint and stain downstairs 3 H , I
L. paint and stain upstairs 3 G, J
M . lay downstairs carpet 5 K
N . lay upstairs carpet 5 L
O. move old fixtures back 1 M , N
P. move books back 2 O
Q. unbox books 8 P

Figure 1.41 displays the graph of the project. Several points are worth

noting. Since task L depends on both G and J, but task H depends only on G,

we have had to insert a dummy edge as in Remark 1 connecting vertex 8 to

84 Chapter 1 Graph Theory and Network Analysis

vertex 9. A second dummy edge, used this time to avoid multiple edges

between a pair of vertices, connects vertices 6 and 5, since task G depends

on both of D and E, which both emanate from the same vertex. This indi-

cates that in the original task breakdown we could have simplified matters by

combining tasks D and E into one task of duration 3 days. The dummy

edges have been given weight of 200, a good choice given the magnitudes

of the edge costs in the table. The name of the graph and the option values

controlling the graph display are as shown in the command. These are

defined in the closed cell above the DisplayGraph command.

DisplayGraph librarygraph, GraphType Directed,

AspectRatio .5, VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabels libraryelab,

EdgeLabelPositions libraryelabpos ;

1

2

3 4

5

6

7

8

9

10

11

12

13 14

15

16

A

B

C

D

E

F

G

I

dum

J

dum

H

L

K

N

M
O

P

Q

Figure 1.41 – Project graph for library renovation

This time let us use the MaximalDirectedSpanningTree command to com-

plete the computation. An initial directed spanning tree generated by

breadth-first search uses edges A, B, C, D, E, F, I, G, J, K, L, M, O, P, and Q.

The adjacency matrix of that tree is defined in the closed cell immediately

below as librarytree.

1.4 Critical Path Algorithm 85

DirectedSpanningTreeFirstStep librarygraph,

librarytree, 1, AspectRatio .5,

VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabelPositions libraryelabpos ;

MaximalDirectedSpanningTree librarygraph,

librarytree, 1, AspectRatio .5,

VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabelPositions libraryelabpos ;

1 0

2 8

3 10 4 11

5 14

6 13

7 26

8 34

9 34

10 22

11 37

12 25

13 30 14 31

15 33

16 41

8

2

1

3

2

15

20

8

8 3

3

5
1

2

8

1 0

2 8

3 10 4 11

5 14

6 13

7 26

8 34

9 34

10 22

11 37

12 25

13 30 14 31

15 33

16 41

201

200

17

12

1 0

2 8

3 10 4 11

5 14

6 13

7 26

8 34

9 34

10 39

11 37

12 42

13 47 14 48

15 50

16 58

8

2

1

3

2

15

20

8

5

3

3

5
1

2

8

1 0

2 8

3 10 4 11

5 14

6 13

7 26

8 34

9 34

10 39

11 37

12 42

13 47 14 48

15 50

16 58

17

201

200
5

Figure 1.42 – Initial and final spanning trees for library renovation

As Figure 1.42 illustrates, only one edge substitution, namely

H 8, 10 in place of I 5, 10 , was necessary to finish the problem. All

86 Chapter 1 Graph Theory and Network Analysis

slacks are strictly positive, and so we have found the unique maximal

spanning tree and critical path

A, B, C, D, G, H , K, M , O, P, Q.

Any task on this path will, if delayed, cause a delay in the completion time

of the project. With no delays, the length of the critical path from 1 to 16 is

58 days, which is how long the project will take. The dummy edges are not

in the final spannning tree. In view of the positive slack value of edge

5, 10 , task I, the building of the downstairs carrells, may be delayed by as

much as 17 days without delaying the whole project.

Activity 4 – Are there any other tasks in the project of Example 2 that

can be delayed, and if so, by how much?

Exercises 1.4

1. Call a directed graph double quasi-connected if each pair of vertices has

not only a common ancestor, but also a common descendant. Show that a

double quasi-connected graph has both a root and a terminus.

2. (Mathematica) Find all maximal trees and maximal paths for the graph of

Figure 1.2.

3. Find all critical paths for the graph of Exercise 12 of Section 1.3 whose

adjacency matrix is as below. Do this by hand, rather than with Mathemat-
ica.

– 4 3 4 2 – – – – –
– – – – – 3 – – – –
– – – – – 6 2 2 – –
– – – – – – – 1 – –
– – – – – – – 5 2 –
– – – – – – – – – 4
– – – – – – – – – 2
– – – – – – – – – 3
– – – – – – – – – 4
– – – – – – – – – –

4. (Mathematica) A job requires ten stages of work. The completion times

for each are in the table below. Also listed in the table is the information of

which stages cannot begin until other stages are complete, e.g., stage D

1.4 Critical Path Algorithm 87

requires both stages A and B to be finished before it can begin. Find all

critical sequences of job stages.

Task
Immediate
predecessor

Completion
time hr.

A. none 2
B. none 6
C. none 3
D. A, B 4
E. C 5
F. D 1
G. D 1
H . E, F 4
I. G 3
J . H 5

5. Finish the proof of Theorem 2 by showing assertion 2: If u, v is an

omitted edge and S u, v 0, then the spanning tree created by substituting

u, v for the edge u0, v currently in T is maximal.

6. A large computer program is to be tested and debugged in modules, some

of which require other modules to be completely tested before testing on

them can proceed. The table below shows the dependencies, and the times

required to finish the testing and debugging of each module. How long does

it take until the entire group of modules is debugged? Do this by hand,

rather than with Mathematica.

Module Time days
Immediate
predecessor

A 1 none
B 2 none
C 2 A
D 3 B
E 1 B
F 2 C, D

7. Intuitively, it is clear what we mean when we say that a graph is a "line of

vertices" (see below). Give a set-theoretic definition of a line of vertices, and

show that if a directed network is not a line of vertices, then its underlying

graph must have an undirected cycle.

88 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

Exercise 7

8. (Mathematica) An office wants to install an information system. The

main tasks are below, with time estimates in days and task dependencies

indicated. Find the amount of time required to get the system up and run-

ning, and find the set of tasks which could delay the project if they were

delayed.

Task Time days Predecessor
A. Run wiring 1 none
B. Research hardware 2 none
C. Research software 2 none
D. Purchase hardware 4 B
E. Purchase software 2 C
F. Install hardware 1 D, A
G. Install software 1 E, F
H . Install network facilities 1 F
I. Set up database 4 G
J . Train employees 5 H

9. (Mathematica) An advertising agency has contracted to prepare a commer-

cial. The main tasks, time estimates, and task dependencies are shown in the

table below. How many days will it take to produce this commercial?

Task Time days Predecessor
A. Write script 3 none
B. Consult with client 1 A
C. Revise script 2 B
D. Hire actors 3 A
E. Produce special effects 6 C
F. Film studio scenes 2 C, D
G. Film outdoor scenes 3 F
H . Second consult with client 1 E, G
I. Do voiceover work 1 H
J . Final editing 4 I

10. For the project in Exercise 4, form a project graph with tasks on vertices.

1.4 Critical Path Algorithm 89

11. A variation on the critical path problem is the task scheduling problem.

In this problem, unlike the critical path problem, explicit attention is paid to

how many workers are available to do tasks, and the goal is to assign and

schedule tasks among workers so that predecessor conditions are satisfied

and the project is finished as quickly as possible. Even though a project

graph such as those in this section might indicate that a task is ready to be

done, there may not be a free worker to do it, so that it might have to wait

longer than the critical path algorithm expects. Suppose that there are just

two workers available to do the project with tasks listed below. Develop a

work schedule for the workers that gets the project done in as little time as

possible.

Task A B C D E F G H I
Time 2 3 2 5 1 4 2 3 3

Predecessor none none none A B D D F G

(Hint: A useful device for the scheduling problem is a bar graph that con-

tains one horizontal row for each worker. To schedule tasks consists of

placing bars, one per task, of width equal to the time required for the task,

end-to-end in the worker rows, obeying predecessor constraints. For

instance, in the picture below, there are three workers 1–3 and 6 tasks A–F

taking 4, 2, 6, 3, 1, and 2 minutes respectively. The only requirements are

that task D must be done after task A, and task E must be done after task C.

The work schedule shows worker 1 doing task A, then beginning task F

immediately on completion. Worker 2 does task B, then waits until task A is

finished, and then does task D. Worker 3 does tasks C and E in succession.

Is this the most efficient schedule?)

0 1 2 3 4 5 6 7

A

B

C

D

E

F1

2

3

Exercise 11

90 Chapter 1 Graph Theory and Network Analysis

1.5 Maximal Flow Problems

Problem Description

We now consider a different maximum weight problem for directed graphs

in which edges have flow capacities, and we wish to use part or all of the

available capacity on edges. Specifically, we wish to put a weighting on the

graph such that:

1. Each edge has non-negative weight less than or equal to the capacity

for that edge.

2. For each vertex except the source and the sink, the total weight of

edges directed into the vertex equals the total weight of edges directed out of

the vertex.

3. The total weight of edges directed out of the source is the largest

among all weightings satisfying conditions 1 and 2.

1

2

3

4

5

6

7

8

6

3

4

2 7

5

3

4

6

5

8

3

4

Figure 1.43 – A flow graph

One may think of a vertex as an intersection, an edge as a street, and a

capacity as the maximum possible number of vehicles that can pass on the

particular edge per unit time. The problem is to find traffic flows per unit

time on each street so that the rate at which vehicles enter each intersection

equals the rate at which they depart (an equilibrium, or conservation condi-

tion expressed by condition 2), the capacities for the streets are not

exceeded, and the total outflow from the source of the traffic is as large as

possible.

Like the critical path problem, the maximal flow problem will be solved

by a policy improvement strategy. We begin with an initial feasible flow,

1.5 Maximal Flow Problems 91

and modify it step-by-step until a termination condition comes into effect

(which we must prove characterizes a maximal flow). This approach is

called the Ford–Fulkerson maximal flow algorithm, and it is contained in

several sources, but here we follow the presentation of Swamy and Thulasira-

man [57].

To define the problem more carefully, let G V , E be a directed

network of n vertices. We suppose that the vertices are denoted

v1, v2, ..., vn 1, vn. There is a source vertex v1 and a sink vertex vn, where

the words "source" and "sink" have the same meaning as in Definition 1 of

Section 1.4. Vertices 1 and 8, respectively, in Figure 1.43 are the source and

sink for that network. Let c be a function from the set of edges to the non-neg-

ative real numbers; c v, w is the capacity of edge v, w . A flow is a

function f : E such that

(1)
a 0 f e c e for all edges e E
b j f vi, v j j f v j, vi for i 2, ..., n 1

where the sums in the second equation are taken over those vertices v j such

that an edge of the stated form does exist in E. These properties are direct

translations of constraints 1 and 2 mentioned above: the first equation says

that the flow on every edge cannot exceed the capacity of that edge, and the

second equation states that the total flow out of vertex vi equals the total

flow into vi, for all intermediate vertices vi.

Activity 1 – Why can there be no edges pointing into the source vertex,

nor can there be any edges pointing out of the sink?

The value of flow f is the total flow out of the source vertex, i.e.,

(2)V f j f v1, v j

Shortly, we will show that the conservation condition (1b) implies that the

value of a flow also equals the total inflow to the sink. A maximal flow f is

such that for all other flows f

(3)V f V f

The improvement of a given flow involves locating a path from the

source to the sink such that the flow along each edge in the path can be

increased by a fixed positive amount. The improvement procedure stops

when there does not exist such an "augmenting path." Our main theoretical

result is Theorem 1 below, which says that when the stopping condition

92 Chapter 1 Graph Theory and Network Analysis

becomes true, the maximal flow has been reached. To prove this result, we

must introduce the idea of a cut in a graph.

DEFINITION 1. Let G V , E be a graph, let V0 be a subset of

vertices of G, and denote by V0
c the complement of V0 in V . The cut

corresponding to V0, denoted by K K V0 , is the set of all edges that

have one vertex in V0 and one in V0
c. A cut K V0 in a network separates

the source and sink if the source is in V0 and the sink is in V0
c.

EXAMPLE 1. In the graph of Figure 1.43, let V0 1, 2, 5, 6 . Then

V0
c 3, 4, 7, 8 , and the cut K V0 corresponding to this set of vertices

consists of the edges: 1, 3 , (1,4), (2,3), (3,5), (4,5), (5,7), (6,8), and (7,6).

Note that this cut separates the source and sink. The edges of the cut are

displayed in Figure 1.44.

1

2

3

4

5

6

7

8

Figure 1.44 – A cut for the graph of Figure 1.43

DEFINITION 2. The capacity c K of a cut K K V0 is

c K c e

where the sum is taken only over those edges whose initial vertex is in

V0 and whose terminal vertex is in V0
c. A cut K separating the source

and sink is a minimum cut if

c K c K

for all cuts K that separate source and sink.

1.5 Maximal Flow Problems 93

For example, if K K V0 is the cut in Example 1, then the capacity of

K is 3 + 4 + 2 + 5 + 8 = 22, using edges 1, 3 , (1,4), (2,3), (5,7), and (6,8).
Notice that we do not include edges pointing from V0

c into V0.

Activity 2 – If V0 1, 2 in the graph of Figure 1.43, find the capacity

of the cut K K V0 .

One further piece of notation: if f is a flow, and V1 and V2 are subsets

of vertices, we denote by

f V1, V2 f vi, v j vi V1, v j V2

the total flow along edges pointing from V1 into V2. For example, if we put

the flow indicated in Figure 1.45 on the graph of Figure 1.43, with

V0 1, 2, 5, 6 then f V0, V0
c 1 1 0 2 3 7 and

f V0
c, V0 1 1 1 3 (edges 3, 5 , 4, 5 , and 7, 6). Note that the

value of the flow is 4, which is the same as the difference f V0, V0
c –

f V0
c, V0 . This is generally true, as shown by the first lemma in the follow-

ing subsection.

1

2

3

4

5

6

7

8

2

1

1

0 2

1

1

0

2

2

3

1

1

Figure 1.45 – A flow on the graph of Figure 1.43

Main Results and Algorithm

LEMMA 1. Let f be any flow on a graph G V , E and let V0 be a set of

vertices containing the source vertex v1 but not the sink vn. Then

(4)V f f V0, V0
c f V0

c, V0

94 Chapter 1 Graph Theory and Network Analysis

Consequently,

(5)V f c K

where K is any cut seperating the source and the sink.

Proof. Note that since nothing flows into the source, the difference between

the flow out of V0 and the flow into V0 is

(6)

v V0 w V f v, w v V0 w V f w, v

w V f v1, w v V0 v1 w V f v, w

v V0 v1 w V f w, v
V f 0 V f

by the conservation condition in (1). For the edges v, w such that w is in

V0, f v, w appears in both terms in the difference on the left hand side of

(6), hence it subtracts away. Thus, (6) may be rewritten as

V f v V0 w V0
c f v, w v V0 w V0

c f w, v
f V0, V0

c f V0
c, V0

The first assertion is proved.

 Since flows are non-negative, we have

V f f V0, V0
c

v V0 w V0
c f v, w

v V0 w V0
c c v, w c K

which establishes the second assertion.

REMARK. Applying Lemma 1 to the cut K V0 whose vertex set is

V0 V vn , we see that since V0
c vn ,

V f f V0, V0
c f V0

c, V0

w V0
f w, vn 0

total flow into sink

because no edges are directed out of the sink. In other words, as anticipated

earlier, the value of a flow is not only equal to the total flow out of the

source, but is also equal to the total flow into the sink.

Next we have a lemma that is a stepping stone to the characterization of

a maximal flow.

1.5 Maximal Flow Problems 95

LEMMA 2. If a flow f and a cut K K V0 separating the source and the

sink can be found such that

 V f c K

then f is a maximum flow and K is a minimum cut.

You are asked for a proof in Exercise 3. (Hint: Use the second assertion

of Lemma 1, i.e., the value of any flow is dominated by the capacity of any

cut.)

Below is a precise definition of the idea of a flow augmenting path that

was mentioned earlier. First, it should be explained that we are now thinking

of undirected paths P : v1, v2, v3, ..., vn from the source to the sink in the

underlying graph. An edge in such a path is called forward if it is oriented in

the same direction as in the original directed graph, and reverse otherwise.

DEFINITION 3. A simple path P is called an augmenting path for a

flow f if for all edges e in the path

(i) f e c e if e is a forward edge

(ii) f e 0 if e is a reverse edge

v1 a
b

c

d

vn

4,2 3,1

2,1 5,2 3,1

v1 a
b

c

d

vn

4,3 3,2

2,0 5,3 3,2

Figure 1.46 – Left: initial graph; right: augmented graph

For example, consider the (undirected) path v1, a, b, c, d, vn, in Figure

1.46, which is a small segment of some larger graph. The edge labels are the

(capacity, flow) pairs. It is possible to increase the flows on the forward

edges v1, a , a, b , c, d , and d, vn by one unit, and to decrease the flow

on the reverse edge c, b by one unit, while satisfying the capacity con-

straint and not changing net outflow from any intermediate vertices. This

flow increase was arrived at by taking the smaller of the minimum "slack"

(i.e., capacity minus flow) among all forward edges, and the minimum flow

along all reverse edges.

96 Chapter 1 Graph Theory and Network Analysis

Activity 3 – Find an augmenting path for the flow in Figure 1.45.

We can now prove the main theorem.

THEOREM 1. A flow is maximal if and only if it has no augmenting path.

Proof. To show the forward part of the equivalence, we will show its

contrapositive: if there is an augmenting path for the flow f , then f is not

maximal.

Let P be an augmenting path for the flow f . Define

(7)1 min c e f e e is a forward edge in P

(8)2 min f e e is a reverse edge in P

(9)min 1, 2

and define a new function f on the edge set of the graph by

(10) f e
f e if e is a forward edge of P
f e if e is a reverse edge of P
f e otherwise

We claim that f is a feasible flow, and that f has strictly greater value than

f , and consequently f is not maximal.

We leave it to the reader to check that for all edges, the capacity and

nonnegativity constraints (1a) are satisfied by f , (see Exercise 6). The first

edge in path P must point out of the source v1, hence it is a forward edge.

The flow along that edge has been increased by 0, by the definition of an

augmenting path and the construction of f , so that f is a strict improvement

of f . So the only part of the claim left to show is that f satisfies the conserva-

tion condition (1b) at interior vertices. Those interior vertices that are not on

the augmenting path P satisfy the conservation condition because no flows

on edges incident to them have changed. The path is also to be simple, thus

there are four possible orientations of edges incident to a vertex u on the path

P, as shown in Figure 1.47. In case (a), both total inflow to u and total

outflow from u increase by , and therefore the balance is maintained. In

case (b), there is no change to total outflow at all and the net change to total

inflow is zero, since flow along one edge is increased by , while flow along

the other is decreased by . The reader can easily check the conservation of

flow condition for cases (c) and (d). Therefore we have found a feasible flow

1.5 Maximal Flow Problems 97

that is better than f , as desired. The forward half of the equivalence is

shown.

u u

(a) (b)

u u

(c) (d)

Figure 1.47 – Four orientations of directed edges at a vertex

To show the reverse implication, let f be a flow for which there is no

augmenting path. Let V0 be the set of vertices to which the source v1 has an

augmenting path. Then v1 is in V0, but by assumption the sink vn is not in V0.

Consider the cut K V0 , which separates source and sink. If e v, w is an

edge in this cut for which v V0 and w V0
c, then it must be true that

f e c e . To see this, observe that since v V0, there is an augmenting

path from v1 to v, and if f e c e , then edge e could be adjoined to this

augmenting path to create an augmenting path to w. This cannot be, since w
is not in V0. Furthermore, if e w, v is an edge in the cut for which v V0

and w V0
c, then it must be true that f e 0. Otherwise, there would be an

augmenting path from v1 to v, which can be extended along the reverse edge

e to an augmenting path to w, contrary to the assumption that w V0
c.

The argument of the last paragraph shows that

f V0, V0
c

v V0 w V0
c f v, w

v V0 w V0
c c v, w

c K

Also,

f V0
c, V0 v V0 w V0

c f w, v 0

Consequently, by Lemma 1,

V f f V0, V0
c f V0

c, V0 c K

98 Chapter 1 Graph Theory and Network Analysis

which implies, in view of Lemma 2, that f is a maximum flow.

The proof of the last theorem shows exactly how to improve a given

flow, if an augmenting path can be found. Compute the increment by

formulas (7)–(9). Note that is the smallest number among the slacks

c e f e of forward edges and the flows f e on reverse edges of the

augmenting path. Then add this increment to all forward edges on the path,

and subtract it from all reverse edges. One may repeat this augmentation

process until an augmenting path can no longer be found, at which point we

know that the current flow is optimal. The main problem, therefore, is to find

an augmenting path from the source to the sink in a flow.

An augmenting path for a given flow can be found using a vertex

labeling algorithm, which labels vertices with three pieces of information.

First, the source is given a label. Other vertices receive labels successively

from some vertex that is already labeled. In the vertex v about to be labeled,

we record:

1. The preceding vertex u from which v receives its label.

2. A forward (+) designation if u, v is a forward edge, and otherwise a

reverse designation (–).

3. The slack S v of v, that is, if u is the vertex from which it receives its

label,

(11) S v
min S u , c u, v f u, v if u, v is a forward edge

min S u , f u, v if u, v is a reverse edge

Also, a vertex v can only receive a label from a vertex u if the slack defined

by (11) is strictly positive. For example, in Figure 1.48, the label on u
indicates that it received its label from a vertex named 6, along a forward

edge pointing from vertex 6 to u, and the slack of u is 4. The flow capacities

and current flow values of the two edges are displayed. Now vertex v, which

is presently unlabeled, has slack equal to min 4, 3 1 2, and can

therefore receive the label u, , 2 . The edge u, w is a reverse edge. The

slack that would be given to w if it could be labeled from u is min 4, 0 0.

According to the labeling rule cited above, vertex w cannot receive a label

from u.

1.5 Maximal Flow Problems 99

u v

w

3,1

4,0

6, ,4

slack 2

slack 0

Figure 1.48 – Vertex labeling

The labeling algorithm to find an augmenting path for a flow f proceeds

roughly as follows. Label the source (0, –,). Fan outward in an attempt to

label vertices, using a breadth-first search plan that scans unlabeled neigh-

bors of labeled vertices, in the order in which the labeled vertices received

their labels. Stop when the sink vn is labeled. If indeed the sink can be

labeled, then the definition of slack, formula (11), clearly implies that there

is a chain of vertices leading from the source to the sink, such that the sink

has the smallest slack among the vertices in the chain. Moreover, if is the

slack, then c u, v f u, v for all forward edges on this path, i.e., there

are units of unused flow capacity on every forward edge of the path.

Hence, units of flow may be added to each forward edge without violating

the capacity constraint. Also, f u, v for all reverse edges on the path, so

that units of flow may be subtracted from each reverse edge without

causing negative flow. The reason for the requirement that slack must be

strictly greater than zero for a labeling to occur should now be clear.

Therefore, if the sink can be labeled, we can trace the augmenting path

back from the sink to the source, and use it in the way already described to

improve the current flow. We leave it to the reader to show (see Exercise 7)

that if it is not possible to label the sink using this scheme, then there is no

augmenting path, and hence, by Theorem 1, the current flow is optimal. This

discussion is the heart of the proof that the following algorithm will locate a

maximal flow. We omit the details.

100 Chapter 1 Graph Theory and Network Analysis

MAXIMAL FLOW ALGORITHM
1. Initialize flow f e 0 for all edges e.

2. Repeat steps 3–6 until the sink vn cannot be labeled.

{Steps 3–5 are the labeling algorithm.}

3. Erase all previous labels.

4. Label the source v1 as (0, –,).

5. Do a breadth-first search for vertices to label, until the

 sink is labeled, or no further labeling can be

 done.

{Find the augmenting path, and augment the flow.}

6. If the sink has been labeled, then:

 a. Let be the slack of the sink.

 b. Let P be the path of labeled vertices from v1 to vn.

 c. Set the new flow f equal to the flow f defined by

 (10).

There are two commands in the KnoxOR`Graphs` package that can help

you carry out the algorithm one step at a time. To set up the problem, form a

matrix like an adjacency matrix that contains the flow capacities, and another

matrix of flows on edges, initialized to zero. On each step, first search for an

augmenting path. The function FindAugmentingPath returns the list

{augmenting path, epsilon}, where the path is a list of vertex numbers, and

epsilon is the amount of flow by which edges on the path can be augmented.

There is one boolean option, ShowLabels, which if left at its initial value of

True displays a table of vertex labels found by the labeling algorithm

described above.

FindAugmentingPath

capacities,flows,source,sink,opts

Options FindAugmentingPath

ShowLabels True

The second function takes the capacity matrix, the current flow matrix, and

the augmenting path and epsilon values that are returned by FindAugmenting-

Path, and returns the matrix of the augmented flow, which can then be used

in the next augmentation step. The user can then use DisplayGraph to see

the results of the augmentation.

1.5 Maximal Flow Problems 101

AddFlow capacities,

flows,augmentingpath,epsilon

Examples

EXAMPLE 2. To illustrate the application of the Maximal Flow Algorithm,

consider the directed network whose capacities are depicted in Figure

1.49(a). This might represent the floor plan of a manufacturing plant in

which pieces of heavy equipment are to be assembled. The nodes are work

stations, and the capacities are numbers of pieces of equipment that can be

moved from one station to another per half hour. Vertex 1 is the initial

location of the parts, and vertex 6 is the shipping area. (In the closed cell

below that generated the graph, the capacity matrix is defined as

capacities49, and the graph option values are vpos49, vlabelpos49, and

elabelpos49 as seen below in the other DisplayGraph commands.)

1

2

3

4

5

6

4

5

3

2

6

2

3

4

4

Figure 1.49(a) – A flow capacity graph

Activity 4 – We will use the algorithm and the Mathematica tools below

to find the optimal flow on this graph, but it is rather easy on such a

small graph to find it intuitively by hand. Try this.

Let the initial flow be 0 along all edges, as defined in the flows49

variable below. We first label vertex 1 as (0, –,). We are able to label

vertices 2 and 3 from the source, since the source has infinite slack. The

slack along edge (1, 2) is the same as the unused capacity in that edge,

namely 4. Similarly, the slack along edge (1, 3) is 5. The information is

displayed in the table below the input cell. From vertex 2 we can label

vertex 4, from vertex 3 we can label 5, and from vertex 4 the sink vertex can

102 Chapter 1 Graph Theory and Network Analysis

be labeled. The slack of the sink is 2, and hence a flow of two units can be

added to each edge of the path 1, 2, 4, 6. The new flow is in Figure 1.49(b).

flows49 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

augpath, epsilon FindAugmentingPath

capacities49, flows49, 1, 6

flows49 AddFlow capacities49,

flows49, augpath, epsilon ;

DisplayGraph capacities49, GraphType Directed,

AspectRatio .7, VertexPositions vpos49,

VertexLabelPositions vlabelpos49,

EdgeLabels flows49,

EdgeLabelPositions elabelpos49 ;

vertex label

1 0

2 1 4

3 1 5

4 2 2

5 3 2

6 4 2

1, 2, 4, 6 , 2

1

2

3

4

5

6

2

0

0

2

0

0

0

2

0

Figure 1.49(b) – First augmentation

The next breadth-first scan labels vertices 2 and 3 from the source. Note

that since the flow on edge (1, 2) is now 2, the slack induced on vertex 2 is

now 4 2 2. This time, vertex 4 cannot be labeled from vertex 2, since the

slack is

min S 2 , c 2, 4 f 2, 4 0,

1.5 Maximal Flow Problems 103

but vertex 4 can be labeled from vertex 3. The sink is then labeled from

vertex 4, and since there are only 2 unused units of flow capacity on edge

4, 6 , the slack of the sink is 2. The augmenting path is 1, 3, 4, 6 . Through-

out these steps, all edges used for labeling are forward edges.

augpath, epsilon

FindAugmentingPath capacities49, flows49, 1, 6

flows49 AddFlow capacities49,

flows49, augpath, epsilon ;

DisplayGraph capacities49, GraphType Directed,

AspectRatio .7, VertexPositions vpos49,

VertexLabelPositions vlabelpos49,

EdgeLabels flows49,

EdgeLabelPositions elabelpos49 ;

vertex label

1 0

2 1 2

3 1 5

4 3 5

5 3 2

6 4 2

1, 3, 4, 6 , 2

1

2

3

4

5

6

2

2

0

2

2

0

0

4

0

Figure 1.49(c) – Second augmentation

The rest of the computation is displayed in Figures 1.49(d)–(f). If you

open the closed cell you will see that we use the ShowLabels->False option

to suppress the tables of vertex labels, but you should check the labelings

yourself. After the last augmentation, the sink vertex 6 cannot be labeled

from either of its predecessors 4 or 5 because there is no unused capacity in

either of the edges involved. We therefore know that the current flow among

104 Chapter 1 Graph Theory and Network Analysis

assembly stations is maximal. The maximum output per half hour is eight

pieces.

1, 3, 5, 6 , 2

1

2

3

4

5

6

2

4

0

2

2

2

0

4

2

Figure 1.49(d) – Third augmentation

1, 3, 4, 5, 6 , 1

1

2

3

4

5

6

2

5

0

2

3

2

1

4

3

Figure 1.49(e) – Fourth augmentation

1.5 Maximal Flow Problems 105

1, 2, 3, 4, 5, 6 , 1

1

2

3

4

5

6

3

5

1

2

4

2

2

4

4

Figure 1.49(f) – Fifth augmentation

There is a command in KnoxOR`Graphs` that carries out the complete

Maximal Flow Algorithm, as listed below. Its arguments are the capacity

matrix and the vertex numbers of the source and sink, and the final matrix of

flows is returned. It accepts the ShowLabels option to display the vertex

labels found in each step by the breadth-first search process, and it has a new

option of its own ShowSteps, initialized to True, which shows intermediate

steps. If ShowSteps is set to False, then MaximalFlow goes immediately to

the final flow matrix. It also accepts the display options of DisplayGraph.

MaximalFlow capacities,source,sink,opts

Options MaximalFlow

ShowSteps True, ShowLabels True,
GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The heart of the algorithm is below, which essentially automates the proce-

dure we went through in the last example. After initializing the matrix of

106 Chapter 1 Graph Theory and Network Analysis

flows to the 0 matrix, while there is still an augmenting path to be found

(indicated by the fact that the boolean variable done has the value False), if

the ShowSteps value ssteps is True, then the current flow graph is displayed.

An augmenting path and amount of flow called newflow are found by calling

on FindAugmentingPath. If steps are to be shown, then the augmenting path

and new flow are printed. Then if the augmenting path was empty, we mark

the variable done as True, else we add the new flow to produce the updated

flow matrix.

done False;

While Not done ,

If ssteps, DisplayGraph capacities,

EdgeLabels flows, dispopts ;

augpath, newflow FindAugmentingPath

capacities, flows, source,

sink, ShowLabels slabels ;

If ssteps, Print "Augmenting path: ",

augpath, " New flow: ", newflow ;

If augpath , done True,

flows AddFlow capacities,

flows, augpath, newflow ;

EXAMPLE 3. Consider the simple traffic flow system in Figure 1.50(a), in

which edge 4, 3 may be thought of as a side street leading to another side

street 3, 6 , leading to the entrance to an expressway at node 6. Streets

1, 4 , 4, 5 , and 5, 6 are wider streets capable of supporting more traffic

per unit time. We execute the maximal flow algorithm again, this time

calling on the MaximalFlow function.

1.5 Maximal Flow Problems 107

capacity50 0, 4, 0, 7, 0, 0 , 0, 0, 4, 0, 0, 0 ,

0, 0, 0, 0, 0, 2 , 0, 0, 2, 0, 8, 0 ,

0, 0, 0, 0, 0, 8 , 0, 0, 0, 0, 0, 0 ;

vpos50 0, 0 , 1, 0 , 1.5, 1 ,

1.5, 1 , 2, 0 , 3, 0 ;

vlabelpos50 ToLeft, Above, Above,

Below, Above, ToRight ;

elabelpos50 0, Above, 0, Below, 0, 0 ,

0, 0, ToLeft, 0, 0, 0 , 0, 0, 0, 0, 0, Above ,

0, 0, ToLeft, 0, ToRight, 0 ,

0, 0, 0, 0, 0, Below , 0, 0, 0, 0, 0, 0 ;

DisplayGraph capacity50, GraphType Directed,

AspectRatio .7, VertexPositions vpos50,

VertexLabelPositions vlabelpos50,

EdgeLabels capacity50,

EdgeLabelPositions elabelpos50 ;

1
2

3

4

5
64

7

4 2

2

8

8

Figure 1.50(a) – A traffic flow system

In the first stage, the augmenting path 1, 2, 3, 6 is found, and the augment-

ing flow is 2 units. Then we can augment the flow by 7 units along path

1, 4, 5, 6. In the last step, vertex 2 can be labeled from 1, and vertex 3 can

be labeled from 2, but the remaining vertices cannot be labeled, no augment-

ing path is found, and the algorithm ends with a maximal flow of 9 units.

108 Chapter 1 Graph Theory and Network Analysis

MaximalFlow capacity50, 1, 6,

GraphType Directed, AspectRatio .7,

VertexPositions vpos50,

VertexLabelPositions vlabelpos50,

EdgeLabelPositions elabelpos50

1 2

3

4

5 60

0

0 0

0

0

0

vertex label

1 0

2 1 4

3 2 4

4 1 7

5 4 7

6 3 2

Augmenting path: 1, 2, 3, 6 New flow: 2

1 2

3

4

5 62

0

2 2

0

0

0

vertex label

1 0

2 1 2

3 2 2

4 1 7

5 4 7

6 5 7

Augmenting path: 1, 4, 5, 6 New flow: 7

1.5 Maximal Flow Problems 109

1 2

3

4

5 62

7

2 2

0

7

7

vertex label

1 0

2 1 2

3 2 2

4 0

5 0

6 0

Augmenting path: New flow: 0

1 2

3

4

5 62

7

2 2

0

7

7

0, 2, 0, 7, 0, 0 , 0, 0, 2, 0, 0, 0 ,

0, 0, 0, 0, 0, 2 , 0, 0, 0, 0, 7, 0 ,
0, 0, 0, 0, 0, 7 , 0, 0, 0, 0, 0, 0

Figure 1.50(b) – Finding the maximal traffic flow

Exercises 1.5

 1. (a) Consider the directed network below, whose edge capacities are

indicated. For each of the vertex sets 1, 2 , 1, 2, 3 , and 1, 4 , list the

edges in the cut corresponding to the set and compute the capacity of the cut.

(b) Assume it is the case that the vertex set {1, 2} determines a minimum

cut. Use your intuition to find a maximum flow without executing the

algorithm (Hint: see Lemma 2).

110 Chapter 1 Graph Theory and Network Analysis

1

2

3

4

5

4

2

2

1 3

3

2 2

1

2

3

4

5

6 7
6

11

2

3

3

52

1

Exercise 1 Exercise 2

2. For the graph with flows as indicated, and V0 1, 3, 5 , check the

veracity of the first assertion of Lemma 1.

3. Prove Lemma 2.

4. For the capacity graph of Figure 1.43, find the capacity of the cut corre-

sponding to the vertex set 1, 4, 7 . Is this cut a minimum cut?

5. Paths (a) and (b) are each paths in some larger network. In each case,

decide whether the path is an augmenting path, and if so, use the method

suggested by (7)–(10) to augment the path.

v1 a

b

c vn
4,1

2,2 3,2

3,0
v1 a

b

c vn
5,2

4,2 3,0

3,1

(a) (b)

Exercise 5

6. Check the constraint (a) of (1) for the augmented flow f , defined by (10).

7. Show that if, in the maximal flow algorithm, the breadth–first search

cannot label the sink, then there is no augmenting path from source to sink.

(Hint: Suppose that one did exist. Consider the first vertex without a label on

this path.)

8. Find the optimal vehicular flow for the traffic network with capacities

below. Do this problem by hand, rather than in Mathematica.

1.5 Maximal Flow Problems 111

1

2

3

4

3

2
1

3

3

4

Exercise 8

9. Let the intermediate nodes on the graph of Exercise 1 represent switching

locations at a busy train station located at node 5, to which trains are arriving

from node 1. The edge capacities represent the number of parallel train

tracks connecting switching locations. Use the maximal flow algorithm to

decide the most efficient way of routing incoming trains. Do this problem

by hand, rather than in Mathematica.

10. (Mathematica) The graph of Exercise 15 of Section 1.2 modeling a

forced-air heat distribution system is displayed again below, with one

additional edge. This time we suppose the fully connected system exists and

due to pipe diameter differences, there are individual maximum airflow

capacities on edges as shown in the graph. Find the maximal flow on the

network from the furnace at vertex 1 to the vent at vertex 9.

1

2
3

4
5

6

7

8
9

10 11 12

2
3

1

4
3

2
1

3
2

3

1

5 3
2

2

3
2

4 5
6

Exercise 10

112 Chapter 1 Graph Theory and Network Analysis

11. (Mathematica) The diagram below represents the lubrication system of a

machine; the lubricant flows from a source area at node 1, through compo-

nents 2–6, which require lubrication, and collects at node 7. Edge capacities

are maximum allowable flow rates from one position to another. Find the

feasible flow that maximizes the total flow of lubricant through the machine.

1

2

3

4

5

6

7

10

9 2 3

2

4

5

4

4

3

Exercise 11

12. Devise a graph in which at some step the maximal flow algorithm will

reduce the flow along a reverse edge.

13. (Mathematica) Implement your own version of the AddFlow command

described in this section.

14. In the problem of Example 3, suppose that in breadth-first search, vertex

4 is labeled first, before vertex 2, so that vertex 3 will be labeled by vertex 4

rather than vertex 2. Carry out the maximal flow algorithm by hand and note

where a reverse edge arises in the algorithm.

1.6 Maximum Matching Problems

Definitions and Problem Description

We now look at the optimal assignment problem, which is a special case of

the class of problems known as maximum matching problems. In the introduc-

tion, we saw an example that foreshadowed the discussion in this section.

Referring again to Figure 1.3, we have a group of nodes on the left represent-

ing workers, and another group of nodes on the right representing tasks. The

weight of an edge connecting a worker to a task represents the worker's

1.5 Maximal Flow Problems 113

effectiveness at that task. We are looking for a way of matching workers

uniquely with tasks in order to maximize the total effectiveness of all

workers.

Throughout this section we consider only undirected graphs. We again

give a presentation close to that of Swamy and Thulasiraman ([57], Chapters

8 and 15). The basic definitions pertinent to the problem are as follows.

DEFINITION 1. (a) A graph G V , E is called bipartite if there

exist disjoint subsets V1 and V2 of V such that each edge has one end-

point in V1 and the other in V2. We refer to V1 and V2 as the sides of the

graph.

(b) A matching M in a bipartite graph G V , E is a collection of

edges in E, no two of which share a common vertex.

(c) A vertex in a matching M is called saturated by M if it is an

endpoint of an edge in the matching.

(d) A matching M in a bipartite graph with sides V1 and V2 is

complete if all vertices in V1 are saturated.

Needs "KnoxOR`Graphs`" ;

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

 (a) (b) (c)

Figure 1.51 – (a) partial matching; (b) not a matching; (c) complete matching

In Figure 1.51(a), M 1, 7 , 2, 6 , 3, 5 is a matching, in which

vertices 1, 2, and 3 of side V1 1, 2, 3, 4 are saturated. The set of edges

1, 5 , 2, 5 in Figure 1.51(b) is not a matching since the two edges share

vertex 5. The set M 1, 7 , 2, 6 , 3, 5 , 4, 8 in Figure 1.51(c) is a

complete matching.

We specialize the general problem of finding complete, maximum

weight matchings in graphs in the following ways. We assume:

(a) The graph G is a weighted, undirected bipartite graph with sides V1

and V2.

114 Chapter 1 Graph Theory and Network Analysis

(b) Both V1 and V2 have n vertices.

(c) Edges e v, w exist between each vertex v V1 and w V2.

Together, these assumptions imply the existence of n complete matchings.

(See Exercise 1). Our goal is to find one among these many matchings of

maximum total weight. From the point of view of applications, (c) is not a

very restrictive assumption, since a worker may be given an effectiveness

measure of zero at a task for which he is unsuitable. We will denote the

vertices of V1 by v1, v2, ..., vn and those of V2 by w1, w2, ..., wn. We also

write Wij for the weight of the edge connecting vi and w j. These weights

form an n n weight matrix W Wij .

DEFINITION 2. A complete matching M is maximal if, for all other

complete matchings M,

vi,w j M Wij vi ,w j M Wij

Activity 1 – Must there be a unique solution to the maximal matching

problem? What if the weights of all edges are different?

There is a tool in the KnoxOR`Graphs` package that easily sketches

bipartite graphs given the weight matrix of the graph, which is a Mathemat-
ica matrix in the form of a list of row lists, that has a row for each left-side

vertex and a column for each right-side vertex. The command DisplayBipar-

titeGraph given below has the weight matrix as its only argument, and takes

options ShowWeights True to show the edge weights, Labeling, which

can be set to a list of vertex labels in the matching algorithm to be described

below, and Matching, which can be set to a list of edges in a matching.

Those edges will be shown solid, and edges not in the matching will be

shown dashed. Other options are those of DisplayGraph, except that the

EdgeLabels option is overridden. For your convenience, the VertexPositions

option and VertexLabelPositions options have been initialized so as to

produce a good-looking bipartite graph, although you may change them if

you wish.

DisplayBipartiteGraph weightmatrix,opts

1.6 Maximum Matching Problems 115

Options DisplayBipartiteGraph

ShowWeights False,
Labeling Automatic, Matching None,
DisplayFunction Display $Display, #1 & ,

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

In the graph with the weight matrix below, it is easy to check by enumer-

ating all matchings that M 1, 4 , 2, 6 , 3, 5 is maximal. This match-

ing is shown in Figure 1.52.

W
10 4 6
1 3 8
2 7 0

wmatrix52 10, 4, 6 , 1, 3, 8 , 2, 7, 0 ;

vlabel52 "1", "2", "3", "4", "5", "6" ;

DisplayBipartiteGraph wmatrix52,

VertexLabels vlabel52, AspectRatio .7,

Matching 1, 4 , 2, 6 , 3, 5 ;

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1.52 – A maximal matching

We will develop an algorithm that successively improves an initial

matching until a maximal matching is found. This algorithm proceeds in

116 Chapter 1 Graph Theory and Network Analysis

phases. In each phase, we construct a (proper) subgraph of the original

graph. In each step within a phase, there is a matching in the subgraph. If, at

any step, the matching is complete, then because of the way in which the

subgraph will be chosen, the matching is maximal. Otherwise, we locate an

augmentingpath and use it to create a new matching with one more edge. If

an augmenting path cannot be found and we are not yet done, then a new

phase is entered. A new subgraph is generated that contains the previous

matching, and an augmenting path may exist within the new subgraph. The

definition of an augmenting path is as follows.

DEFINITION 3. An augmenting path for a matching M is a path with

no repeated edges that connects two vertices not saturated by M in such

a way that edges in E M alternate with edges in M .

EXAMPLE 1. In the graph of Figure 1.53(a), the solid lines are edges of a

matching M and the broken lines are edges not in M . The path v3, w3, v2, w2

is an augmenting path. Notice that if we delete from M the edge v2, w3 on

the augmenting path, and adjoin to M the edges v3, w3 and v2, w2 on the

augmenting path, we obtain a matching M that has one more edge than M .

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

(a) (b)

Figure 1.53 – (a) Matching M ; (b) augmented matching M

Activity 2 – Try to justify that augmentation must always increase the

number of edges in the current matching by exactly 1. Then compare

your justification to the one in the proof of Theorem 1 below.

1.6 Maximum Matching Problems 117

Matching Algorithm

We now show that the last observation of Example 1 is true in general, i.e.,

the exclusive union of a matching with an augmenting path improves the

matching.

THEOREM 1. Let P be an augmenting path for a matching M , and define

M M P P M

Then M is a matching with one more edge than M .

Proof. The path P begins and ends in an unsaturated vertex, hence it must

begin and end with an edge not in the matching M . Edges that are "out" of

M alternate in the path with edges that are "in" M , hence P has an odd

number m 2 k 1 of edges as follows:

w0, w1 w1, w2 w2, w3 wm 1, wm

e1 e2 e3 em

out in out out

Since P has no repeated edges, we see easily that the vertices wi in the path

are all distinct, and among them, w0 and wm are the only vertices not satu-

rated by the matching M .

Note that

P M e1, e3, ..., em

and

M P M e2, e4, ..., em 1

and these two sets of edges are disjoint. Using | | to represent the cardinality

of a set, we have

M P M M P P M M P
k 1 M k
M 1

118 Chapter 1 Graph Theory and Network Analysis

It remains to show that M is a matching. We leave this to the reader as

Exercise 5.

EXAMPLE 2. The location of an augmenting path can be done by a quick

scan of the graph for small problems. Consider the graph of Figure 1.54, in

which the solid edges are those in a matching M and the broken edges are in

the graph, but are not used by M. Begin at an unsaturated vertex on the left

side, and follow an unused edge to a vertex on the right side. Then follow a

used edge to a vertex on the first side, then an unused edge, etc. Stop as soon

as an unsaturated vertex on the second side is found. For instance, starting

with vertex 4 on the left side, we trace the path 4, 8, 3, 9. Addition of edges

4, 8 and 3, 9 and deletion of edge 3, 8 augments the matching.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Figure 1.54 – Path 4, 8, 3, 9 is an augmenting path

Activity 3 – Try to find other augmenting paths in Figure 1.54.

The transition to a new phase of the main matching algorithm requires us

to introduce the notion of vertex labeling for a bipartite graph.

DEFINITION 4. A real-valued function L on the vertex set V of a

bipartite graph G with weight matrix W is a feasible labeling of V if, for

all edges vi, w j ,

 L vi L w j Wij (*)

The subgraph G L of G whose edge set consists of all edges such that

equality occurs in (*) is the equality subgraph of G generated by L.

1.6 Maximum Matching Problems 119

EXAMPLE 3. The following defines a feasible vertex labeling; in fact, it

will be the starting point of the matching algorithm:

(1)
L vi maxk 1,...,n Wik i 1, 2, ..., n
L w j 0 j 1, 2, ..., n

Since

 L vi L w j maxk 1,...,n Wi k Wij

for all i and j, (1) satisfies the defining condition in the definition. Because

L w j 0 for all j, the equality subgraph consists of those edges e vi, w j
such that

Wij maxk 1,...,n Wi k

At least one such edge exists for each vertex vi in side V1. For example, let

the weight matrix of a bipartite graph be as below. Recall that the rows refer

to the left-side vertices v1, v2, and v3, and the columns refer to the right-side

vertices w1, w2, and w3.

W =
3 2 3
1 6 4
4 5 3

The maximum weights in the three rows are 3, 6, and 5, respectively. In row

1, the maximum is taken on jointly at w1, and w3, whereas the maximum is

unique in the other two rows. Therefore the equality subgraph has edges

v1, w1 , v1, w3 , v2, w2 , and v3, w2 .

Activity 4 – Find, and sketch, the equality subgraph of the bipartite

graph with the weight matrix below, using labeling strategy (1).

W
4 5 4 3
2 0 3 3
7 3 6 4
2 4 4 1

EXAMPLE 4. Given a labeling Lm, we can create a new labeling Lm 1 in

the following way. Let S be a given subset of vertices in V1 and let T be the

set of all vertices in V2 that are adjacent to any vertex in S in the equality

subgraph G Lm . Define

(2)minvi S, w j T Lm vi Lm wj Wij

120 Chapter 1 Graph Theory and Network Analysis

No edge vi, w j referred to above can be in G Lm , since w j T , hence the

quantity in braces must be strictly positive for each such edge. It follows that

 is strictly positive. Define Lm 1 by

(3)

Lm 1 vi
Lm vi if vi S

Lm vi otherwise

Lm 1 w j
Lm w j if w j T

Lm w j otherwise

The reader is asked in Exercise 10 to check the following four claims about

the new labeling Lm 1:

(4)

If vi S and w j T , then Lm 1 vi Lm 1 w j Wij;

consequently the feasibility condition is satisfied, and edge vi, w j

belongs to G Lm 1 .

(5)

If vi S and w j T , then the feasibility condition is satisfied.

Also, there exists an edge of this type that is in G Lm 1 but not

G Lm .

(6)If vi S and wj T , then the feasibility condition is satisfied.

(7)
If vi S and w j T , then the feasibility condition is satisfied.

Also, if such an edge is in G Lm , then it is also in G Lm 1 .

In all cases, Lm 1 is seen to satisfy the feasibility condition (*), and conse-

quently it is a feasible vertex labeling.

Our algorithm will move from one phase to the next by changing label-

ings in this way. When a search for an augmenting path is unsuccessful,

there will be a set S of left-side vertices as in Example 4 that we have

encountered while searching for the path. Then the set T of all right-side

vertices adjacent to vertices in S can be found. In the partial graph in Figure

1.55, our augmenting path search may have started at v1, and gone to w1,

then v2, w2, and ended at v3. In this case, and if there are no other edges

coming out of v1, v2, or v3 that are not shown, then S v1, v2, v3 and

T w1, w2 . The next phase of the algorithm begins by resetting the graph

to be the equality subgraph of the new labeling determined by S and T , in

which the amount is subtracted from the labels in S and added to the labels

in T . We then try to find an augmenting path in the new graph. Observations

(4) and (5) above give us hope because the edges used in the unsuccessful

augmenting path are still in the new equality subgraph, and there must be at

1.6 Maximum Matching Problems 121

least one new edge as well from a vertex in S to a vertex not in T . There is

not a guarantee of a new augmenting path in the next phase, however, and

notice that we could actually lose edges pointing into T in the case of (6)

when changing labeling. The reason that we cannot be sure of an augment-

ing path is that it is possible that the new edge points to a right-side vertex

that was already matched with a left-side vertex, from which the augmenting

path search could stall. But we also do not lose ground, because edges in the

current matching that were not on the attempted augmenting path have

left-side vertices that are not in S and right-side vertices that are not in T
(else like w2 and v3 in the diagram the companion left-side vertex would

have been a part of the augmenting path in S). By observation (7), the edge

connecting them will still be in the new equality subgraph. If no augmenting

path is found under the new labeling, we must relabel and search again.

v1

v2

v3

w1

w2

v1

v2

v3

w1

w2

Figure 1.55 – Forming the sets S and T in the matching algorithm

Exercise 11 leads you through an argument that eventually the label

changing algorithm must produce an equality subgraph that has a complete

matching. The following theorem shows that once we have produced a

complete matching in the equality subgraph of a feasible vertex labeling,

then the computation may cease.

THEOREM 2. Suppose that M is a complete matching in the equality

subgraph G L of a feasible vertex labeling L. Then M is a maximal

matching.

Proof. Recall that for arbitrary edges e vi, w j in the original graph,

L vi L w j Wij

and for edges vi, w j in the equality subgraph, particularly those in the

matching M ,

L vi L w j Wij

122 Chapter 1 Graph Theory and Network Analysis

In a complete matching, all vertices are saturated. Thus, if M is any other

complete matching in G,

(8)e M Wij i 1
n L vi j 1

n L w j e M Wij

This proves that M has at least as much weight as M , and since M was an

arbitrary complete matching, M is optimal.

Below is a statement of the matching algorithm for the optimal assign-

ment problem.

MAXIMAL MATCHING ALGORITHM

1. Initialize M , labeling L as in formula (1), and G equality

subgraph of L.

2. Repeat steps 3–8 until the size M of the matching is n.

3. Repeat steps 4 and 5 until an augmenting path cannot be

 found.

4. Search for an augmenting path in G.

5. If the path P is found, then replace M by

 M P P M .

6. Let S be the set of vertices on the left found on the

 unsuccessful augmenting path, and let T be the set of all

 their right-side neighbors in G.

7. Redefine labeling L by formula (3).

8. Let G be the equality subgraph of the new L.

We will be using a few new commands and data structures in order to

carry out the matching algorithm in Mathematica. The basic input to the

algorithm is the weight matrix of the bipartite graph described earlier. A

vertex labeling will be stored as a list of numbers, one for each vertex. For

the weight matrix of Example 3, the initial labeling would be

3, 6, 5, 0, 0, 0 . The DisplayBipartiteGraph command can be used to

display the graph, and the option Labeling can be set to the list of labels in

order to display the labeling. We must represent matchings and augmenting

paths, which we choose to do as lists of edges. The matching that pairs

vertex 1 to 6, 2 to 5, and 3 to 4 would be stored as 1, 6 , 2, 5 , 3, 4 , for

example. All edges will be written with vertices referred to by number, not

name, and with the left-side vertices first and the right-side vertices second.

The following tools are available in KnoxOR`Graphs`:

AugmentMatching matching,augmentingpath

1.6 Maximum Matching Problems 123

AugmentMatching returns a new matching as in Theorem 1, which uses the

given augmenting path and the given matching. (Both are lists of edges as

described above.)

EqualitySubgraph weightmatrix,labeling

EqualitySubgraph produces the weight matrix of the equality subgraph as in

Definition 4 of the given labeling, for the given weight matrix of the full

bipartite graph.

ReviseLabeling weightmatrix,labeling,S,T

ReviseLabeling returns the pair { , newlabeling}, where newlabeling is the

list of vertex labels defined by formula (3), given the weight matrix of the

original bipartite graph, the current labeling, and the sets S and T of vertices

described in the algorithm associated with the unsuccessful search for an

augmenting path.

So after entering the weight matrix of the original bipartite graph, an

empty initial matching, and the initial labeling, we can use the output of

EqualitySubgraph as input to DisplayBipartiteGraph to look at the graph to

find an augmenting path. Then AugmentMatching can be called on to get a

new matching, which can then in turn be given as an option to DisplayBipar-

titeGraph to set up the search for a new augmenting path. When it happens

that an augmenting path cannot be found, the ReviseLabeling command can

be called upon to give the new labeling, which can then be passed to Equality-

Subgraph, and the process of finding an augmenting path can continue, until

a complete matching is found at some phase in an equality subgraph.

Activity 5 – Use the EqualitySubgraph and DisplayBipartiteGraph

commands to show the first equality subgraph for the graph of Activity

4, and if there is a maximal matching, use the Matching option to show it

as well.

Examples

The matching algorithm is illustrated and clarified by the next examples.

EXAMPLE 5. A department chairman is to assign four faculty members to

four courses on the basis of data obtained from student evaluations con-

ducted in the past. The students were asked to rate the professors on a scale

of 1–10, with 10 representing the highest rating. The average scores received

124 Chapter 1 Graph Theory and Network Analysis

by each professor in each course are recorded in the matrix below, in which

rows correspond to faculty members and columns to courses. The chairman

is to find a matching between professors and courses that achieves maximal

total evaluation rating.

9 8 2 9
4 6 4 5
2 3 3 3
4 5 3 5

We see that the maximum in row 1 is 9, taken on at columns 1 and 4

(that is, vertices 5 and 8 on the right side, the maximum in row 2 is 6, taken

on only in column 2 (vertex 6), etc. So we obtain the initial labeling

L1 9, 6, 3, 5, 0, 0, 0, 0 with the equality subgraph shown in Figure 1.56.

(Notice that here we choose to override the default VertexLabelPositions

because with the vertex labeling shown the label positions are better off

above the vertices to avoid being cut off.)

wmatrix56 9, 8, 2, 9 ,

4, 6, 4, 5 , 2, 3, 3, 3 , 4, 5, 3, 5 ;

L1 9, 6, 3, 5, 0, 0, 0, 0 ;

initwt EqualitySubgraph wmatrix56, L1 ;

initmatch ;

vlabelpos56 Above, Above, Above,

Above, Above, Above, Above, Above ;

DisplayBipartiteGraph initwt, AspectRatio .7,

VertexLabelPositions vlabelpos56,

Labeling L1, Matching initmatch ;

1 9

2 6

3 3

4 5

5 0

6 0

7 0

8 0

1 9

2 6

3 3

4 5

5 0

6 0

7 0

8 0

Figure 1.56 – Initial equality subgraph

Begin with the empty matching in the graph of Figure 1.56 and the

unsaturated vertex 1. We find the augmenting path 1, 5 immediately, and add

1.6 Maximum Matching Problems 125

it to the matching. If we now choose the unsaturated vertex 3, we find the

augmenting path 3, 6 immediately, and add it to the previous matching. The

resulting graph is in Figure 1.57, where as usual the edges in the matching

are solid, and the edges not in the matching are broken.

matching2 AugmentMatching initmatch, 1, 5

matching3 AugmentMatching matching2, 3, 6

DisplayBipartiteGraph initwt,

AspectRatio .7, Matching matching3 ;

1, 5

1, 5 , 3, 6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1.57 – Graph after two augmentations

To renew a search for an augmenting path, we pick the unsaturated

vertex 2 on the left side. Its only neighbor is 6, which is saturated by the

current matching. The partner of 6 is 3, and from 3 we find the unsaturated

vertex 7. The augmenting path is therefore 2, 6, 3, 7, or in Mathematica
format, 2, 6 , 3, 6 , 3, 7 . Augmentation leads us to delete edge 3, 6

from the matching, and add edges 2, 6 and 3, 7 . We now have the match-

ing in Figure 1.58.

126 Chapter 1 Graph Theory and Network Analysis

augpath 2, 6 , 3, 6 , 3, 7 ;

matching4 AugmentMatching matching3, augpath

DisplayBipartiteGraph initwt,

AspectRatio .7, Matching matching4 ;

1, 5 , 2, 6 , 3, 7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1.58 – Graph after three augmentations

In only one more step, we can match vertex 4 to 8, producing the maxi-

mal matching 1, 5 , 2, 6 , 3, 7 , 4, 8 . In this example, we were so

fortunate as to have enough edges in the first equality subgraph that a change

of subgraph was unnecessary, and we did not yet have to use the ReviseLabel-

ing command. Looking at the rows of the original weight matrix, we see

that we were able to match up left-side vertices with one of their most

"favorite" right-side vertices, without having to sacrifice any weight. The

purpose of using the initial labeling that we did is to check if that is possible,

for in the first equality subgraph, only edges from vertices to their favorite

mates are included. If a complete matching exists there, it must be optimal.

EXAMPLE 6. In this example, a change of labeling will be required to find

an augmenting path. A track coach must decide which of six runners to

assign to which of six events. Knowing the skills of his runners, he estimates

how many tenths of a second better than the competition is each possible

runner on each possible event. These estimates are in the weight matrix

below. Rows represent runners, and columns represent events. The problem

is to assign runners to maximize the total time difference between the

runners of his team and those of the competition.

1.6 Maximum Matching Problems 127

W

5 5 2 0 0 1
4 5 6 2 3 0
1 2 3 3 3 1
2 2 4 2 1 1
0 3 4 2 3 2
4 0 0 1 2 4

The initial labeling is easily checked to be

L1 5, 6, 3, 4, 4, 4, 0, 0, 0, 0, 0, 0 . The equality subgraph, i.e., those

edges for which the sum of the labels of the endpoints equals the weight of

the edge, is in Figure 1.59. We jump ahead a little in the algorithm and

suppose that we have augmented an initial empty matching with edges

1, 7 , 2, 9 , 3, 10 , and 6, 12 .

wmatrix59 5, 5, 2, 0, 0, 1 , 4, 5, 6, 2, 3, 0 ,

1, 2, 3, 3, 3, 1 , 2, 2, 4, 2, 1, 1 ,

0, 3, 4, 2, 3, 2 , 4, 0, 0, 1, 2, 4 ;

L1 5, 6, 3, 4, 4, 4, 0, 0, 0, 0, 0, 0 ;

initwt59 EqualitySubgraph wmatrix59, L1 ;

initmatch59 1, 7 , 2, 9 , 3, 10 , 6, 12 ;

vpos59

0, 5 , 0, 4 , 0, 3 , 0, 2 , 0, 1 , 0, 0 ,

2, 5 , 2, 4 , 2, 3 , 2, 2 , 2, 1 , 2, 0 ;

vlabelpos59 Above, Above, Above,

Above, Above, Above, Above, Above,

Above, Above, Above, Above ;

DisplayBipartiteGraph initwt59,

VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L1, Matching initmatch59,

AspectRatio .7 ;

128 Chapter 1 Graph Theory and Network Analysis

1 5

2 6

3 3

4 4

5 4

6 4

7 0

8 0

9 0

10 0

11 0

12 0

1 5

2 6

3 3

4 4

5 4

6 4

7 0

8 0

9 0

10 0

11 0

12 0

Figure 1.59 – No further augmenting path exists in this equality subgraph

At this point, following the algorithm we set S 4 , which is one of

only two unsaturated vertices on the left side. But 4 only has one neighbor,

namely 9, and the vertex 2 to which 9 is connected in the matching produces

no other candidates. So, with S 2, 4 and T 9 we pass out of loop 3–5

of the algorithm with an incomplete match, and we move to step 6, the

change in labeling and subgraph.

S 2, 4 ; T 9 ;

delta, L2 ReviseLabeling wmatrix59, L1, S, T

newwt59 EqualitySubgraph wmatrix59, L2 ;

DisplayBipartiteGraph

newwt59, VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L2, Matching initmatch59,

AspectRatio .7 ;

1, 5, 5, 3, 3, 4, 4, 0, 0, 1, 0, 0, 0

1.6 Maximum Matching Problems 129

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.60 – Result of first relabeling

Notice that the number of formula (2) is 1, which has been subtracted from

the labels of vertices 2 and 4, and added to vertex 9. This was found by

considering rows 2 and 4 of the matrix, and columns other than column 3

(for vertex 9). The smallest difference between total vertex label and edge

weight is 1, taken on in row 2 and column 2 (for vertex 8). Notice that the

relabeling adds an edge 2, 8 that was not present before. Edges 5, 9 and

3, 9 were lost. But examination of the new graph shows an augmenting

path 4, 9, 2, 8. We now augment the matching and look at the new graph.

newmatch59 AugmentMatching

initmatch59, 4, 9 , 2, 9 , 2, 8

DisplayBipartiteGraph newwt59,

VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L2, Matching newmatch59,

AspectRatio .7 ;

1, 7 , 2, 8 , 3, 10 , 4, 9 , 6, 12

130 Chapter 1 Graph Theory and Network Analysis

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.61 – New matching; relabeling must follow

Now the only unmatched left vertex is 5, but we reach an impasse because

there is no edge at all incident to vertex 5. So we must relabel again, with

S 5 and T .

S 5 ; T ;

delta, L3 ReviseLabeling wmatrix59, L2, S, T

newwt59 EqualitySubgraph wmatrix59, L3 ;

DisplayBipartiteGraph

newwt59, VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L3, Matching newmatch59,

AspectRatio .7 ;

1, 5, 5, 3, 3, 3, 4, 0, 0, 1, 0, 0, 0

1 5

2 5

3 3

4 3

5 3

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 3

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.62 – A complete matching exists in this equality subgraph

Again comes out to be 1; and since the minimum difference between

vertex label total and edge weight in row 5 occurred in all of columns 2, 3,

1.6 Maximum Matching Problems 131

and 5, the equality subgraph gains new edges 5, 8 , 5, 9 , and 5, 11 . This

permits us to augment with edge 5, 11 , for a final matching of

1, 7 , 2, 8 , 3, 10 , 4, 9 , 5, 11 , 6, 12 . The purpose of the relabeling

and the meaning of is now becoming clear: relabeling is a sacrifice of

sorts. It is an admission that we will not be able to assign favorite right-side

vertices to all left-side vertices. Some left-side vertex must be paired with a

right vertex that is not a favorite. Relabeling as we have done finds a next

best collection of potential assignments, and in fact measures how much

we have given up. Referring to the rows of the original weight matrix, two

relabelings with 1 have given us a situation where vertex 2 is paired

with 8 (an edge weight of one less than 2's favorite weight), and vertex 5 is

paired with 11 (an edge weight of one less than 5's favorite weight). All

other left vertices are matched with right vertices that maximize the weight

among all edges incident to them. The tale of the algorithm is now com-

plete.

Exercises 1.6

1. Argue using combinatorics and mathematical induction that, under

assumptions (a)–(c) listed at the start of the section, there are n total possi-

ble complete matchings.

2. Verify that the matching in Figure 1.52 is maximal by computing the total

weight of each possible matching.

3. Find an augmenting path for the matching below, and use it to produce a

new matching with more edges.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Exercise 3 Exercise 4

4. Repeat Exercise 3 for the matching above.

5. Finish the proof of Theorem 1, i.e., show that M is a matching.

6. (Mathematica) Write your own versions of the Mathematica functions: (a)

AugmentMatching; (b) ReviseLabeling; (c) EqualitySubgraph.

132 Chapter 1 Graph Theory and Network Analysis

7. Let G V , E be a bipartite graph with sides V1 and V2, each of n
vertices. Show that if there is a complete matching of V1 to V2, then for

every subset S of V1,

S A S

where A S is the set of all vertices in V2 adjacent to some vertex in S. (This

is one half of a double implication called Hall's Theorem.)

8. (Mathematica) Consider the weight matrix, displayed below, of a

bipartite graph.

(a) Compute the feasible labeling L1 of formula (1), and sketch the

equality subgraph of L1.

(b) If S 1, 3 compute the feasible labeling L2 defined by (3), and

sketch its equality subgraph.

3 5 1 0 0 2
6 4 3 2 5 4
1 4 2 2 1 2
1 2 3 3 3 1
2 1 3 2 4 2
3 2 5 4 6 6

4 1 0 2 3
1 3 3 2 1
4 5 5 2 1
0 0 3 2 0
2 1 2 6 6

Exercise 8 Exercise 9

9. Repeat Exercise 8, with the weight matrix above and S 2, 3, 4 . This

time, do the problem by hand, rather than in Mathematica.

10. Verify claims (4)–(7) about the change of labeling.

11. Show that the label changing algorithm must produce an equality sub-

graph that has a complete matching, by arguing as follows:

(a) Upon changing labeling, since by claim (5) there is a new edge from

S to Tc, show that there will either be an augmenting path in the new equal-

ity subgraph, or else the set S must become strictly larger.

(b) In the worst case, a labeling will be reached where S is the whole left

side. Then show that further relabelings can lose no edges and must gain

edges. Therefore conclude that a complete matching must be reached.

12. A dishonest politician has four candidates for four patronage jobs. Each

candidate has agreed to bribe the politician to obtain each job, by amounts

shown in the matrix below (units of thousands of dollars). Find two different

ways of assigning the candidates to jobs, each of which maximizes the

politician's total profit. Do this problem by hand, and not in Mathematica.

1.6 Maximum Matching Problems 133

 job states

 candidate

2 2 1 0
3 3 2 2
1 0 1 4
2 2 3 1

 branches

3 2 3 1 1
4 1 2 3 2
1 2 5 1 1
1 4 4 3 0
3 2 1 4 2

Exercise 12 Exercise 13

13. (Mathematica) A company is planning to locate five branches in five

states. After studying various factors related to the local economies and tax

laws of the states, the company has managed to quantify how beneficial each

branch would be if located in each state. These ratings are in the matrix

above. How should the company allocate the branches among the states,

with no more than one per state, so as to maximize the overall benefit?

14. (Mathematica) Find a maximal matching for the graph of Exercise 8.

15. (Mathematica) Find a maximal matching for the graph of Exercise 9.

16. (Mathematica) A sales manager must assign each of eight salespeople to

one of eight different regions. He has asked the salespeople to rate their

choice of regions in order, with 8 representing their most preferred choice

and 1 representing their least preferred. The results are shown in the matrix

below, with rows corresponding to salespeople and columns to regions.

How should the sales manager assign the salespeople to maximize the total

rating?

 regions

salespeople

7 8 4 5 3 6 2 1
6 8 7 5 4 2 3 1
5 4 8 7 6 3 1 2
3 6 4 8 5 7 2 1
1 5 6 7 4 8 3 2
4 3 2 1 7 8 6 5
2 3 4 1 6 5 7 8
1 5 3 4 2 8 6 7

134 Chapter 1 Graph Theory and Network Analysis

1.7 Other Problems of Graph Theory

We are nearing the end of our study of algorithmic graph theory, and it

might now be helpful to summarize the main ideas. The chapter began with

an investigation of issues related to connectivity of directed and undirected

graphs. We saw how to find connected components of a graph and how to

use the adjacency matrix to count the number of paths of a given length. We

then devised algorithms for finding spanning trees, i.e., connected subgraphs

with the fewest possible connections. Then we gave costs to the edges, and

proceeded in Section 1.3 to find spanning trees of minimal cost. Such trees

indicate the most efficient way to maintain communications among several

stations. The algorithm in the undirected case was a simple extension of the

algorithm constructed in the previous section for trees without cost. A

different algorithm, based on the idea of dynamic programming, was given

for minimal directed spanning trees. This algorithm was adapted in Section

1.4 to find paths of maximum weight in a directed network. The idea was

that such a path constitutes the most time-consuming sequence of operations

in a large job whose prerequisite structure was described by the graph.

In the maximal flow problem, we were to find non-negative weights on

the edges of a directed network, smaller than or equal to corresponding edge

capacities, which maximize the total weight of edges pointing out of the

source. As in the directed minimal cost tree problem, the strategy was to

begin with an arbitrary feasible solution, and improve it step-by-step until a

condition indicating optimality became true. This improvement required the

location of an augmenting path. The augmenting path idea also arose in the

matching problem of Section 1.6, in which we were to match vertices on two

sides of a bipartite graph to maximize the total weight of edges used in the

matching. An extra complication arose when it was no longer possible to

find an augmenting path but the matching was not yet complete. A vertex

labeling method was used to produce a new graph in which augmentation of

the matching could occur.

Much of the material in Sections 1.1–1.4 was based on the presentation

of Dierker and Voxman [19], with additional information on quasi-connectiv-

ity taken from Mott, Kandel, and Baker [46]. As mentioned before, Swamy

and Thulasiraman [57] was the main source for the material in Sections 1.5

and 1.6. For further information, the reader may consult many books on

discrete mathematics and graph theory. Of particular help may be Gibbons

[26] and Minieka [44].

We have not attempted to analyze the efficiency of the algorithms given

here. The texts on algorithmic graph theory mentioned above [26, 44, and

57] examine this issue. Efficiency can depend strongly on the proper choice

of data structures used in the program implementation. The reader is encour-

aged to refer to a good data structures and algorithm analysis book such as

1.7 Other Problems of Graph Theory 135

Aho, Hopcraft, and Ullman [1] for information on this subject.

Due to space limitations, we have reluctantly chosen to omit full discus-

sion of several very well-known operations research problems related to

graphs. It is hoped that if these are described briefly here, then the reader's

appetite will be whetted for independent study. The descriptions and

references below can serve as the jumping-off point for an expository

writing assignment as well.

Graph Coloring Problem

One of the most famous of graph theoretic problems involves the partition-

ing of the vertices into sets called "colors," or, less formally, the "graph

coloring problem." Consider an intersection of streets such as that of Figure

1.63(a). The street connecting points A and C is a one-way street, and the

street connecting B and D is a two-way street. Some turns can be made

simultaneously without causing accidents, and thus such turns can all be

permitted to occur on a single phase (color) of a traffic light. For example,

the right turn denoted by AD from A to the right lane of D can occur at the

same time as turn BC from B to the right lane of C. Other turns must be

prevented when this color is lit, and allowed to occur only when some other

color is lit. A car cannot, for instance, be permitted to make the left turn BC

at the same time another car is passing through the intersection from A to C,

which we denote by "turn" AC. The problem is to find a way of assigning

turns to colors, utilizing as few colors as possible, such that no collisions can

occur. If we view the turns as vertices of a graph and connect those that

cannot be allowed to proceed at the same time, as in Figure 1.63(b), then we

are searching for a minimal coloring of vertices such that adjacent vertices

have different colors.

A B

CD

AB

AC

AD

BC

BD

DC

DB

(a) (b)
Figure 1.63 – Graph coloring and street intersections

136 Chapter 1 Graph Theory and Network Analysis

Activity 1 – Explain how the following situation can be modeled as a

graph coloring problem. Five hazardous materials are to be transported

by train to a distant underground repository. Legal safety regulations

require that material 1 cannot be transported in the same car with

materials 3 and 4, material 2 cannot be in the same car with materials 4

or 5, and material 3 cannot ride with material 1 or 5. What is the

minimum number of cars needed to transport all the materials?

Several elementary results are easy to see. For example, a complete

graph on n vertices requires n colors, since every vertex is adjacent to every

other, hence no pair can share the same color. A less obvious result is that if

the graph has no cycles with odd length, then two colors suffice. To show

this, we can use a variation of the breadth-first search technique. (See

Figure 1.64.) Start at a vertex and give it a color, say blue. Fan out to its

children and color them red. Next, fan out to the children of these recent

vertices and color them blue, if they are not already colored. If any of these

new children was adjacent to the original blue starting vertex, then there

would be a cycle from the start to the child, to the grandchild to the start, but

this cycle would have length 3, which is forbidden. We can continue the

process of fanning out to children, coloring them red if their parents are blue,

and blue if their parents are red, and it is easy to give a convincing argument

that a blue vertex can never be adjacent to a blue vertex, or a red to a red,

else there would be an odd length cycle, in contradiction to assumption. It is

not hard to write a Mathematica function to implement this algorithm. (Try

it.)

Blue

Red

Red

Blue

Blue

Blue

Figure 1.64 – Coloring with two colors

You should not be too disappointed if you cannot develop a complete

solution to the graph coloring problem in one afternoon. Many researchers

have spent many decades on the coloring problem. One of the great mathemat-

ical results of the twentieth century was the exhaustive, computer-intensive

verification that no more than four colors will be necessary if the graph is a

1.7 Other Problems of Graph Theory 137

planar graph, which means, roughly speaking, if vertices are able to be

arranged so that all edges can be drawn without crossing each other. For

further information on graph coloring, see Aho, Hopcraft and Ullman [1],

Gibbons [26], Busacker and Saaty [11], or any other good graph theory text.

Shortest Paths Problem

Figure 1.65 reproduces the computer network of Figure 1.24 in Section 1.3.

At that point in our study, we were interested in minimal total cost networks,

and we did not particularly care whether a minimal spanning tree gave a

shortest possible path from one vertex to another. But in many problems we

are interested in finding shortest paths; for instance, if messages are to be

broadcast from vertex 1 throughout the network, we would need a way of

finding shortest paths from 1 to each other vertex.

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18

5
4

5

5
2

3

4
2

3 3

2

5
3

2

3

2

4
4

3
2

4

6
5

5

6 5
8

5
5

3

3
3

4

5
3

44
5

6

7
8

8
3 4

3

5

4

6

6

6

77 7

4
8

4
3 13

2
2

1

2
42 4

Figure 1.65 – Finding shortest paths

An efficient algorithm, due to Dijkstra, does exist for this shortest paths

problem. The idea is that one keeps a set A of vertices at each step to which

shortest paths have been found, and in the next step add to A the vertex not

already in A that would result in the shortest path from 1. We keep track of

the predecessors of each vertex in the path from 1 as we go along. In the

diagram above, we would initialize A 1 . The set of vertices adjacent to

A is now 2, 3, 4 , and the closest vertex to 1 is vertex 3 at a distance of 4

units. Thus, we add it in to get A 1, 3 , and note that vertex 3 has a

permanent predecessor of vertex 1. Now vertex 1 is adjacent to vertices 2

and 4, and path costs from 1 for these vertices would each be 5. Also, vertex

3 is adjacent to 2, 4, 5, and 6. Since it costs 4 units already to get to vertex

3, if we choose to add in vertex 2 from 3, the path cost from 1 to 2 is 6, and

138 Chapter 1 Graph Theory and Network Analysis

the possible path costs from 1 through 3 to the other vertices 4, 5, and 6 are

7, 7, and 6, respectively. Among these path costs, the direct edge from either

1 to 2 or from 1 to 4 would be the least costly choice. So add vertex 2 to A
with predecessor 1. Vertex 4 would be added next, also with predecessor 1.

The vertex adjacent to one of the vertices in A 1, 2, 3, 4 that creates the

next shortest path is vertex 6, with predecessor 3 and path cost 6. After

adding 6 to the set A, the shortest paths that we have found so far are:

1, 2 , 1, 3 , 1, 4 , 1, 3, 6 . Continue in this way until all vertices are

included in A.

Activity 2 – What are the next three vertices added to the set A in the

example above?

Most texts on Discrete Mathematics and Graph Theory have discussions

of the shortest path problem. In particular, you will find a nice discussion in

the book by Dossey, Otto, Spence, and Vanden Eynden [20].

Traveling Salesman Problem

Another problem of prominence in operations research has the provocative

name of the "traveling salesman" problem. Mathematically, the statement of

the problem is very simple. Given a weighted graph, either directed or

undirected, find a cycle of smallest total weight that passes through all of the

vertices. To see the reason for the name, consider again the graph of Figure

1.1 reproduced here as Figure 1.66. Suppose now that the vertices are cities

to be visited by a salesman, and the weights are distances between cities. The

traveling salesman must visit all of the cities at least once, beginning and

ending at some home base, while minimizing the total distance traveled.

Several different approaches to the problem can be found in Minieka [44]

and Gibbons [26], and a formulation as an integer program (see Chapter 3) is

given in Winston [61]. We will be content to comment on the computational

difficulty of the problem, and to talk about some heuristic approaches, that

is, methods that common sense indicates should give good solutions but

which are not guaranteed to yield optimal solutions.

1.7 Other Problems of Graph Theory 139

1

2

3

45

6

1

3

28

3

1 6

27

1

3

6

42

2

4

5

8

7

5

2

3

1

2

 Figure 1.66 – The traveling salesman problem

First observe that each cycle that passes through all vertices of a graph

exactly once is in 1–1 correspondence with a permutation of the vertices.

The cycle 1, 2, 3, 4, 5, 6, 1 in Figure 1.66 corresponds to the permutation

1, 2, 3, 4, 5, 6 of the first six integers. It seems that there could be as many

as 6!, or in general for a graph of n vertices n , different cycles to check. An

exhaustive algorithm would have to systematically examine each, add the

total cost of the edges in the cycle, and update the best cycle and best cost if

necessary. There are roughly n 1 additions to be made, and a comparison,

for each cycle to be examined, hence there are n n operations to be done.

In the case of, say, n 30 cities, even an extremely fast computer that could

do a billion operations per second, at 3600 seconds per hour, 24 hours per

day, and 365 days per year, would take the following number of years to do

the job:

N 30 30 109 3600 24 365

2.52333 1017

By changing the 30 above to 40 or 50, you can see easily the problem with

exhaustive checking.

Actually the situation is not quite that bad. First, some potential cycles

can be terminated early because not all edges may be available in the graph.

The path 1, 3, 5, 6, 2, 4, 1 is not legal in the graph of Figure 1.66 because

edge 3, 5 does not exist. Second, we may choose to start and end our cycle

at an arbitrary, but fixed, vertex such as vertex 1. The cycle

1, 2, 3, 4, 5, 6, 1 has the same cost and traverses the vertices in the same

order as the cycle 2, 3, 4, 5, 6, 1, 2, so it is not necessary to examine both of

these cycles. In that case, the cycles that we need to examine fix the first

140 Chapter 1 Graph Theory and Network Analysis

member of the permutation, and just permute the last n 1 vertices. So there

are a mere n 1 different vertices instead of n . Moreover, a cycle like

1, 2, 3, 4, 5, 6, 1 is the same as the cycle in the reverse order

1, 6, 5, 4, 3, 2, 1. So we may cut the number of cycles in half. But you

must agree that even using these devices and dividing the number above by

30 2 60 does not change the essential explosive nature of the problem.

Activity 3 – For the graph of Figure 1.66, how many cycles at most can

there be? List the cycles that begin 1, 2, ... and compute their path costs.

In doing Activity 3, you may have devised a systematic approach to

itemizing cycles somewhat along the following lines. Form a tree with

vertex 1 at the top, and child vertices 2, 3, etc. under it corresponding to the

possible second vertices that can be visited from vertex 1 as the cycle begins.

Under each of these children, place the possible third vertices on the cycle,

etc., until the depth of the tree is equal to the number of vertices, and then

adjoin vertex 1 at the bottom as the last vertex in the cycle. A part of the

corresponding tree for Figure 1.66 is in Figure 1.67. We show only the

cycles that begin with 1, 2. Some paths get stuck because an edge to an

unvisited vertex no longer exists in the graph. For all paths that reach the

bottom of the tree, the edge costs along the path can be added to find the cost

of the cycle. In the part of the tree shown here, only two of the six paths

shown form complete cycles.

1

2
3 4 5 6

3 4 5 6

4 3 5 4 6 5

5 6 3 4

6 3

1 1

Figure 1.67 – Enumerating all cycles on a tree

One heuristic method that has been effective is the nearest-neighbor
heuristic. Suppose for simplicity that we have a complete graph, with edges

existing between every pair of vertices, such as the small four-vertex graph

in Figure 1.68. We construct a cycle by starting from a given vertex, and

1.7 Other Problems of Graph Theory 141

following the strategy that whatever vertex we are currently at, we next visit

the vertex that is closest (in terms of smallest edge cost) to the current vertex

among those that have not been visited yet. So from vertex 1 in this graph,

we visit 3 next because its edge cost of 4 is smaller than the edge costs 8 and

6 to vertices 2 and 4, respectively. From 3 we visit 2 next, and then 4. The

total cost of the cycle 1, 3, 2, 4, 1 is 4 6 3 6 19. Try to use the

exhaustive tree method to verify that this is the smallest possible cost.

1 2

3 4

8

4 6

8

6 34 6

9

6 3

9

Figure 1.68 – Nearest -neighbor heuristic

Activity 4 – Another well-known heuristic method for the traveling

salesman problem is the sorted edges heuristic. Much as in Kruskal's

algorithm, you first sort the edges in increasing order of cost. Then you

attempt to build a cycle by selecting edges in the list in order, as long as

they neither finish a cycle that does not go through all of the vertices,

nor give any vertex degree 3, which cannot be in a cycle. Try this

approach on the graph of Figure 1.68 and show that you find the same

cycle as the nearest-neighbor heuristic found. Does the approach work

on the graph of Figure 1.67?

Our purpose has been to show the mutually beneficial interplay between

theory and practical results in graph theory, as well as to solve a few special

operations research problems related to networks. Any algorithm must be

proved to do the job that it is meant to do, and some interesting mathematics

arises in doing so, as in Kruskal's algorithm and the results characterizing

optimality in the maximal flow and maximal matching problems. We will

see often the interrelation of mathematics and algorithm development as we

move on to study linear programming, stochastic processes, and dynamic

programming in the remaining chapters.

142 Chapter 1 Graph Theory and Network Analysis

2

Linear Programming

Introduction

Mathematical programming is the area of mathematics that is concerned

with optimizing an objective function of several variables subject to con-

straints on those variables. We have already encountered such a problem in

Chapter 1. Consider again the minimal cost spanning tree problem as

illustrated by Figure 1.1. A subgraph of the original communications

network can be represented by a matrix A xi j i, j 1, ..., n in which xi j 1 if

edge vi, v j is in the subgraph and xi j 0 otherwise. In finding a tree of

minimal cost, we are really solving the problem: minimize the total cost of

all edges in the subgraph subject to the condition that there is exactly one

path in the subgraph from each vertex to each other vertex. Since Ak i, j is

the number of paths of length k from vi to v j, we see that we can write the

problem as:

 minimize: g x11, x12, . . . , xn, n 1 , xn n
i j

c i, j xi j

 subject to:
k 1

n 1

Ak i, j 1 for i j , xi j 0 or 1

where n is the number of vertices and c i, j is the cost of edge vi, v j .

The objective function g is linear in the variables xi j, but the first

constraint is highly non-linear, and the second constraint forbids the vari-

ables from taking on arbitrary real values in some interval. Both of these

conditions make the problem difficult. Fortunately, we developed other

techniques for the spanning tree problem.

The problems that we will study in this chapter are more tractable,

though they are still non-trivial and have wide applications. The underlying

idea of the problem is to optimally allocate limited resources. The objective

function will be linear, the constraints will be linear, and the variables will

usually take values in subsets of the non-negative half of the real line. Such

problems belong to the area of mathematical programming called linear
programming.

The following example is a good illustration. A winery makes three

kinds of wine: red, white, and rosé. A gallon of red wine yields a profit of

$1.25 and requires 2 bushels of type I grapes, 0 bushels of type II grapes, 2

143

lbs. of sugar, and 2 labor hours to produce. The corresponding numbers for

white wine are $1.50 , 0 bushels, 2 bushels, 1 lb., and 1 labor hour, and those

for rosé wine are $2, 1 bushel, 1 bushel, 1.5 lbs., and 2 labor hours. If in a

week, the winery has available 200 bushels of type I grapes, 150 bushels of

type II grapes, 90 lbs. of sugar, and 250 labor hours, then how much of each

wine should be made to maximize total profit?

We define x1, x2, and x3, respectively, to be the numbers of gallons of

red, white, and rosé wine to be made in this week. The total weekly profit is

then 1.25 x1 1.50 x2 2.00 x3, in units of dollars. Each variable xi is

clearly greater than or equal to 0. We may use no more than 200 bushels of

type I grapes. We will require 2 x1bushels of these for red wine, 0 x2 for

white wine, and 1 x3 bushels for rosé. Thus, we obtain the first constraint

below. The other three constraints reflect the limitations on type II grapes,

sugar, and labor hours in that order. We formulate the linear programming

(LP) problem as follows:

maximize: f x1, x2, x3 1.25 x1 1.50 x2 2.00 x3

 subject to:

2 x1 x3 200

2 x2 x3 150

2 x1 x2 1.5 x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

This problem is said to be in standard maximum form; that is, it can be

written in matrix notation as:

 maximize: f c x

 subject to: A x b

 x 0

where b is at least 0 in every component. Here c is the row vector of

coefficients of the objective function, x is the column vector of variables, A
is the matrix of constraint coefficients, and b is the column vector of con-

stants on the right sides of the inequalities. Specifically, for the winery

problem:

144 Chapter 2 Linear Programming

c ' 1.25, 1.50, 2.00 x
x1

x2

x3

A
2 0 1
0 2 1
2 1 1.5
2 1 2

b

200
150
90

250

In Section 1, we consider the graphical solution of LP problems in two

variables. We use the geometric intuition developed there to derive in

Section 2 some of the general theory that leads to an approach to higher

dimensional problems. Section 3 introduces the so-called simplex algorithm
to solve the standard maximum problem described above. We use the

important notion of duality between problems to extend the approach to

standard minimum problems in Section 4. Our study of linear programming

continues in Chapter 3; in particular, we will see how to solve problems that

are in neither standard maximum nor standard minimum form.

Activity 1 – What aspect of the vectors and matrix above changes if a

new formulation of the white wine requires only 1.5 bushels of type II

grapes? If there are 110 lbs. of sugar available? If the profit on red wine

is $1.10 per gallon?

2.1 Two-Variable Problems

We begin our study of linear programming by looking at problems involving

two variables in an informal way, noting as we proceed several features of

the problem that generalize to higher dimensions. Consider the problem:

(1)maximize: f x1, x2 x1 2 x2

(2)

subject to: x2 2

x1 x2 3

2 x1 x2 5

x1, x2 0

The function f in (1) to be optimized is called the objective function, the

inequalities in (2) are called constraints, and the simultaneous solution set of

the constraints is called the feasible region of the problem. Figure 2.1 is a

sketch of the three boundary lines associated with the three inequalities,

which we produced in a special way using Mathematica. The Mathematica
package called KnoxOR`LinearProgramming` that we will be using heavily

2.1 Two-Variable Problems 145

in this chapter automatically loads the standard Mathematica package

Graphics`ImplicitPlot`, which contains the useful command

ImplicitPlot[listofequations, plotdomain1,plotdomain2]

ImplicitPlot can plot the graphs of one or more equations in two variables.

The first argument is the list of equations, and the other arguments are the

plot domains for the two variables. ImplicitPlot also accepts the usual kind

of plot options to control the appearance of the graph. Here is how it works

on our three linear equations.

Needs "KnoxOR`LinearProgramming "̀

ImplicitPlot

x2 2, x1 x2 3, 2 x1 x2 5 , x1, 0, 3 ,

x2, 0, 3 , AspectRatio 1, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.1 – Constraint boundary lines

Since the inequalities are all of form, the solution sets all lie to the south-

west of the lines. The commands below solve for the intersection points that

are corners of the polygonal solution region. These corners are: the y-inter-

cept of the first constraint line, the intersection of the first two constraints,

the intersection of the second and third constraints, and the x-intercept of the

third constraint.

146 Chapter 2 Linear Programming

Solve x1 0, x2 2 , x1, x2
Solve x2 2, x1 x2 3 , x1, x2
Solve x1 x2 3, 2 x1 x2 5 , x1, x2
Solve 2 x1 x2 5, x2 0 , x1, x2

x1 0, x2 2

x1 1, x2 2

x1 2, x2 1

x1
5
2
, x2 0

 KnoxOR`LinearProgramming` has a command for plotting feasible

regions of two-variable LP problems. The syntax is as follows:

PlotFeasibleRegion constraints,

xdomain,ydomain,corners,objective

Options PlotFeasibleRegion

DisplayFunction Display $Display, #1 & ,

ObjectiveLines Automatic, ShowTable True,
ShadingStyle GrayLevel 0.7 ,

ObjectiveLineStyle RGBColor 0, 0, 0 ,
AspectRatio Automatic, Axes Automatic,

AxesLabel None, AxesOrigin Automatic,
AxesStyle Automatic, Background Automatic,
ColorOutput Automatic, DefaultColor Automatic,

Epilog , Frame False, FrameLabel None,
FrameStyle Automatic, FrameTicks Automatic,

GridLines None, PlotLabel None,
PlotPoints 39, PlotRange Automatic,
PlotRegion Automatic, PlotStyle Automatic,

Prolog , RotateLabel True,
Ticks Automatic, DefaultFont $DefaultFont,

DisplayFunction $DisplayFunction,
FormatType $FormatType,

TextStyle $TextStyle, ImageSize Automatic

2.1 Two-Variable Problems 147

PlotFeasibleRegion takes the list of equality constraints, plot domains on

both the horizontal and vertical axis variables, the list of corners of the

feasible region, and the name of the objective function, and it returns the

graph of the feasible region. The corners should be listed in either clockwise

or counterclockwise order, starting with any corner. Besides inheriting the

options of ImplicitPlot, PlotFeasibleRegion has a few options of its own.

ShowTable is a boolean option that, if set to true, displays a table of values

of the objective function at the corners of the feasible region. Objective-

Lines may be set to a list of constant values (see the next paragraph) for the

plotting of c-level sets. And ShadingStyle and ObjectiveLineStyle can be

used to apply a fill style to the feasible region and a style to the objective

lines, respectively.

f x_, y_ : x 2 y;

PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 ,

x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 2 , 2, 1 , 2.5, 0 ,

f, ObjectiveLines 3, 4, 5, 6 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable True, TextStyle

FontFamily "Times", FontSize 8 ;

x y objective
0 0 0
0 2 4
1 2 5
2 1 4
2.5 0 2.5

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.2 – The feasible region and c-level sets

148 Chapter 2 Linear Programming

The set of points x1, x2 at which the objective function f takes on a

constant value c is called the c-level set of f. The maximum LP problem

essentially is to find the largest c such that the c-level set intersects the

feasible region, and to find the point (or points) of intersection. Then c is the

optimal value, and the point of intersection is the point at which f achieves

its optimum. Figure 2.2 shows several level sets for c values of 3, 4, 5, and 6

proceeding from southwest to northeast. The sets in this case are lines of

slope 1 2, because the equation for a general level set in this example is

x1 2 x2 c x2 1 2 x1 c 2. As c increases, the lines move

upward until finally the c 5 line intersects the feasible region at the corner

point 1, 2 . For all c > 5, the c-level set does not intersect the feasible

region. This means that the maximum value of f is 5, taken on at x1 1, and

x2 2. In the electronic version of the text, you can execute the cell below

this paragraph, and then select and animate the graphics to watch the c-level

sets move as c increases.

f x_, y_ : x 2 y;

Table PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 , x1, 0, 3 ,

x2, 0, 3 , 0, 0 , 0, 2 , 1, 2 , 2, 1 ,

2.5, 0 , f, ObjectiveLines c ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable False,

TextStyle FontFamily "Times",

FontSize 12 , c, 3, 5, .1 ;

Activity 2 – Use the Mathematica tools described above to plot the

feasible region of the problem below, to find the corner points and their

objective function values, and to plot c-level sets for values 4, 6, 8, and

10.

maximize: f x, y 4 x 2 y
subject to: x y 3

 2 x y 4

 x, y 0

Suppose the objective function had been f x1, x2 x1 x2. Then the

c-level sets are lines parallel to one of the constraint boundaries, namely

x1 x2 3. The largest c for which the c-level set intersects the feasible

region is c 3, and the intersection is the line segment connecting 1, 2 and

2, 1 , as shown in Figure 2.3. The optimal value of this new objective is 3,

2.1 Two-Variable Problems 149

taken on at all points on the segment between the corner points 1, 2 and

2, 1 .

g x_, y_ : x y;

PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 ,

x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 2 , 2, 1 , 2.5, 0 , g,

ObjectiveLines 2, 3, 4 , ObjectiveLineStyle

RGBColor 1, 0, 0 , TextStyle

FontFamily "Times", FontSize 8 ;

x y objective
0 0 0
0 2 2
1 2 3
2 1 3
2.5 0 2.5

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.3 – Level sets parallel to a constraint boundary

In both of the examples above, the feasible region was a bounded

polygon. Care must be exercised when the constraints yield an unbounded

region. Examine the constraints

2 x1 x2 3

x1 x2 2

x1, x2 0

150 Chapter 2 Linear Programming

which generate the unbounded feasible region in Figure 2.4. The feasible

corner points are at 0, 3 , 1, 1 , and 2, 0 . (Check these.) Consider three

problems relative to this feasible region:

1. minimize: f1 x1, x2 3 x1 2 x2

2. minimize: f2 x1, x2 x1 x2

3. maximize: f3 x1, x2 x1 3 x2

For objective f1, we search for the smallest value of c such that the c-level

set intersects the feasible region. By graphing level sets as above, it is easy

to see that the smallest such c is 5, taken on at the corner point (1, 1), since

for all smaller c, the c-level set does not intersect the feasible region. (No-

tice in the command that we have had to pretend that the points 0, 5 , 5, 5 ,

and 5, 0 were corners in order to get Mathematica to gray out the whole

polygon.)

f1 x_, y_ : 3 x 2 y;

PlotFeasibleRegion

2 x1 x2 3, x1 x2 2 , x1, 0, 5 , x2, 0, 5 ,

1, 1 , 0, 3 , 0, 5 , 5, 5 , 5, 0 , 2, 0 ,

f1, ObjectiveLines 5, 6, 7 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable False, AspectRatio 1, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

Figure 2.4 – An unbounded feasible region, with a minimum value

We conclude that there may be a solution to an LP problem even if the

feasible region is unbounded. However, consider objective function f2. The

2.1 Two-Variable Problems 151

c-level sets shown in Figure 2.5(a) correspond to smaller c values as they

move to the northwest. If we hold x1 at 0 and send x2 to infinity, we observe

that we can achieve arbitrarily small values of the objective within the

feasible region. This problem has no optimal solution. Similarly, in Figure

2.5(b) for the maximum problem, the c-level sets correspond to larger c
values as they move to the northeast, and so the objective function f3 has no

maximum value. The latter two problems are called unbounded problems.
Note that it is not the feasible region alone that makes a problem unbounded.

The key feature is whether or not the objective function is unbounded on the

feasible region.

0.5 1 1.5 2 2.5 3

1

2

3

4

5

0.5 1 1.5 2 2.5 3

1

2

3

4

5

(a) (b)

Figure 2.5 – (a) An unbounded minimum problem; (b) an unbounded maximum problem

Another difficulty that can arise involves constraints that are inconsistent

with one another. For instance, if the constraints are

x1 x2 1

4 x1 2 x2 8

x1, x2 0

then the solution sets of the individual inequalities do not overlap. The

feasible region is empty, so that no matter what the objective function is, the

problem can have no solution. Such a problem is called infeasible.

Activity 3 – Sketch a graph to check the infeasibility of the problem

above. Why, algebraically, are the first and second constraints together

incompatible with the third constraint?

152 Chapter 2 Linear Programming

Our experience with the examples above leads to a methodology for

approaching two-variable LP problems.

1. Sketch the feasible region. If it is empty, then the problem is infeasi-

ble and has no solution.

2. If the feasible region is unbounded, look carefully at the objective

function to see if it too is unbounded in the feasible region. If the objective

is unbounded below for a minimization problem, or unbounded above for a

maximization problem, then there is no solution.

 3. Otherwise, there is at least one optimal solution, taken on at some

corner point of the feasible region. One may inspect the c-level sets, or

simply compute the coordinates and functional values of all corner points,

and pick out the largest or smallest.

4. If two corner points both achieve the optimal value of the objective,

then so do all points on the line segment connecting them.

In order for the reader to gain some intuition into the general theory of

solutions to be presented in the next section, we would like to make a few

more geometric and algebraic observations. These will be the basis for an

algorithm that is successful in solving higher-dimensional problems.

5. The feasible region of a two–variable LP problem is an intersection of

half-planes, and is therefore either empty or convex. By the latter, we mean

that given any two points in the region, the line segment connecting the

points lies entirely in the feasible region.

6. The corner points do not lie on any line segment connecting two other

feasible points. Corners are called extreme points.

7. Any feasible point may be expressed as a convex combination of

extreme points. A vector x is a convex combination of vectors x1, x2, ... , xn
if there exist coefficients t1, t2 , ... , tn in 0, 1 such that

 i 1
n ti 1 and x i 1

n ti xi

This property of feasible points is more subtle and difficult to see, so let us

illustrate how to find such coefficients for the point 1, 1 in the feasible

region of Figure 2.2. The extreme points are 0, 2 , 1, 2 , 2, 1 , 5 2, 0 ,

and 0, 0 . We look for numbers t1, t2, t3, t4, and t5 in [0, 1] whose sum is 1,

such that:

1

1
t1

0

2
t2

1

2
t3

2

1
t4

5 2

0
t5

0

0

2.1 Two-Variable Problems 153

Thus, we must solve the system:

1 t2 2 t3 5
2

t4
1 2 t1 2 t2 t3
1 t1 t2 t3 t4 t5

There is a Mathematica command in the KnoxOR`LinearProgramming`

package called Dictionary, whose syntax is below.

Dictionary constraints,

basiclist,nonbasiclist

Dictionary takes as its first argument the list of constraint equations, as its

second argument a list of variables to be solved for simultaneously in those

equations, and as its third argument the list of remaining variables. Dictio-

nary returns an aligned display in which the designated variables are solved

for in terms of the others. Returning to our system, there are five unknowns

and only three equations, so we look for an equivalent system in which three

variables, say the first three, are represented in terms of the other two. The

general solution, found by Mathematica, is

Dictionary 1 t2 2 t3 5 2 t4,

1 2 t1 2 t2 t3,

1 t1 t2 t3 t4 t5 ,

t1, t2, t3 , t4, t5

t1 1 1
2 t4 3 t5

t2 1 3
2 t4 4 t5

t3 1 2 t4 2 t5

We see that there are infinitely many choices of coefficients using which

1, 1 can be expressed as a convex combination, subject to the restriction

that all ti are between 0 and 1. Choosing t4 1 4 and t5 1 4, for

instance, gives values t1 1 8, t2 3 8, t3 0 for the remaining

coefficients.

8. Referring to constraints (2), there exist variables s1, s2, s3 0 such

that

154 Chapter 2 Linear Programming

x2 s1 2

x1 x2 s2 3

2 x1 x2 s3 5

These new variables are called slack variables because they "take up the

slack" in the original constraint inequalities. Had there been an inequality of

the form d x1 + e x2 b, there would exist a surplus variable s 0 such

that d x1 + e x2 s = b. The introduction of slack (or surplus) variables to

transform the constraints to equality form gives this problem five variables.

After stating a more precise definition of convexity in the next section, we

will see that the convexity of the feasible region is preserved under this

enlargement of dimension.

9. At each extreme point (at least) two of the variables x1, x2, s1, s2, s3

are 0 and (at most) three are non-zero. Note that two is the number of

original variables in the problem, and three is the number of constraints. For

instance, for the constraints above, when slack variables s1 and s2 are zero,

we obtain the values 1, 2, and 1, respectively, for the other variables x1, x2,

and s3, as we see by forcing s1 and s2 to equal zero in the following output of

the Dictionary command:

Dictionary

x2 s1 2, x1 x2 s2 3, 2 x1 x2 s3 5,

s1 0, s2 0 , x1, x2, s3 , s1, s2

x1 1 0 s1 0 s2
x2 2 0 s1 0 s2
s3 1 0 s1 0 s2

We see that the designation of zero values for s1 and s2 puts us at the

extreme point x1, x2 1, 2 . Similarly, we can generate the following

complete table of extreme points and variable values for the constraints in

Remark 8:

Extreme point x1 x2 s1 s2 s3

0, 0 0 0 2 3 5

0, 2 0 2 0 1 3

1, 2 1 2 0 0 1

2, 1 2 1 1 0 0

5
2

, 0 5
2

0 2 1
2

0

2.1 Two-Variable Problems 155

More than two variables can be zero; e.g., if all three constraint lines had

intersected at the same point, then the slack variables for each constraint

would have been zero. (Try making up a problem that exhibits this behav-

ior.)

It is the task of the next section to prove these observations for LP

problems of arbitrary dimension.

Exercises 2.1

1. A town post office has $800,000 available for the purchase of delivery

vehicles. There are two models, a Jeep style and a van style, under consider-

ation. Each Jeep costs $8000 and each van costs $10,000. Estimated annual

maintenance costs per vehicle are $800 and $600, respectively, for jeeps and

vans. The town will allocate $80,000 annually for maintenance. If the jeep

achieves 25 miles per gallon of gasoline and the van achieves 20 miles per

gallon, how many of each type of vehicle should the town buy in order to

maximize the total among all vehicles of miles per gallon of gasoline? Can

the problem of maximizing average gas mileage per vehicle be treated by the

methods of this chapter?

2. Solve the LP problem:

 minimize: g x1 x2

 subject to:

2 x1 3 x2 6

4 x1 3 x2 12

6 x1 x2 6

x1, x2 0

3. Find the complete solution set of the problem:

 maximize: f 4000 x1 4000 x2

subject to:

x1 2 x2 5

x1 x2 3

2 x1 x2 5

x1, x2 0

4. In a psychology experiment on conditioning, an experimenter places mice

and rats into two types of conditioning boxes, I and II. Each mouse spends

20 minutes per day and each rat spends 40 minutes per day in box I. Each

mouse spends 40 minutes per day and each rat spends 20 minutes per day in

box II. Suppose box I is available to the experimenter for 640 minutes per

day and box II is available for 800 minutes per day. How many rats and

156 Chapter 2 Linear Programming

mice should be used to maximize the total number of animals in the experi-

ment in a day?

5. Find the solution set of the problem:

minimize: 2 x1 x2

 subject to:

x2
1
2

x1 1

x1 2 x2 4

2 x1 x2 6

x1, x2 0

6. A hospital patient is required to have at least 90 units of drug I and 120

units of drug II. The drugs are both contained in two substances S1 and S2.

Suppose that a gram of S1 contains 6 units of drug I and 4 units of drug II,

and a gram of S2 contains 3 units of drug I and 3 units of drug II. But in

addition, each gram of S1 contains 2 units of a mildly toxic drug and each

gram of S2 contains 1 unit of this other undesirable drug. How much of each

substance should be given to the patient to achieve the medication require-

ments with minimal dosage of the toxin? How much of the toxin does the

patient receive with this optimal mixture?

7. Find the optimal solution, if it exists, of the problem:

 maximize: f x1 x2

 subject to:

x1 2 x2 3

x1 x2 1

x2 x1 1

x1 3 x2 1

x1, x2 0

8. (a) Given the feasible region below, find the associated set of con-

straints.

(b) For what set of non-negative coefficients c1 and c2 will (1, 2) be the

maximum point of the objective function f c1 x1 c2 x2 ?

(c) For what set of non-negative coefficients will the points (1, 2) and (2, 0)

both be maximum points?

2.1 Two-Variable Problems 157

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

1

2

3

4

Exercise 8 Exercise 10

9. For the feasible region of Exercise 8, express (a) the point (3/2, 1) and (b)

the point (1, 1) as a convex combination of extreme points.

10. Repeat Exercise 8 (a) and (b) for the feasible region sketched above.

11. Repeat Exercise 9 for the feasible region of Exercise 10.

12. Introduce slack variables into the following constraints, and give the

values of all variables at each vertex of the feasible region.

x1 x2 2

2 x1 x2 10

x1 x2 8

x1, x2 0

13. Suppose that the objective function to be maximized is the piecewise

linear function:

f
2 x1 x2 if x1 1 2

x1 x2 1 2 otherwise

Sketch the c-level sets carefully in order to maximize f over the feasible

region of Exercise 8.

14. Consider the feasible region of Exercise 8 and the objective function

f 3 x1 2 x2. Beginning at a point x1, x2 in the feasible region, in what

direction does f increase most rapidly? If we begin at (0, 0) and move

through the interior of the feasible region in the direction of most rapid

increase of f , at what point on the boundary do we land?

158 Chapter 2 Linear Programming

2.2 Geometry of Linear Programming

We now go about the task of deriving the key theoretical results about linear

programming problems, which will lead in the next section to a solution

algorithm.

Since slack variables may be appended to the objective function as long

as they are given zero coefficients, it is clear that the standard maximum

linear programming problem may be written with its constraints in equality

form as follows:

 maximize: f c x

 subject to: A x b, x 0

Here c c j is an n 1 column vector of objective function coefficients,

x x j is an n 1 column vector of variables, A ai j is an m n matrix

of constraint coefficients, and b b j is an m 1 column vector of con-

stants. We use the notation M for the transpose of a matrix M . The prob-

lem listed at the beginning of Section 2.1, for instance, may be written in

equality form as:

maximize: f 1 2 0 0 0

x1

x2

x3

x4

x5

subject to:
0 1 1 0 0
1 1 0 1 0
2 1 0 0 1

x1

x2

x3

x4

x5

2
3
5

, x 0

For the sake of brevity, we prefer the matrix form of (1) and (2) as the

description of the maximum problem, but for the reader's reference, the

long-hand version is below.

maximize: f c1 x1 c2 x2 cn xn

subject to: a11 x1 a12 x2 a1 n xn b1

a21 x1 a22 x2 a2 n xn b2

am 1 x1 am 2 x2 am n xn bm
xi 0 for all i 1, … , n

2.2 Geometry of Linear Programming 159

In this section, we will refer only to the maximum problem. We will study

the minimum problem later.

DEFINITION 1. (a) A hyperplane in n is the set of points

x x1, x2, …, xn satisfying a linear equation of the form:

a1 x1 a2 x2 an xn b

(b) The line segment connecting points x1 and x2 in n is the set of all

points x of the form:

x x1 1 x2 , 0, 1 .

(c) A subset S of n is convex if, given any two points x1and x2 in S,

the line segment connecting x1 and x2 is contained in S.

1,0,0

0,1,0

0,0,1

1 2,0,1 2

x1

x2

x3

Figure 2.6 – The plane x1 x2 x3 1

EXAMPLE 1. The reader is probably familiar with hyperplanes (or simply,

planes) in 3. The plane associated with the equation x1 x2 x3 1

forms a triangular region when restricted to the first octant, as shown in

Figure 2.6. It is clear from the picture that the line segment connecting

points (0, 1, 0) and (1/2, 0, 1/2) is entirely in the plane, which leads us to a

guess that planes are convex. This guess is substantiated in Theorem 1

below. The points on this segment are of the form:

x 0, 1, 0 1 1 2, 0, 1 2 , 0, 1

When 0, we have x 1 2, 0, 1 2 ; and when 1, x 0, 1, 0 . As

 grows from 0 to 1, we may think of a path being traced out beginning at

160 Chapter 2 Linear Programming

1 2, 0, 1 2 and ending at 0, 1, 0 . When 1 4, for example, the

coordinates of the point on the segment are:

1 4 0, 1, 0 3 4 1 2, 0, 1 2 3 8, 1 4, 3 8

Conversely, given a point on the segment it is easy to solve algebraically for

the corresponding by equating components; for the point 1 4, 1 2, 1 4 ,

we have

1 4 0 1 1 2

1 2 1 1 0

1 4 0 1 1 2

and consequently 1 2. If a given point is not on the segment, then it

will not be possible to solve for such that all corresponding components

are equal. See Activity 1 below.

Note finally that this restricted hyperplane is exactly the set of points in
3 obtained by insertion of a non-negative slack variable x3 into an inequal-

ity constraint x1 x2 1 in which both x1 and x2 are non-negative. The

introduction of a slack variable has imbedded a two-dimensional feasible

region into three dimensions.

Activity 1 – Check whether the point 1 4, 1 4, 1 4 is on the segment

connecting 1 2, 0, 1 2 and 0, 1, 0 .

Next we state the result on convexity of the feasible region that was

mentioned earlier.

THEOREM 1. If the feasible region of a standard LP problem written in

equality form (2) is not empty, then it is convex.

Proof. We claim first that a hyperplane is convex. Let y and z be two

points on a hyperplane with equation a1 x1 a2 x2 an xn b , which,

in vector notation, is a x b. Consider the point y 1 z,

0, 1 on the line segment connecting y and z. By the linearity of dot

product,

a y 1 z a y 1 a z

b 1 b b

Hence y 1 z is also on the hyperplane, which proves the claim.

Let S1, S2,…, Sk be convex sets whose intersection S is non-empty. We

ask the reader to show that S is convex in Exercise 3. Also, the feasible

region is the intersection of m hyperplanes of the form:

2.2 Geometry of Linear Programming 161

 ai 1 x1 ai 2 x2 ai n xn bi i 1, …, m

with the set x n : xi 0 for i 1, . . . , n , which is clearly convex.

By the exercise cited above, the feasible region is convex (if non-empty).

DEFINITION 2. A vector x in a convex set S is called an extreme
point of S if it cannot be expressed as a convex combination

t y 1 t z, t 0, 1 of any other pair of vectors y, z S.

Following are two important facts about extreme points.

THEOREM 2. (a) Suppose that S is a closed, bounded convex set in n

with a finite number of extreme points x1, x2, …, xk . Then any x S can

be written as a convex combination of extreme points:

(5)x i 1
k

i xi, i 1
k

i 1

(b) The feasible region of an LP problem written in standard equality form,

if non-empty, is a convex set with a finite number of extreme points.

x1

x2

x3x4

x5

x

y

Figure 2.7 – Writing a point as the convex combination of extreme points

The full proof of Theorem 2 would take us somewhat farther into the

subject of convex analysis than we wish to go, but the following discussion

forms the intuitive basis for a proof. Regarding (a), consider a convex set in
2 with five extreme points x1, x2, x3, x4, and x5 as shown in Figure 2.7.

Let x be in the set, not itself an extreme point. Because the set is closed,

bounded, and convex, the ray connecting x1 to x will intersect a side of the

set at some point, say y, between x3 and x4. Then we have, for some

t, s 0, 1 ,

162 Chapter 2 Linear Programming

x t x1 1 t y
y s x3 1 s x4

x t x1 1 t s x3 1 t 1 s x4

It is easy to check that the sum of the coefficents of x1, x3, and x4 above is

one, thus we have expressed x as a convex combination of these extreme

points. In the case where the dimension is higher than two, the idea is

roughly the same. We successively project x down onto lower dimensional

boundaries of the feasible region, until eventually we find a point lying on a

segment between two extreme points. The reader may consult Rockafellar

[50] for details. Referring to part (b), the convexity of the feasible region

has already been noted. The finite cardinality of the set of extreme points

can be proved by identifying extreme points with particular solutions x of

the system A x b in which n m components of x are set to 0 (see

Theorem 3 below). Since the system has m equations in n unknowns, such a

choice of n m zero components determines the remaining components of

x uniquely. There are only a finite number of ways of choosing n m
components from among n components, hence there can only be a finite

number of extreme points.

Activity 2 – Write the point 1 2, 1 4 , which is in the interior of the

square whose corners are 0, 0 , 0, 1 , 1, 1 , and 1, 0 , as a convex

combination of the corners. Draw a picture similar to Figure 2.7,

showing the projection idea.

The discussion in the last paragraph leads to the following definition.

First, recall from linear algebra that vectors z1, z2, . . . , zk are called linearly
independent if it cannot be the case that

i 1
k ti zi 0

unless all coefficients ti are zero.

DEFINITION 3. A basic feasible solution of the LP problem (1)–(2)

is a vector y, satisfying the constraints, such that (at least) n m of its

components are zero, and in addition the system A x b can be

rewritten equivalently so that the columns of A corresponding to the

remaining non-zero components of y are linearly independent. A basic

feasible solution y is called non-degenerate if exactly n m of its

components are zero, otherwise it is degenerate.

EXAMPLE 2. To illustrate the definition, consider again the problem of the

beginning of the section, written in equality form:

2.2 Geometry of Linear Programming 163

maximize: f 1 2 0 0 0

x1

x2

x3

x4

x5

subject to:

0 1 1 0 0

1 1 0 1 0

2 1 0 0 1

x1

x2

x3

x4

x5

2

3

5

, x 0

The vector y 0 0 2 3 5 is a basic feasible solution. To see this, note

that n 5 is the number of variables, m 3 is the number of constraints,

and thus n m 2 . By setting two components, namely x1 and x2, equal to

zero, the constraint equations easily yield x3 2 , x4 3, and x5 5, hence

y is feasible. Also, the columns corresponding to the non-zero variables x3,

x4, and x5 are just unit coordinate vectors in 3, and are therefore linearly

independent. Suppose that we now subtract row 1 from row 2, and subtract

row 1 from row 3 in the constraint equations. The following equivalent

system of constraints results:

0 1 1 0 0

1 0 1 1 0

2 0 1 0 1

x1

x2

x3

x4

x5

2

1

3

Set x1 and x3 equal to zero, and it is easy to see that the remaining compo-

nents x2, x4, and x5 are 2, 1, and 3, respectively. Moreover, the columns

corresponding to these non-zero components are again unit coordinate

vectors, so that y = 0 2 0 1 3 is a basic feasible solution of the problem.

The following theorem provides the crucial connection between the

geometry of linear programming problems and the algebraic solution of

systems of linear equations, which is the heart of the algorithm to solve the

problem. The proof we give here follows along the lines of ([38], Theorem

2.8).

THEOREM 3. Assume that the feasible region S of the LP problem (1)–(2)

is non-empty, and that there exist m columns of A that are linearly indepen-

164 Chapter 2 Linear Programming

dent. Then every extreme point of S is a basic feasible solution. Con-

versely, every basic feasible solution of (1)–(2) is an extreme point of S.

Proof. First, let x x1, x2, … , xn be an extreme point of S. If all n
components of x are zero, then x is a basic feasible solution by the assump-

tion that A has at least m independent columns. Otherwise, we may relabel

the coordinates so that x x1, x2, … , xr , 0, 0, … , 0 , where 1 r n
and xi 0 for i 1, … , r. Denote the columns of A under the new

labeling system by A j, j 1, … , n. Because of the form of x, one can see

for example that

a11 x1 a12 x2 a13 x3 a1 r xr b1

and similarly for the other rows of b. In vector form, the constraint equation

(2) can therefore be written:

(6)
j 1

r
x j A j b

We would like to show that the m-component column vectors

A1, … , Ar are linearly independent. Suppose on the contrary that there

exist constants t1, t2, … , tr that are not all equal to zero such that

(7)
j 1

r
t j A j 0

Since x1, … , xr are strictly positive, there exists a small positive number

such that both x j t j and x j t j are positive for all j 1, … , r. Multi-

plying equation (7) by , then respectively adding and subtracting it from

equation (6) yields the two equations:

(8)
j 1

r
x j t j A j b

j 1

r
x j t j A j b

Thus, the following two vectors

 y x1 t1, … , x r tr, 0, 0, ... , 0

z x1 t1, … , x r tr, 0, 0, ... , 0

are feasible, and x 1 2 y 1 2 z. This is a contradiction of the

assumption that x is an extreme point. Therefore, columns A1, …, Ar are

linearly independent vectors (of length m).

A standard theorem from linear algebra states that there can be no more

than m independent vectors in m. Therefore r m, so that x has at least

n m zero components, and the columns of A corresponding to the non-zero

2.2 Geometry of Linear Programming 165

components of x are independent. This means that x is a basic feasible

solution, and the first half of the theorem is established.

To show the second statement, let x be a basic feasible solution. If

x 0, 0, ... , 0 , then it is impossible for x to be written as

x t y 1 t z for two other feasible vectors y, z 0. That is, 0 is an

extreme point. If x is not the zero vector, then x can be written:

(9)x x1, … , xr, 0, 0, ... , 0

with xi 0 for i 1, … , r by suitably relabeling the variables. We know

that 1 r m, and that the columns A1,…, Ar of A must be linearly indepen-

dent, by the definition of basic feasible solution.

Assume that x is not an extreme point. Then there exists vectors y and z

in S such that y z and

x t y 1 t z for some t 0, 1

Since y, z 0 and x has the form (9), y and z must also be zero after their

rth components. Because y and z are feasible,

j 1

r
y j A j b ,

j 1

r
z j A j b

j 1

r
y j z j A j 0

This contradicts the linear independence of the columns A1,…, Ar, and

completes the proof.

The importance of extreme points, and therefore basic feasible solutions,

is that the optimal value of the objective function of a linear program can be

found at one of them, if there is a solution at all. The simplex algorithm, to

be discussed in the next section, will step from one basic feasible solution

(corner point) to another in such a way that the objective function is

improved. Thanks to Theorem 3, the procedure is a routine algebraic matter

of manipulating systems of linear equations; and because of the next theo-

rem, we will eventually find the optimal value at one of the basic feasible

solutions.

THEOREM 4. Assume that the feasible region S is non-empty and

bounded. Then the maximum value of f is taken on at an extreme point. If

the maximum value occurs at several points y1, y2, …, yk , then it also occurs

at all convex combinations of these points.

Proof. The feasible region

S x Rn : A x b, x 0

166 Chapter 2 Linear Programming

is clearly closed, so that we may appeal to a well-known result of analysis,

which says that the maximum of a continuous function on a closed and

bounded non-empty set is attained at some point, say x0 S. If x0 is an

extreme point, then the first assertion of the theorem is proved. If x0 is not

an extreme point, then by Theorem 2 it can be written as a convex

combination

x0 i 1
k

i xi

where the xi are the extreme points, necessarily finite in number, of the

feasible region. Suppose that the maximal objective value among the

extreme points is taken on at x . Then, since x0 was the optimal point,

f x0 f x . But also,

f x0 c x0 c i 1
k

i xi

i 1
k

i c xi

i 1
k

i f xi

i 1
k

i f x

i 1
k

i f x f x

 Thus, f x0 f x , and the extreme point x is also an optimal point.

Now suppose that y1, . . . , yk are points whose objective value is opti-

mal. Consider the functional value of a convex combination of the yi. We

have, since f is linear,

f i 1
k ti yi i 1

k ti f yi i 1
k ti f f

where f is the common functional value of the yi. This proves the second

part of the theorem.

 We will not attempt to do a comprehensive theoretical study of the case

where S is unbounded, but the algorithm itself will indicate when there is no

optimal value. If the optimal value is attainable, the algorithm will yield an

extreme point optimal solution. Except for the existence problem, the

assumption of boundedness is not really needed in Theorem 4. Several

results can be seen almost immediately in the unbounded, as well as the

bounded case:

1. The second statement of Theorem 4 remains true when S is

unbounded.

2.2 Geometry of Linear Programming 167

2. If there is a unique optimal point, it must occur at an extreme point.

For, let x be the point in question. If x is not an extreme point, then it can be

written x t y 1 t z for some non-identical feasible points y, z and a

number t 0, 1 . By linearity of the objective function,

 f x t f y 1 t f z

Either f x , f y , and f z are all the same, which cannot be since x was the

unique optimum point, or exactly one of f y or f z exceeds f x . In both

cases, we have a contradiction; thus x is an extreme point.

3. The maximum of the objective function can never occur in the

interior of the feasible region. As usual, let f c x , and suppose that x is

in the interior of the feasible region. Then there is 0 small enough that

the point y x c is still in the feasible region. Then y has functional

value

f y c y c x c c f x c 2 f x

This says that we can increase the value of the objective by moving away

from x in the direction c ; hence x cannot be optimal.

4. If x is a locally optimal solution, then it is also a globally optimal

solution. This result will tell us when to terminate the simplex algorithm.

You are asked for a proof of this fact in Exercise 9.

Activity 3 – Trace through the proof of Theorem 4, and check the

veracity of claim 1 above.

Exercises 2.2

1. Consider a bounded standard maximum problem in two variables whose

feasible region is of the form:

a11 x1 a12 x2 b1

am 1 x1 am 2 x2 bm
x1, x2 0

where the constants bi are non-negative. Give a geometric argument that a

feasible point can be written as the convex combination of at most three

corner points.

168 Chapter 2 Linear Programming

2. (a) In Example 1, show that the line segment connecting 1 2, 0, 1 2

and 1 2, 1 2, 0 is entirely in the triangular region.

 (b) Is the point 1 2, 1 8, 3 8 on this segment?

 (c) Under what conditions on x2 and x3 is the point 1 2, x2, x3 on this

segment?

3. (a) By using the definition of convexity only, and not Theorem 1, show

that the set of points x1, x2, x3 such that:

x1 x2 x3 1

2 x1 x2 2 x3 5

x1, x2, x3 0

is convex.

 (b) Show that the intersection of a finite number of convex sets, if non-

empty, is convex.

4. If f is the objective of any feasible, bounded linear program with a given

system of constraints, show that the optimal value of f is taken on at the

same point as the optimal value of c f , where c is a positive constant.

5. A function f : n is called convex if for any x, y n and

t 0, 1 ,

 f t x 1 t y t f x 1 t f y

Show that a non-constant convex function defined on a bounded convex set

cannot take on its maximum value in the interior of the convex set.

6. Construct a counterexample to Theorem 2 part (a) if the set S is not

bounded.

2.2 Geometry of Linear Programming 169

7. Show that 4 3, 10 3, 0, 0 is a basic feasible solution of the system:

2 x1 x2 x3 6

x1 2 x2 x4 8

 xi 0 for all i

8. Express the constraints below in equality form by inserting slack vari-

ables, then find two basic feasible solutions and argue that they do satisfy the

definition of basic feasible solution.

x1 x2 x3 2

x1 x2 4

x1 x3 6

x1, x2, x3 0

9. Prove that if a feasible solution to a maximum problem in equality form is

locally optimal, then it is optimal. (A solution is locally optimal if its

objective value exceeds those of all feasible points in some neighborhood of

this solution.)

2.3 Simplex Algorithm for the Standard Maximum

Problem

The Simplex Algorithm

In this section, we use the theoretical results of Section 2 to develop an

algorithm to find the optimal solution to s standard maximum problem, if the

solution exists. Recall that a linear programming problem is in standard
maximum (inequality) form if it can be written:

170 Chapter 2 Linear Programming

maximize: f c x

subject to: A x b, x 0

where b is a column vector, all of whose entries are non-negative. If there

are m constraints, then b has m entries, and A has m rows. We have already

seen two examples of such problems, namely the winery problem of the

introduction and Example 2 of Section 2.2.

Because 0 itself clearly satisfies the constraint system (2), the problem is

feasible. Depending on the entries of A, the feasible region may be

unbounded. You are asked to show in Exercise 6 that if at least one con-

straint, say the ith, is such that all of its coefficients ai 1, ai 2, . . . , ai n are

strictly positive, then the region is bounded. The algorithm will have the

ability to detect unboundedness of the objective function, and to find optimal

solutions when they exist, even in problems with unbounded feasible

regions. We illustrate later the difficulty of degenerate basic feasible

solutions.

To illustrate the algorithm, consider again the winery problem:

maximize: f 5
4

x1
3
2

x2 2 x3

subject to:

2 x1 x3 200

2 x2 x3 150

2 x1 x2
3
2

x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

Slack variables x4, x5, x6, and x7 may be introduced into the constraints (4)

to write the problem in equality form. Let us think of f as a variable as well,

and write an equivalent version of the problem as a system of linear

equations:

2 x1 x3 x4 200

2 x2 x3 x5 150

2 x1 x2
3
2

x3 x6 90

2 x1 x2 2 x3 x7 250

5
4

x1
3
2

x2 2 x3 f

Remember the Mathematica command Dictionary that was introduced in

Section 2.1. We can use it to express the enlarged equality constraint system

2.3 Simplex Algorithm for the Standard Maximum Problem 171

(5) in a way that is convenient for the algorithm, first by solving for the slack

variables and f in terms of the other variables.

Needs "KnoxOR`LinearProgramming "̀ ;

constraints 2 x1 x3 x4 200,

2 x2 x3 x5 150, 2 x1 x2
3

2
x3 x6 90,

2 x1 x2 2 x3 x7 250,
5

4
x1

3

2
x2 2 x3 f ;

Dictionary constraints, x4, x5, x6, x7, f ,

x1, x2, x3

x4 200 2 x1 0 x2 1 x3
x5 150 0 x1 2 x2 1 x3

x6 90 2 x1 1 x2 3
2 x3

x7 250 2 x1 1 x2 2 x3

f 0 5
4 x1 3

2 x2 2 x3

The first four equations express x4, x5, x6, and x7 as linear functions of x1,

x2, and x3. We say that the former are the basic variables for this system and

the latter are the non-basic variables. At this point, the system still has

infinitely many solutions. But suppose we set the three non-basic variables

equal to zero. Then the collection of values

(6)x1 0, x2 0, x3 0, x4 200, x5 150, x6 90, x7 250

is a basic feasible solution, therefore an extreme point of the feasible region,

by Theorem 3 of Section 2.2. To see this, notice that the constraint equa-

tions in system (5) can be written in matrix form as A x b, where:

(7)A

2 0 1 1 0 0 0
0 2 1 0 1 0 0

2 1 3
2

0 0 1 0
2 1 2 0 0 0 1

 , x

x1

x2

x3

x4

x5

x6

x7

 , b

200
150
90
250

In the notation of Section 2, m 4 and n 7. We have set n m 3

variables x1, x2, x3 equal to zero, and the columns corresponding to the

remaining variables x4, x5, x6, and x7 are unit coordinate vectors in 4,

172 Chapter 2 Linear Programming

hence they are linearly independent. Thus, the list (6) represents a basic

feasible solution, and a corner point of the feasible region.

So far, we have merely identified one extreme point. Looking back to

(5), we see that the current value of f is zero, since x1, x2, and x3 are equal

to zero. Because each of these three variables has a positive coefficient, we

can increase the value of f by making one of them positive. We would like

to substitute a non-basic variable, say x2, as a newly entering basic variable

to replace one of the old basic variables in such a way that the resulting point

is still feasible. To do this, we will pick one of the first four equations in (5),

solve for x2, then substitute for x2 in all of the other equations. To decide

which of the four to pick, we ask: by how much can x2 be increased so that

the entire solution is still feasible, i.e., all variables remain non-negative? In

the first equation, x2 does not appear. In the second, if x2 150 2 75,

then x5 remains non-negative. Similarly, in the third equation, if x2 90,

then x6 remains non-negative; and in the fourth equation, if x2 250, then

x7 remains non-negative. The second equation is therefore the most restric-

tive, or binding equation. In it, we solve for x2 using the Dictionary com-

mand, which amounts to replacing the departing basic variable x5 by the

new entering basic variable x2, to get

Dictionary constraints,

x4, x2, x6, x7, f , x1, x3, x5

x4 200 2 x1 1 x3 0 x5

x2 75 0 x1 1
2 x3 1

2 x5

x6 15 2 x1 1 x3 1
2 x5

x7 175 2 x1 3
2 x3 1

2 x5

f 225
2

5
4 x1 5

4 x3 3
4 x5

Notice that the way in which we managed this operation is by manipulating

the order of appearance of x2 in the basic list in the second argument, so that

x2 becomes the basic variable in the second equation. The order of appear-

ance of variables in the non-basic list controls the columns that the non-basic

variables appear in. Once again, setting the non-basic variables x1, x3, and

x5 to zero gives a basic feasible solution as listed below, and the value of f
has increased to 225/2.

(8)x1 0, x2 75, x3 0, x4 200, x5 0, x6 15, x7 175

We ask the reader to show in Exercise 2 that (8) is indeed a basic feasible

solution. Throughout the procedure, the solution x1, x2, . . . , x7 that we

generate will continue to have the proper number of zeros, and the columns

of the coefficient matrix corresponding to the basic variables will continue to

2.3 Simplex Algorithm for the Standard Maximum Problem 173

be independent, hence the definition of basic feasible solution will be

satisfied by the solution. Henceforth, we give this fact no special mention.

The value of f may still be increased by increasing either x1 or x3, but

not x5, since its coefficient in the bottom (i.e., the objective) row of the

current system is negative. Introduce x3 as the entering basic variable. In

order to maintain non-negativity of the old basic variables, four conditions

must be satisfied: x3 200 from the first equation, x3 75 1 2 150

from the second, x3 15 from the third, and x3 175 3 2 350 3 from

the fourth equation. The third equation is the binding one, so that the

departing basic variable is x6. We solve for x3 in the third equation to obtain

the following new system:

Dictionary constraints,

x4, x2, x3, x7, f , x1, x5, x6

x4 185 0 x1 1
2 x5 1 x6

x2 135
2 1 x1 3

4 x5 1
2 x6

x3 15 2 x1 1
2 x5 1 x6

x7 305
2 1 x1 1

4 x5 3
2 x6

f 525
4

5
4 x1 1

8 x5 5
4 x6

(9)x1 0, x2 135 2, x3 15, x4 185, x5 0, x6 0, x7 305 2

The objective function now has the value f 525 4.

In the objective equation of the current system, the objective function f
is expressed as a linear function of the non-basic variables, all of whose

coefficients are negative. Therefore, f cannot be improved by increasing

any of these variables, and the current solution (9) is locally optimal, hence it

is also globally optimal. In terms of the original winery problem, we have

shown that a maximum profit of 525 4 131.25 dollars is obtained by

making red, white, and rosé wine in amounts of 0, 135/2, and 15 gallons,

respectively. The slack variable x4 185 indicates the number of unused

bushels of type I grapes, and the slack variable x7 305 2 gives the number

of unused labor hours. Since x5 x6 0, all type II grapes and sugar are

used.

Activity 1 – Use the Dictionary command to select a different sequence

of entering basic variables, and see if you arrive at the same optimal

solution.

174 Chapter 2 Linear Programming

To summarize, the algorithm to solve standard maximum LP problems

with inequality constraints is as follows.

SIMPLEX ALGORITHM FOR STANDARD MAXIMUM

PROBLEMS

1. a.{Set up initial system} By introducing slack variables, write

 the constraints in equality form.

 b. Solve for the slack variables, and adjoin the objective

 function.

2. While there are still variables with positive coefficients in the

 objective function row of the system of equations, do step 3.

3. a. Choose an entering basic variable with a positive coefficient

 on the objective function row.

 b. Choose a departing basic variable by finding the row, among

 those in which the entering basic variable selected in (a) has a

 negative coefficient, which has the smallest ratio of the

 constant term divided by the absolute value of that coefficient.

 If two rows share the smallest such ratio, pick either one;

 {The basic variable currently solved for in this row will

 depart}

 c. Solve for the new list of basic variables in the constraints and

 objective equation.

4. {The optimal solution has been reached.} Return values of 0

 for the non-basic variables in the final system of equations,

 and return the appropriate constant terms in the system for the

 values of the basic variables, and of f .

The rule for selection of the departing basic variable in step 3b is new

and needs some discussion. Suppose, without loss of generality, that at a

certain step of the algorithm, we have basic variables x1,…, xm written as

functions of non-basic variables xm 1, …, xn as below, and we wish to

introduce xm 1 as a basic variable.

x1 c1 a1, m 1 xm 1 a1, m 2 xm 2 a1, n xn

x2 c2 a2, m 1 xm 1 a2, m 2 xm 2 a2, n xn

.

.

.

xm cm am, m 1 xm 1 am, m 2 xm 2 am, n xn

We locate the binding constraint by solving the system of inequalities:

2.3 Simplex Algorithm for the Standard Maximum Problem 175

(10)

c1 a1, m 1 xm 1 0

c2 a2, m 1 xm 1 0

.

.

.

cm am, m 1 xm 1 0

If ai, m 1 0, then there is no restriction on how large xm 1 can be, and the

ith row can be passed by. Otherwise, the restriction imposed by the ith row is

xm 1 ci ai, m 1 , and the binding constraint is the row with the minimal

such ratio.

Activity 2 – Is there any restriction on the choice of the entering basic

variable? Can you conceive of a good strategy for choosing it?

In the exercises, you are led through a proof that, in the absence of

degeneracies, the simplex algorithm returns either an optimal solution, or the

information that the problem is unbounded (see Exercises 14–16).

Special Behavior

The simplex algorithm as stated above is not a finished product, because of

the problems of unboundedness and degeneracy, which we examine in the

examples below. We would also like to show how the existence of more

than one optimal solution can be read from the final simplex system. For

expositional ease, we use two-variable problems as examples, but the

principles are the same for larger problems.

EXAMPLE 1. Consider the problem

 maximize : f x1 x2

subject to :

x1 x2 1

x2 2

x1, x2 0

The sketch of the feasible region, which is unbounded, is shown in Figure

2.8.

176 Chapter 2 Linear Programming

constraints28 x1 x2 1, x2 2 ;

f1 x_, y_ : x y;

PlotFeasibleRegion

constraints28, x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 1 , 1, 2 , 3, 2 , 3, 0 ,

f1, ShowTable False, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.8 – An unbounded problem

Begin the execution of the algorithm by introducing slack variables x3 and x4

as basic variables:

equalityconstraints

x1 x2 x3 1, x2 x4 2, f x1 x2 ;

Dictionary equalityconstraints,

x3, x4, f , x1, x2

x3 1 1 x1 1 x2
x4 2 0 x1 1 x2
f 0 1 x1 1 x2

The current solution is x1 0, x2 0, x3 1, x4 2, f 0. Choose x1 as

the entering basic variable. Since x1 has a positive coefficient in the first

constraint equation, and does not appear in the second equation, it may be

increased without bound, while all problem variables remain non-negative

and satisfy the other constraints. Since the objective function increases

without bound as x1 does, we see that the problem is unbounded. Physically,

it is clear from Figure 2.8 that to increase x1 while holding x2 at zero means

2.3 Simplex Algorithm for the Standard Maximum Problem 177

to move to the right along the x1-axis, all the while staying in the feasible

region. As you do so, the objective f x1 x2 becomes arbitrarily large.

The implication of the last example is that to check for unboundedness,
the simplex algorithm should add a check at the beginning of step 2 for
non-basic variable columns in which all constraint coefficients are non-nega-
tive and the objective function coefficient is positive. If such a column exists,
the problem is unbounded. (Exercise 14 asks for a general proof of this fact.)

Another important observation is that the algorithm encounters no problem

when the feasible region is unbounded but the objective function is not. (See

the example in the discussion of the tableau method in the next subsection.)

EXAMPLE 2. When multiple solutions are present, the final system of
equations indicates this fact. Suppose we wish to maximize f 4 x1 2 x2

subject to the constraints

x1 x2 2

2 x1 x2 3

x1, x2 0

The feasible region is sketched in Figure 2.9, and we note that the c-level

sets of the objective funciton are parallel to the segment connecting 1, 1

and 3 2, 0 . Thus, the maximum of f should be taken on at all points along

this segment.

constraints29 x1 x2 2, 2 x1 x2 3 ;

f2 x_, y_ : 4 x 2 y;

PlotFeasibleRegion

constraints29, x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 1 , 3 2, 0 , f2,

ShowTable False, ObjectiveLines 3, 4, 5, 6 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;

178 Chapter 2 Linear Programming

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

Figure 2.9 – A problem with multiple solutions

With slack variables x3 and x4 inserted, the initial simplex system is

equalityconstraints2

x1 x2 x3 2, 2 x1 x2 x4 3, f 4 x1 2 x2 ;

Dictionary equalityconstraints2,

x3, x4, f , x1, x2

x3 2 1 x1 1 x2
x4 3 2 x1 1 x2
f 0 4 x1 2 x2

Hence, x1 0, x2 0, x3 2, x4 3, and f 0. It is always useful to

remember that a simplex system like the one above represents a basic

feasible solution (when non-basic variables are set to zero), and in turn a

basic feasible solution is an extreme point of the feasible region. The current

system represents the origin, which is a corner of the feasible region in

Figure 2.9. When x1 is introduced to replace x4 as a basic variable, we obtain

Dictionary equalityconstraints2,

x3, x1, f , x2, x4

x3 1
2

1
2 x2 1

2 x4

x1 3
2

1
2 x2 1

2 x4

f 6 0 x2 2 x4

For this new system, x1 3 2, x2 0, x3 1 2, x4 0, and f 6. The

extreme point represented by this system is the corner 3 2, 0 of the

feasible region. Since all coefficients on the bottom row are now non-posi-

2.3 Simplex Algorithm for the Standard Maximum Problem 179

tive, the solution 3 2, 0 is optimal. But also, x2 has coefficient 0 in the

objective row. This means that x2 can be increased without altering the

value of f . A check of the ratios of constant terms to coefficients of x2 in

the constraint equations reveals that x2 can be increased as far as 1 (with x3

as departing basic variable) without violating feasibility. At this point, x1

becomes 1, x3 becomes 0, and x4 remains 0; hence we obtain x1, x2 1, 1

as another optimal solution, as expected.

Dictionary equalityconstraints2,

x2, x1, f , x3, x4

x2 1 2 x3 1 x4
x1 1 1 x3 1 x4
f 6 0 x3 2 x4

The last example points out that when a non-basic variable has a
coefficient of 0 in the objective row of the final simplex system, that vari-
able may be made basic, and another variable non-basic, thereby yielding
an alternative optimal solution.

EXAMPLE 3. The final special behavior to illustrate is degeneracy of basic

feasible solutions. We will see that this occurs when more than two con-

straints intersect at a single extreme point. From a computational point of

view, this is the stickiest sort of problem to handle because the number of

steps required to reach the solution may increase greatly, and in the most

extreme case, an infinite loop can be entered in the algorithm. Consider the

standard LP problem

 maximize: f x1 3 x2

subject to:

x1 2 x2 3

2 x1 x2 3

x1 x2 2

x1, x2 0

whose feasible region is depicted in Figure 2.10. Here, all three constraint

boundaries intersect at the point 1, 1 .

180 Chapter 2 Linear Programming

constraints210

x1 2 x2 3, 2 x1 x2 3, x1 x2 2 ;

f3 x_, y_ : x 3 y;

PlotFeasibleRegion constraints210, x1, 0, 2 ,

x2, 0, 2 , 0, 0 , 0, 3 2 , 1, 1 , 3 2, 0 ,

f3, ShowTable False,

ObjectiveLines 3.5, 4, 4.5, 5 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2

0.5

1

1.5

2

Figure 2.10 – A degenerate problem

equalityconstraints3 x1 2 x2 x3 3,

2 x1 x2 x4 3, x1 x2 x5 2, f x1 3 x2 ;

Dictionary equalityconstraints3,

x3, x4, x5, f , x1, x2

x3 3 1 x1 2 x2
x4 3 2 x1 1 x2
x5 2 1 x1 1 x2
f 0 1 x1 3 x2

Graphically, it is easy to see that we could reach the optimal point in one

step by introducing x2 into the basic variable list, but suppose we choose to

let x1 be the entering basic variable instead. The minimum ratio criterion

indicates that x4 should depart, and we obtain:

2.3 Simplex Algorithm for the Standard Maximum Problem 181

Dictionary equalityconstraints3,

x3, x1, x5, f , x2, x4

x3 3
2

3
2 x2 1

2 x4

x1 3
2

1
2 x2 1

2 x4

x5 1
2

1
2 x2 1

2 x4

f 3
2

5
2 x2 1

2 x4

This dictionary system represents the basic feasible solution x1 3 2,

x2 0, x3 3 2, x4 0, x5 1 2, and f 3 2. Next, x2 should become

basic, but we have a tie between ratios in the first and third rows of the

constraint system. Activity 3 below this example asks you to check that if x3

is chosen as the departing basic variable in row 1, only one further step is

necessary. Let us see what happens if we choose x5 as the departing basic

variable instead.

Dictionary equalityconstraints3,

x3, x1, x2, f , x4, x5

x3 0 1 x4 3 x5
x1 1 1 x4 1 x5
x2 1 1 x4 2 x5
f 4 2 x4 5 x5

We are now at the point of degeneracy where all the boundary lines inter-

sect: x1 1, x2 1, x3 0, x4 0, x5 0, f 4. In this system, the slack

variable x3 is basic, yet it has the value 0 because the first constraint in the

original problem is an equality at x1, x2 1, 1 . This collection forms a

degenerate solution, since more than n m 5 3 2 variables equal zero.

In the next step, x4 must enter, and x3 departs the list of basic variables

because 0/1 is the smallest coefficient ratio.

182 Chapter 2 Linear Programming

Dictionary equalityconstraints3,

x4, x1, x2, f , x3, x5

x4 0 1 x3 3 x5
x1 1 1 x3 2 x5
x2 1 1 x3 1 x5
f 4 2 x3 1 x5

The basic feasible solution is now x1 1, x2 1, x3 0, x4 0, x5 0, and

f 4. There are several things worth noting about this system. The feasible

solution is still degenerate, since the basic variable x4 0. Geometrically,

this system represents the same corner 1, 1 of the feasible region, and the

value of the objective has not increased. In theory (and in fact such exam-

ples have been constructed), it is conceivable that a sequence of entering and

departing basic variables might be chosen so that the physical point remains

the same indefinitely; only the roles of basic and non-basic variables are

interchanged. Fortunately, this is rather rare, and in this problem x5 now

enters, x1 departs, and the final system is given by

Dictionary equalityconstraints3,

x4, x5, x2, f , x1, x3

x4 3
2

3
2 x1 1

2 x3

x5 1
2

1
2 x1 1

2 x3

x2 3
2

1
2 x1 1

2 x3

f 9
2

1
2 x1 3

2 x3

The optimal solution is x1 0, x2 3 2, x3 0, x4 3 2, x5 1 2, and the

maximum value of the objective function is f 9 2.

Activity 3 – Use the Dictionary command to check that you avoid the

degeneracy completely by letting x2 be the first entering basic variable;

and also to check that if you take the approach of the example up to the

second step, but then let x3 instead of x5 be the departing basic variable

when x2 enters, you need only one more step.

It turns out that the difficulty illustrated in the last example can be

avoided by a more judicious choice of entering and departing basic vari-

ables, though we would rather not discuss the problem in any greater detail

2.3 Simplex Algorithm for the Standard Maximum Problem 183

in this introduction to the subject. For more information, the reader can

study Papadimitriou and Steiglitz [47], or Gass [24].

Tableau Method

The method used in the examples above is called the dictionary method,

because all variables and equations are explicitly listed at every step. There

is another way of executing the simplex algorithm that is equivalent to the

dictionary method. Only the coefficients of the equations are really neces-

sary as long as we identify at each step which variables are basic. The

alternative tableau method takes advantage of this observation by perform-

ing a procedure very similar to matrix Gaussian elimination. Gaussian

elimination chooses a sequence of matrix elements about which to "pivot"

(meaning to zero all entries beneath the pivot row in the pivot column by

row operations), namely the diagonal elements, so as to transform the matrix

to upper triangular form. The simplex algorithm does almost the same thing,

except that it chooses its sequence of pivot elements according to the rules of

step 3 of the simplex algorithm for selecting entering and departing basic

variables.

To illustrate, consider a problem with the same constraints as the prob-

lem of Example 1, but with an objective function that turns out to be

bounded on the feasible region of Figure 2.8. The problem statement and its

equality form are shown below:

(11)

maximize: f 2 x1 x2

subject to :

x1 x2 1

x2 2

x1, x2 0

x1 x2 x3 1

x2 x4 2

2 x1 x2 f

(Note: Some authors, and some computer programs, display the objective

function on the top row of the system.) Write the augmented matrix for this

system, labeling each constraint row with the basic variable that it repre-

sents. This matrix is called the initial tableau, and is shown in Figure

2.11(a), to the right of the initial dictionary system to which it is equivalent.

184 Chapter 2 Linear Programming

x3 1 x1 x2

x4 2 x2

f 2 x1 x2

x1 x2 x3 x4

x3 1 1 1 0 1

x4 0 1 0 1 2

2 1 0 0 f 0

Figure 2.11(a) – Initial dictionary system and simplex tableau

x2 1 x1 x3

x4 1 x1 x3

f 1 x1 x3

x1 x2 x3 x4

x2 1 1 1 0 1

x4 1 0 1 1 1

1 0 1 0 f 1

Figure 2.11(b) – Second dictionary system and simplex tableau

Choose a new basic variable by choosing a column such that the coeffi-

cient in the objective row is positive. Thus, we must choose the x2 column.

Determine the departing basic variable by finding the minimal ratio of the

constant right-hand side to the x2 coefficient. In Figure 2.11(a), we see that

the top row, i.e., the x3 row, is the one to select. Designate the new basic

variable for the first row to be x2. Note that in the tableau we look for the

row with a positive entry in the x2 column such that the aforementioned ratio

is minimal. Use the pivot element just selected, here it is in row 1 and

column 2, to "pivot away" to zero all other entries in its column, i.e., to make

them zero. The suitable row operations are:

(12)
row 2 := row 2 – row 1

row 3 := row 3 – row 1

We obtain the new tableau in Figure 2.11(b), which is equivalent to the

system of equations resulting from the dictionary method on the left of this

tableau. In general, the tableau algorithm stops when there are no positive

entries in the bottom row, which is the case in Figure 2.11(b). The maxi-

mum value of 1 is the number subtracted from f in the lower right-hand

corner, the values of the non-basic variables are zero, and the values of the

basic variables are the constants on the right-hand side of the tableau, as you

can see from the final dictionary system. (Note that the latter is only true if

the pivot elements are made equal to one by multiplication of the pivot row

by a suitable constant.)

2.3 Simplex Algorithm for the Standard Maximum Problem 185

Activity 4 – Justify carefully why, in the tableau version of the simplex

algorithm, you select as the entering basic variable a column that has a

positive entry in the objective row; why the departing basic variable is

found in the row, among those with a positive entry in the pivot column,

such that the right side to entry ratio is smallest; and why the values of

the basic variables are found in the constant column of the tableau, as

long as the pivot entry is 1. Given a tableau, how can you tell what

variable is considered basic in each row, and what variables are

non-basic?

There is a Mathematica command in the KnoxOR`LinearProgramming`

package that saves you the trouble of doing row operations yourself, but

only requires you to select the entering and departing basic variables, based

on the current tableau. It is called SimplexOneStep:

SimplexOneStep tableau,varlist,

entering,departing,basiclist

Its first argument is the current simplex tableau in the usual Mathematica
form for a matrix, and its other arguments involve the variable names.

"Varlist" is a list of all the variables in column order, "entering" is the name

of the entering basic variable, "departing" is the name of the departing basic

variable, and "basiclist" is the list of basic variable names in the row order

they have in the tableau. SimplexOneStep pivots in the column of the

entering basic variable and the row of the departing basic variable, shows the

new tableau, then returns the pair {newtableau, newbasiclist} for use in the

next step.

Here, for example, is how the command works on the initial tableau of

Figure 2.11(a). We give the tableau and the variable list names and values

first, then we ask SimplexOneStep to let x2 replace x3 in the basic list. It

gives the printout of the tableau in Figure 2.11(b), with basic variables

labeled on the left. Notice here that the bottom right corner will always be

of the form c, and you should interpret the entry as f c, where c is the

current value of the objective function.

186 Chapter 2 Linear Programming

tableau11 1, 1, 1, 0, 1 ,

0, 1, 0, 1, 2 , 2, 1, 0, 0, 0 ;

varlist x1, x2, x3, x4 ;

SimplexOneStep tableau11,

varlist, x2, x3, x3, x4

x1 x2 x3 x4
x2 1 1 1 0 1

x4 1 0 1 1 1

obj 1 0 1 0 1

1, 1, 1, 0, 1 , 1, 0, 1, 1, 1 ,
1, 0, 1, 0, 1 , x2, x4

We further illustrate the tableau form of the simplex algorithm in the

next example.

EXAMPLE 4. A coal mining company owns two neighboring mines,

whose coal outputs differ somewhat in quality and accessibility. Men and

equipment can be shifted back and forth easily between the two mines.

Suppose that each day there are 12 available mining hours. Each mine

produces high, middle, and low quality coal. Because of storage restrictions,

the company may mine no more than 60 tons, 90 tons, and 80 tons, respec-

tively, of high, middle, and low quality coal in a day. An hour spent digging

in mine I produces 2 tons, 4 tons, and 6 tons, respectively, of the three kinds

of coal; similarly, an hour in mine II yields 3, 1, and 5 tons of the three coal

types. Profits per ton are $500, $400, and $300 for high, middle, and low

quality coal, respectively. How many hours should be spent in each of the

two mines in order to maximize total profit per day?

First we need to identify the problem variables, then construct the

objective function, and then translate the constraints. The optimization

problem implicit in the question suggests that the variables are

 x1 = number of hours spent in mine I

 x2 = number of hours spent in mine II

What is the daily profit if these amounts of time are spent in the two mines?

By the problem statement, mine I produces tonnages of

 2 x1 (high) 4 x1 (middle) 6 x1 (low)

and mine II will yield

 3 x2 (high) x2 (middle) 5 x2 (low)

2.3 Simplex Algorithm for the Standard Maximum Problem 187

tons of the three varieties of coal. For the high quality coal we obtain a

profit of $500 2 x1 3 x2 , and we can calculate the profit for the other two

types of coal similarly. The total profit for all three types is

(13)f 4400 x1 3400 x2

There is a constraint on the total number of hours, and there are three other

constraints on total tonnage of the three types of coal that can be mined. It is

easy to check that these translate as

(14)

x1 x2 12

2 x1 3 x2 60

4 x1 x2 90

6 x1 5 x2 80

and as usual, both x1 and x2 are non-negative. The objective function in (13)

and the constraints in (14) specify the LP problem of interest to the mining

company. To construct the initial simplex tableau, we insert slack variables

x3, x4, x5, and x6 into the constraints:

(15)

x1 x2 x3 12

2 x1 3 x2 x4 60

4 x1 x2 x5 90

6 x1 5 x2 x6 80

4400 x1 3400 x2 f 0

The initial tableau below follows immediately:

tableau4

1, 1, 1, 0, 0, 0, 12 , 2, 3, 0, 1, 0, 0, 60 ,

4, 1, 0, 0, 1, 0, 90 , 6, 5, 0, 0, 0, 1, 80 ,

4400, 3400, 0, 0, 0, 0, 0 ;

TableForm tableau4, TableHeadings

None, "x1", "x2", "x3", "x4", "x5", "x6", " "

x1 x2 x3 x4 x5 x6
1 1 1 0 0 0 12
2 3 0 1 0 0 60
4 1 0 0 1 0 90
6 5 0 0 0 1 80
4400 3400 0 0 0 0 0

188 Chapter 2 Linear Programming

In the first step, x2 can be chosen as the entering basic variable, and the

minimum ratio criterion implies that it should replace x3 in the first row.

varlist x1, x2, x3, x4, x5, x6 ;

tableau4, basiclist SimplexOneStep

tableau4, varlist, x2, x3, x3, x4, x5, x6 ;

x1 x2 x3 x4 x5 x6
x2 1 1 1 0 0 0 12

x4 1 0 3 1 0 0 24

x5 3 0 1 0 1 0 78

x6 1 0 5 0 0 1 20

obj 1000 0 3400 0 0 0 40800

And in the second and last step, x1 replaces x2 in the basic list.

tableau4, basiclist SimplexOneStep

tableau4, varlist, x1, x2, basiclist ;

x1 x2 x3 x4 x5 x6
x1 1 1 1 0 0 0 12

x4 0 1 2 1 0 0 36

x5 0 3 4 0 1 0 42

x6 0 1 6 0 0 1 8

obj 0 1000 4400 0 0 0 52800

We observe from the final tableau that the optimal values of x1 and x2 are 12

and 0, respectively, i.e., all time should be spent in mine I. The maximum

profit for this activity is $52,800 per day. Since the slack variables x4, x5,

and x6 are strictly positive in the optimal solution, it follows that the storage

constraints are not binding.

In what remains of this chapter, and in the next chapter, we will use the

dictionary approach when clarity and ease of understanding are paramount,

and the more concise tableau approach when efficiency of presentation is

more important. You should become accustomed to them both.

Exercises 2.3

1. A small software production company wants to maximize the benefit of

the time and money spent by its staff in working on development projects. It

produces software that is roughly classified as one of three types, increasing

in value and also difficulty from one type to the next. Type 1 projects are

2.3 Simplex Algorithm for the Standard Maximum Problem 189

half as valuable as type 2 projects, which are in turn half as valuable as type

3 projects. Each type 1 project requires two programmers, and 40 hours of

planning and documentation over the span of a month; each type 2 project

requires five programmers and 60 hours of time, and each type 3 project

requires eight programmers and 90 hours of time. How should the company

allocate its resources for a month's work if it has 30 programmers and 300

hours of time? Can non-integer solutions make sense in this problem; and if

so, how?

2. Verify that the list in formula (8) constitutes a basic feasible solution for

the winery problem (3)–(4).

3. Solve the following standard maximum problem by the simplex algo-

rithm:

maximize: f 2 x1 x2 x3 4 x4

subject to:

x1 x2 3

x3 x4 6

x1 2 x2 x3 2 x4 10

xi 0 for all i

4. An enterprising farmer wants to devote some of his land to the raising of

hogs, chickens, and ostriches. He will use no more than 1000 square yards

for this purpose. After deducting the cost of feed, he decides that he can

profit by $500 per hog, $50 per chicken, and $1000 per ostrich. Each ostrich,

however, requires at least 100 square yards, each hog 20 square yards, and

each chicken 5 square yards of his property. Also, he wishes to spend no

more than 500 hours during the season tending to the animals, and each hog

requires 10 hours, each ostrich 20 hours, and each chicken 5 hours of his

time. What combination of hogs, chickens, and ostriches should he choose to

raise, and what is the maximum profit he can achieve?

5. Solve the problem below. Show that the feasible region is unbounded.

 maximize: f 2 x1 x2 x3

subject to:

x1 x2 x3 2

x1 x2 x3 2

x1, x2, x3 0

6. Show that if there exists at least one constraint in the standard maximum

problem, say the ith, such that ai j is strictly greater than zero for all j, then

the problem is bounded.

190 Chapter 2 Linear Programming

7. A construction contractor builds single-family dwellings and apartment

buildings. The contractor can make $5000 profit on each house and $50,000

on each apartment. It takes 400 hours to build a house and 1000 hours to

build an apartment. Each house requires 1600 cubic feet of concrete, and

each apartment requires 3000 cubic feet of concrete to lay the foundation.

Bricks are the only other limiting resource; houses require 20,000 square

feet and apartments require 100,000 square feet of brickface. A total of

10,000 hours, 60,000 cubic feet of concrete, and 1,000,000 square feet of

brick are available. Find the numbers of single-family dwellings and

apartments that should be made to maximize the contractor's profit.

8. Show that the following linear program is unbounded, using the dictio-

nary implementation of the simplex algorithm.

 maximize: f x1 x2 x3

 subject to:

x1 x2 x3 4

2 x1 x2 x3 6

x1, x2, x3 0

9. Redo the winery problem (3)–(4) using the tableau implementation of the

simplex algorithm. Note the connection between the tableau you obtain at

each step, and the corresponding system of equations in Section 3.

10. Solve Exercise 1 using the tableau method.

11. (a) What would you look for in a simplex tableau in order to conclude

that a problem is unbounded?

 (b) What would you look for in a simplex tableau in order to detect a

degeneracy?

 (c) What characteristic of a final simplex tableau indicates multiple

solutions?

12. You may have thought of trying the method of Lagrange multipliers to

find optimal solutions, since, after the introduction of slack variables into the

standard maximum problem, the problem has the form:

maximize: f x

subject to: g1 x 0

gm x 0

 x 0

Try this on the problem below.

2.3 Simplex Algorithm for the Standard Maximum Problem 191

 maximize: f x1 x2 x3

 subject to:

x1 x3 10

x1 x2 5

2 x2 x3 8

x1, x2, x3 0

(The trouble here lies in the fact that the slack variables do not appear in the

objective function. Even when the problem is in the standard equality form,

this method is inefficient at best. For more information, see Dantzig [16].)

13. Consider the problem:

 maximize: f x1 x2

 subject to:

2 x1 x2 6

x1 2 x2 4

x1, x2 0

 (a) Sketch the feasible region, find the coordinates of the corner points,

and find the optimal value.

 (b) Repeat (a) if the right-hand side constants are changed to 6 h1 and

4 h2, respectively. Under what conditions on h1 and h2 are x1 and x2 still

basic in the optimal solution?

 (c) Perform the simplex algorithm on the problem in part (b), noting the

connection between the conditions on h1 and h2 derived there, and the choice

of entering basic variables.

Exercises (14)–(16) step the reader through a proof of the simplex

algorithm. In these problems, we suppose that we begin with a standard

maximum problem (1)–(2) whose constraints have been turned into equality

constraints by the introduction of slack variables. Refer to the statement of

the simplex algorithm. We amend step 2 in the following way: include into

the entrance condition for loop 3 a check for a non-basic variable column

with all non-negative coefficients. If this condition causes loop termination,

then in place of step 4, return a message that the problem is unbounded.

14. Show that if there is a non-basic variable all of whose coefficients are

non-negative at some stage of execution, then the problem is unbounded, as

the message described above claims.

15. Show inductively that at each pass through the loop, the next system

represents a basic feasible solution. Show in addition that if there are no

degeneracies, the value of the objective increases strictly.

192 Chapter 2 Linear Programming

16. Prove that if no degeneracies are encountered at any stage, then the

algorithm terminates in finitely many steps with with an unboundedness

message or an optimal solution.

2.4 Duality and the Standard Minimum Problem

In the last section, we used the simplex algorithm to solve the standard

maximum problem: max: f c x subject to: A x b, x 0. We could

adapt the procedure directly to minimum problems, but in this section, we

take a different approach in order to introduce the important notion of

duality in linear programming. The class of minimum problems to be solved

is illustrated by the following model problem.

EXAMPLE 1. A publishing company owns two printing facilities, F1 and

F2, each of which prints a different publication. Facility F1 uses 20 units of

paper and 5 units of ink per copy, and F2 uses 15 units of paper and 10 units

of ink per copy. In a certain period, F1 must produce at least 10,000 copies

of its publication in order to stay in business, and F2 must produce at least

20,000 copies. Also, on the average, F1 requires 0.2 units of electricity per

unit of paper in order to execute its printing and F2 requires 0.4 units of

electricity per unit of paper. In order to receive a reduced rate from the

power company, the publisher wants to use at least 400,000 total units of

electricity in its two facilities during the time period in question. It costs $1

per unit of paper and $.50 per unit of ink to pay for and deliver the raw

materials to F1, and $2 per unit of paper and $1 per unit of ink to supply F2.

How many units of each raw material should the firm purchase for each

facility in order to minimize the total supply cost while satisfying the stated

constraints?

2.3 Simplex Algorithm for the Standard Maximum Problem 193

The variables are y1 = # units of paper to F1 (in thousands), y2 = # units

of ink to F1, y3 = # units of paper to F2, and y4 = # units of ink to F2. The

constraint that F1 must produce at least 10,000 copies says that F1 needs at

least 20(10,000) = 200,000 units of paper and 1/4 units of ink for each unit

of paper. Similarly, F2 needs at least 15(20,000) = 300,000 units of paper

and 2/3 units of ink per unit of paper. That is,

y1 200
y2 1 4 y1

y3 300
y4 2 3 y3

In addition, the total electricity required must exceed 400,000, which yields

0.2 y1 0.4 y3 400

The costs listed in the last paragraph indicate that the following objective

function is to be minimized:

minimize: g y1 1 2 y2 2 y3 y4

By moving terms involving the variables to the left side of the inequali-

ties in (1), we may write the problem expressed by (1)–(3) in matrix form as

minimize: g b y

subject to: A y c, y 0

where

b

1

1 2

2

1

y

y1

y2

y3

y4

 A

1 0 0 0

1 4 1 0 0

0 0 1 0

0 0 2 3 1

0.2 0 0.4 0

c

200

0

300

0

400

We will show how to solve a problem of the form (4)–(5) by converting it to

a corresponding standard maximum problem.

194 Chapter 2 Linear Programming

DEFINITION 1. (a) A problem of the form (4)–(5) for which b 0 is

said to be a standard minimum problem.

(b) The dual problem of (4)–(5) is the standard maximum problem:

maximize: f c x

subject to: A x b, x 0

So to go from the minimum problem to its dual standard maximum

problem, the matrix of constraint coefficients is transposed, the inequalities

are reversed, and the roles of the vectors b and c are interchanged. Duality is

a pairwise idea; the minumum problem of (4)–(5) and the maximum problem

of part (b) of Definition 1 are duals of each other. We will show how the

solution of the standard maximum problem by the simplex method gives

immediately the solution to its dual standard minimum problem. At the end

of the section, we give an economic explanation of why the two problems

are connected in this way.

For example, the following two problems are duals of each other.

(6)

maximize f 3 x1 x2 x3

subject to:

x2 2 x3 5

x1 3 x2 x3 3

x1, x2, x3 0

minimize g 5 y1 3 y2

 subject to:

y2 3

y1 3 y2 1

2 y1 y2 1

y1, y2 0

Activity 1 – Form the dual maximum problem of the problem expressed

by (1)–(3).

THEOREM 1 (Weak Duality). If x is feasible for the standard maximum

problem, and y is feasible for its dual standard minimum problem, then

(7)b y c x

Suppose that feasible solutions x and y as above can be found such that

equality holds in (7). Then x is an optimal solution of the maximum

2.4 Duality and the Standard Minimum Problem 195

problem, y is optimal for its dual minimum problem, and the maximum

value of f equals the minimum value of g.

Proof. By feasibility of y,

 c A y y A

Thus,

b y c x b y y A x

y b y A x

y b A x 0

The first line uses the fact that x 0 , and the last inequality follows from

the feasibility of x. We therefore have (7).

Now suppose that x and y are as described in the second statement of

the theorem. Given any feasible x for the maximum problem, (7) implies:

c x b y c x

hence x is optimal for the maximum problem. Similarly, given any feasible

y for the minimum problem,

b y c x b . y

hence y is optimal for the minimum problem. Also,

max f c x b y min g

which completes the proof.

The next lemma helps to prove the strong duality theorem later, and also

enables us to see something of the origin of the form of the minimum

problem.

LEMMA 1. At any stage of execution of the simplex algorithm for the

standard maximum problem, there exist numbers y1, y2, ... , ym such that

the objective function row has the form:

(8)
f

k 1

m
yk bk c1

k 1

m
yk ak 1 x1 cn

k 1

m
yk ak n xn

y1 xn 1 ym xn m

196 Chapter 2 Linear Programming

where x1, ... , xn are the original problem variables, and xn 1, ... , xn m are

slack variables. In addition, if the slack variable xn k is basic for the simplex

system, then its coefficient yk 0; and if the problem variable xi is basic,

then its coefficient ci yk ak i 0.

Proof. We give only an informal argument. It is convenient to think of the

simplex algorithm in its tableau implementation, in order to see exactly what

happens to the objective row. Choosing an equation in which to solve for a

variable, then substituting into the remaining equations in the system (i.e.,

the dictionary method) is equivalent to subtracting a certain multiple of the

pivot row from each row other than itself. (Exercise 16 asks the reader to

show this for the first step of the simplex algorithm.) The starting point is

the initial tableau, depicted below. It is easy to see inductively that, at any

step of the algorithm, the net effect of the row operations up to that step is

that each row of the current tableau is obtained by subtracting from the

corresponding row in the initial tableau some net multiple y1 times row 1 of

the initial tableau, subtracting y2 times row 2, etc., and lastly subtracting a

multiple ym of row m of the initial tableau.

x1 x2 xn xn 1 xn 2 xn m

a11 a12 a1 n 1 0 0 b1

a21 a22 a2 n 0 1 0 b2

am 1 am 2 am n 0 0 1 bm

c1 c2 cn 0 0 0 f 0

Consider the initial tableau. Since xn 1 appears only in the first row with

coefficient 1, the coefficient of xn 1 in the new objective row at a later step

of the algorithm is just y1, where y1 is as described in the last paragraph.

More generally, for k 1, . . . , m, the coefficient of xn k is the negative of

the net multiple yk of row k that has been subtracted from the objective row.

For i 1, . . ., n, the coefficient of xi in the objective row after these subtrac-

tions must be

ci k 1
m yk ak i

as desired. The term
k 1

m
yk bk is the total of all subtractions from f . The last

statement of the lemma follows immediately from the fact that basic vari-

ables are guaranteed by the algorithm to have coefficient zero in the objec-

tive row at every step, because in order to have been made basic, their

columns must have been converted to unit coordinate vectors with a zero in

the last entry.

2.4 Duality and the Standard Minimum Problem 197

This lemma supplies a great deal of insight about how the form of the

dual minimum problem is obtained. The intuition is given by equation (8)

and the following observation. We look for a minimum problem whose

feasibility condition means optimality for the maximum problem, and whose

minimum value equals the maximum value of f . Recall that termination of

the algorithm occurs when all xi have non-positive coefficients in the

objective row. In view of (8), this requires that

ci k 1
m yk ak i 0 for i 1, …, n,

 and yk 0 for k 1, …, m

This is precisely the feasibility condition (5) for the minimum problem.

Also, as we have seen a number of times, the fact that the basic variables do

not appear in the objective row implies that the constant yk bk is the value

of the objective function. This helps to motivate the choice of coefficients

for the minimum problem.

Activity 2 – For the maximum problem in (6), use the tableau method to

perform one pivoting step by hand. Keep careful track of the multiples

yk of the pivot row that are subtracted from the other rows, and see how

the objective row depends on those multiples, to gain a more concrete

understanding of Lemma 1.

The following theorem shows how the optimal solution of the minimum

problem may be extracted from the final simplex system of the maximum

problem. The theorem also gives information about the existence of optimal

solutions to the two dual problems.

THEOREM 2 (Strong Duality). (a) If the standard minimum problem has

a feasible solution, then both the standard minimum and its dual standard

maximum problem have optimal solutions, and min g = max f .

(b) Assume that the minimum problem (4)–(5) has a feasible solution. For

k 1, . . ., m, let yk be the negative of the coefficient of slack variable xn k
in the objective row of the final simplex system for the dual maximum

problem. Then the vector y yk is optimal for the minimum problem.

Proof. (a) Since the minimum problem is feasible, the weak duality theo-

rem implies that, for any vector y that is feasible for the minimum problem,

b y is an upper bound for the optimal value of f . By the assumption that

b 0, the origin is feasible for the standard maximum problem. Therefore,

we see that the maximum problem is both feasible and bounded. Thus, the

simplex algorithm will produce an optimal extreme point solution to the

maximum problem. The fact that the minimum problem has an optimal

solution will follow from part (b), and as a by-product we will show that for

198 Chapter 2 Linear Programming

the two optimal solutions x and y , b y c x . From this, it follows

that min g = max f .

(b) Let yk , k 1, …, m be as in the statement of the theorem, and

consider the objective row of the final simplex system for the dual maximum

problem. By Lemma 1, for j 1, …, n, the coefficient c j of the jth coordi-

nate x j of the optimal extreme point x is

(9)c j c j
i 1

m
yi ai j j 1, …, n

Since this is the final system, all c j must be non-positive. In matrix nota-

tion, (9) can be written as:

 c c A y 0 c A y

Also, the yi themselves must be non-negative, by the algorithm termination

condition, hence y is feasible for the minimum problem. Moreover, since

all basic variables have zero coefficients in the objective row, and non-basic

variables are 0, (8) implies that

0 f k 1
m yk bk f x b y g y

By the weak duality theorem, x and y are optimal for their respective

problems.

In Exercises 5–8, some general results about unboundedness, infeasibil-

ity, and multiple solutions are given.

EXAMPLE 2. Let us solve the problem stated in Example 1 of supplying

the two printing facilities at minimum cost. The technique is to dualize the

minimum problem, execute the simplex algorithm on the resulting maximum

problem, and then read the solution from the final system.

The minimum problem is:

(10)minimize: g y1
1
2

y2 2 y3 y4

subject to:

y1 200

1
4

y1 y2 0

y3 300

2
3

y3 y4 0

1
5

y1
2
5

y3 400

y1, y2, y3, y4 0

2.4 Duality and the Standard Minimum Problem 199

We obtain the dual problem by transposing the coefficient matrix of the

constraint system, and interchanging roles of the constraint constants and the

objective function coefficients:

(11)maximize: f 200 x1 300 x3 400 x5

subject to:

x1
1
4

x2
1
5

x5 1

x2 1 2

x3
2
3

x4
2
5

x5 2

x4 1

x1, x2, x3, x4, x5 0

Notice that the number of variables in the dual maximum problem equals the

number of constraints in the original (or primal) minimum problem. Simi-

larly, the number of constraints in the maximum problem equals the number

of variables in the minimum problem.

Introduce slack variables x6, x7, x8, x9 into the constraints of problem

(11) to obtain the initial simplex tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 constant

x6 1 1
4

0 0 1
5

1 0 0 0 1

x7 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

200 0 300 0 400 0 0 0 0 f 0

Needs "KnoxOR`LinearProgramming "̀ ;

We enter it into Mathematica, and then call on the SimplexOneStep com-

mand to carry out the computation. The entering basic variables x1, x2, x3,

x4, x5 were introduced in that order to obtain the final tableau for the maxi-

mum problem below. You may run the commands in the electronic version

of the text to see the intermediate tableaux.

200 Chapter 2 Linear Programming

inittableau 1, 1 4, 0, 0, 1 5, 1, 0, 0, 0, 1 ,

0, 1, 0, 0, 0, 0, 1, 0, 0, 1 2 ,

0, 0, 1, 2 3, 2 5, 0, 0, 1, 0, 2 ,

0, 0, 0, 1, 0, 0, 0, 0, 1, 1 ,

200, 0, 300, 0, 400, 0, 0, 0, 0, 0 ;

vlist x1, x2, x3, x4, x5, x6, x7, x8, x9 ;

basicvarlist x6, x7, x8, x9 ;

newtableau, newbasiclist SimplexOneStep

inittableau, vlist, x1, x6, basicvarlist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 1
4

0 0 1
5

1 0 0 0 1

x7 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 50 300 0 360 200 0 0 0 200

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x2, x7, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 0 300 0 360 200 50 0 0 225

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x3, x8, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 0 0 200 240 200 50 300 0 825

2.4 Duality and the Standard Minimum Problem 201

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x4, x9, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 0 0 1 0 2
5

0 0 1 2
3

8
3

x4 0 0 0 1 0 0 0 0 1 1

obj 0 0 0 0 240 200 50 300 200 1025

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x5, x1, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x5 5 0 0 0 1 5 5
4

0 0 45
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 2 0 1 0 0 2 1
2

1 2
3

5
12

x4 0 0 0 1 0 0 0 0 1 1

obj 1200 0 0 0 0 1400 350 300 200 2375

According to the strong duality theorem, the minimum cost agrees with the

maximum of f , which is 2,375,000. The slack coefficients in the bottom

row give the optimal solution:

 y1 1,400,000 y2 350,000 y3 300,000 y4 200,000

The economic interpretation is that facility F1 operates well over its mini-

mum capacity, printing 1,400,000/20 = 70,000 copies and using (as one

would expect) only enough ink to cover this. Facility F2 works at its mini-

mum capacity of 300,000/15 = 20,000 copies, using the minimal amount of

ink and paper for the printing.

Activity 3 – Try a different sequence of entering basic variables in the

last example. For instance, if you use the heuristic of always selecting

the highest magnitude entry in the objective row to determine the pivot

column, can you shorten the computation?

A general class of standard minimum problems called mixing problems
can be described as follows. Let there be m substances, each composed of

some combination of n elementary ingredients. We would like to find a

mixture of the substances that achieves minimal requirements on the ingredi-

202 Chapter 2 Linear Programming

ents at a minimal cost. One example of this situation is in problems of diet,

for which there are m possible foods to include in the diet, and each food is

made up of some combination of n possible nutrients.

Denote by a j i the number of units of ingredient i per unit of substance j.
Suppose that it is required to have at least ci units of ingredient i in the

mixture. The cost per unit of substance j is b j. Then, denoting by y j the

number of units of substance j in the mixture, b j y j is the cost of the total

amount of substance j and a j i y j is the total amount of ingredient i that is

contributed by substance j. The problem of minimizing the cost of the

mixture subject to the minimal requirements of each ingredient takes the

form:

(12)minimize: b1 y1 bm ym

subject to:

a11 y1 a21 y2 am 1 ym c1

a1 n y1 a2 n y2 am n ym cn
all yi 0

EXAMPLE 3. A cat food manufacturer wishes to design a meat product

composed of tuna, liver, and kidney such that minimum total amounts of

protein and carbohydrates, 3 ounces and 6 ounces respectively, are present.

In addition, the cost of the mixture should be minimized. Suppose that an

ounce of tuna has 0.5 ounces of carbohydrates, 0.2 ounces of protein, and

costs 2 cents. An ounce of liver has 0.4 ounces of carbohydrates, 0.3 ounces

of protein, and costs 1.5 cents, and an ounce of kindey has 0.3 ounces of

carbohydrates, 0.2 ounces of protein, and costs 1 cent. To formulate the

problem of finding an optimal mixture, introduce variables y1, y2, and y3 to

represent, respectively, the number of ounces of tuna, liver, and kidney in

the mixture. By the information on costs given above, the objective is

clearly:

(13) minimize: g 2 y1 1.5 y2 y3

The total amount of protein must be at least 3 ounces, and the total amount

of carbohydrate must be at least 6 ounces. The given compositions of the

three meats yield the constraints:

(14)

 0.2 y1 0.3 y2 0.2 y3 3 (protein)

 0.5 y1 0 .4 y2 0.3 y3 6 (carbohydrate)

y1, y2, y3 0

The dual maximum problem to the minimum problem expressed by

(13)–(14) is:

2.4 Duality and the Standard Minimum Problem 203

(15)

maximize: f 3 x1 6 x2

subject to:

0.2 x1 0.5 x2 2

0.3 x1 0.4 x2 1.5

0.2 x1 0.3 x2 1

x1, x2 0

After inserting slack variables x3, x4, and x5as usual, the initial simplex

tableau below results. One pivot operation, the introduction of x2 into the

basic list replacing x5, gives the final simplex tableau for the maximum

problem.

tableau3

.2, .5, 1, 0, 0, 2 , .3, .4, 0, 1, 0, 1.5 ,

.2, .3, 0, 0, 1, 1 , 3, 6, 0, 0, 0, 0 ;

MatrixForm tableau3

0.2 0.5 1 0 0 2
0.3 0.4 0 1 0 1.5
0.2 0.3 0 0 1 1
3 6 0 0 0 0

SimplexOneStep tableau3,

x1, x2, x3, x4, x5 , x2, x5, x3, x4, x5 ;

x1 x2 x3 x4 x5
x3 0.133333 0. 1 0 1.66667 0.333333

x4 0.0333333 0. 0 1 1.33333 0.166667

x2 0.666667 1. 0 0 3.33333 3.33333

obj 1. 0. 0 0 20. 20.

The negatives of the coefficients of the slack variables in the objective row

are the optimal values for the original minimum problem, i.e.,

y1 0, y2 0, y3 20, and the minimum cost is the same as the maximum

of f , namely 20. The conclusion is that the mixture should be entirely of

kidney in order to minimize cost.

Let us close the section by exploring the intuitive connection between a

maximum problem and its dual minimum problem. Consider the winery

problem discussed in the introduction. There are four available resources:

type I grapes, type II grapes, sugar, and labor hours, which are used to make

three products: red, white, and rosé wine. The general setup is depicted in

204 Chapter 2 Linear Programming

the table below, in which we have chosen to leave the coefficients general

rather than insert the numerical values given for them in the introduction.

Bounds on

Red White Rosé Resources Resources

Units of a11 a12 a13 b1 Type I grapes

resource per a21 a22 a23 b2 Type II grapes

unit of wine a31 a32 a33 b3 Sugar

a41 a42 a43 b4 Hours

Profit per

unit of wine c1 c2 c3

Consider the problem faced by an individual who wishes to purchase all

of the winery's resources. A decision must be reached by this buyer about

the following four offering prices:

y1 price per unit of type I grapes

y2 price per unit of type II grapes

y3 price per unit of sugar

y4 price per unit of hours

The buyer wishes to minimize the total purchase price. Since the winery has

respectively b1, b2, b3, and b4 units of these resources on hand, the total

price to the buyer will be

(16)g b1 y1 b2 y2 b3 y3 b4 y4

which is the objective function of the dual minimum problem. Also, the

buyer must offer prices at least as large as the profit that the winery could

derive from using the resources to make and sell wine. For instance, in the

case of red wine, if the winery used a11type I grapes, a21type II grapes,

a31units of sugar, and a41labor hours, the winery could make one unit of red

wine for a profit of c1. The buyer's total offer for this much of the four

resources must exceed c1, i.e.,

(17)a11 y1 a21 y2 a31 y3 a41 y4 c1

This is the first constraint of the dual standard minimum problem, and

similar analyses of profits for white wine and rosé wine yield the other two

constraints of the minimum problem. The dual variables yi, which are

values per unit of the resources, are often called the shadow prices of the

resources.

2.4 Duality and the Standard Minimum Problem 205

In a similar manner we can intuitively relate a given standard minimum

problem to its dual maximum problem. Let us work in the context of

Example 3 on cat food. The problem information is summarized in the table

below, and again we leave the coefficients general in order that the reader

may more easily recognize the dual problem.

Amounts

Tuna LiverKidney Required Nutrients

Amount nutrient per a11 a21 a31 c1 Protein

unit of ingredient a12 a22 a32 c2 Carbohydrate

Cost per unit of ingredient b1 b2 b3

 Consider now an individual who is willing to sell all of the nutrients

directly to the cat food manufacturer. This supplier would choose prices:

x1 = price per unit of protein

x2 = price per unit of carbohydrate

in order to maximize his total revenue from the sale. Since the manufacturer

must purchase c1 units of protein and c2 units of carbohydrate, this revenue is

f c1 x1 c2 x2

which is the objective function of the dual standard maximum problem.

Moreover, the prices offered by the supplier must be competitive with the

price paid by the cat food manufacturer for enough units of tuna, liver, and

kidney to satisfy the requirements. For example, a unit of tuna, at a cost of

b1, supplies a11 units of protein and a12 units of carbohydrate. Therefore the

sale price offered by our supplier for this combination of nutrients must be

less than b1, i.e.,

a11 x1 a12 x2 b1

We recognize this as the first constraint of the dual standard maximum

problem. Similar analyses performed on the liver and kidney ingredients

produce the other two maximum constraints.

206 Chapter 2 Linear Programming

Exercises 2.4

1. (Mathematica) A sheep farmer will blend three types of feed for his

sheep, costing $1 per pound, $2 per pound, and $3 per pound, respectively.

Feed 1 consists of 50% fat and 50% protein, feed 2 is 25% fat and 75%

protein, and feed 3 is 40% fat and 60% protein. Sheep are to receive at least

2 lbs. of fat per week and 3 lbs. of protein. Minimize the weekly cost of feed

per sheep.

2. (Mathematica) Solve the standard minimum problem:

minimize: g y1 y2

subject to:

y1 y2 2

4 y1 y2 8

y1 4 y2 8

y1, y2 0

3. Verify that constraints (1)–(2) are equivalent to (5).

4. (Mathematica) A woman operating her own business is trying to plan her

weekly sales activity schedule to produce the most valuable sales results in

the least possible time. She can make personal visits, do phone calls, or work

on mass mailings. She estimates that each hour spent on personal visits nets

her $50, each hour on phone calls earns $40, and each hour on mass mailings

earns $20. To limit her transportation and phone costs, and to reach a wider

audience, she will spend at least twice as much time on the phone as she

spends making personal visits, and at least twice as much time doing mass

mailings as she spends making phone calls. If her goal is to make at least

$1000 per week, how should she allocate her time so as to spend as few

hours as possible?

5. Suppose that in the final simplex system for a dual maximum problem of

a given minimum problem, there is a degenerate basic slack variable x j. In

the equation to which x j belongs is some non-basic variable xk with a

positive coefficient; and furthermore in the objective row, xk has a strictly

negative coefficient ck. Show that if xk is made basic, the resulting vector y

of negatives of slack coefficients also achieves the minimum of the objective

function of the minimum problem. Need y be feasible for the minimum

problem?

6. Suppose that in the final simplex system for a dual maximum problem of

a given minimum problem, there is a non-basic variable in the objective row

with coefficient zero. Recall that this indicates the presence of an alternative

2.4 Duality and the Standard Minimum Problem 207

optimal solution for the maximum problem. Show that if this variable is

made basic, the same solution to the minimum problem results. (Together,

Exercises 5 and 6 point out the duality between degeneracy in one problem,

and non-uniqueness in the other.)

7. Prove that if a standard maximum problem is unbounded, then its dual

standard minimum problem is infeasible.

8. Prove that if a standard minimum problem is unbounded, then its dual

standard maximum problem is infeasible.

9. Solve the standard minimum problem below.

minimize: g 2 y1 y2 3 y3

subject to:

y1 y2 y3 10

y1 y2 6 y3 15

y1, y2, y3 0

10. Give an economic interpretation of the dual maximum problem for the

problem of Exercise 1.

11. Give an economic interpretation of the dual minimum problem for the

problem of Exercise 7 of Section 2.3.

12. Let A x b be the system of equality constraints for a standard maxi-

mum problem, after the introduction of slack variables. There are n vari-

ables and m constraints. A basic solution is a vector x that satisfies the

equality constraints, and has n m of its components equal to 0, but is not

required to satisfy the non-negativity constraint. For each basic solution of

the maximum problem, there is a complementary basic solution (again, not

necessarily feasible) for its dual minimum problem, obtained by reading the

negatives of the slack coefficients in the objective row of the corresponding

maximum simplex system. To see what basic solutions represent in two

dimensions, consider the problem:

maximize: f x1 5 x2

subject to:

2 x1 x2 4

x1 2 x2 6

x1, x2 0

(a) Write the dual problem, and sketch the feasible regions for both prob-

lems. In each case find the coordinates of all corner points, whether feasible

or infeasible.

208 Chapter 2 Linear Programming

(b) Write a simplex system for each basic solution of the maximum prob-

lem, and find the point on each graph to which the system corresponds.

13. Use duality and two-dimensional geometry to solve the following

problem without recourse to the simplex algorithm:

minimize: y1 3 y2 4 y3

subject to:

y1 y3 2

y1 y2 1

y1, y2, y3 0

14. We studied duality only in the context of standard maximum and

minimum problems. The concept can be extended to arbitrary problems

using the following correspondences:

Max problem Min problem

Objective coefficient ci Constraint constant ci

Constraint constant bi Objective coefficient bi

Variable xi 0 Constraint i of form

Constraint j of form Variable y j 0

Constraint j of form Variable y j unrestricted

Variable x j unrestricted Constraint i of form

Constraint coefficient A Constraint coefficient A

Notice that the first four correspondences are known to us already from our

study of standard problems, and the last three show how to dualize in

non-standard problems.

 (a) Use the correspondences given in the table above to find the dual

problem of the problem:

minimize: g 2 y1 y2 y3

subject to:

y1 5 y3 10

2 y1 4 y2 7

y1, y3 0

 (b) Assuming that it is still true that dual problems share the same optimal

objective value, find the minimum value of g for the problem in part (a).

15. Referring to Exercise 14,

 (a) Write the general form of the dual of the problem:

2.4 Duality and the Standard Minimum Problem 209

minimize: g b y

subject to: A y c

 y 0

 (b) Write the general form of the dual of the problem:

maximize: f c x

subject to: A x b

x 0

 (c) For each of the problems in (a) and (b), show that the dual of the dual

problem is the original (i.e., primal) problem. This illustrates again the

paired nature of dual problems.

16. Our proof of the Strong Duality Theorem, as well as the presentation of

the tableau method in Section 3, depended on the fact that the dictionary and

tableau methods were equivalent. More specifically, solving for an entering

basic variable in a constraint equation, and then substituting the resulting

expression into all other equations, is equivalent to pivoting about the

element in the row of the departing basic variable and the column of the

entering basic variable in the related simplex tableau. Consider a general

standard maximum problem in equality form, and show for the first step of

the algorithm that this is indeed the case.

210 Chapter 2 Linear Programming

3
Further Topics in Linear Programming

Introduction

There is a great deal more to linear programming than we have discussed in

Chapter 2. In particular, we have only developed a method for solving a

limited range of problems. The standard maximum problem takes the form:

max: f c x

subject to: A x b , x 0

where the vector b of constant right-hand sides was assumed to be non-nega-

tive. We would like to investigate problems in which constraint constants

are allowed to be negative, and constraints may be of the form "=" or " "

in the initial problem. (We could also generalize to problems in which the

variables are allowed to be negative, but for the sake of simplicity we do not

thoroughly discuss this problem in this book apart from a brief remark

below.) Similarly, we would like to be able to solve minimization problems

that are not in standard form, hence not able to be dualized to standard

maximum problems.

As an example of an interesting application leading to a non-standard

problem, consider the following. An individual has a fixed amount of

money to divide among several possible investment objects. For each dollar

invested in each object, the investor can estimate the number of dollars at the

end of the investment period. Due to the fact that some investment objects

are riskier than others and the investor may be averse to risk, certain other

constraints may be put on the allocation of wealth. To fix some numbers,

suppose that the investor has $20,000 to invest in either stocks, municipal

bonds, or a savings account. The expected rate of return on stocks is 8% per

year, the rate on bonds is 7%, and the savings account interest is 5%.

Because the investor is averse to risk, he wishes to invest no more in stocks

than in bonds, and no more than four times as much in bonds as in the

savings account. In addition, he wants to keep at least $5000 in savings for

emergencies. Let x1, x2, and x3, respectively, denote the numbers of dollars

invested in stocks, bonds, and savings. Then it is easy to see that the LP

problem to be solved is:

211

max: f = 1.08x1 + 1.07x2 + 1.05x3

subject to:

x1 x2 x3 20000

x1 x2 0

x2 4 x3 0

x3 5000

x1, x2, x3 0

which is a non-standard problem. Non-standard problems are covered in

Section 1.

Another direction of generalization involves the domain of values that

can be taken on by the problem variables. We have heretofore assumed that

the variables xi could take on all real values permitted by the constraints, but

in applications where a variable represents the number of some indivisible

item that are to be processed, only integer values are legal. Integer program-
ming is a large subarea of operations research in its own right, and we cannot

hope to do it justice here, but we will study an algorithm called the transpor-
tation algorithm for the special integer programming problem described

roughly as follows. There are several locations, called sources, which are

able to supply needed items to several other locations, called destinations,

which require the items in some known quantities. The number of items on

hand at each source is known, as are the costs per item to supply each

destination from each source. The problem is to find a supply schedule that

determines how many items are to be dispatched from each source to each

destination, in order to minimize total shipment cost while satisfying

demand. We show how to solve this transportation problem in Section 2.

The third extension to be discussed was foreshadowed in Exercise 13 of

Section 2.3. Suppose that the operations research analyst has been presented

with a linear programming problem, and has computed the solution, but the

originator of the problem returns to say that some of the coefficients of the

problem were mistaken. Or, perhaps the problem originator would like to

see how the optimal solution changes if a higher profit per item is made for

one or more of the quantities that have given rise to the problem variables.

Yet another change to the problem might result if new levels of resources,

not originally included in the right-hand side constraints, unexpectedly

appear. An entirely new problem constraint might even enter the picture. In

all of these cases, some change has been made to the original problem

coefficients, and one is interested in the new optimal solution. Will it be

necessary to solve the problem from the beginning with the new data? The

answer is: not necessarily. We will see in Section 3 how to analyze the

sensitivity of the optimal solution to changes in problem parameters, without

repeating the entire computation. Some new computing will be necessary,

but it is less time consuming than to solve the problem again from scratch.

212 Chapter 3 Further Topics in Linear Programming

3.1 Non-Standard Problems

Thus far, we have seen how to solve a problem of standard maximum form

by the simplex algorithm, and we have seen how to solve a standard mini-

mum problem by solving the dual maximum problem and applying the

Strong Duality Theorem. In this section, we discuss a technique for non-stan-

dard LP problems. The approach requires two phases of computation. The

first phase involves reformulating the original objective function and perform-

ing the simplex algorithm on the new problem. Its goal is to produce a basic

feasible solution. The second phase uses the final system of the first phase,

together with the original objective function, to produce an optimal solution

by the ordinary simplex method.

The following theorem, whose proof is requested in Exercise 5, allows

us to treat maximum problems only.

THEOREM 1. Suppose that g y b y is the objective function for a

minimum problem with some non-empty feasible region F. Define

f x g x b x . The problem of maximizing f over F has an

optimal solution x* if and only if x* is also optimal for the problem of

minimizing g, and in addition,

min g = –(max f)

Therefore, given a minimum problem, we may solve instead the problem

of maximizing the negative of the objective over the same feasible region. It

should be pointed out that there are other ways of solving minimum prob-

lems directly, and it may not be computationally most efficient to translate

all minimum problems into maximum problems in this way. But this

proposition does allow us to focus our attention only on solving non-stan-

dard maximum problems, and therefore it has the advantage of simplifying

the exposition.

EXAMPLE 1. Consider the two-variable problem:

(1)

max : f 4 x1 x2

subject to:

x1 x2 1

x1 x2 2

2 x1 x2 8

x1, x2 0

This is not of standard form, because of the presence of a negative number

on the right side of the first constraint, and inequalities in the direction in

the first two constraints. The feasible region is depicted in Figure 3.1.

3.1 Non-Standard Problems 213

Notice that the origin is not feasible. This is in contrast to the situation for

standard maximum problems, in which the origin is always feasible. Recall

also that in the simplex algorithm, the initial system represented the origin,

which was feasible, and at each succeeding step another basic feasible

solution was produced. The main difficulty with non-standard linear pro-

grams is the need to produce an initial simplex system that represents a basic

feasible solution. Once that is done, the simplex algorithm can finish the

problem.

Needs "KnoxOR`LinearProgramming "̀ ;

constraints

x1 x2 1, x1 x2 2, 2 x1 x2 8 ;

corners 0, 2 , 0, 8 , 3, 2 , 3 2, 1 2 ;

f x_, y_ : 4 x y;

PlotFeasibleRegion constraints,

x1, 0, 4 , x2, 0, 8 , corners, f,

ShowTable False, AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;

1 2 3 4

2

4

6

8

Figure 3.1 – Feasible region of a non-standard problem

Activity 1 – Verify that the feasible region for Example 1 is as in Figure

3.1. Find algebraically the coordinates of the feasible corner points, and

make sure they are consistent with the picture.

The first step of our Phase 1 algorithm is to remove negative signs on the

constant constraint bounds by multiplying through by 1, if necessary.

Referring to the problem of Example 1, the first constraint in (1) becomes:

214 Chapter 3 Further Topics in Linear Programming

x1 x2 1

Now introduce slack variables into all " " constraints. At the same time,

introduce surplus variables into all " " constraints; e.g., in the second

constraint of (1), there exists a non-negative surplus variable x4 such that

x1 x2 x4 2. We should note here that if a constraint is already written

in "=" form, then no slack or surplus variables are necessary, and the con-

straint may simply be left untouched. Thus, the first step of Phase 1 pro-

duces the following system of equality constraints for Example 1:

(2)

x1 x2 x3 1

x1 x2 x4 2

2 x1 x2 x5 8

xi 0 for all i

REMARK. We have generalized the standard maximum problem by

allowing negative entries in the vector b, allowing " " constraints, and

allowing "=" constraints. There is one other direction that we could take,

namely to permit negative values of the variables xi. We show briefly how

to convert such a problem into the current form. If a certain variable xi is

bounded from below by some number L 0, then

xi L xi L 0

We see that if we change variables in the constraints and the objective

function by xi x i L, then the new variable xi is constrained to be

non-negative. If no such lower bound L is present, then xi may be split into

two non-negative variables xi and xi by

(3)xi xi xi

where

(4)xi
xi if xi 0

0 otherwise
 and xi

0 if xi 0

xi otherwise

This introduces one extra variable into the system for every such xi that is

unbounded below, and increases the complexity of the computation. We

will not discuss this issue further here; for more information, the reader may

see Hillier and Lieberman [31] or Gribik and Kortanek [27].

3.1 Non-Standard Problems 215

Activity 2 – Verify that xi does decompose as in formula (3). What

happens to a constraint such as the third one in (1) if x2 0 but x1 is

unconstrained?

The second step in Phase 1 is to solve a different maximization problem.

To be specific, insert a new artificial variable ai into each equality constraint

of the current system, and define a new objective function to be the sum of

the negatives of the ai's. In the problem of Example 1, we produce the new

problem:

(5)

max : g a1 a2 a3

subject to:

x1 x2 x3 a1 1

x1 x2 x4 a2 2

2 x1 x2 x5 a3 8

xi, ai 0 for all i

The reason for doing this is given in the following theorem.

THEOREM 2. Let A be an m n0 matrix with n0 m, let c be a vector of

n0 entries, let b be a vector of m non-negative components, let I be the m m
identity matrix, and denote by 1 the vector all of whose m entries are equal to

1. Consider the following two LP problems:

LP1 maxx : c x
subject to : A x b

x 0

LP2 maxx, a : 0 x 1 a

subject to : A x I a b

x, a 0

We have the following.

(a) Problem (LP2) is both feasible and bounded, hence the simplex

algorithm produces an optimal solution (x*, a*).

(b) The optimum value of (LP2) is strictly less than zero if and only if

(LP1) is infeasible.

(c) If the optimum value of (LP2) is zero, taken on at a* = 0, then x* is

a basic feasible solution of (LP1). Also, the final simplex system of con-

straints for (LP2), with a = 0, is equivalent to the initial constraints A x b

for (LP1).

216 Chapter 3 Further Topics in Linear Programming

Proof. (a) Since we have assumed that b 0, the vector x, a 0, b

satisfies the feasibility conditions for (LP2). Also, since a 0, the objective

function of (LP2) is bounded above by 0. Together these observations prove

part (a).

(b) Suppose the optimum value of (LP2) is strictly less than zero. We

wish to show that (LP1) is infeasible. If, on the contrary, there exists a

feasible vector x for (LP1), then x 0 and

(6)A x I 0 A x b

so that x, 0 is feasible for (LP2). But this is a contradiction, because x, 0

has objective value 0 and the maximum for (LP2) was assumed to be less

than zero. You are asked to show the converse in Exercise 8.

(c) By (6), applied at the optimal solution x , 0 of (LP2), x is feasible

for (LP1). We also are required to show that x is basic, i.e., x has at least

n0 m zero components and the columns of the coefficient matrix correspond-

ing to the remaining components are linearly independent. Now (LP2) is a

problem with n0 m variables. At each stage of execution of the simplex

algorithm on (LP2), m of these variables are basic and at least

n0 m m n0 variables equal 0. In particular, in the final simplex system,

all of the m ai terms have the value zero, there are m basic variables in the

system, and at least n0 m of the remaining xi terms are zero. Those xi
terms that are non-zero are basic for the final system, hence the correspond-

ing columns of the final coefficient matrix A are linearly independent. The

final system for (LP2) may be written in the form:

(7)A1 x A2 a b

where A1 is an m n0 matrix and A2 is an m m matrix. Furthermore,

since this system was obtained from the initial system by elementary row

operations, the solution spaces of the two are exactly the same. In particular,

the subset of the solution space of (7) consisting of all x, a such that a 0

is the same as the subset of the feasible region of (LP2) for which a 0. But

that is just the feasible region of (LP1), therefore the system A1 x b is

equivalent to the system A x b, which proves the second statement of part

(c).

EXAMPLE 1 (cont.). Returning to the linear program of Example 1, notice

that objective function and constraints are in the form of (LP1) as a result of

our initial manipulations; here m 3, n0 n m 5, and

3.1 Non-Standard Problems 217

A
1 1 1 0 0
1 1 0 1 0
2 1 0 0 1

, b
1
2
8

, c

4
1
0
0
0

The introduction of the three artificial variables in (5) defines a new problem

of the type (LP2), with n0 m 8 variables: x1, ..., x5 and a1, a2, a3. The

next step of Phase 1 is to perform the simplex algorithm on the new problem,

starting with the artificial variables as basic. Notice that the initial vector

x, a 0, b is feasible for (LP2). Part (a) of the theorem says that we will

get an optimal solution. Part (b) of the theorem says that if it is not the case

that all ai's are zero in that optimal solution, then the original problem was

infeasible, and so we should stop. If indeed all of the ai's are zero in the

final system of the new problem, then delete all references to the ai's in the

constraint equations of that final system and the resulting system is equiva-

lent to the constraints for the original problem. Moreover, it represents a

basic feasible solution for (LP1). From there, we may proceed with the

simplex algorithm and the original objective from (1).

Activity 3 – Look at the constraint system (2) again. The main difficulty

with non-standard problems seems to be to obtain an initial basic

feasible solution. Why are the aritificial variables necessary, that is, why

not just let the slack and surplus variables be the initial basic variables?

Let us perform the operations described above on the problem of Exam-

ple 1. We start with system (5), and we can use the Dictionary command

again to do the tedious algebra. Observe that there is one slight variation in

(5) on the usual simplex format. Currently, the objective is written as a

function of the basic variables a1, a2, and a3. The objective should be

expressed in terms of the non-basic variables. Dictionary has no trouble

alleviating this difficulty for us by simply substituting for these variables

using the constraint equations:

phase1system

x1 x2 x3 a1 1, x1 x2 x4 a2 2,

2 x1 x2 x5 a3 8, g a1 a2 a3 ;

Dictionary phase1system, a1, a2, a3, g ,

x1, x2, x3, x4, x5

218 Chapter 3 Further Topics in Linear Programming

a1 1 1 x1 1 x2 1 x3 0 x4 0 x5
a2 2 1 x1 1 x2 0 x3 1 x4 0 x5
a3 8 2 x1 1 x2 0 x3 0 x4 1 x5
g 11 4 x1 1 x2 1 x3 1 x4 1 x5

Continuing in the usual way, with entering basic variables x2 replacing a2, x5

replacing a3, and x3 replacing a1, gives the final simplex system for the

altered problem, listed below. (You can delete the semicolons to display the

output of the intermediate steps in the electronic version of the text.)

Dictionary phase1system,

a1, x2, a3, g , x1, x3, x4, x5, a2 ;

Dictionary phase1system, a1, x2, x5, g ,

x1, x3, x4, a2, a3 ;

Dictionary phase1system, x3, x2, x5, g ,

x1, x4, a1, a2, a3

x3 3 2 x1 1 x4 1 a1 1 a2 0 a3
x2 2 1 x1 1 x4 0 a1 1 a2 0 a3
x5 6 1 x1 1 x4 0 a1 1 a2 1 a3
g 0 0 x1 0 x4 1 a1 1 a2 1 a3

Since the current values of the x variables are x1 0, x2 2, x3 3, x4 0,

and x5 6, we are now at the feasible corner point 0, 2 in Figure 3.1, and

all ai's are zero. Drop the ai's from the constraint equations and return the

original objective to the bottom row. Again, we see that the expression for f
contains a basic variable x2, but Dictionary eliminates it for us.

phase2system 2 x1 x3 x4 3,

x1 x2 x4 2, x1 x4 x5 6, f 4 x1 x2 ;

Dictionary phase2system, x3, x2, x5, f , x1, x4

x3 3 2 x1 1 x4
x2 2 1 x1 1 x4
x5 6 1 x1 1 x4
f 2 3 x1 1 x4

Phase 1 is complete.

Phase 2 simply performs the simplex algorithm on this new system. If

we introduce x1 to replace x3, then x4 to replace x5, we obtain in two steps

the following final system.

3.1 Non-Standard Problems 219

Dictionary phase2system,

x1, x2, x5, f , x3, x4 ;

Dictionary phase2system, x1, x2, x4, f , x3, x5

x1 3 1
3 x3 1

3 x5

x2 2 2
3 x3 1

3 x5

x4 3 1
3 x3 2

3 x5

f 14 2
3 x3 5

3 x5

The maximum value of f is 14, taken on at the corner point 3, 2 .

Let us now summarize the steps of the Phase 1 algorithm for maximum

problems with general linear constraints and non-negative variables. We

assume that the input problem has already been identified as non-standard.

PHASE 1 SIMPLEX ALGORITHM FOR NON-STANDARD

MAXIMUM PROBLEMS

1. {Prepare the initial system for the new problem.}

 (a) Multiply constraints in which the constant is negative by 1.

 (b) Introduce slack variables into " " constraints and surplus

 variables into " " constraints to convert to standard equality

 form.

2. Construct the problem of maximizing the sum of the negatives

 of artificial variables, where one such variable is inserted into

 each constraint equation.

3. Substitute for the artificial variables in the objective row of the

 new problem.

 {The initial system for the new problem is now ready.}

 4. Use the simplex algorithm to solve the new problem.

5. If the optimal value of the new problem is less than zero, the

 original problem is infeasible, so stop.

Otherwise, do steps 6–7

{Set up the tableau for Phase 2}

6. Delete the artificial variables from the constraint equations and

 restore the original objective to the bottom row.

7. By substitution, if necessary, eliminate basic variables from the

 objective row.

{The system is now ready for Phase 2, the ordinary

simplex algorithm.}

220 Chapter 3 Further Topics in Linear Programming

After execution of the Phase 1 algorithm, the optimal solution to the

problem can be computed as in the standard maximum case. By the way,

you may have already noticed that in practice you can save a few variables

by using slack (but not surplus) variables as basic variables in their con-

straint equations, and not including artificial variables for those equations.

This is justifiable; the only reason we advised at the outset to insert artificial

variables into each constraint row was to simplify the proof of Theorem 2.

We try this approach in the next example.

EXAMPLE 2. Let us now illustrate how the Phase 1–Phase 2 approach

proceeds in the tableau implementation of the method. The idea is the same

as in the standard maximum problem, i.e., only coefficients are preserved,

the constraint constants are isolated on the right side of the equations, and

the rows are labeled with the variable that is currently basic in the equation.

We work in the context of the investment problem discussed in the

introduction. For ease of reference it is reproduced below. Recall that x1,

x2, and x3 represent the investment amounts in stocks, bonds, and the

savings account, respectively.

max: f = 1.08x1 + 1.07x2 + 1.05x3

subject to:

x1 x2 x3 20000

x1 x2 0

x2 4 x3 0

x3 5000

 x1, x2, x3 0

There are no negative right-hand sides to remove. Slack variables x4 and

x5, respectively, are to be inserted into the second and third constraints, and

a surplus variable x6 is needed in the fourth constraint. Insert artificial

variables a1 and a2 into the first and fourth constraints, and the following

system of equations and initial tableau results.

x1 x2 x3 a1 20000

x1 x2 x4 0

x2 4 x3 x5 0

x3 x6 a2 5000

a1 a2 g

3.1 Non-Standard Problems 221

phase1tableau 1, 1, 1, 0, 0, 0, 1, 0, 20000 ,

1, 1, 0, 1, 0, 0, 0, 0, 0 ,

0, 1, 4, 0, 1, 0, 0, 0, 0 ,

0, 0, 1, 0, 0, 1, 0, 1, 5000 ,

0, 0, 0, 0, 0, 0, 1, 1, 0 ;

MatrixForm phase1tableau

1 1 1 0 0 0 1 0 20000
1 1 0 1 0 0 0 0 0
0 1 4 0 1 0 0 0 0
0 0 1 0 0 1 0 1 5000
0 0 0 0 0 0 1 1 0

Note that the basic variables a1, a2 have non-zero coefficients in the bottom

row. These may be removed by pivoting about the 1's in the artificial

variable columns (by letting the ai replace themselves in the SimplexOne-

Step command), the result of which is the tableau that follows.

varlist x1, x2, x3, x4, x5, x6, a1, a2 ;

newtableau, newbasiclist

SimplexOneStep phase1tableau,

varlist, a1, a1, a1, x4, x5, a2 ;

newtableau, newbasiclist SimplexOneStep

newtableau, varlist, a2, a2, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 1 0 0 0 1 0 20000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 4 0 1 0 0 0 0

a2 0 0 1 0 0 1 0 1 5000

obj 1 1 1 0 0 0 0 1 20000

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 1 0 0 0 1 0 20000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 4 0 1 0 0 0 0

a2 0 0 1 0 0 1 0 1 5000

obj 1 1 2 0 0 1 0 0 25000

Introduce x3 to replace a2 in the basic list, then x2 to replace a1, and the

tableaux below result.

222 Chapter 3 Further Topics in Linear Programming

newtableau, newbasiclist SimplexOneStep

newtableau, varlist, x3, a2, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 0 0 0 1 1 1 15000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 0 0 1 4 0 4 20000

x3 0 0 1 0 0 1 0 1 5000

obj 1 1 0 0 0 1 0 2 15000

newtableau, newbasiclist SimplexOneStep

newtableau, varlist, x2, a1, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
x2 1 1 0 0 0 1 1 1 15000

x4 2 0 0 1 0 1 1 1 15000

x5 1 0 0 0 1 5 1 5 5000

x3 0 0 1 0 0 1 0 1 5000

obj 0 0 0 0 0 0 1 1 0

This is the final tableau of Phase 1. Note that the artificial variables are

non-basic, and the basic variables have positive, feasible values. (Check that

the current solution satisfies the original problem constraints.)

Delete the artificial variable columns from this final Phase 1 tableau, and

restore the original objective function f to the bottom row. This gives the

initial tableau for Phase 2. Since x2 and x3 are basic, we must first pivot

away the coefficients in the bottom row. After this is done, the tableau

below results, and Phase 2, the simplex algorithm, is ready to be carried out.

phase2tableau 1, 1, 0, 0, 0, 1, 15000 ,

2, 0, 0, 1, 0, 1, 15000 , 1, 0, 0, 0,

1, 5, 5000 , 0, 0, 1, 0, 0, 1, 5000 ,

1.08, 1.07, 1.05, 0, 0, 0, 0 ;

MatrixForm phase2tableau

varlist2 x1, x2, x3, x4, x5, x6 ;

newtableau, newbasiclist

SimplexOneStep phase2tableau,

varlist2, x2, x2, x2, x4, x5, x3 ;

newtableau, newbasiclist SimplexOneStep

newtableau, varlist2, x3, x3, newbasiclist ;

3.1 Non-Standard Problems 223

1 1 0 0 0 1 15000
2 0 0 1 0 1 15000
1 0 0 0 1 5 5000

0 0 1 0 0 1 5000
1.08 1.07 1.05 0 0 0 0

x1 x2 x3 x4 x5 x6
x2 1 1 0 0 0 1 15000

x4 2 0 0 1 0 1 15000

x5 1 0 0 0 1 5 5000

x3 0 0 1 0 0 1 5000

obj 0.01 0. 1.05 0 0 1.07 16050.

x1 x2 x3 x4 x5 x6
x2 1 1 0 0 0 1 15000

x4 2 0 0 1 0 1 15000

x5 1 0 0 0 1 5 5000

x3 0 0 1 0 0 1 5000

obj 0.01 0. 0. 0 0 0.02 21300.

A basic feasible solution with x1 0, x2 15000, and x3 5000 has been

reached. We next let x1 enter the basic list, replacing x4 by the minimum

ratio rule:

newtableau, newbasiclist SimplexOneStep

newtableau, varlist2, x1, x4, newbasiclist ;

x1 x2 x3 x4 x5 x6

x2 0 1 0 1
2

0 1
2

7500

x1 1 0 0 1
2

0 1
2

7500

x5 0 0 0 1
2

1 9
2

12500

x3 0 0 1 0 0 1 5000

obj 0. 0. 0. 0.005 0 0.025 21375.

This is the last tableau, because all objective row entries are non-positive.

Therefore, the amounts x1 7500, x2 7500, and x3 5000 are the optimal

investments in stocks, bonds, and savings.

224 Chapter 3 Further Topics in Linear Programming

Exercises 3.1

 1. (Mathematica) Solve the non-standard problem:

max: f x1 x2

subject to:

x2 1

x1 x2 2

x1 x2 6

x1, x2 0

2. (Mathematica) What happens in Phase 1 of the investment problem of

Example 2 if the first entering basic variable is chosen to be x1 instead of x3?

Do you get the same basic feasible solution at the start of Phase 2?

3. (Mathematica) Find the optimal solution of:

max f x1 x2 x3

subject to:

x1 3

x2 x3 6

x1 x2 x3 5

x1, x2, x3 0

4. (Mathematica) A bakery employs a skilled pastry chef, who should work

at least 6 hours per day. An oven suitable for the use of the chef is available

8 hours per day. Three types of pastry are to be made; each batch requires

labor time (in hours) by the chef and time in the oven as below:

 Pastry type

1 2 3

— — —

Chef time : 1 1 2

Oven time : 2 1 2

Suppose that the profit per batch is $10 for type 1, $5 for type 2, and $10 for

type 3 pastry. How many batches of each pastry type should be made to

maximize profit?

5. Prove Theorem 1.

3.1 Non-Standard Problems 225

6. (Mathematica) Find the minimum value of 2 x1 x2 subject to

2 x1 x2 4

x1 x2 5

x1, x2 0

7. Solve the following non-standard problem without recourse to the

simplex algorithm.

maximize: f 2 x1 3 x2

subject to:

x1 x2 1

2 x1 x2 6

x1 2 x2 1

x1, x2 0

8. Show the converse of Theorem 2(b); i.e., show that if problem (LP1) is

infeasible, then the optimum value of problem (LP2) is strictly less than zero.

9. (Mathematica) Express the following problem in non-standard form with

all variables constrained to be non-negative. Then solve the problem by the

Phase 1–Phase 2 approach. Sketch the feasible region.

maximize: f x1 2 x2

subject to:
x1 x2 1

x2 5

x1 unconstrained, x2 2

10. (Mathematica) A woman beginning a small business will borrow

$10,000. There are three possible lenders; one is an in-town bank who

charges an effective annual interest rate of 10%, the second is a savings and

loan whose interest rate is 8%, and the third is a major out-of-town bank,

whose interest rate is also 8%. Because she wishes to establish a significant

credit history at the in-town bank where she will do most of her banking, she

will borrow at least $5000 from this institution. Of the remaining money,

she will borrow at least as much from the out-of-town bank as from the

savings and loan. How much should she borrow from each institution to

minimize the yearly interest she pays?

11. There is an alternative method for solving problems with mixed inequal-

ity constraints, which can result in computational savings, called the "Big M"

method. Instead of introducing an artificial variable into every constraint as

226 Chapter 3 Further Topics in Linear Programming

Phase 1 does, introduce it only into the " " constraints, i.e., those with

surplus variables. Then maximize the original objective minus a large but

unspecified number M times the sum of the artificial variables.

(a) Solve Exercise 1 by the Big M method.

(b) Argue that if the original problem has an optimal solution, then at

the end of the Big M procedure all artificial variables will be zero and the

final system will represent the solution. (Which variables should be basic in

the initial system?)

(c) Examine what happens to this procedure when it is applied to the

following infeasible problem:

maximize: f x1 x2

subject to:

2 x1 x2 4

x1 x2 5

x1, x2 0

12. (Mathematica) A maker of bird seed will use three ingredients, labeled

A, B, and C, to form boxes of exactly 100 grams of seed. It has been deter-

mined that the profit per gram of A is 5, and the profits per gram of B and C

are 4 each. It is desired to achieve a threshhold value of at least 260 units of

protein in the mixture, while limiting the fat content to no more than 80

units. Suppose that each gram of ingredient A has 2 units of protein and 1

unit of fat, each gram of B has 3 units of protein but no fat, and each gram of

C has 4 units of protein and 1 unit of fat. Formulate the problem as a

non-standard linear programming problem, and solve it by: (a) the Phase

1–Phase 2 approach, and (b) the Big M method (see Exercise 11).

13. Formulate as a non-standard linear program, but do not solve, the

maximal flow problem of Example 2 of Section 1.5.

3.2 Transportation Problem

We now introduce a class of problems known as transportation problems
and a streamlined algorithm to solve them. Suppose that there are m sources

of supply and that supplies must be transported to n destinations. For

simplicity, we will assume that the total available supply exactly equals the

total demand by these destinations. The ith source has a quantity si of

3.1 Non-Standard Problems 227

supplies available, and the jth destination needs a quantity d j. There is a

transportation cost per item of ci j for a move from source i to destination j.
The problem may be depicted by a bipartite, weighted, directed graph as in

Figure 3.2, in which vertices 1, 2, 3 are sources and vertices 4, 5, 6 are

destinations. We are to determine how many items must be sent from each

source to each destination to meet the demands at minimum total cost.

1 2

3

4

5

6

c14

c15

c16
c24

c25

c26

c34

c35

c36

Figure 3.2 – A transportation problem

Denote by xi j the number of items sent from source i to destination j.
Then ci j xi j is the cost of this particular shipment. Also, notice that

j 1
n xi j

is the total amount of supplies shipped out by source i, and

i 1
m xi j

is the total amount received by destination j. It follows that the transporta-

tion problem can be formulated as a linear program by:

(1) minimize:
i 1

m

j 1

n
ci j xi j

(2)
subject to:

j 1

n
xi j si for each i 1, 2, ... , m

i 1

m
xi j d j for each j 1, 2, ..., n

all xi j 0

228 Chapter 3 Further Topics in Linear Programming

We observe that there are m n variables xi j, m supply constraints and n
demand constraints, comprising a total of m n constraints. However, since

the total demand d j equals the total supply si, the sum of the supply

constraints in (2) equals the sum of the demand constraints, which gives the

system a dependency. Because of this, one constraint is superfluous, which

implies that the number of basic variables in the modified version of the

simplex algorithm to be discussed will be m n 1, rather than m n.

The constraints of (2) are already in standard equality form, and the

origin is not feasible. Recall that we may solve the minimum problem by

solving instead:

(3)maximize:
i 1

m

j 1

n
ci j xi j

The optimal value of the minimum cost transportation problem will be the

negative of the optimal value of (3). So, we have a non-standard problem of

the type that could be treated by the Phase 1 algorithm of Section 1. How-

ever, that algorithm, whose purpose is to find a basic feasible solution,

requires the introduction of many new artificial variables. The result is that

an already large problem becomes even larger. Because of the special form

of the constraints, it should be possible to replace Phase 1 by another routine

that does not increase the size of the problem. Several strategies have been

used; here we list one that is not necessarily the most efficient, but is easy to

understand and is consistent in style with our earlier discussion of the

simplex algorithm. For alternative treatments, you may refer to Rao [49], or

Walker [59].

To gain an appreciation of how special the constraints are, let us write in

full the system (2).

x11 x12 x1 n s1

x21 x22 x2 n s2

. .
. .

. .
xm 1 xm 2 xm n sm

x11 x21 xm 1 d1

x12 x22 xm 2 d2

. . . .
. . . .

. . . .
x1 n x2 n xm n dn

Figure 3.3 – The system of constraints for the transportation problem

All coefficients are 1 initially, and each variable appears exactly once in a

supply constraint and exactly once in a demand constraint. If, as in the

3.2 Transportation Problem 229

simplex algorithm, we imagine choosing a variable to be basic, then there

will only be two equations to be tested for the binding constraint; and once

the proper equation is located, there will only be one constraint equation, and

the objective row, into which to substitute the expression for the new basic

variable. We will see that this property remains true, not only in the first

step, but throughout the transportation algorithm.

Activity 1 – Is there an easy way of knowing which of the two con-

straint equations in which an entering basic variable appears is the

binding one?

The strategy will be to identify one basic variable in a step. Any other

variables in the equation in which it becomes basic are declared to be

non-basic, not only for the next step but throughout the remainder of this

phase of the algorithm. The choice of which variable is to become basic is

made from among all variables not already declared to be either basic or

non-basic. To attempt to steer the algorithm toward a good basic feasible

solution, we select at each step a new basic variable from among undeclared

variables that has the smallest current cost coefficient (equivalently, the

largest coefficient in the objective row of the maximum problem (3)). We

stop when there are m n 1 basic variables. The system of constraints will

then represent a basic feasible solution, and Phase 2, the ordinary simplex

algorithm, can be brought in to finish the problem.

The example below illustrates the procedure. We first do a problem

longhand, and then later we will show how to use a command similar to the

SimplexOneStep command to get Mathematica to carry out the computa-

tions.

EXAMPLE 1. An army commander must send tanks from two bases to

three battle positions. The supply and demand requirements are given in the

table below; also listed are the transportation times of moving a tank from

each base to each battle position. How should the tanks be assigned so as to

minimize the total transportation time?

 Battle Positions

 1 2 3 Tanks Available

Bases

1

2

Required # Tanks

5 10 12 s1 20

6 8 8 s2 20

d1 8 d2 12 d3 20 40

Let xi j be the number of tanks to be sent from base i to position j. Then, for

instance, the fact that base 1 has 20 tanks says that x11 x12 x13 20. The

base 2 supply requirement, and the three battle position demand require-

230 Chapter 3 Further Topics in Linear Programming

ments may be obtained from the table similarly. Adjoining the objective of

maximizing negative cost, we can write the initial transportation simplex

system as follows.

(4)

0 20 x11 x12 x13

0 20 x21 x22 x23

0 8 x11 x21

0 12 x12 x22

0 20 x13 x23

f 5 x11 10 x12 12 x13 6 x21 8 x22 8 x23

The form given above, in which 0's appear on the left, is used as a reminder

that as yet no basic variables have been declared. The maximum coefficient

in the objective row belongs to x11. Since 8 20, it is the first demand

constraint that is binding. There, x11 8 x21. Declare x11 to be basic in

row 3, declare x21 to be non-basic for the rest of transportation phase 1, and

substitute the expression for x11 into the first supply constraint and the

bottom row to get:

(5)

0 12 x12 x13 x21

0 20 x21 x22 x23

x11 8 x21

0 12 x12 x22

0 20 x13 x23

f 40 10 x12 12 x13 x21 8 x22 8 x23

basic: x11 non-basic: x21

Among the undeclared variables, the largest objective coefficient belongs to

both x22 and x23. If we declare x22 basic, then the second demand constraint

is binding, and x12 is declared non-basic. Substituting the expression for x22

from row 4 into the second row and the bottom row, we obtain:

(6)

0 12 x12 x13 x21

0 8 x12 x21 x23

x11 8 x21

x22 12 x12

0 20 x13 x23

f 136 2 x12 12 x13 x21 8 x23

basic: x11, x22 non-basic: x21, x12

3.2 Transportation Problem 231

Variable x23 is the next to be declared basic. The second supply constraint

(row 2) is binding, and no new non-basic variables are declared. The next

system is:

(7)

0 12 x12 x13 x21

x23 8 x12 x21

x11 8 x21

x22 12 x12

0 12 x12 x13 x21

f 200 10 x12 12 x13 7 x21

basic: x11, x22, x23 non-basic: x21, x12

Now we clearly see the degeneracy mentioned earlier. The first supply and

third demand equations are the same. Delete the top row and declare x13, the

only remaining choice, to be basic in the third demand equation.

(8)

x23 8 x12 x21

x11 8 x21

x22 12 x12

x13 12 x12 x21

f 344 2 x12 5 x21

basic: x11, x22, x23, x13 non-basic: x21, x12

(9) x11 8, x12 0, x13 12, x21 0, x22 12, x23 8, f 344

The revised Phase 1 for the transportation problem is now complete. The

solution represented by (9) is feasible, and the ordinary simplex method

leads us to the optimal solution in one more step by introducing x12 to

replace x13 in the basic list (note the degeneracy):

(10)

x23 20 x13 x21

x11 8 x21

x22 0 x13 x21

x12 12 x13 x21

f 320 2 x13 3 x21

(11) x11 8, x12 12, x13 0, x21 0, x22 0, x23 20, f 320

232 Chapter 3 Further Topics in Linear Programming

The solution means that we split the 20 tanks of base 1 among positions 1

and 2, and position 3 is supplied entirely by base 2 tanks. This solution is

degenerate, since the basic variable x22 has the value zero.

Activity 2 – Find all alternative optimal solutions, if any, in Example 1.

The algorithm below outlines the general procedure illustrated by the

example. It requires the cost coefficients ci j and the supply and demand

constants si and d j.

TRANSPORTATION PHASE 1 ALGORITHM

 1. Initialize all xi j as undeclared, and all supply and demand equations

 as unused.

 2. Do a–b until n m 1 basic variables have been declared.

 a. Find an xi j from the undeclared list whose corresponding

 coefficient in the objective row is maximal. Declare xi j to be basic.

 b. Of the two equations, one supply and one demand, in which xi j

 appears, select the binding equation, and

i. Solve in this equation for xi j.

ii. Substitute into the other constraint equation in which xi j appears,

 and into the objective equation.

iii. For each variable that is currently undeclared in the equation in

 which xi j became basic, declare it to be non-basic.

 3. Delete the unused equation and return the others for use by the

 ordinary simplex algorithm.

Some other questions regarding the correctness of the algorithm arise,

which we now address informally. Note that we have chosen to discard an

equation at the end of the algorithm. Since there are only n m 1 indepen-

dent constraints, discarding an equation produces no change in the feasible

region. In Exercise 3 you are asked to show that, as step 2b requires, if a

variable is currently undeclared, then it appears with its original coefficient

in exactly one unused supply and exactly one unused demand equation.

How do we know that the algorithm will succeed at producing n m 1

basic variables? Refer to the constraints in Figure 3.3. If a variable is

declared basic in a supply constraint, then since each unused demand

equation has at most one variable in common with this supply equation, each

such demand equation can lose at most one undeclared variable. Similarly,

if a variable becomes basic in a demand equation, then this demand equation

can have at most one variable in common with each unused supply con-

straint, so that each of those loses at most 1 undeclared variable. Separate

supply constraints and demand constraints have no undeclared variables in

3.2 Transportation Problem 233

common, so the declaration of a variable in a supply constraint does not

change the count of undeclared variables in other supply constraints, and

similarly for demand constraints. Consequently, a sequence of k1 choices of

basic variables in supply constraints and k2 choices of basic variables in

demand constraints results in at least n k2 undeclared variables per unused

supply constraint in the m k1 unused supply constraints, and at least m k1

undeclared variables per unused demand constraint in the n k2 unused

demand constraints. Each undeclared variable appears once in each group,

hence (correcting for double counting) we have at least:

 n k2 m k1 m k1 n k2 2 m k1 n k2

undeclared variables after this sequence of moves. As long as we do not

exhaust all equations in either the supply or the demand group, then we

know that this number of undeclared variables is at least 1, so that there will

be a variable to declare as basic. This points up that perhaps we should add

a check to the basic algorithm that once a group, either supply or demand, of

equations comes within one equation of exhaustion, we should discard the

last equation (which is dependent on the others anyway), and just finish by

declaring exactly one basic variable in each remaining unused equation in

the other group, for a total of n m 1 basic variables. (See, however,

Exercise 11.)

Activity 3 – Explain how we know that the set of variable values at the

end of Phase 1 forms a basic feasible solution.

Needs "KnoxOR`LinearProgramming "̀ ;

The LinearProgramming package has a command that performs a step of

the transportation algorithm in tableau form.

TransportationOneStep tableau,

varlist,entering,row,basiclist

Like SimplexOneStep, it takes the current simplex tableau for the constraint

system with the objective adjoined, the list of variables, the variable that is

now entering as a declared basic variable, the number of the row in which it

is to become basic, and the list of current basic variables. Note that the

fourth argument differs from that of SimplexOneStep in that there is no

departing variable for that row. Also, the list of current basic variables will

have blanks in any row for which a basic variable has not yet been declared.

234 Chapter 3 Further Topics in Linear Programming

Also like SimplexOneStep, it returns the pair{newtableau, newbasiclist}for

use as arguments in the next step.

EXAMPLE 2. Let us illustrate the tableau implementation of the transporta-

tion algorithm. Suppose that there are two beer distributors, owned by a

common parent company, in a small city. Each week they supply four

taverns with kegs of a limited-edition dark beer. The costs per keg to ship

from each distributor to each tavern are in the table below. Also listed are

the required number of kegs in a week for each tavern, and the supplies on

hand at each distributor. Find a distribution scheme that minimizes the total

shipping cost to the company, while fulfilling the needs of the taverns.

 Taverns

 1 2 3 4 Kegs Available

Distributors
1

2

1 2 3 2

2 3 1 2

25

22

Required # Kegs: 10 12 10 15 47

We let xi j be the number of kegs shipped from distributor i to tavern j, for

i 1, 2; j 1, 2, 3, 4. Then the following system of equations represents

the constraints. The objective function f to be maximized is the negative of

the sum of coefficients ci j obtained from the table, times xi j.

(12)

x11 x12 x13 x14 25
x21 x22 x23 x24 22

x11 x21 10
x12 x22 12

x13 x23 10
x14 x24 15

x11 2 x12 3 x13 2 x14 2 x21 3 x22 x23 2 x24 f 0

No variables are yet declared. This system gives rise to the initial tableau

shown below.

3.2 Transportation Problem 235

tableau 1, 1, 1, 1, 0, 0, 0, 0, 25 ,

0, 0, 0, 0, 1, 1, 1, 1, 22 ,

1, 0, 0, 0, 1, 0, 0, 0, 10 ,

0, 1, 0, 0, 0, 1, 0, 0, 12 , 0, 0, 1, 0, 0,

0, 1, 0, 10 , 0, 0, 0, 1, 0, 0, 0, 1, 15 ,

1, 2, 3, 2, 2, 3, 1, 2, 0 ;

MatrixForm tableau

1 1 1 1 0 0 0 0 25
0 0 0 0 1 1 1 1 22
1 0 0 0 1 0 0 0 10
0 1 0 0 0 1 0 0 12
0 0 1 0 0 0 1 0 10
0 0 0 1 0 0 0 1 15
1 2 3 2 2 3 1 2 0

The rule of thumb that says to select the largest entry in the objective row,

which would correspond to the minimum cost coefficient, would say to let

either x11 or x23 enter the basis. Choosing x11, the first demand constraint,

i.e., row 3, is binding. Now we set up and use TransportationOneStep.

varlist x11, x12, x13, x14, x21, x22, x23, x24 ;

basiclist "", "", "", "", "", "" ;

tableau, basiclist TransportationOneStep

tableau, varlist, x11, 3, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

0 0 0 0 1 1 1 1 22

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

0 0 1 0 0 0 1 0 10

0 0 0 1 0 0 0 1 15

obj 0 2 3 2 1 3 1 2 10

basic variables: x11 non-basic variables: x21

Because the undeclared variable x21 was in the equation in which x11 was

declared basic, it is placed into the non-basic list. Next to enter is x23, and

the binding constraint is the third demand constraint, in row 5. Since the

undeclared variable x13 is in row 5, it is included into the non-basic list.

236 Chapter 3 Further Topics in Linear Programming

tableau, basiclist TransportationOneStep

tableau, varlist, x23, 5, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 0 1 0 0 0 1 15

obj 0 2 2 2 1 3 0 2 20

basic variables: x11, x23 non-basic variables: x21, x13

Now we can choose any of x12, x14, or x24. Using x24 for example, the

second supply constraint (row 2) and the fourth demand constraint (row 6)

are the competitors, and we see that row 2 is binding. Since x22 is an

undeclared variable in that list, we must mark it as non-basic.

tableau, basiclist TransportationOneStep

tableau, varlist, x24, 2, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 1 1 1 1 0 0 3

obj 0 2 4 2 1 1 0 0 44

basic variables: x11, x23, x24 non-basic variables: x21, x13, x22

If we next let x12 enter, the second demand constraint (row 4) is binding and

no new non-basic variables come in.

tableau, basiclist TransportationOneStep

tableau, varlist, x12, 4, basiclist ;

3.2 Transportation Problem 237

x11 x12 x13 x14 x21 x22 x23 x24
0 0 1 1 1 1 0 0 3

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

x12 0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 1 1 1 1 0 0 3

obj 0 0 4 2 1 1 0 0 68

basic variables: x11, x23, x24, x12

non-basic variables: x21, x13, x22

To finish Phase 1, x14 enters the basis in either row 1 or row 6. We choose

row 1.

tableau, basiclist TransportationOneStep

tableau, varlist, x14, 1, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
x14 0 0 1 1 1 1 0 0 3

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

x12 0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 0 0 0 0 0 0 0

obj 0 0 2 0 1 1 0 0 74

basic variables: x11, x23, x24, x12, x14

non-basic variables: x21, x13, x22

To pass to Phase 2, the ordinary simplex algorithm, we would delete the

unneeded row of zeros and continue to pivot away positive entries in the

objective row, but we see that in fact there are none, and so Phase 1 has

already led us to the optimal solution. Because the objective row corre-

sponds to the equation f 74 2 x13 x21 x22 and these variables are

non-basic, we observe that the maximal value of f is 74, hence the mini-

mal cost is 74. The optimal values of the problem variables are:

x11 10, x12 12, x13 0, x14 3,

x21 0, x22 0, x23 10, x24 12

For your reference, to delete the unneeded row in Mathematica so as to

begin using SimplexOneStep for phase 2 when you do need to do that, you

can use the standard Mathematica command

238 Chapter 3 Further Topics in Linear Programming

Take list, m, n

which returns elements m through n of the given list. For the example

above, we would keep rows 1–5 and the objective row to make a new

tableau for phase 2 by the following:

phase2tableau Join

Take tableau, 1, 5 , Take tableau, 7, 7 ;

MatrixForm phase2tableau

0 0 1 1 1 1 0 0 3
0 0 1 0 1 1 0 1 12
1 0 0 0 1 0 0 0 10
0 1 0 0 0 1 0 0 12
0 0 1 0 0 0 1 0 10
0 0 2 0 1 1 0 0 74

Activity 4 – Check in Example 2 that if you do not use the minimum

cost rule to select entering basic variables, then after Phase 1 is executed

there are still several steps of the ordinary simplex algorithm to execute.

Try, for example, the sequence of entering basic variables

x13, x22, x14, x21, x24.

Exercises 3.2

1. (Mathematica) Solve the transportation problem with 3 sources and 3

destinations whose cost structure and supply and demand requirements are in

the table below. (The table entries are costs per unit shipped.)

 destination

source 1 2 3 available

1 10 8 10 100

2 12 15 20 200

3 20 10 20 100

required : 150 150 100 400

2. (Mathematica) A manufacturer of auto batteries has two plants, which are

to supply four retailers. The plants have 1000 and 1500 batteries available,

3.2 Transportation Problem 239

respectively. The four retailers have ordered 800, 500, 400, and 800 batter-

ies, respectively. The shipping costs, in cents per battery, from plant 1 to the

four retailers are 25, 25, 10, and 15, and costs from plant 2 to the retailers are

30, 20, 10, and 20. Determine a supply strategy to minimize the total

transportation costs.

3. Prove that, in reference to the Transportation Phase 1 algorithm, if a

variable is currently undeclared in step 2a, then it appears with its original

coefficient in exactly one unused supply and exactly one unused demand

equation.

4. Prove that if the entries in any single row or column of the cost matrix

ci j of a transportation problem are all reduced by the same number, then

the optimal solution does not change.

5. (Mathematica) Solve the transportation problem whose supply and

demand requirements, and transportation costs are given in the table below.

 destination
source 1 2 3 4 available

1 4 2 2 3 80

2 1 4 5 2 50

3 6 3 3 2 100

4 3 1 1 3 50

required : 60 100 80 40 280

6. Prove that under the assumptions of this section, Phase 1 of the Transporta-

tion Algorithm must result in an integer-valued feasible solution.

7. One alternative to the minimum cost selection rule for the transportation

algorithm is the Northwest Corner Rule. In this approach, the chosen

sequence of basic variables is simpler. Display the variables xi j in an array

as shown below:

x11 x12 x13 x1 n

x21 x22 x23 x2 n

xm 1 xm 2 xm 3 xm n

First let x11 be basic (i.e., begin in the northwest corner of the array) and let

all other variables in the binding constraint be non-basic. If the supply

constraint was binding, then x1 j are declared non-basic for all j 1, ... , n,

240 Chapter 3 Further Topics in Linear Programming

and we may effectively delete the first row of the array. If the binding

constraint was the demand constraint, then the first column may be deleted.

Choose as the next entering basic variable the entry in the northwest corner

of the reduced array. In the first case above, the next basic variable would

be x21, and in the second case it would be x12. Continue in this manner until

there are m n 1 basic variables.

(a) Why should you expect that in general this approach will not lead as

quickly to an optimal solution as the minimum cost algorithm?

(b) (Mathematica) Redo Example 1 using the Northwest Corner

Algorithm.

8. (Mathematica) Redo Example 2 using the Northwest Corner Algorithm

(see Exercise 7).

9. Suppose that in Exercise 1, source 1 can only supply 90 items. Execute

the Transportation Algorithm on the resulting problem, and explain what

happens in the final system or tableau. (This time, do not discard an equa-

tion when it is the only one still unused in its group.)

10. Suppose that in Exercise 1, source 1 can now supply 110 items. As in

Exercise 9, execute Phase 1 of the Transportation Algorithm and explain the

result.

11. Consider a step in the Transportation Algorithm in which there remains

exactly one supply constraint that has no basic variable corresponding to it,

and there are two or more unused demand constraints. Show that it cannot

be the case that when a new basic variable is selected, the final supply

constraint is the binding constraint. (Hint: express the current constant in the

unused supply equation in terms of the demand constants that have been

subtracted from it up to this step, and argue by contradiction that this con-

stant must exceed the demand constant in the demand constraint in which the

entering basic variable appears.)

12. (Mathematica) Use the tableau version of the Transportation Phase 1

algorithm, and if necessary the Phase 2 simplex algorithm, to solve the

following problem. A bakery has five trucks servicing the four supermarkets

in a town. The trucks contain 10, 8, 7, 10, and 6 units of bread, respectively,

and the supermarkets are demanding 12, 8, 14, and 7 units, respectively.

The delivery costs per unit from each truck to each supermarket are shown in

the table below. Devise an optimal delivery plan.

3.2 Transportation Problem 241

 Supermarkets

 1 2 3 4

Trucks

1

2

3

4

5

4 3 2 6

9 5 4 7

5 3 5 2

3 5 4 8

3 5 6 4

13. We may view the optimal assignment problem of Chapter 1 as a transpor-

tation problem in the following way. Let a variable xi j equal 1 if worker i is
assigned to task j, and 0 otherwise. There is a cost ci j of assigning worker i
to task j.

(a) Formulate an objective function for the problem of minimization of

total cost of assignment.

(b) Formulate constraints corresponding to the requirement that all

workers have a distinct task.

(c) Solve the problem if the costs are as follows:

c11 = 6, c12 = 4, c13 = 3,

c21 = 6, c22 = 5, c23 = 8,

c31 = 8, c32 = 2, c33 = 4 .

14. Referring to the discussion of Exercise 13, solve Exercise 12 of Section

6 of Chapter 1 using the Transportation Algorithm.

3.3 Sensitivity Analysis

Discussion of the Problem

Up to this point in our study of linear programming it has been assumed that

all parameters, including objective coefficients, constraint coefficients, and

constraint constants, are perfectly known and unchanging. This might not be

the case in practice, as indicated by another look at the winery problem of

Chapter 2. For convenience, we display the problem and its final simplex

system below.

242 Chapter 3 Further Topics in Linear Programming

maximize: f x1, x2, x3 1.25 x1 1.50 x2 2.00 x3

 subject to:

2 x1 x3 200

2 x2 x3 150

2 x1 x2 1.5 x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

type 1 grapes

type II grapes

sugar

labor time

x4 185 1
2

x5 x6

x2
135
2

x1
3
4

x5
1
2

x6

x3 15 2 x1
1
2

x5 x6

x7
305
2

x1
1
4

x5
5
4

x6

f 524
4

5
4

x1
1
8

x5
5
4

x6

x1 0, x2 135 2, x3 15,

x4 185, x5 0, x6 0, x7 305 2

The standard maximum problem written in matrix notation is:

max : c x , subject to A x b , x 0

Recall that the variables x1, x2, and x3 represent production quantities in

gallons of three types of wine: red, white, and rosé. The objective coeffi-

cient c j is the profit per gallon of wine j, the constraint coefficient ai j is the

amount of resource i (type I grapes, type II grapes, sugar, or labor time)

needed to make a gallon of wine j, and the constraint constant bi is the

available amount of resource i. In the optimal solution for these parameters,

x2 and x3 are basic, and x1 is non-basic, meaning that no red wine should be

made.

It is reasonable to ask the question: by how much can the profit per unit

on red wine be increased before it is no longer optimal to produce no red

wine? Must we execute the simplex algorithm over and over again with

different choices of c1 until by very good luck we hit upon the critical profit

at which red wine enters the basis? Another question involves changes in

available resources. In the current optimal solution, the slack variable x5 is

non-basic, which means that there are no unused type II grapes. Suppose

that the winery has an unexpectedly good harvest of these grapes, and

therefore, there are more than the original 150 bushels available. A change

in the constraint constant b2 results. How does the optimal solution change?

Yet another question pertains to changes in resource requirements. Suppose

that a reduction in the amount of sugar in red wine is being contemplated.

Chapter 3 Further Topics in Linear Programming 243

This would alter the constraint coefficient a31. How do the optimal produc-

tion variables change? Might it become profitable for red wine to be manu-

factured?

All of these questions focus on what happens to the optimal solution

when a parameter changes. This subject is referred to as sensitivity (or

post-optimality) analysis. We will analyze the effect on the optimal solution

of: (1) changing the objective function coefficients, (2) changing the con-

straint constants, and (3) changing the column of constraint coefficients for a

non-basic variable. Our goal is to characterize the range of values of the

parameter under study for which the current basic list remains optimal, and

to recompute the optimal value of the objective function and the values of

the basic variables, if indeed they change. This new computation can be

done without repeating the simplex algorithm. We remark briefly at the end

of the section on other forms of sensitivity analysis, and how to obtain a new

optimal solution if the basic list becomes sub-optimal, or even infeasible.

Our presentation follows that of Winston [61], and also draws somewhat

from Hillier and Lieberman [31], and Rao [49].

Matrix-Geometric View of the Simplex Method

In order to have a concise way of expressing the final simplex tableau for a

perturbed problem in terms of the original problem, it will be helpful to look

once again at how a final tableau is obtained. We now adopt the point of

view of matrix geometry. The initial tableau for the winery problem is

displayed in Figure 3.4(a), and elementary row operations produce the final

tableau in Figure 3.4(b). The initial and final tableaux for this problem, as

well as any other standard maximum problem, can be written in block form

as in Figure 3.5(a) and (b), respectively.

x1 x2 x3 x4 x5 x6 x7

2 0 1 1 0 0 0 200

0 2 1 0 1 0 0 150

2 1 3 2 0 0 1 0 90

2 1 2 0 0 0 1 250

5 4 3 2 2 0 0 0 0 f 0

x4

x5

x6

x7

(a)

244 Chapter 3 Further Topics in Linear Programming

x1 x2 x3 x4 x5 x6 x7

0 0 0 1 1 2 1 0 185

1 1 0 0 3 4 1 2 0 135 2

2 0 1 0 1 2 1 0 15

1 0 0 0 1 4 3 2 1 305 2

5 4 0 0 0 1 8 5 4 0 f 525 4

x4

x2

x3

x7

(b)

Figure 3.4 – (a) Initial, and (b) final tableaux for winery problem

A I b

c 0 f 0

A S b

c f f

(a) (b)

Figure 3.5 – (a) Initial, and (b) final tableaux in block form

Below is a glossary of notation. Some of it is already familiar, and some

is illustrated in Figure 3.5. The rest is necessary because we will need to

express all relevant quantities in terms of the separate contributions of the

basic variables and the non-basic variables for the final simplex system.

(a) A m n matrix of constraint coefficients for original problem in

inequality form;

(b) b m 1 column vector of constraint constants for original problem;

(c) I m m identity matrix;

(d) 0 = vector of length m all of whose components are 0;

(e) c 1 n row vector of objective function coefficients for original

problem;

(f) f = objective function;

(g) c 1 n m row vector of objective function coefficients in final

tableau;

(h) f = value of objective function in final tableau;

(i) b m 1 column vector of values of basic variables in final

tableau;

(j) A m n matrix of constraint coefficients for objective variables

in final tableau;

(k) x n m 1 column vector of variables, including slacks, in

(arbitrary) simplex system;

Chapter 3 Further Topics in Linear Programming 245

(l) S m m matrix of slack variable constraint coefficients in final

tableau;

(m) = list of basic variables in optimal simplex tableau, ordered

according to the rows in which they are basic;

(n) = list of non-basic variables in optimal simplex tableau, written in

an arbitrary order;

(o) B m m submatrix of initial constraint coefficent matrix whose

columns are the columns of the variables in , in the order specified by ;

(p) N m n submatrix of initial constraint coefficent matrix whose

columns are the columns of the variables in , in the order specified by ;

(q) cb 1 m row vector of entries of c corresponding to , in order;

(r) cn b 1 n row vector of entries of c corresponding to , in order;

(s) xb m 1 column vector of entries of x corresponding to , in order;

(t) xn b n 1 column vector of entries of x corresponding to , in order.

The main idea here is to divide up the parts of the problem that have to

do with the final list of basic variables from those that have to do with the

non-basic variables. For example, in the winery problem whose initial and

final tableaux are in Figure 3.4(a) and (b),

(3)
x4, x2, x3, x7 , x1, x5, x6 ,

cb 0, 3 2, 2, 0 , cn b 5 4, 0, 0

Activity 1 – Identify all of the other quantities named in the glossary for

the winery problem. Note particularly the submatrices B and N.

Recall that we wish to find ranges of values of the problem parameters in

which the list of basic variables does not change after perturbation of the

parameters. The actual values of the basic variables, as well as the objective

function and the objective coefficient vector c may change under the

perturbation. It turns out that we can obtain closed-form expressions for

these quantities in terms of the parameters of the original problem, and,

perhaps surprisingly, in terms of the matrix S of slack variable constraint

coefficients in the final tableau of the unperturbed problem.

Note that the standard maximum problem in equality form can be

written, by separating the contributions of the basic and non-basic variables,

as:

(4)

max : f cb xb cn b xn b

subject to : B xb N xn b b, x 0

246 Chapter 3 Further Topics in Linear Programming

(See Exercise 1, which asks you to check this for the winery problem.)

When we use the subscripts b and n b, you should remember that we mean

the basic and non-basic lists in the optimal tableau for the unperturbed
problem. The main theorem is as follows.

THEOREM 1. (a) The matrix B, composed of columns of the initial

system of constraints corresponding to the variables in , and the matrix S,

composed of slack variable coefficients in the final system of constraints, are

inverses of one another.

(b) The values of the optimal basic variables are the components of the

vector

b B 1 b S b

in the order specified by .

(c) The objective equation corresponding to the final row of the optimal

tableau has the form

f cb S b cn b cb S N xn b,

where N is the matrix composed of columns of the initial system of con-

straints corresponding to the variables in . In particular, cb S b is the

optimal objective value, and the vector coefficient cn b cb S N of xn b in

the second term on the right gives the non-basic variable coefficients in the

order specified by .

Proof. (a) Consider the basic variable submatrix B. Because of the way in

which we have ordered the set , the first member of , corresponding to the

first column of B, will be basic in the first row of the final tableau, the

second member of will be basic in the second row, etc. As we have seen

many times, a column of a basic variable in the final tableau has an entry of

1 in the row in which it is basic, and 0 elsewhere. Thus, the elementary row

operations performed in computing the final tableau have the effect of

transforming B into I, the m m identity matrix. Those same row operations

transform the identity matrix, formed by the slack variable columns of the

initial tableau, into S (see Figure 3.5). By the well-known procedure from

linear algebra, S must be the inverse matrix of B.

(b) The system of constraints for problem (4) is equivalent to

Chapter 3 Further Topics in Linear Programming 247

(5)xb B 1 N xn b B 1 b

But the values of the non-basic variables are zero in the final tableau, hence

the second term in the sum on the left of the equation vanishes. Since

B 1 S for the final tableau, the optimal values of the basic variables are

contained in the column vector S b.

(c) Substitution of expression (5) for the basic variables xb into the

objective function f in equation (4) yields

f cb B 1 b B 1 N xn b cn b xn b

The formula in (c) is a simple algebraic rearrangement of the above, using

the fact that B 1 S.

EXAMPLE 1. We can check the results of Theorem 1 on the winery

example. Refer to Figure 3.4. Recall that x4, x2, x3, x7 , and

x1, x5, x6 , and that S is the slack variable part of the final tableau, and

B is the basic variable part of the initial tableau in Figure 3.4. We use

Mathematica to check easily that B S I S B:

B 1, 0, 1, 0 , 0, 2, 1, 0 ,

0, 1, 3 2, 0 , 0, 1, 2, 1 ;

S 1, 1 2, 1, 0 , 0, 3 4, 1 2, 0 ,

0, 1 2, 1, 0 , 0, 1 4, 3 2, 1 ;

MatrixForm B.S , MatrixForm S.B

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Also, b S b, as asserted by part (b) of the theorem.

b 200, 150, 90, 250 ;

S.b

185,
135
2

, 15,
305
2

248 Chapter 3 Further Topics in Linear Programming

As in part (c), the optimal value of the objective function coincides with

cb S b.

cb 0, 3 2, 2, 0 ;

cb.S.b

525
4

Activity 2 – Check, for the winery example, that the non-basic variable

coefficients in the objective row of the final tableau are the components

of the row vector cn b cb S N .

Determining Sensitivity of Parameters

We are now in a position to find the range of values of a parameter for which

the current list of basic variables remains feasible and optimal for a problem

in which the parameter is perturbed. We will also be able to compute the

new values of the basic variables and the objective function for the perturbed

problem. There are a number of changes to a problem that could be antici-

pated; here we discuss only three: (1) changing an objective function coeffi-

cient; (2) changing a constant constraint bound; and (3) changing a con-

straint coefficient for a variable that is non-basic in the optimal solution for

the original problem.

Case 1: Perturbing c

Suppose that we change one (or more) of the entries of the coefficient vector

c of the objective function of the original problem. This can be accom-

plished by adding some increment vector c to c. Let cb be the subvector

of this increment vector that increments the basic variable coefficients, and

let cn b correspond similarly to the non-basic variable coefficients. The

constraint constants b do not change. There is no change to the matrix B,

which has to do only with constraint coefficients, nor to its inverse matrix S.

Thus, part (b) of Theorem 1 allows us to conclude that:

(6)

The values of the basic variables do not change under perturbation

of the objective coefficient.

In particular, the basic solution remains feasible.

Chapter 3 Further Topics in Linear Programming 249

Examination of the constant term in the linear equation for f listed in part (c)

of Theorem 1 yields that:

(7)

The new value of the objective function under perturbation of the

objective coefficient is:

cb cb S b

This objective value is still the optimal value of the new f, as long as the

optimality condition of the simplex algorithm is satisfied. By part (c) of the

theorem again, this is the case if all non-basic variable coefficients in the

new objective row are non-positive, i.e.:

(8)
The current basic solution is optimal iff:

cn b cn b cb cb S N 0

Notice what the matrix-geometric approach has allowed us to accomplish.

We have a check in (8) for optimality of the current solution, which requires

only knowledge of the original objective coefficients, the increment vector,

the slack variable portion S of the final tableau, and the non-basic variable

portion N of the initial tableau. No further simplex computations are neces-

sary. Also, by (7), we can compute the new optimal objective value know-

ing only the basic variable coefficients in the original objective function, the

perturbation, the matrix S, and the initial constraint constant vector b. The

values of the basic variables themselves do not change under this kind of

perturbation, and of course the values of the non–basic variables remain at

zero.

EXAMPLE 2. Return to the winery problem. We analyze the effect of

perturbing the profit coefficient of red wine by an amount 1, white by 2,

and rosé by 3. The vectors cb and cn b will become:

cb cb 0, 3
2 2, 2 3, 0 ,

cn b cn b
5
4 1, 0, 0

By part (c) of the theorem, the vector of new objective function coefficients

in the final tableau will be

(9) cn b cn b cb cb S N

250 Chapter 3 Further Topics in Linear Programming

Using the definition of the slack variable submatrix S from before, and

introducing the non-basic submatrix N , we get

cnb 5 4, 0, 0 ; cnb 1, 0, 0 ;

cb 0, 2, 3, 0 ;

Nmatrix

2, 0, 0 , 0, 1, 0 , 2, 0, 1 , 2, 0, 0 ;

Expand Simplify cnb cnb cb cb .S.Nmatrix

5
4 1 2 2 3,

1
8

3 2

4
3

2
,

5
4

2

2 3

Recall that the ordering is determined by , hence these are the coeffi-

cients of the non-basic variables x1, x5, and x6, respectively. The current

solution remains optimal if and only if all of the three components of the

vector above are less than or equal to zero. This system of inequalites forms

a polyhedral region in three-dimensional space consisting of those points

1, 2, 3 whose corresponding perturbation does not change the optimal

values of the variables. We will not attempt to sketch this set; rather, we will

be content to determine the range of values of each i individually such that

the current solution remains optimal, assuming the other profit coefficients

are not changed. See Exercise 6 for the two at a time perturbations.

If 1 is the only non-zero perturbation, then the Mathematica output

shows that only the first component of the vector in (9) provides any restric-

tion. To maintain optimality of the current solution, we must have

5
4 1 0 1

5
4

Since we are not perturbing any basic variable coefficients, the optimal value

of the objective function will still be 525/4. If more than 5/4 is added to the

objective coefficient of x1, then the first non-basic variable, namely x1 itself,

has a negative coefficient in the "final" tableau, and would be introduced

into the basic solution. In other words, it would become profitable to make

red wine.

If 2 is the only non-zero perturbation, then all three components of the

vector in (9) restrict 2. The same basic feasible solution as in the unper-

turbed problem will occur if

5
4 2 0

1
8

3
4 2 0

5
4

1
2 2 0

This system of inequalities is easily solved, to yield

Chapter 3 Further Topics in Linear Programming 251

 1
6 2

5
4

For this range of values of 2, the solution x1 0, x2 135 2, x3 15 is

still optimal. By Theorem 1(c), the new optimal objective value is

cb cb S b, which we compute as:

cb 0, 2, 0, 0 ;

Expand Simplify cb cb .S.b

525
4

135 2

2

If 3 is the only non-zero perturbation, then we obtain three restrictions

on this perturbation in a similar way:

5
4

2 3 0

1
8

1
2 3 0

5
4 3 0

 5
8 3

1
4

For this range of values of 3, the old optimal solution remains optimal, and

the new optimal objective value is

cb 0, 0, 3, 0 ;

Expand Simplify cb cb .S.b

525
4

15 3

Activity 3 – Suppose that the profit coefficient of red wine was

increased by 1/4. By how much can each of the individual coefficients

on white wine and rosé be changed without changing the optimal

solution?

Case 2: Perturbing b

Suppose next that we change one or more of the entries of the constraint

constant vector b, by adding some increment vector b to b. By Theorem

1(c), we observe that:

252 Chapter 3 Further Topics in Linear Programming

(10)

Perturbation of b does not change the non-basic variable

coefficients in the objective row of the final system; thus the

current solution, if feasible, is still optimal.

We check for feasibility by inspecting the list of values of the basic vari-

ables. If all entries are non-negative, then the current solution is both

feasible and optimal. Theorem 1(b) shows us how to verify this.

(11)
Feasibility of the solution under perturbation of b is equivalent to

S b b 0

If the old basis is indeed optimal, Theorem 1(c) enables us to compute the

new optimal objective value.

(12)
The value of the objective function in the final simplex system

after perturbation of b is f cb S b b .

As before, some simple matrix multiplications using data from the initial

and final simplex tableaux for the unperturbed problem are sufficient to find

the range of values of the perturbation vector b such that the old optimal

basic variables are still basic in the new solution. It is also easy to recalcu-

late new optimal values of the variables and the objective without resorting

to another application of the simplex algorithm.

EXAMPLE 3. Now let us determine the effect of changes in the constraint

constants on the solution of the winery problem. The problem is simply to

find the range of values of the perturbation vector b such that the inequal-

ity in (11) holds. But by Theorem 1(b), this vector inequality is equivalent to

(13)b S b 0

The vector on the left side of inequality (13) gives the new values of the

basic variables. Computing these in Mathematica gives

bstar 185,
135

2
, 15,

305

2
; b 1, 2, 3, 4 ;

Expand Simplify bstar S. b

185 1
2

2 3,
135
2

3 2

4
3

2
,

15 2

2 3,
305
2

2

4
3 3

2 4

Chapter 3 Further Topics in Linear Programming 253

Treat the perturbation one parameter at a time, setting the others to zero,

beginning with 1. We see from the first element of the vector above that

the current solution is still feasible and optimal if 185 1 0, i.e.,

1 185. In terms of the applied problem, the current solution remains

feasible if no more than 185 bushels of type I grapes are subtracted from the

original supply of 200. Note that since the optimal x3 is 15 in the original

problem, we need precisely 15 bushels of these grapes to make the rosé

wine. Also, 185 is the value of the slack variable associated with the type I

grape resource. The perturbation 4 is also easy to analyze, since it appears

only in the last element of b S b. Feasibility of the current solution is

preserved if 4 305 2. As long as no more than 305/2 is subtracted

from the available labor time (note that 305/2 is the value of the slack

variable associated to labor time in the optimal solution), the current list of

basic variables is feasible. In both of these cases, the perturbation changes

only the value of the basic variable in the row in which the perturbation

appears. More precisely, the new value of basic variable x4 under a perturba-

tion of the constraint constant for type I grapes is 185 1. Other basic

variables, and all non-basic variables, do not change. Similarly, 305 2 4

is the new value of basic variable x7 under a perturbation of the labor time

constraint constant, and no other variables change their value.

To see the effect of a change 2 in the availability of type II grapes

requires simultaneously setting all four elements of b S b greater than

or equal to zero. You should verify that the range of values under which the

current solution is still feasible is

90 2 30

Similarly, the range of perturbations of the third constraint, involving sugar,

is

15 3 305 3

In both cases, since the perturbation terms i are contained in every element

of b S b, the values of all of the basic variables change. The new

values are determined by substituting the values of the perturbations i into

the formulas from Mathematica above.

 We also have an expression for the new value of the objective function

under the perturbation. As long as the perturbation terms indicate that the

current list of basic variables is still feasible, the new optimal value is

f cb S b b , which we compute below.

Expand Simplify cb.S. b b

254 Chapter 3 Further Topics in Linear Programming

525
4

2

8
5 3

4

The coefficients of the i's above give useful information; they are the rates

of increase in profit per unit increase in the resources of type II grapes and

sugar. Notice that they are the same as the negatives of the slack variable

coefficients (i.e., the optimal dual variables) in the optimal simplex system

(2) corresponding to these resources. In Section 4 of Chapter 2, we referred

to these values as the shadow prices of the resources. We therefore have an

interesting connection between duality theory and sensitivity theory, namely

that the shadow price of a resource is the same as the rate of increase in the

objective function per unit increase of the resource. (See Exercise 10 for a

general result.)

Activity 4 – What are the values of the basic variables if simultaneously

there is an increase of 30 bushels of type II grapes and 10 lbs. of sugar?

Is the old optimal solution still feasible and optimal?

Case 3: Perturbing constraint coefficient column

of a non-basic variable

Finally, we will investigate changes in a single column of constraint coeffi-

cients in the original problem. We only consider the case in which the

column variable is non-basic in the final simplex system. By Theorem 1(b)

and (c), the only change induced in the final system is that the non-basic

variable portion N of the constraint matrix will change in one column. Recall

that S is the inverse of B, which is the basic variable portion of the constraint

matrix; consequently, S will not change, nor are we changing the original

objective coefficients or the constraint constants in this case. We observe

immediately that

(14)

A change in a non-basic variable constraint coefficient column

leaves b untouched; consequently, the current solution is still

feasible for the perturbed problem.

(15)
The value of the objective function does not change under

perturbation of a non-basic variable constraint coefficient column.

Consequently, it remains to check only whether the vector of coefficients of

non-basic variables in the objective row of the final system is still entirely

non-positive after the change to N . A perturbation of a column, say the jth,

in N can be accomplished by adding a matrix N to N, which is zero in

every column except column j, and in that column has entries 1, 2, ... , m.

Chapter 3 Further Topics in Linear Programming 255

(16)

The current solution remains optimal under a perturbation of a

non-basic variable constraint coefficient column iff

cn b cb S N cb S N 0

Note that the parenthesized term in the inequality of (16) is the old

vector of non-basic variable coefficients in the final objective row. It is

known to be non-positive, by the optimality of the solution to the unper-

turbed problem. From this is subtracted a vector which, since N is non-

zero only in its jth column, could only be non-zero in its jth component.

Because of this, it is only necessary to check whether the new coefficient of

the jth non-basic variable has become positive, and if not, the current

solution is still optimal for the perturbed problem. This fact will come out

more clearly in the example below.

EXAMPLE 4. In the winery example, suppose we contemplate increasing

the amount of sugar required to make a gallon of red wine by an amount .

A negative value of is allowed, meaning that there is a reduction in the

required amount of sugar. We find the range of values of such that it is

still not optimal for x1 to enter the basis. Following (16), we compute the

vector cb S N , where N has a column for each non-basic variable, but

whose only non-zero element is in row 3 (for sugar) and column 1 (for red

wine).

N 0, 0, 0 , 0, 0, 0 , , 0, 0 , 0, 0, 0 ;

MatrixForm N

cb.S. N

0 0 0
0 0 0

0 0
0 0 0

5
4

, 0, 0

Since the coefficient of x1in the objective row of the final tableau in Figure

3.4 is 5 4, we see that x1 will remain non-basic iff

5
4

5
4

0 1

This means that if the sugar content of red wine is reduced by no more than

one unit per gallon, then it will still be optimal not to make any red wine.

256 Chapter 3 Further Topics in Linear Programming

We have not covered every possible perturbation of a given linear

programming problem. One noticeable absence is the change of a constraint

coefficient column belonging to a variable that is basic in the optimal

solution to the original problem. Theorem 1 still applies to this kind of

perturbation, but the situation is somewhat more complicated than the cases

that we have addressed. Referring to the formulas listed in parts (b) and (c)

of the theorem, we see that since the perturbation changes B, it changes the

inverse matrix S in a way that is not obvious. The values of the basic

variables, the value of the objective function, and the coefficients of the

non-basic variables in the objective equation all change as well; hence the

new solution may not be feasible or optimal. Hillier and Lieberman [31]

shed some light on this problem.

Perturbations of a different type involve the introduction into the prob-

lem of features that were not even present before. For example, suppose a

new constraint was introduced. In the winery example, this could arise in

the form of a new ingredient for the wines, which is available in limited

amounts. One easy way to check for optimality of the current solution is to

see whether it satisfies the new constraint. If the solution is feasible for the

new constraint, then it is still optimal for the new problem, because the new

problem maximizes the same objective over a smaller set of feasible points.

A feasible solution with a strictly better objective value than the current

solution could not exist. If the current optimal solution does not satisfy the

constraint, Rao ([49], Sec. 4.5) suggests a Phase 1–Phase 2 approach to find

the new optimal solution.

Another way of introducing an entirely new feature into the problem is to

include a new variable. In the case of the winery problem, it might be that a

new kind of wine is being considered. This wine has its own profit coeffi-

cient and requirements on resources. We might wish to find the range of

values of these coefficients such that the new variable does not enter into the

basic solution. A clever way of attacking this problem is to pretend that the

variable was present as a non-basic variable in the original problem, but with

all coefficients equal to zero. Then employ the other perturbation techniques

that we have discussed to analyze the effect of moving the coefficients away

from zero. The reader can find more on these issues in Winston [61], as well

as Hillier and Lieberman [31].

We have also not discussed the problem of what to do when the old

solution is no longer optimal. In the case where the constraint constant

vector b does not become negative, the feasibility condition for the basic

variables will not be violated. Consequently, even when the perturbations

are extreme enough to destroy optimality, we can just begin the simplex

algorithm again, with the perturbed final tableau representing an initial

feasible solution. Until now, there has been little need to say anything about

changes to the A block (see Figure 3.5) of the final tableau for the original

problem. But if we are to restart the simplex algorithm after a perturbation,

Chapter 3 Further Topics in Linear Programming 257

we must know the entries in this block. The only case among those dis-

cussed earlier in which A will change is when there is a change to a con-

straint coefficient column for a non-basic objective variable. This will not

change S B 1, and Figure 3.5 makes it clear that the matrix A will be

obtained by multiplying the perturbed matrix A by S.

If feasibility is lost under the perturbation, it is possible to continue the

simplex algorithm from the current tableau, rather than returning to the

beginning of the problem. As noted above, there is a two-phase approach in

which the first phase locates a feasible solution for the new problem and the

second phase is just the ordinary simplex method. But there also exists an

algorithm called the dual simplex algorithm, which steps through super-opti-

mal, non-feasible solutions using similar row operations to the ordinary

simplex algorithm, until a feasible solution, which is also optimal, is

reached. Hillier and Lieberman ([31], Sec. 9.2) give a nice discussion of this

algorithm.

Exercises 3.3

1. Check that the winery problem can be decomposed as in formula (4).

2. Express the LP problem of Example 2 of Chapter 2, Section 3 in the form

(4). (For your convenience, we were to maximize f 4 x1 2 x2 subject to

the constraints below.)

x1 x2 2

2 x1 x2 3

x1, x2 0

3. We return to the coal mining example, which is Example 4 of Chapter 2,

Section 3.

(a) Identify the vectors b and c and the matrix S of Figure 3.5 for this

problem.

(b) Express the problem in the form of formula (4).

(c) Verify the equations in parts (b) and (c) of Theorem 1 for this

problem.

4. (Mathematica) For Example 4 of Chapter 2, Section 3:

(a) Find the range of values of each component of a perturbation vector

c 1, 2 such that the basic solution depicted in the final tableau is still

optimal.

(b) Sketch the set of all pairs 1, 2 in the plane such that the old

optimal solution is still optimal.

(c) If the profit coefficient of x2 in the original problem is changed to

4500, obtain the entire new "final" tableau under this perturbation. Note that

258 Chapter 3 Further Topics in Linear Programming

it no longer represents an optimal solution. Use the simplex algorithm to

obtain an optimal solution for the perturbed problem.

5. Prove that the non-basic variable columns of the matrix A of Figure

3.5(b) are the corresponding columns of S N . (Hint: Use formula (5).)

6. (Mathematica) In Example 2, sketch the regions in the: (a) 1 2 plane;

(b) 2 3 plane; and (c) 1 3 plane, such that the optimal solution of

the original problem remains optimal when the given pair of perturbations is

imposed, holding the remaining perturbation at zero.

7. (Mathematica) Consider Exercise 4 of Chapter 2, Section 3 involving the

farmer and his hogs, chickens, and ostriches.

(a) Find a system of inequalities characterizing the set of all perturbation

vectors b 1, 2 for b such that the optimal solution does not change

under the perturbation.

(b) Express the new value of the objective function in terms of 1 and

2.

(c) Find the range of values of the two individual perturbations such that

the current solution remains feasible and optimal.

8. (Mathematica) Repeat Exercise 7 for the problem of Exercise 1 of Chapter

2, Section 3.

9. (Mathematica) (a) Find the new optimal tableau for the winery problem if

the constraint constant vector is perturbed by a vector b whose compo-

nents are: 1 75, 2 4, 3 16, and 4 91 2.

 (b) For fixed 1 75, 4 21 2, graph the set of all 2, 3 in the

plane such that the current optimal solution remains unchanged.

10. Show in general the observation that was made in Example 3. That is,

prove that the negatives of the slack variable coefficients in the objective

row of a final simplex system (the optimal values of the dual variables) are

the same as the coefficients of 1, 2, ... , m in the expression for the

objective function of the problem in which the constraint constant vector b

is perturbed by these i.

11. In Example 4 on the winery, find a system of inequalities for the perturba-

tions 1, 2, 3, and 4 of the red wine column of constraint coefficients to

characterize the set of such perturbations under which the current solution is

still optimal.

12. Consider Exercise 1 of Chapter 2, Section 1 on allocation of city funds

for the purchase of two types of vehicles. Suppose that the purchase price of

vans is incremented by an amount 1, and the maintenance cost per year for

a van is changed by an amount 2. Characterize the set of all such 1 and

Chapter 3 Further Topics in Linear Programming 259

2, such that the old optimal solution computed in that problem is still

optimal.

13. (Mathematica) This problem refers to Example 3 of Chapter 2, Section 3,

which is repeated below.

 (a) Find the set of perturbations of the form , , to the column of x1

constraint coefficients that do not change the optimal solution.

 (b) If 2, find the resulting perturbed final tableau, and use it as the

initial tableau in the simplex method to find an optimal solution for the

perturbed problem. (Hint: Use Exercise 5.)

 maximize: f x1 3 x2

subject to:

x1 2 x2 3

2 x1 x2 3

x1 x2 2

x1, x2 0

260 Chapter 3 Further Topics in Linear Programming

4

Markov Chains

Introduction

Appendix A gives a review of key ideas and results from probability theory,

one of the main focuses of which is the random variable. A single random

variable is appropriate in experiments that are static. The experiment is

performed, an outcome happens, and we observe a numerical value X .

But to model an experiment that progresses over time, we need a family of

random variables Xt , one for each time t in some time set. The random

variable Xt is the numerical value observed at time t. (Though we usually

suppress it in the notation, bear in mind that random variables are functions

of the outcome .) We see that this family of random variables, called a

stochastic process, can be thought of as a function of two arguments:

X X t, . For fixed time t, X is a random variable. For fixed outcome

, X is an ordinary function of the real variable t. The latter will probably

be most helpful to your intuition, because you can begin to think of a

stochastic process as a random graph in the plane. Figure 4.1 below shows

the sketch of an integer-valued process for a typical outcome , in which the

time set is the set of non-negative reals. The sequence of values taken on by

this process is 0, 1, 3, 2, ..., and the process spends an interval of time at

each value before moving to the next. For a different experimental outcome

this graph, called the path of the process, might look different. We are led to

the definition below.

time0

0.5

1

1.5

2

2.5

3

state

Figure 4.1 – A graph of t Xt for fixed

261

DEFINITION. A stochastic process with time set T and state space E
is a family of random variables Xt t T such that each random variable

Xt takes values in the set E.

It is not hard to think of examples of stochastic processes. The following

are only a few of many interesting models:

1. Xt = price of a common stock at time t;
2. Xt = level of water in a reservoir at time t;
3. Xt = number of demands for service in a time-sharing computer

system through time t;
4. Xt = energy level of an electron within an atom at time t;
5. Xt = number of customers waiting in a line at time t;
6. Xt = 0 or 1, respectively, according to the value of the bit in position t

in a binary string.

Notice that in the last example the index set for the family of random

variables represents position in a sequence rather than time. We mention

this to indicate that the results we obtain are not confined only to problems

of random motion through time, though this is the easiest way to think of a

stochastic process.

We have not specified what kind of sets T and E are. Typically the time

set T is either the non-negative integers or the non-negative real numbers

, depending on the context of the problem. The space of states E is

usually some subset of the real line or higher dimensional real space. Much

useful and interesting work has been done on non-discrete state spaces;

however, most of it requires measure theory and other mathematics that is

somewhat beyond the level of this text. So, for our purposes, the state space

will usually be some discrete subset of Euclidean space.

There are many probabilistic questions that can be asked about stochastic

processes. As with single random variables, one can try to compute the

distribution of the value of the process at a fixed time t; that is, P Xt B
for subsets B of the state space. We might also desire to know where the

process tends to be in the long-run, i.e., limt P Xt B . Also, since time

is a factor in the experiment, we may be able to observe the evolution of the

process for awhile, and use the data to make predictions about the future.

Thus, conditional probabilities like the following would be interesting:

P Xt B Xs A , for t s

which is the probability that the process is in set B at time t, given that it was

in set A at the earlier time s.

In this chapter we study a class of memoryless discrete time processes

with discrete state space, called Markov chains. After the basic definitions

262 Chapter 4 Markov Chains

are given in Section 1, we will deduce the conditional and unconditional

distributions of the state of the process at a fixed time n in Section 2. In the

third section we will show an inductive method for the problem of finding

the distribution of the time when a given state is first visited by the process.

Sections 4, 5, and 6 give a rather detailed discussion of the limiting proper-

ties of Markov chains as time becomes infinite. Some chains can be shown

to spend a stable fraction of time in each state, while others can be com-

pletely absorbed by a state.

This chapter will rely heavily on results and examples from two excellent

books on the subject of stochastic processes: Cinlar [15] and Ross [52].

Other references include Volume 3 of the series by Hoel, Port, and Stone

[34], and Volume 1 of the series by Karlin and Taylor [40].

4.1 Definitions and Examples

A Markov chain is a discrete process such that future motions are indepen-

dent of the past, given the present state. More precisely, we have the

following definition:

DEFINITION 1. A discrete time stochastic process Xn n 0,1,2,... with

finite or countable state space E is called a Markov chain if for each

n 0, 1, 2, ... , and subsets B0, B1, ... , Bn of E,

 P Xn 1 j X0 B0, X1 B1,, Xn 1 Bn 1, Xn i
P Xn 1 j Xn i

Furthermore, the Markov chain is called time-homogeneous if the

conditional probabilities in the formula above do not depend on n. The

transition matrix T of a time-homogeneous Markov chain is the matrix

defined by:

T i, j P Xn 1 j Xn i i, j E

4.1 Definitions and Examples 263

We may depict the state space E and the transition probabilities T i, j
together on a weighted directed graph called a transition diagram as in

Figure 4.2. The chain hops in discrete time units from node to node on the

transition diagram. For the chain to be Markov, at any time the distribution

of the next state to be visited is conditionally independent of the past

sequence of states, given the present state.

1 2

3 4

0.5

0.5

0.33
0.67

0.75
0.25

1

Figure 4.2 – Transition diagram of a Markov chain

For a time-homogeneous chain, the only kind that we will consider here, the

conditional probability that the process goes to state j next, given that at the

current time it is at state i, does not change as time progresses. The entry

T i, j in row i and column j of the transition matrix is this conditional

probability. For example, in Figure 4.2, given that the current state is 4, the

next state to be visited is 3 with probability 1. Thus, T 4, 3 1. Given that

the present state is 1, the chain moves next to either state 2 or 3 with equal

probability, stochastically independent of the past, and functionally indepen-

dent of the clock time. So, T 1, 2 T 1, 3 1 2. The complete transition

matrix T is:

 (next state)

 (current state) 1 2 3 4

 T =

1

2

3

4

0 1 2 1 2 0

1 3 2 3 0 0

0 0 3 4 1 4

0 0 1 0

264 Chapter 4 Markov Chains

Activity 1 – What is the probability that the Markov chain whose

transition diagram is as in Figure 4.2 goes in two steps from state 1 to

state 4? From state 1 back to itself?

The world teems with examples that can be modeled by Markov chains,

if one is willing to accept the assumption of independence of past and future.

In the introduction to the chapter are a few examples; following are a few

more that illustrate the diversity of the applications.

EXAMPLE 1. The state Xn of the chain at time n may be:

(a) the salary of a worker in year n;

(b) the number of items in inventory at time n;

(c) the condition of a patient's health at time n;

(d) the position of a case in the legal system on day n;

(e) the level of the national debt in year n;

(f) the condition of the weather at hour n;

(g) the population of a town in year n.

We consider three more examples in some detail, in order to illustrate

how transition matrices are found.

EXAMPLE 2. Three companies are competing for the market in the gour-

met frozen food industry. Company 1 is mounting an advertising campaign,

and as a result the shares of the market possessed by each company change

from day to day. Let us extrapolate individual behavior to mass behavior,

e.g., to say that a randomly selected individual has probability 1/2 of favor-

ing company 1 says that company 1 has 50% of the market. Let Xn be

the company preferred by a randomly selected individual (an outcome in

the sample space) at time n. If future preference is independent of the past

given the present, then Xn forms a Markov chain with state space

E 1, 2, 3 . Suppose that in any time period, company 1 retains half of its

customers, and the others are split equally among the other two companies.

Half of the customers of company 2 are converted to company 1 in a time

period, and the rest remain with company 2. Company 3 keeps 3/4 of its

customers, and the rest change to company 2 in one time period. The

transition matrix is below, and the transition diagram is shown in Figure 4.3.

Recall that in the transition matrix, the rows represent current states and the

columns are the states to be visited in the next time period.

T
1 2 1 4 1 4

1 2 1 2 0

0 1 4 3 4

4.1 Definitions and Examples 265

1 2

3

.5
.25

.25

.5
.5

.25

.75

Figure 4.3 – Frozen food example

Company 1 would be interested in its share of the market on day n, which

according to our extrapolation is P Xn 1 . Also of interest would be the

limit of this probability as n approaches , if that limit exists. This repre-

sents the long-run share of the market belonging to company 1. This com-

pany might also want to know the probability that it takes exactly k days to

win over a customer initially favoring company 3. We will have the means

to solve all of these problems later.

Activity 2 – On the macroscopic level, what is the meaning of the

probability that it takes k days for company 1 to win over a customer

initially favoring company 3?

EXAMPLE 3. Successive customers to a discount store make their purchase

decisions independently of one another, spending $0, $1, $2, or $3, respec-

tively, with probabilities 1/2, 1/3, 1/12, and 1/12. Let us develop a Markov

chain model for the process in which Xn is the cumulative dollar amount

purchased by all customers through the nth.

Clearly the Markov property is satisfied, because Xn 1 is the cumulative

amount Xn spent up through the nth customer, plus the amount Zn 1 spent by

the n 1st customer, which is independent of the past before customer n.

More formally,

P Xn 1 j Xn i P Xn Zn 1 j Xn i
P Zn 1 j i Xn i
P Zn 1 j i

266 Chapter 4 Markov Chains

If the cumulative amount spent through customer n is i, then the amount

spent through customer n 1 is either i, i 1, i 2, or i 3 with the probabili-

ties above. The transition matrix of the chain is easy to derive from this

observation.

 0 1 2 3 4 5

T

0

1

2

3

1 2 1 3 1 12 1 12 0 0

0 1 2 1 3 1 12 1 12 0

0 0 1 2 1 3 1 12 1 12

0 0 0 1 2 1 3 1 12

EXAMPLE 4. Suppose that there are N residents of a college dormitory, all

of whom start the week with the flu. Each day, a random positive number of

those who had the flu the day before will recover. Let Xn be the number of

sick individuals remaining on day n. Then X0 N , and for n 0, the state

Xn 1 at day n 1 is the state Xn at day n minus a random variable Z with the

discrete uniform distribution on 1, ... , Xn which we suppose is independent

of the past recovery history, in order that the Markov property is satisfied.
Notice that under our conditions, once the number of infected individuals

reaches either 1 or 0, the next state is 0 with certainty. This means that the

transition matrix of the chain Xn is:

T

0 1 2 N 1 N
0

1

2

3

N

1 0 0 0 0

1 0 0 0 0

1 2 1 2 0 0 0

1 3 1 3 1 3 0 0

1 N 1 N 1 N 1 N 0

Later we will calculate the expected value of the number of steps it takes,

starting from the complete epidemic state N, to reach the healthy state 0.

4.1 Definitions and Examples 267

Simulation

One way to obtain information about stochastic processes is to simulate them

over many time periods and observe the facet of their behavior that is of

interest. In the next two chapters we will be using some commands defined

in the KnoxOR`StochasticProcesses` package that comes with this book.

The command to load the package is in the closed cell just above Figure 4.1,

which has already been executed if you initialized the electronic notebook.

This package has been set up to load two of the Mathematica standard

packages called Statistics`ContinuousDistributions` and Statistics`Discrete-

Distributions`, which contain useful commands for simulating observations

from given probability distributions. The following Mathematica functions

are in both of these standard packages:

Random dist RandomArray dist,n

The argument called dist can be set to one of the predefined distributions in

Mathematica, such as

UniformDistribution[a,b]

which is the continuous uniform distribution on the interval a, b . Then the

Random command returns a randomly sampled observation from the given

distribution, and the next time that it is called, it samples another, typically

different from the previous observation. For RandomArray, the second

argument n can be set so that the command returns a list of such observa-

tions of length n. To repeat previously simulated random numbers, you can

reinitialize the seed value from which the stream of random numbers comes

using the following command:

SeedRandom seedvalue

The seedvalue argument can be any integer; and if the argument is left blank,

then the seed is reinitialized randomly.

Observe how Mathematica's random number generation works in the

sequence of commands below.

268 Chapter 4 Markov Chains

SeedRandom 4563 ;

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

1.91038

0.591598

0.983016

SeedRandom 4563 ;

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

SeedRandom ;

Random UniformDistribution 0, 2

1.91038

0.591598

0.176409

When the seed is initialized to 4563, the sequence of numbers generated by

the Random command begins with 1.91038, 0.591598,..., regardless of

when you execute the commands. Unless the seed is reinitialized, the next

random number in the sequence will be 0.983016. But in the second input

cell above, we reinitialized the seed randomly, thus obtaining a different

random number from the uniform (0,2) distribution. Like many random

number generators, what Mathematica actually does is to create a stream of

pseudo-random numbers deterministically as a function of the seed that

nevertheless appear to have all the properties of truly random numbers. For

more information, and for a concise review of the probability theory that is

necessary for operations research, see Appendix A.

Let us try to write a Markov chain simulator that will take the transition

matrix of the chain, a starting state, and a desired number of time steps, and

that will output a simulated sequence of states that behaves as the Markov

chain would. The heart of the algorithm will be the generation of a next

state given the current state and the row of the transition matrix that forms

the discrete probability distribution for the next state. There is a utility

4.1 Definitions and Examples 269

function in the KnoxOR`StochasticProcesses` package that has been set up

to do this for you. Exercise 7 will ask you to program this.

SimDiscreteDist problist

SimDiscreteDist takes a list of numbers that forms a valid probability

distribution on the integers 1, 2, …, n , and simulates a value taken from

that distribution. It works by forming a list of cumulative probabilities and

then searching for the first element of that list that exceeds a uniform(0,1)

random number.

To simulate the Markov chain, we initialize a list of states of the chain

with the given start state. Then for the desired number of steps, we append

to the state list a newly simulated observation from the distribution deter-

mined by the row of the most recently added state in the transition matrix.

Read the code below carefully. This command is also contained in the

KnoxOR`StochasticProcesses` package.

SimMarkovChain

transmatrix_, start_, numsteps_ :

Module statelist ,

statelist start ;

Do AppendTo statelist,

SimDiscreteDist transmatrix

Last statelist , numsteps ;

statelist ;

Here is a sample run of the simulator for the chain of Figure 4.3. Notice

that, as the transition probabilities determine, the chain cannot make transi-

tions from state 3 to state 1, nor from state 2 to state 3. Also, starting from

state 3, the chain frequently stays at state 3.

graph43

.5, .25, .25 , .5, .5, 0 , 0, .25, .75 ;

SeedRandom 91687 ;

states SimMarkovChain graph43, 3, 40

ListPlot states, PlotStyle PointSize .02 ,

DefaultFont "TimesNewRoman", 8 ;

270 Chapter 4 Markov Chains

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2,

2, 1, 2, 2, 2, 1, 2, 1, 3, 3, 3, 3, 3, 3,
2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 3, 3, 2

10 20 30 40

1.5

2

2.5

3

Later we will be able to analytically solve the problem of finding the

long-run proportion of time that a Markov chain occupies each of its states.

Simulation is able to give approximate answers to this problem too. Using

Mathematica's Frequencies command, we can simulate the chain over many

time periods and tabulate the number of visits to each state as below. The

output shows that among 10,000 time steps, each state seems to appear about

equally often. You should reinitialize the seed randomly in the electronic

text and execute the cell a few more times to see if this behavior is consis-

tent.

SeedRandom 85091 ;

Frequencies SimMarkovChain graph43, 3, 10000

3312, 1 , 3435, 2 , 3254, 3

Exercises 4.1

1. A sales representative for a cosmetics firm makes calls in an area with

four regions. If she is in region 1 this week, then she will be in region 2 with

probability 60%, or region 4 with probability 40%, next week. If she is in

region 2, then she goes to one of the other three regions next week with

equal probability. The same property holds if she is in region 3 this week. If

she is in region 4 this week, then next week she will be in region 2 with

certainty. Define a Markov chain that models her travels, and find the

transition matrix and transition diagram for this chain.

2. Compute, and interpret the meaning of, the row 1, column 4, entry of T2

for the transition matrix of the chain of Exercise 1.

4.1 Definitions and Examples 271

3. An n n matrix is called a Markov matrix if its entries are non-negative

and the sum of the entries in every single row is 1. Thus, the transition

matrix of a Markov chain is a Markov matrix. Show that the product of two

Markov matrices is a Markov matrix.

4. A television manufacturer inspects the TV sets that it makes before

releasing them for sale. The inspection of a set results in classification into

one of four categories: poor condition (P), fair (F), good (G), or excellent

condition (E). Sets in excellent condition are sent off for sale, while those in

poor condition are disposed of. Televisions classified as either fair or good

are taken to the shop for adjustment, then reinspected. A set that had been in

fair condition prior to the adjustment changes to poor condition afterward

with probability 1/10, remains fair with probability 3/10, and changes to

either good or excellent with equal probability. A set that was in good

condition before the adjustment becomes good or excellent afterward with

equal probability. The adjustments and reinspections continue until the set is

either ready for sale or disposed of.

Define a Markov chain Xn that models the progression of a randomly

selected set. Find the transition matrix and diagram of the chain. Compute

P X1 F, X2 F, X3 E X0 F .

5. Make up your own example of a Markov chain, and provide intuitive
justification for the Markov property in Definition 1.

6. A model that is studied in theoretical computer science is the finite state
automaton. This is a machine that reads input from a tape, one character at a

time, and based on what it reads it moves from where it currently is to one of

several other internal states. For instance, a machine that is built to recog-

nize the pattern 000 in an input string of 0's and 1's can be designed as

follows. State A is a start state, where we go if we have not seen a 0 yet, or

have just seen a 1 so that the machine must try to look anew for the pattern.

State B is a state we go to if we have seen a single 0, state C is a state we go

to if we have seen two 0's in a row, and similarly state D is for three 0's in a

row. The machine stops and returns a success message if it reaches state D;
otherwise, if it does not before the input string runs out, then it returns an

unsuccessful message.

(a) If the automaton described above is given the input string

1, 0, 0, 1, 0, 1, 0, 0, 0, what sequence of states does it occupy?

(b) Assuming that input strings are fed in such that characters are equally

likely to be 0 or 1, independently of previous characters, argue that the

sequence of automaton states forms a Markov chain, and find its transition

matrix.

7. (Mathematica) Write your own version of the SimDiscreteDist function

described in the section.

272 Chapter 4 Markov Chains

8. (Mathematica) Another problem that we will solve analytically later is the

problem of finding the expected time that it takes a Markov chain to reach a

state starting from another state. Consider the Markov chain with transition

matrix and diagram below.

matrix8 .375, .625, 0, 0, 0, 0, 0, 0, 0 ,

.375, 0, .625, 0, 0, 0, 0, 0, 0 ,

0, .375, 0, .625, 0, 0, 0, 0, 0 ,

0, 0, .375, 0, .625, 0, 0, 0, 0 ,

0, 0, 0, .375, 0, .625, 0, 0, 0 ,

0, 0, 0, 0, .375, 0, .625, 0, 0 ,

0, 0, 0, 0, 0, .375, 0, .625, 0 ,

0, 0, 0, 0, 0, 0, .375, 0, .625 ,

0, 0, 0, 0, 0, 0, 0, 0, 1 ;

1

2 3 4 5 6 7 8

9

3 8

5 83 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

1

Exercise 8

Build a command to let you approximate the average number of transitions

necessary to reach state 9, starting from a given one of the other states. Run

your command for each of the initial states 6, 7, and 8.

4.1 Definitions and Examples 273

4.2 Short-Run Distributions

As the examples in the last section suggest, the following quantities are

important to know for a Markov chain Xn :

(1)P Xn j X0 i

(2)p n j P Xn j

The next theorem gives these, plus a little more. Its proof is a simple matter

of manipulating conditional probabilities. It turns out that the powers of the

transition matrix can be used to find both the conditional distribution of Xn
given X0 in (1), and the unconditional distribution of Xn in (2).

THEOREM 1. Let Xn be a time-homogeneous Markov chain with

transition matrix T, and let p 0 be the probability distribution of X0, i.e., the

row vector whose jth component is p 0 j P X0 j . Then,

(a) For all n 0, P Xn j X0 i Tn i, j (i.e., the i j compo-

nent of the nth power of T);

(b) For all n 0, P Xn j p 0 T j (i.e., the jth component of the

product p 0 T);

(c) The conditional joint distribution of Xn 1, ... , Xn m given Xn is:

P Xn 1 j1, Xn 2 j2 , ... , Xn m jm Xn i
T i, j1 T j1, j2 T jm 1, jm

Proof. It is convenient to prove part (c) first. By the multiplication rule for

conditional probabilities and the Markov property:

P Xn 1 j1, Xn 2 j2, ..., Xn m jm Xn i
P Xn 1 j1 Xn i P Xn 2 j2 Xn i, Xn 1 j1

P Xn m jm Xn i, Xn 1 j1, , Xn m 1 jm 1

P Xn 1 j1 Xn i P Xn 2 j2 Xn 1 j1
P Xn m jm Xn m 1 jm 1

T i, j1 T j1, j2 T jm 1, jm

The last step follows from the time-homogeneity of the chain.

To prove (a), we condition and uncondition on all states from times 1 to

n 1:

274 Chapter 4 Markov Chains

P Xn j X0 i

j1 E j2 E jm 1 E
P X1 j1, , Xn 1 jn 1, Xn j X0 i

j1 E j2 E jm 1 E
T i, j1 T j1, j2 T jn 1, j

Tn i, j

The second line follows by part (c), and the third line is by the definition of

matrix multiplication.

Part (b) now follows easily, since

P Xn j
i E

P X0 i P Xn j X0 i

i E
p 0 i Tn i, j

p 0 Tn j

Activity 1 – Considering the vectors p n as a sequence of row vectors,

show that they can be built up recursively by p n p n 1 T

EXAMPLE 1.Let us return to Example 2 of Section 4.1 on the frozen food

companies to illustrate the application of Theorem 1. The transition matrix

in that example was

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4

First, by Theorem 1(c), the conditional probability that a consumer will

use company 1 at times 1 and 2 given that he was initially a company 2

customer is

(3)P X1 1, X2 1 X0 2 T 2, 1 T 1, 1 1
2

1
2

1
4

By time-homogeneity and the Markov property, the above probability is the

same as, for instance,

(4)P Xn 1 1, Xn 2 1 Xn 2, Xn 1 3, Xn 2 3

for any n 2.

 Next, suppose that initially company 1 has 1/8 of the market, company 2

has 3/8, and company 3 has 1/2. What share does each company have after

one, two, three, and four days of ads? So, given p 0 1 8, 3 8, 1 2 , we

would like to compute each of p 1 , p 2 , p 3 , and p 4 . By Theorem 1(b), or

4.2 Short-Run Distributions 275

alternatively by the observation in Activity 1, we can enter the transition

matrix and the vector of initial probabilities into Mathematica and compute:

T 1 2, 1 4, 1 4 ,

1 2, 1 2, 0 , 0, 1 4, 3 4 ;

p0 1 8, 3 8, 1 2 ;

p1 N p0.T

0.25, 0.34375, 0.40625

p2 N p1.T

0.296875, 0.335938, 0.367188

p3 N p2.T

0.316406, 0.333984, 0.349609

p4 N p3.T

0.325195, 0.333496, 0.341309

So we see that company 1 grows quickly from its initial share of the market

of 1 8 0.125 to 0.25 after 1 day, then to over 0.29 after 2 days, and then

more modest growth occurs over the next two days to about 32.5% of the

market. Meanwhile, companies 2 and 3 are losing their shares, from starting

values of 37.5% and 50%, respectively, to ending values of about 33.3% and

34.1%.

Activity 2 – As you read down the columns of the output matrix in

Example 1, the market shares of the three companies seem to be stabiliz-

ing. Compute a few more of the vectors p n for n 5 to verify that this

is happening.

EXAMPLE 2. Consider the Markov chain whose transition diagram is in

Figure 4.4. In the closed cell above the graphics, the transition matrix was

named T .

276 Chapter 4 Markov Chains

1 2

3

1

11

Figure 4.4 – Transition diagram of a cyclic Markov chain

The transition matrix, and its second and third powers are as follows:

MatrixForm T ,

MatrixForm T.T , MatrixForm T.T.T

0 1 0
0 0 1
1 0 0

,

0 0 1
1 0 0
0 1 0

,

1 0 0
0 1 0
0 0 1

Then, for example, using the second matrix we see that

P X2 2 X0 1 0 and P X2 3 X0 1 1, hence the chain must be at

state 3 at time 2, given that it starts at state 1. The third power of T is the

identity matrix. This tells us that with certainty the chain will return to its

initial state at time 3. Moreover, T4 will equal T, since T4 T3 T , and

similarly T5 T2, T6 T3, etc. All of these observations make sense with

the dynamics of the chain shown by the transition diagram.

Computation of the short-run distributions is reduced by Theorem 1 to

computation of powers of the transition matrix T . In theory, this solves the

problem, but in practice the state space may be large (or infinite) and the

desired time n may also be so large as to make it very costly to compute Tn.

But perhaps more importantly still, it may be possible to find analytical

expressions for the entries of Tn that would allow us to answer questions like

the one in Activity 2, which was essentially asking for the limiting value of

these matrix powers. The following ideas and results from linear algebra

involving eigenvalues and diagonalization of a matrix can help.

Recall that a number is called an eigenvalue of an m m matrix A, and

a column vector x is an eigenvector for if

(5)A x x

4.2 Short-Run Distributions 277

Suppose that A has m distinct eigenvalues 1, 2, ... , m. Let

x1, x2, ... , xm be eigenvectors for these eigenvalues, in the corresponding

order. Define the diagonal matrix and corresponding eigenvector matrix by

(6)D
1 0 0 0

0 2 0 0

0 0 0 m

, N x1, x2, …, xm

so that the columns of N are the eigenvectors, in the corresponding order.

Then it can be proved that N 1 exists, and

(7)A N D N 1

The hypothesis of distinct eigenvalues can be weakened. All that is really

needed is that there exist m linearly independent eigenvectors.

This can be used to express the transition matrix in the form

T N D N 1, in which case

(8)

Tn N D N 1 N D N 1 N D N 1

N D N 1 N D N 1 N N 1 N D N 1

N Dn N 1

The matrix N Dn N 1 is simple to calculate, since the diagonal matrix D
raised to the nth power is the diagonal matrix whose ith diagonal element is

i
n. Thus, the main work in calculating the probability distribution of Xn is

in the computation of the eigenvalues and eigenvectors of T. The following

facts can be helpful.

(9)
For a transition matrix T , 1 is always an eigenvalue with

eigenvector 1, by which we mean a column of 1's (see Exercise 5).

(10)
The trace of T, that is, the sum of the diagonal entries of T, equals

the sum of all eigenvalues of T.

(11)
The trace of Tk is the sum of the kth powers of the eigenvalues of

T.

EXAMPLE 3. In Example 1, we computed some short-run probabilities for

the Markov chain related to the frozen food market. Now we will use the

diagonalization procedure to obtain a formula for Tn for arbitrary n. We

need the eigenvalues 1, 2, and 3, and an eigenvector for each. By observa-

tion (9), we can put 1 1 and x1 1. As for the other eigenvalues,

278 Chapter 4 Markov Chains

(10)–(11) give us a system of equations for these two unknowns. First we

compute T2.

T 1 2, 1 4, 1 4 ,

1 2, 1 2, 0 , 0, 1 4, 3 4 ;

MatrixForm T , MatrixForm T.T

1
2

1
4

1
4

1
2

1
2 0

0 1
4

3
4

,

3
8

5
16

5
16

1
2

3
8

1
8

1
8

5
16

9
16

Then,

trace T 1 2 1 2 3 4 7 4 1 2 3

trace T2 3 8 3 8 9 16 21 16 1 2
2

3
2

Solve 1 2 3 7 4,

1 2
2

3
2 21 16 , 2, 3

2
1
4
, 3

1
2

, 2
1
2
, 3

1
4

Alternatively, we could have asked Mathematica directly for the eigenvalues.

Eigenvalues T

1,
1
2
,

1
4

Written in decreasing order, our three eigenvalues are 1 1, 2 1 2, and

3 1 4. To find the eigenvector xi x, y, z for eigenvalue i, the form

of T implies that we must solve

x 2 y 4 z 4 i x
x 2 y 2 i y

y 4 3 z 4 i z

You can either do this longhand, or with the Mathematica Solve command,

or use the following Eigenvectors command. Note that the eigenvectors

correspond to eigenvalues written in the same order as in the output of the

Eigenvalues command.

4.2 Short-Run Distributions 279

Eigenvectors T

1, 1, 1 , 0, 1, 1 , 1, 2, 1

Then we can set

D
1 0 0
0 1 2 0
0 0 1 4

, N
1 0 1
1 1 2
1 1 1

and N 1 turns out to be:

D0 1, 0, 0 , 0, 1 2, 0 , 0, 0, 1 4 ;

N0 1, 0, 1 , 1, 1, 2 , 1, 1, 1 ;

NInv Inverse N0 ;

MatrixForm NInv

1
3

1
3

1
3

1 0 1
2
3

1
3

1
3

From these matrices and formula (8) we find that Tn is

TPower n_ : N0.MatrixPower D0, n .NInv;

MatrixForm TPower n

1
3

1
3 21 2 n 1

3
4 n

3
1
3

4 n

3
1
3

1
3 22 2 n 2 n 1

3
1
3 21 2 n 1

3
1
3 21 2 n 2 n

1
3

1
3 21 2 n 2 n 1

3
4 n

3
1
3 2 n 4 n

3

Our labor has returned a very powerful result. For any time n we wish,

we may calculate the probability that an individual favors each company,

given that at the start he favored some other company. For instance, the

probability that a customer who began with company 2 favors company 1

on the sixth day is the (2, 1) entry of the preceding matrix evaluated at n 6,

which is 0.348633 as shown below.

N MatrixForm TPower 6

280 Chapter 4 Markov Chains

0.333496 0.333252 0.333252
0.348633 0.333496 0.317871
0.317871 0.333252 0.348877

When Tn is pre-multiplied by p 0 1 8 3 8 1 2 , one gets the uncondi-

tional distribution of Xn, which is the vector p n representing the shares of

the market possessed by each company at time n. For example, p 6 1 is the

share of the market that company 1 has at time 6, which is 0.33136, the first

component of the vector below:

N 1 8, 3 8, 1 2 .TPower 6

0.33136, 0.333344, 0.335297

One last important observation is that as n , the matrix Tn

approaches a matrix all of whose rows are 1 3 1 3 1 3 , because the

exponent n appears with a negative coefficient in all of the exponential

expressions in the matrix Tn. In terms of the applied problem, no matter

what the initial state, the shares of the market possessed by the three compa-

nies are (rapidly) approaching equal shares of 1/3 apiece as time progresses.

It is common that such limits exist and are independent of the initial state,

though it should be pointed out that the equality of the three numbers is

coincidental to this problem. We will have a more convenient way of

finding limiting probabilities in Section 5.

Activity 3 – Find the number of days it takes for the first company to

achieve a share of 0.333 of the market, using the same initial distribution

p 0 as in the example.

4.2 Short-Run Distributions 281

Exercises 4.2

1. (Mathematica) Consider the Markov chain whose transition diagram is

below. Assume that it is certain that the chain begins in state 3.

 (a) Find the probability distribution of X2.

 (b) For arbitrary n, find the distribution of Xn.

1

2
3

1

2 3

1 3

1 4

3 4

Exercise 1

2. (Mathematica) Consider the Markov chain with transition matrix below.

Suppose the initial distribution is p 0 1 4, 1 4, 1 4, 1 4 . Find and

interpret: (a) T3 3, 4 ; (b) p 0 T5 3 ; (c) Tn 1, 1 .

.27 .15 .30 .28

.06 .54 .22 .18

.90 .02 .06 .02
1 0 0 0

3. (Mathematica) A random walk with reflecting barriers 0 and N is a

Markov chain whose state space is E 0, 1, 2, ... , N , which, at any state

strictly between 0 and N, moves next to either the state immediately to the

left or immediately to the right with equal probability. If the chain is at state

0, then it is certain to be at state 1 at the next time; and if it is at state N, then

it is certain to be at state N 1 at the next time. For the random walk with

reflecting barriers at 0 and 4, find the conditional distribution of the state at

time 6, given that the initial state is each of: 0, 1, 2, 3, and 4.

4. Let Xn be an arbitrary two-state Markov chain with a transition matrix T
whose every entry is non-zero. Find an expression for Tn, and find the limit

as n of Tn.

5. Verify condition (9).

282 Chapter 4 Markov Chains

6. (Mathematica) For Example 4 of Section 4.1, the flu recovery model with

N 5, compute P X3 0 X0 5 and P X2 1, X3 0 X0 5 .

7. A Markov chain of three states has the transition matrix below. Draw a

tree diagram representing the first three transitions of the chain, in which

each state has a directed edge pointing to the possible next states, weighted

by the probabilities of visiting those states. Use this tree to find

P X3 1 X0 1 .

0 1 2 1 2
1 3 1 3 1 3
1 4 0 3 4

8. (Mathematica) A machine can either be in excellent, good, fair, or poor

working condition at each time. Given that its current condition is any of the

first three, it can be in either the same condition next time with probability

.95, or in a condition that is one level worse with the remaining probability.

When the machine reaches the poor condition, it stays there. At least how

much time must elapse before a machine that begins in excellent condition

reaches poor condition with probability at least 1/2?

9. A program vehicle is used by a car dealer until it reaches the end of its

useful lifetime, and then is immediately replaced by a similar vehicle. It is

reasonable to suppose that the successive lifetimes Z1, Z2, Z3, ... of these

vehicles are i.i.d. with some discrete distribution:

p j P Z j , j 1, 2, 3, Assume also that if the old vehicle breaks

during time period n, n 1 , then the new one is put into service at time

n 1. Let Yn be the age of the vehicle in use at the start of time n. (Then

Yn 1 is 0 if the vehicle in use at time n was replaced.)

 (a) Compute qi P Yn 1 i 1 Yn i .

 (b) Find the transition matrix T of Yn .

 (c) Show that row i of T2 has non-zero entries only in columns 0, 1, and

i 2, and find those entries in terms of the qi's.

10. (Mathematica) Consider the Markov chain with the transition matrix

below. Investigate the behavior of Tn for large n, and interpret it in terms of

the geometry of the transition diagram.

T

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4
0 0 0 0 0 1

4.2 Short-Run Distributions 283

4.3 First Passage Times

The first time that a Markov chain hits a given state j E is a random

variable called a first passage time. Let T j be that time. We are interested in

the conditional probability distribution of T j given the initial state i, which

we denote by

(1)Fk i, j P T j k X0 i

We will not be able to compute a closed form for Fk directly in most cases,

but we will show how to calculate it recursively in k.

The computation is not difficult. For k 1 we have

F1 i, j P T j 1 X0 i
P X1 j X0 i
T i, j

where, as usual, T is the transition matrix of the Markov chain. For k 2,

the idea is that in order to hit state j for the first time at time k, the chain first

visits some state x j, then it stays away from j for exactly k 1 more time

units. By the law of total probability,

Fk i, j
P X1 j, ... , Xk 1 j, Xk j X0 i

x E j P X2 j, ... , Xk 1 j, Xk j X1 x
P X1 x X0 i

x E j Fk 1 x, j T i, x

We therefore have the following theorem.

THEOREM 1. Let T be the transition matrix of a Markov chain, and let

Fk i, j be the first passage time probability defined by (1). Then,

(2)Fk i, j
T i, j if k 1

x E j T i, x Fk 1 x, j if k 2

EXAMPLE 1. A student attending a certain college must satisfy a mathemat-

ics requirement. An entrance test, if passed, is enough. If the student does

not pass on the first try, he must take a certain course. Let us suppose that

the probability of passing the exam is 1/4, and that the probability of passing

the course is 2/3, no matter how many times the course is taken. We may

model the situation as a Markov chain with three states, as in Figure 4.5.

284 Chapter 4 Markov Chains

State 3 is the entrance state; state 2 is the state of being enrolled in the

course, and state 1 represents passing the math requirement. The random

variable Xn is the state at semester n, and the transition probabilities are

easily deduced from the given information. We shall compute the distribu-

tion of the amount of time taken by a student entering in state 3 to reach state

1. This particular chain is simple enough that we can obtain closed formulas.

1

2

3

1

2 3

1 3

1 4

3 4

Figure 4.5 – Markov chain model for satisfaction of math requirement

In the notation of (1), this distribution is

 Fk 3, 1 P T1 k X0 3 , k 1, 2, 3, ...

First, F1 3, 1 T 3, 1 1 4, by Theorem 1 and the given transition

probabilities. Again by the theorem,

F2 3, 1 x 1 T 3, x F1 x, 1

T 3, 2 F1 2, 1 T 3, 3 F1 3, 1

T 3, 2 T 2, 1 0 3 4 2 3

since T 3, 3 0. To find F3 3, 1 , we will need F2 2, 1 as well, which is

F2 2, 1 x 1 T 2, x F1 x, 1

T 2, 2 F1 2, 1 T 2, 3 F1 3, 1

1 3 2 3 0

The computation of F3 3, 1 is similar:

F3 3, 1 x 1 T 3, x F2 x, 1

T 3, 2 F2 2, 1 T 3, 3 F2 3, 1

3 4 1 3 2 3 0

A pattern has emerged. Since T 3, 3 0 and T 2, 3 0, we can write

for general k 2,

4.3 First Passage Times 285

(3)Fk 3, 1 T 3, 2 Fk 1 2, 1 and Fk 2, 1 T 2, 2 Fk 1 2, 1

The second equation in (3) says that Fk 2, 1 forms a geometric progression

in k with common ratio T 2, 2 1 3 and initial term

F1 2, 1 T 2, 1 2 3. Hence,

(4)Fk 2, 1 1 3 k 1 2 3 , k 1, 2, 3, ...

Substitution into the left-hand equation in (3) yields

(5)Fk 3, 1
1 3 k 2 2 3 3 4 if k 2, 3, ...

1 4 if k 1

Recall that (5) gives the probability that the math requirement is passed by

the kth semester.

The answer is very intuitive, given the structure of the transition dia-

gram. Starting in state 3, a student requires only one time unit to reach state

1 if the exam is passed, and this occurs with probability 1/4. In what way

can exactly k semesters (k 2) be required to reach state 1 from state 3?

First, the exam must be failed, which happens with probability 3/4. Then

k 2 semesters must be spent in the course. Recall that one retakes the

course with probability 1/3. Finally, after these k 2 unsuccessful efforts,

one successful effort occurs with probability 2/3. The meaning of the

product in the first line of (5) should now be clear.

Activity 1 – Check that the functions of k in (4) and (5) are proper

probability mass functions.

The form of equation (2) suggests an efficient recursive algorithm for

computing first passage time probabilities. Consider the target state j as

fixed. For each k 1, view Fk i, j as a column vector formed as i ranges

through the state space E. Then the sum in the second part of the formula is

almost the product of row i of the transition matrix T with the column vector

Fk 1 x, j , except that the Fk 1 j, j T i, j term is excluded. If we introduce

a new matrix T into the problem, which agrees with T except that its jth
column is set to zero, then (2) becomes

(6)Fk , j T Fk 1 , j

The first such vector F1 should be defined as column j of the original

transition matrix T, by the first part of (2). We show how to use this observa-

tion in the next example.

286 Chapter 4 Markov Chains

EXAMPLE 2. A small three-space parking lot behaves such that the

sequence of values X1, X2, X3, ... defined as the number of parked cars at

the time instants 1, 2, 3, ... forms a Markov chain. If no cars are present, it

is twice as likely for there to be no cars at the next time instant as it is for

there to be one car. If either one or two cars are present, at the next instant

there will either be one fewer car, the same number of cars, or one more car,

with equal probability. And if three cars are present, it is twice as likely for

there to still be three cars at the next time instant as it is for there to be two

cars. We look at the probability distribution of the time it takes for the lot to

become full for the first time, starting from each of states 0, 1, and 2.

The state space E 0, 1, 2, 3 gives the possible number of cars in the

lot. We are interested in finding Fk i, 3 , k 1, 2, 3, ... for each i 0, 1, 2.

The transition matrix of the chain is below, and to use (6) we must zero out

the last column corresponding to state j 3 to obtain T . The starting vector

F1 is the last column of T.

T
2 3 1 3 0 0
1 3 1 3 1 3 0

0 1 3 1 3 1 3
0 0 1 3 2 3

, T
2 3 1 3 0 0
1 3 1 3 1 3 0

0 1 3 1 3 0
0 0 1 3 0

,

F1

0
0

1 3
2 3

We now set these definitions into Mathematica and compute the next several

vectors Fk .

F1 0, 0, 1 3, 2 3 ;

Ttilde 2 3, 1 3, 0, 0 , 1 3, 1 3, 1 3, 0 ,

0, 1 3, 1 3, 0 , 0, 0, 1 3, 0 ;

F2 Ttilde.F1

F3 Ttilde.F2

F4 Ttilde.F3

F5 Ttilde.F4

0,
1
9
,

1
9
,

1
9

1
27

,
2
27

,
2
27

,
1
27

4
81

,
5
81

,
4
81

,
2
81

13
243

,
13
243

,
1
27

,
4
243

4.3 First Passage Times 287

For instance, the first components of these vectors, 0, 1/27, 4/81, and 13/243,

respectively, give the probabilities that it takes 2 time units, 3 time units, 4

time units, and 5 time units for an empty lot to first reach the state of three

cars. The fact that F4 2 4 81 (the third element of the F4 vector) means

that the probability that 4 time units are required to reach state 3 from state 2

is 4/81. Much other similar information can be gained by continuing the

iterative process.

Activity 2 – Use the vector approach to verify the results we found for

the Markov chain of Example 1.

EXAMPLE 3. In theory, the distribution Fk characterized by Theorem 1

could be used to calculate expected values of first passage times, but in

particular problems there are sometimes faster ways. Recall the flu recovery

model of Example 4 of Section 4.1. Let T T0 be the time at which the

healthy state 0 is reached. We would like a closed-form expression for

(7)f i E T X0 i ,

which is the expected number of steps required to reach the healthy state,

beginning at state i, for i 1, 2, ... , N . If we begin at state 0, then no more

steps are required, hence f 0 0; and if we begin at state 1, then exactly

one more step is required, consequently f 1 1. To find f i for the other

states, we will write f i in terms of previous f j , j i, by using a condi-

tioning argument similar to the one used to calculate the distribution of first

passage times.

Roughly, the reasoning is as follows. Begin at a state X0 i 2. The

time needed to reach the optimal state is one plus the time needed from the

next state X1. Condition on X1, and uncondition, knowing that X1 is one of

the i equally likely states that are better than i. By the law of total probabil-

ity, applied to the conditional probability measure P X0 i ,

(8)P T k X0 i j 0
i 1 P T k X1 j, X0 i P X1 j X0 i

Thus, multiplying both sides by k, summing, and interchanging order of

summation yields:

288 Chapter 4 Markov Chains

k 1
i k P T k X0 i

k 1
i k j 0

i 1 P T k X1 j, X0 i P X1 j X0 i

j 0
i 1 P X1 j X0 i k 1

i k P T k X1 j, X0 i

The last formula implies

(9)

E T X0 i

j 0
i 1 E T X1 j, X0 i P X1 j X0 i

j 0

i 1
1 E T X0 j 1

i

1
i j 0

i 1 1 1
i j 0

i 1 E T X0 j

The second line results from the time-homogeneous Markov property and

the known conditional distribution of X1 given X0 i. We now have the

recursive formula:

(10)f i
1 1

i j 1
i 1 f j if i 2, 3, ... , N

1 if i 1

Computation of f 2 gives 1, and computation of f 3 gives 1 1 2. We

define this function recursively in Mathematica, and check a few more

values:

f 1 : 1;

f i_ : 1
1

i
Sum f j , j, 1, i 1 ;

f 2 , f 3 , f 4 , f 5

3
2
,

11
6

,
25
12

,
137
60

Noting that 11 6 1 1 2 1 3 and 25 12 1 1 2 1 3 1 4, a

reasonable guess at a closed-form expression for f i is therefore

(11)f i j 1
i 1 j if i 1, 2, 3, ... , N

0 if i 0

4.3 First Passage Times 289

You are asked to show (11) by induction on i in Exercise 10. For

instance, in a problem with six states in which the starting point is 6 students

with the flu, the expected number of steps to the healthy state is

1 1 2 1 3 1 4 1 5 1 6 49 20

The expected number of steps required to reach the optimum point in this

simple algorithm model is roughly a logarithmic function of the number of

states.

Exercises 4.3

 1. Find Fk 3, 1 for all k 1 for the frozen food companies of Example 2,

Section 4.1. For your convenience, the transition matrix of the chain is

reproduced below.

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
 T =

1
2
3
4

0 1 2 1 2 0
1 3 2 3 0 0

0 0 3 4 1 4
0 0 1 0

1 2 3 4

 Exercise 1 Exercise 2

2. (Mathematica) For the Markov chain of Figure 4.2, whose transition

matrix is above, compute Fk 1, 3 for k 1, 2, 3, 4, 5.

3. Let Xn be the chain with transition matrix below. Find Fk i, 2 for

i 1, 2, 3 and all k 1, 2, 3,

T
1 0 0

1 2 1 4 1 4
1 3 3 5 1 15

4. (Mathematica) Write a Mathematica program to compute the vector

Fk i, j (as i ranges through the state space) given j and the transition matrix

T.

5. Compute the distribution of the time of first passage of a television set

from the fair state to the excellent state for the chain of Exercise 4 of Section

4.1. (Note that it is possible for this time to be + .)

6. A judicial case can be heard at three levels: lower court (1), appellate

court (2), and high court (3). State 4 in the transition diagram below repre-

sents final termination of the case. The weights in the directed graph are the

probabilities that the case will move from one court to another, e.g., an

appellate court case will return there with probability 1/4, or be appealed to

290 Chapter 4 Markov Chains

high court with probability 3/4. Find the probability that a case that begins

in lower court is finally terminated after exactly k hearings.

1

2 3

4

1

1 4 3 4 1 3

2 3

1

Exercise 6

7. (Mathematica) A game is played so that the wealth of the gambler at each

play either rises by 1 with probability .51 or falls by 1 with probability .49,

until the wealth either hits 0 or 8, at which point the game stops. For each

interior state 1, 2, ..., 7 in the transition diagram below, find the probability

that it takes k units of time to reach state 8, for values of

k 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Comment on whether, if the computation

were continued indefinitely, these probabilities would sum to 1.

0

1 2 3 4 5 6 7

8

1

0.49
0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51
1

Exercise 7

8. In Exercise 6, the time of first visit from state 3 to state 4 has a geometric

distribution with success parameter 2/3, so that E T4 X0 3 3 2. Find

E T4 X0 2 without finding the conditional distribution of T4 given

X0 2.

9. For a general two-state Markov chain with all transition probabilities

non-zero, find expressions for Fk 1, 2 and Fk 2, 1 .

4.3 First Passage Times 291

10. Verify formula (11) for the expected time to reach the healthy state in

the flu model.

11. For a general three-state Markov chain in which state 1 is an absorbing

state, find formulas for Fk i, j for all pairs of states i, j 2, 3. What is

Fk 1, j for j 2, 3? Set up, but do not attempt to solve, equations for

Fk 2, 1 and Fk 3, 1 .

12. For a cyclic Markov chain with five states, that is, a chain in which state

1 must go to state 2, state 2 must go to state 3, etc., what does formula (2)

reduce to? Find all first passage time probabilities Fk i, j .

4.4 Classification of States

We now begin an examination of the long-run behavior of a Markov chain.

Recall that in Section 2 of Chapter 1 we discussed what it meant for a graph

to be closed. In the language of Markov chains, a set S of states is called

closed if there does not exist a path from a state in S to a state outside of S.

For example, in Figure 4.6 below, the set 5, 6, 7 is closed, as are the sets

2, 3, 4 , 8 , and 1, 2, 3, 4 . The set 2, 3 is not closed, since state 4 can be

reached from it.

1

2

3

4

5

6

7

8

Figure 4.6 – Some closed sets of states in a Markov chain

292 Chapter 4 Markov Chains

A more important property of state spaces of Markov chains is the

following.

DEFINITION 1. A set of states is irreducible if it is closed and con-

tains no proper closed subsets. The Markov chain itself is called irreduc-
ible if its state space is irreducible.

A look back at Figure 4.6 shows that the set 1, 2, 3, 4 is not irreducible,

since 2, 3, 4 is a proper closed subset. But the sets 2, 3, 4 and 5, 6, 7

are both irreducible. Single states, such as state 8 in Figure 4.6, from which

no escape is possible, form their own irreducible sets, and are given the

special name of absorbing states. The chain whose transition diagram is

shown in Figure 4.7 is irreducible.

1

2 3

4

Figure 4.7 – An irreducible Markov chain

Activity 1 – Look back at the frozen food company example of Section

4.1. Is that Markov chain irreducible? Does the Markov chain that we

used as a simple model for recovery from a flu epidemic (Example 4 of

Section 4.1) have any closed sets of states?

To motivate the ideas that we will discuss in this section, refer again to

the chain whose transition diagram is in Figure 4.6. Beginning at state 8, the

probability of being again at state 8 at any later time n is 1. Hence, trivially

P Xn 8 X0 8 approaches 1 as n . Beginning at state 1, the chain

leaves state 1 immediately and permanently, so that the probability of being

at state 1 at any time n 0 is 0. Again, trivially P Xn 1 X0 1

approaches 0 as n . We call such a state transient. It is only the

irreducible sets 2, 3, 4 and 5, 6, 7 that have non-trivial long-run behavior.

Beginning in either of these sets, the chain visits each state in the set over

4.4 Classification of States 293

and over again, and the state space is essentially limited to that set. We refer

to such states as recurrent. One might ask what fraction of its time the chain

spends in each recurrent state, in the long run. This is the main question to

be answered in Section 5 on limiting probabilities. Here we will be con-

cerned only with classifying states as either transient or recurrent.

We consider a Markov chain Xn with a finite state space E and transi-

tion matrix T. Recall that

Tn i, j P Xn j X0 i

The finiteness of the state space removes certain technical obstacles that

obscure the main issue upon first reading. The main results do extend to the

countable case, however, with small alterations. The goal is to partition the

state space of the Markov chain into several sets called recurrence classes,

and one other set of transient states .

First let us give definitions for the ideas motivated in the above

discussion.

DEFINITION 2. A state j is called recurrent if the probability that the

chain eventually returns to j, given that it started there, is one. Denoting

by S (or S j) the first time n 1 such that Xn j, we say that j is recur-
rent if and only if

P S X0 j 1

A state j that is not recurrent is called transient. If S is as above, then j is
transient if and only if either of

P S X0 j 1 or P S X0 j 0

Note that we require a somewhat weaker condition for transience than state 1

in Figure 4.6 actually satisfies. It is only necessary to have a non-zero

probability of never returning in order for a state to be transient, whereas

state 1 was certain never to be visited again after the first time.

It is convenient to introduce another piece of notation. We write i j
if there is a path from i to j in the transition diagram. In this case we say that

" i reaches j" , or "j is accessible from i ". It is easy to see that

(1)i j n 0 such that Tn i, j 0

EXAMPLE 1. In Figure 4.8, we see that for example 1 2, 2 3, 3 2,

1 5 (since 1 6 in one step and 6 5 in one step), etc.

Several things can be seen about the chain in Figure 4.8. First, state 1

must be transient, since the probability is 3/4 that the next step is into one of

294 Chapter 4 Markov Chains

the two closed sets 2, 3 or 4, 5, 6 , from which 1 can never again be

visited. State 2 should be recurrent, because starting there, the chain either

returns there immediately or goes to state 3. In the latter situation the

probability of staying in state 3 forever is 1 4 1 4 1 4 0, i.e., the

chain must eventually return to state 2. State 6 is clearly recurrent, because

from it the chain could either go to state 5 (after which it must go back to 6),

or to state 4. From state 4 the chain could either return directly to 6 or pass

through 5 before returning to 6. In any case, a return to state 6 is inevitable.

1

2

3

4

56

1 4

1 2

1 4

1 4

3 4

3 4

1 4

1 32 3

1

1 3

2 3

Figure 4.8 – Several recurrent states

Activity 2 – If the Markov chain of Figure 4.8 starts at state 5, is a return

to 5 inevitable? Why?

The next results give a more systematic approach to the problem of

classifying states as transient or recurrent. They employ the following easy

lemma, whose proof we leave to the reader as Exercise 9.

LEMMA 1. If i j and j k , then i k.

A second lemma will also be necessary. This lemma gives an interesting

characterization of recurrence in terms of the expected number of visits to

the alleged recurrent state.

LEMMA 2. A state k is recurrent iff

(2) n 1 Tn k, k

(This sum is the expected number of return visits to k.)

4.4 Classification of States 295

Proof. Define random variables:

(3)In
1 if Xn k
0 otherwise

Then the expected number of visits to k starting from k is

E n 1 In X0 k n 1 E In X0 k

n 1 P Xn k X0 k

n 1 Tn k, k

If state k is recurrent, then with certainty it will be visited infinitely often,

hence the number Nk of visits to k has infinite expectation. This shows the

forward part of the double implication. For the converse, assume that the

expected number of visits to k is infinite. An open-ended sequence of

Bernoulli trials is generated, in which the ith trial is a success if, after the

i 1 st visit to k, state k is eventually visited again. The success probability

for a trial is fk k P Sk X0 k . The number of return visits to j is

therefore the number of successes until the first failure, which has the

geometric distribution with success parameter fk k . The expected number of

successes is 1 1 fk k , which has been assumed to be infinite. The only

way for this to happen is for fk k to be 1, i.e., k is recurrent. This proves the

lemma.

THEOREM 1. If j is recurrent and j k, then k j and k is recurrent.

Proof. Suppose that j is recurrent and that j k. We show first that

k j. Since there is a path from j to k, there is also a simple path from j to
k , in particular, one that does not pass through j as an intermediate state.

Figure 4.9 illustrates the simple path.

j

x1

x2 xn

k

p1 p2

pn

pn 1

Figure 4.9 – A simple path from state j to state k

296 Chapter 4 Markov Chains

The event

X1 x1, X2 x2 , ... , Xn xn, Xn 1 k, Xi j for all i n 1

is contained in the event Xi j for all i 1 . Therefore,

(4)

P X1 x1, X2 x2 , ... , Xn xn,

Xn 1 k, Xi j for all i n 1 X0 j
P Xi j for all i 1 X0 j

The probability on the left side of (4) is

p1 p2 pn pn 1 1 P S j X0 k

The probability on the right side of (4) is 1 P S j X0 j . But since j
is recurrent, the right side of (4) is zero. Consequently the left side of (4) is

also zero, which yields

P S j X0 k 1

The latter can only be true if there is a path from k to j.
Now we show that k is recurrent. There is a path, say of length n, from j

to k, hence Tn j, k 0. Also, by the argument of the last paragraph there is

a path, say of length m, from k to j, hence Tm k, j 0. The event that the

chain goes from state k to itself in some number m n x of steps contains

the event that the chain goes from k to j in m steps, and from j to itself in x
steps, and from j to k in n steps. Therefore,

Tm n x k, k Tm k, j Tx j, j Tn j, k

Because of this, we have

i 1 Ti k, k i 1
m n Ti k, k x 1 Tm n x k, k

i 1
m n Ti k, k x 1 Tm k, j Tx j, j Tn j, k

i 1
m n Ti k, k Tm k, j Tn j, k x 1 Tx j, j

The right side is infinite by Lemma 2, since j is recurrent. Thus, the left side

is infinite, and the same lemma implies that k is recurrent. This completes

the proof of Theorem 1.

The last theorem helps to classify recurrent states, because if one state is

known to be recurrent, then all states that it can reach are also recurrent. The

next result helps to classify transient states. You are asked for a proof in

Exercise 7.

4.4 Classification of States 297

THEOREM 2. Let j be a state. If there is a state k such that j k but k
does not reach j, then j is transient.

Finally, Theorem 3 uses the previous results to generate a method for

recognizing transient and recurrent states.

THEOREM 3. Fix a state j. Let C be the set of all states in the finite state

space E that are reachable from j (together with j itself). If every

k C reaches j, then all states in C are recurrent and C is an irreducible set.

If, on the other hand, there is some k C that cannot reach j, then j is

transient.

Proof. First, if there is k C that cannot reach j, then j must be transient,

by Theorem 2. This proves the second assertion of the theorem. Henceforth

assume that every state k in C reaches j.
It is easy to see that C is closed, by construction. We claim that there

must be at least one recurrent state in C. If not, then all states in C would be

transient, and by Lemma 2, the expected number E Nk of return visits to

each state k in C would be finite. This would mean that for almost every

outcome, and every k C, Nk itself must be finite. But this is a contradic-

tion, since C is closed and of finite size, hence the total of the number of

visits to all states k C must be infinite.

The argument in the last paragraph allows us to suppose that there is a

recurrent state, say i, in C. Let k be any other state in C. We have i j by

assumption, and j k by construction of C. Thus, the recurrent state i
reaches k, and Theorem 1 implies that k is recurrent.

We have already seen that C is closed. It remains only to show that C is

irreducible. Let k1 and k2 be in C; we will show that both k1 k2 and

k2 k1. By assumption, k1 j , and by construction, j k2. Thus,

k1 k2. The same argument can be used to show that k2 k1. Since all

states commumicate with each other, C can have no proper closed subsets.

The proof is complete.

In the first case of Theorem 3, the irreducible set of recurrent states C is

called the recurrence class of state j.

Activity 3 – Argue that a finite, irreducible Markov chain such as the

one in Figure 4.7 must consist of a single recurrence class.

Given a state j, the Connected Components Algorithm of Chapter 1

allows us to find the set C of all states reachable from j. The last theorem

gives a condition that allows us to tell if j is transient, namely if not all k C
can reach j. If j is not transient, then j, as well as all k C, are recurrent.

The recurrence class C is also irreducible, so that there are no cliques of

298 Chapter 4 Markov Chains

states inside C that can capture the chain forever. Since C is closed, if the

chain starts in C, then C is essentially a state space of its own, for the chain

can never leave C. By finding recurrence classes and transient states in this

way, we can partition the state space into fundamental subspaces, and we

will see in the next two sections how to use this partition to fully character-

ize the limiting behavior of the chain.

EXAMPLE 2. We now classify the states of the diagram in Figure 4.8.

State 1 can reach all of states 2, 3, 4, 5, 6, but none of these states can reach

1, hence 1 is transient. State 2 is the next unclassified state; it reaches only

state 3. Since 3 2 , the set 2, 3 forms a recurrence class C1. The next

unclassified state is 4, which reaches 5 and 6. Both 5 and 6 reach 4, hence

the set 4, 5, 6 forms a recurrence class C2.

Mathematica confirms our analysis, and can be used as below to assist in

finding transient states and recurrence classes for larger, more complicated

chains. A version of the Components function that was developed in

Chapter 1 is in the package KnoxOR`StochasticProcesses`. We give it a

name that is more appropriate for this context.

ReachableSet transmatrix,state

The ReachableSet command takes the transition matrix of the Markov chain,

and the number of a state. It returns a list of all states reachable from the

given state. In the closed cell that produced the graph in Figure 4.8, the

adjacency matrix of the graph was named graph8. We call on ReachableSet

for all states in the chain, and find that state 1 reaches all states, but none of

them can get to 1. States 2 and 3 reach only each other, and states 4, 5, 6

only reach each other, as we noted above.

Needs "KnoxOR`StochasticProcesses "̀ ;

ReachableSet graph8, 1 ,

ReachableSet graph8, 2 ,

ReachableSet graph8, 3 ,

ReachableSet graph8, 4 ,

ReachableSet graph8, 5 ,

ReachableSet graph8, 6

1, 2, 3, 4, 5, 6 , 2, 3 ,
2, 3 , 4, 5, 6 , 4, 5, 6 , 4, 5, 6

4.4 Classification of States 299

EXAMPLE 3. Consider the Markov chain whose transition diagram is in

Figure 4.10. Let us partition the state space into transient states and recur-

rence classes. (We suppress the transition probabilities as being irrelevant

for this purpose.)

1

2

3

4

5

6

7

8

9

10

Figure 4.10 – Classifying states of a Markov chain

 The reachable sets for the ten states are computed below.

ReachableSet graph10, 1 ,

ReachableSet graph10, 2 ,

ReachableSet graph10, 3 ,

ReachableSet graph10, 4 ,

ReachableSet graph10, 5 ,

ReachableSet graph10, 6 ,

ReachableSet graph10, 7 ,

ReachableSet graph10, 8 ,

ReachableSet graph10, 9 ,

ReachableSet graph10, 10

1, 2, 3, 7 , 1, 2, 3, 7 ,

3, 7 , 1, 2, 3, 4, 5, 7, 8, 9, 10 ,
1, 2, 3, 5, 7, 8, 9, 10 , 1, 2, 3, 5, 6, 7, 8, 9, 10 ,

7 , 1, 2, 3, 5, 7, 8, 9, 10 ,
1, 2, 3, 5, 7, 8, 9, 10 , 1, 2, 3, 5, 7, 8, 9, 10

Note that state 7 only reaches itself, that is, state 7 is an absorbing state. But

all of the other states can reach 7, which does not reach any of them. So, we

300 Chapter 4 Markov Chains

have a large set of transient states 1, 2, 3, 4, 5, 6, 8, 9, 10 , and a single

recurrence class C consisting of state 7 only.

Exercises 4.4

1. Find all closed sets for the court case chain of Exercise 6, Section 4.3.

2. (Mathematica) Find all irreducible sets of states for the chain with the

transition diagram below. (The arrows represent all transitions that have

non-zero probability.) Find the recurrence classes and the set of transient

states.

1 2 3

4

5

6

7

8

9

Exercise 2

3. (Mathematica) Calculate the first four powers of the transition matrix T
for the chain whose transition diagram is below. Is the graph a regular graph

in the sense of Chapter 1? Is the chain irreducible? Can anything be said

about the behavior of Tn as n ?

1

2 3

4

1 2 1 2

1 1

1

1

2

3

4

5

1 2

1 2

1 2

1 2

1

2 3

1 3
1 3

2 3

Exercise 3 Exercise 4

4. Classify all states in the Markov chain with transition diagram above.

4.4 Classification of States 301

5. (Mathematica) Find the recurrence classes and transient states of the

chain whose transition matrix is below.

1 4 0 0 0 1 2 1 4 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 2 0 0 0 0 1 2 0

1 3 0 0 0 2 3 0 0 0
1 4 0 0 0 1 4 1 2 0 0

0 1 2 0 0 0 0 1 2 0
0 1 4 0 1 4 0 0 1 4 1 4

Exercise 5

0 1 0 0 0 0 0 0
3 4 0 1 4 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 2 3 1 3 0 0 0
0 0 1 2 1 2 0 0 0 0
0 0 0 1 3 0 0 1 3 1 3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 Exercise 6

6. (Mathematica) Repeat Exercise 5 for the Markov chain with transition

matrix above.

7. Prove Theorem 2.

8. Show that if Xn is a Markov chain with finite state space E such that

i j for all states i and j, and such that there exists a state i0 with

T i0, i0 0, then the chain is regular (i.e., it has a regular transition diagram,

in the sense of Chapter 1).

9. Prove Lemma 1.

10. Devise an example of a Markov chain with two absorbing states 1,2 and

three transient states 3,4,5 in which the transient states have self-loops, and

the probability that, starting from each transient state, the chain is eventually

absorbed in state 1 is 1/2 and the probability that it is eventually absorbed in

state 2 is also 1/2.

11. In view of the recursive equation p n p n 1 T for the short-run

distributions of a Markov chain, assuming that there is such a thing as a

long-run or limiting distribution represented by a vector p, what equation

should that vector satisfy? Check your hypothesis against the computations

of Examples 1 and 3 in Section 4.2 on the frozen food companies.

302 Chapter 4 Markov Chains

4.5 Limiting Probabilities

Main Results

 In this section we will derive the limiting probabilities

limn P Xn j X0 i

for a Markov chain. The notation is as usual, and the state space E is

assumed to be finite in this section. Recall that we have shown that the

conditional probability whose limit is being taken is the same as Tn i, j .

The following is a preliminary result that clarifies the limiting behavior for

transient states, shows that the limiting probabilities for recurrent states do

exist, and gives an intuitive interpretation of the limiting probabilities for a

recurrent state in terms of the time between visits and the long-run propor-

tion of time spent in the state. One extra term must be introduced in order to

state part (c) of the theorem. We say that a Markov chain is regular if its

transition diagram represents a regular graph, i.e., there is some power Tn of

the transition matrix which is non-zero in every component.

THEOREM 1. (a) If a state j is transient, then

lim n Tn i, j lim P Xn j X0 i 0 , i E

(b) If i cannot reach j, then lim Tn i, j 0. This occurs in particular if

i is recurrent and j is transient, or if i and j belong to different recurrence

classes.

(c) If i and j belong to the same recurrence class, and the transition

matrix restricted to that class is regular, then the quantity

j limn Tn i, j

exists and does not depend on i.
(d) Under the hypothesis of part (c), the limiting probability j equals

the reciprocal of the mean time between visits to state j.
(e) Under the hypothesis of part (c), for almost every outcome ,

j limn Nt t

where Nt is the number of visits by the chain to state j through time t.

4.5 Limiting Probabilities 303

We will not give the proof here, since it depends on results from renewal
theory, to be introduced in Chapter 5. In the exercise set of Section 5.3, you

are led through a proof. Part (a) is intuitively obvious, since a transient state

will eventually be left forever. Part (b) is also clear, since the condition that

i does not reach j implies that P Xn j X0 i 0 for all n. In part (d), for

example, if a recurrent state has limiting probability 1/4 then we can say that

the average number of time units between visits to that state is 4. And part

(e) is analogous to the Strong Law of Large Numbers for independent

events, in the sense that it says that, except for an exceptional set of out-

comes of probability zero, if we follow the path of the chain for a very long

time, it will spend a fraction of the time j in the recurrent state j.

Activity 1 – Make up an example of a regular Markov chain with four

states.

Let us look for a moment at the structure of the transition matrix T. The

states in E can be reordered so that the states in the first recurrence class C1

appear first, then the states in the second recurrence class C2, etc. out to class

Cm, and after all of those classes is the set of transient states, denoted by S.

Recall that a recurrence class is closed, therefore different classes cannot

reach each other. Also, no recurrent state can reach a transient state. Then

the transition matrix T can be written in block form as in Figure 4.11. Each

block Ti i is the transition matrix of the chain restricted to class Ci. Blocks

Q1, Q2, ... , Qm give transition probabilities from transient states to recurrent

states in recurrence classes 1, 2, ... , m, respectively. We denote by R the

submatrix of T containing the transition probabilities from transient states to

transient states.

 C1 C2 Cm S
C1

C2

Cm

S

T11 0 0 0

0 T22 0 0

0 0 Tm m 0

Q1 Q2 Qm R

Figure 4.11 – Block structure of a transition matrix

Now consider the limit as n of Tn. By part (a) of Theorem 1, the

entire S "column" of this limiting matrix is 0. By part (b) of the same

theorem, the block of the limiting matrix corresponding to the Ci "row" and

C j "column" for i j must be 0 as well. Therefore the northwest quadrant

of the limiting matrix will have the same diagonal structure as the matrix T

304 Chapter 4 Markov Chains

in Figure 4.11. The southeast quadrant of the limiting matrix will be a zero

block, as opposed to the block R in the southeast corner of T .

Each recurrence class Ci corresponds to a Markov chain of its own,

whose state space is the recurrence class. Just two tasks must be done in

order to compute all limiting probabilities. The first is to find the limit of

Tn i, j for i and j in the same recurrence class, and the second is to find this

limit for i transient and j recurrent. The latter problem is solved in Section 6.

The next theorem solves the former problem by showing that limiting

probabilities restricted to a given class may be found by solving a system of

linear equations. The hypothesis of regularity of the restricted chain is

needed, however.

THEOREM 2. Let Xn be a regular Markov chain with transition matrix T
and finite state space E. Let j be as in (3), and let be the row vector

formed by the j as j ranges through E. Then

(5)T and ·1 = 1

where 1 is the column vector of length equal to the size of the state space, all

of whose entries are equal to 1.

Proof. We claim that the state space E consists of a single recurrence class.

By assumption, for some m, Tm is entirely non-zero, hence there is a path of

length m from every i to every j in E. By Theorem 3 of Section 4.4, E is

irreducible, and each state in E is recurrent.

Thus, by part (c) of Theorem 1, the limiting matrix lim Tn exists, and

every row of this limiting matrix is . For each i E and each n 0, the

sum of the entries in row i of Tn equals 1, hence:

1 limn j E Tn i, j j E limn Tn i, j j E j

which shows that 1 1.

Expressing Tn 1 as Tn T , we can write that, for all states i and j,

(6)Tn 1 i, j k E Tn i, k T k, j

We wish to send n on both sides of (6). Because the state space is

finite, the limit can be brought past the sum on the right side, to yield:

(7)

j limn Tn 1 i, j k E limn Tn i, k T k, j

k E k T k, j

T j

Therefore T , which completes the proof.

4.5 Limiting Probabilities 305

Referring again to the block form of T in Figure 4.11, each recurrence

class Ci can be treated as the state space of an irreducible Markov chain with

transition matrix Ti i. As long as Ti i is regular, the limiting vector for that

class can be found by solving the linear system Ti i subject to the

condition that the entries of sum to 1. We hasten to point out that the

finiteness of the state space is not a necessary hypothesis in Theorem 2. It

was only included to facilitate the exchange of limit and sum in (7). The

same result can be shown in the infinite state case; for the more subtle proof,

see Ross ([52], Thm. 4.3.3).

Activity 2 – Check that the Markov chain with transition matrix below is

regular, and write out in full detail the system of equations for the

limiting probabilities. If you solve for 2 in terms of 3 in the second

equation, and then substitute that into the first equation, what do you

notice?

1 3 0 2 3
1 2 1 2 0

0 3 4 1 4

Examples

We now illustrate the application of the preceding results.

EXAMPLE 1. Return to the Markov chain of Figure 4.8 in Section 4. In

the electronic version of the text, you can execute the cell below this one to

reproduce the transition diagram. Recall that state 1 was the only transient

state, states 2 and 3 formed a recurrence class, and states 4, 5, and 6 formed

a second recurrence class.

 We can block off the transition matrix as follows:

 2 3 4 5 6 1

T

2
3

4
5
6

1

1 4 3 4 0 0 0 0
3 4 1 4 0 0 0 0

0 0 0 1 3 2 3 0
0 0 0 0 1 0
0 0 1 3 2 3 0 0

1 2 0 0 0 1 4 1 4

306 Chapter 4 Markov Chains

The block corresponding to the set of states 2, 3 is itself a transition matrix

of a regular chain. Let x, y . The relevant system of equations for the

limiting probabilities for the irreducible set 2, 3 is

1 4 3 4

3 4 1 4

x 1
4

x 3
4

y

y 3
4

x 1
4

y
x y 1

The first two equations both simplify to x y, hence it is easy to find the

solution to the resulting system of two equations in two unknowns, which is

x 1 2, y 1 2. The meaning of this computation is

(8)
limn P Xn 2 X0 i 1 2 , i 2, 3

lim n P Xn 3 X0 i 1 2 , i 2, 3

The limit of the 2, 3 diagonal block of Tn as n is a 2×2 matrix, both

of whose rows are 1 2 1 2 .

Similarly, we can calculate the limit of the 4, 5, 6 diagonal block. You

are asked in Exercise 8 to check that paths of length 4 exist from each state

in 4, 5, 6 to each other state, hence the chain restricted to 4, 5, 6 is

regular. Theorem 2 can now be applied. The equations are

x y z x y z
0 1 3 2 3
0 0 1

1 3 2 3 0
, x y z 1

When the system is expanded out, you can check that we get the following

system, which we solve in Mathematica:

system x
1

3
z,

y
1

3
x

2

3
z, z

2

3
x y, x y z 1 ;

Solve system, x, y, z

x
3
19

, y
7
19

, z
9
19

Thus, in the block of T corresponding to 4, 5, 6 , the limiting matrix is a

3 3 matrix all of whose rows are 3 19 7 19 9 19 . Regardless of the

initial state within 4, 5, 6 , the long-run probabilities that the chain occupies

states 4, 5, and 6, respectively, are given by these three values. Also, for

example, by Theorem 1(d), the mean time between return visits to state 5 is

1 7 19 19 7.

4.5 Limiting Probabilities 307

Activity 3 – It can be shown (see Exercise 7) that the system T is

always dependent, hence an equation can be thrown away with no loss.

Use Mathematica to check to see that you get the same solution to the

system if you discard each of the first three equations in turn.

EXAMPLE 2. We can compute the limiting distribution for the frozen food

companies of Example 2 in Section 1 much more easily now than we did

earlier. The transition matrix is below, and the diagram is in Figure 4.3 of

Section 1, the code for which is in the closed cell beneath the transition

matrix, so that you can reproduce it in the electronic text. It is easy to check

that T2 is entirely positive, hence the chain is regular.

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4

 The following system must be solved:

x y z x y z
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
, x y z 1

x 1
2

x 1
2

y

y 1
4

x 1
2

y 1
4

z

z 1
4

x 3
4

z
x y z 1

The first and third equations imply that x y z, hence the last equation

yields x y z 1 3. This is precisely what was found in Section 2.

EXAMPLE 3. An air conditioning system can be running at one of three

speeds: high, low, or off. The table below gives the conditional probabilities

that at the next minute the speed will be j given that now the speed is i, for

each possible pair i, j . Find the long-run proportion of time spent at each

speed.

308 Chapter 4 Markov Chains

 next speed

current speed

high low off
high .7 .2 .1
low .1 .8 .1
off 0 .4 .6

The table is the transition matrix of the Markov chain Xn , where Xn is

the speed at which the air conditioner is running at minute n. By Theorem

1(e), the long-run proportion of time spent at speed j is j, which is, by

Theorem 2, the jth component of the vector x y z satisfying the

system of equations (5). You can check that the equations translate to those

below. (We discard the third equation in T since it is expressible in

terms of the other equations.)

system3

x .7 x .1 y, y .2 x .8 y .4 z, x y z 1 ;

Solve system3, x, y, z

x 0.2, y 0.6, z 0.2

Thus, the machine is on high 1/5 of the time, low 3/5 of the time, and off 1/5

of the time on the average, in the long run. We also observe from part (d) of

Theorem 1 that the mean time between shutoffs is 1 1 5 5 minutes. If

the air conditioner costs 1 cent per minute when it is on high, 1/2 cent per

minute on low, and nothing when it is off, then over a 300-minute span, we

expect about 60 minutes of high speed and 180 minutes of low speed, for an

approximate cost of 60 1 180 1 2 150 cents.

Activity 4 – See what Mathematica's reaction is if you ask it to solve for

x, y, z in Example 3 using only the three equations you get from

T .

REMARK. Suppose that a regular chain is such that its initial distribution

is the same as its limiting distribution , i.e., j P X0 j . Then

p n p 0 Tn Tn T Tn 1 Tn 1 T

where p n is the distribution of Xn. The equation above says that

P Xn j j for all times n, if is the initial distribution. For this reason,

 is often referred to as the stationary or steady-state distribution of the

chain. Similarly, the equations (5) that characterize are called the station-
ary, or steady-state equations.

4.5 Limiting Probabilities 309

EXAMPLE 4. Our final example deals with the long-run distribution of

inventory for a discrete-time demand model, with a particular kind of

reordering policy, called an s S policy, in which the stock is restored to a

level of S as soon as demands for the stocked item decrease the inventory to

a level below s. A hardware store stocks a certain type of lawn mower.

When inventory level falls to 0, an order is placed immediately to a local

distribution center so that by the next morning there are four lawn mowers in

stock. Total daily demands for the mower are independent random variables

taking the values 0, 1, 2, and 3, respectively, with probabilities 2/3, 1/9, 1/9,

and 1/9. Unsatisfied demands are simply lost. Let Xn be the number of

mowers in stock at the beginning of day n. Find the limiting distribution of

Xn.

 Denote by Dn the number of demands for the mower during day n.

Then we can relate the inventory at the beginning of day n 1 to the inven-

tory at the beginning of day n by

(9)Xn 1

4 if Dn Xn

Xn Dn otherwise

By the independence of the demands, it is clear that the chain Xn has the

Markov property. To solve the problem we find the transition matrix of the

chain and solve the stationary equations.

 Formula (9) indicates how to find the transition probabilities. For

instance, suppose that this morning the inventory level was 2. Tomorrow

morning, the level will be 4 if either 2 or 3 demands come in, forcing a

reorder. This occurs with probability 2/9. Tommorow's level cannot be 3,

since we either decrease level due to sales or reorder up to 4. The inventory

level tomorrow can be 2 if no demands come in, and this occurs with

probability 2/3. Finally, the next level could be 1 if exactly 1 demand

arrives. This happens with probability 1/9. The preceding analysis justifies

the second row of the transition matrix below. You should check the other

rows using similar reasoning. Also, check to see that this is a regular

Markov chain.

 1 2 3 4

T
1
2
3
4

2 3 0 0 1 3
1 9 2 3 0 2 9
1 9 1 9 2 3 1 9
1 9 1 9 1 9 2 3

310 Chapter 4 Markov Chains

Set x y z w . The stationary equations have the form below.

Recall that the first four equations of the system T are dependent;

therefore we may as well throw out the most complicated one, say the fourth

involving w.

system4 x
2

3
x

1

9
y

1

9
z

1

9
w,

y
2

3
y

1

9
z

1

9
w,

z
2

3
z

1

9
w,

x y z w 1 ;

Solve system4, x, y, z, w

x
1
4
, y

3
16

, z
9
64

, w
27
64

Thus, the limiting distribution of inventory is 1
4

, 3
16

, 9
64

, 27
64

. If,

for instance, there is a daily cost of $10 per mower for storage, then the

long-run average cost per day is

N 1 4, 3 16, 9 64, 27 64 . 10, 20, 30, 40

27.3438

Long-Run Discounted Cost

In Example 3 on the long-run behavior of air conditioners, and Example 4 on

lawn mower inventory, we had a Markov chain Xn that produced a cost of

f Xn at time n. We found the limiting distribution and computed the dot

product f to evaluate long-run average cost per unit time. To be more

precise, as in Theorem 1(e), it can be shown that for almost every outcome ,

(10)limn k 0
n f Xk n f

where the function f is looked upon as a vector, with an entry for each

member of the state space of the chain. A different criterion for evaluating

long-run cost is the expected discounted cost:

(11)R f i E n 0
n f Xn X0 i

4.5 Limiting Probabilities 311

where 0, 1 . The interpretation is that at time n, when the state of the

chain is Xn, an absolute cost of f Xn is charged. But relative to the value of

money today (time 0), the cost is only n times this absolute cost, i.e., we

discount by a factor of in each time period after time 0. Then R f gives,

for each initial state i, the conditional expectation of the total discounted cost

relative to the present value of money. In this subsection we develop a

method to calculate the expected total discounted cost.

We assume that f is non-negative and that the state space is finite. By the

monotone convergence theorem we may interchange expectation with

summation in (11) to obtain

(12)

R f i n 0
n E f Xn X0 i

n 0
n

j E f j Tn i, j

j E n 0
n Tn i, j f j

The second line follows because row i of the matrix Tn gives the conditional

distribution of Xn given X0 i, and the third line changes the order of

summation, which is acceptable for series of non-negative terms.

For small state spaces, one way of computing this is to diagonalize T as

in Section 2. But a faster method is possible, as we have seen in the computa-

tion of long-run probabilities. The vector R f can be found by solving a

system of linear equations. To see this, consider the matrix defined by

(13)R n 0
n Tn

From (12), we see that the quantity R f is just the matrix product R f.

Also,

R I T 2 T2 3 T3

I T I T 2 T2

I T R

where I is the identity matrix of the appropriate size. Solving for R ,

(14)I T R I R I T 1

which implies that

(15)I T R f f

We have the option of either solving for the matrix R by inverting I T ,

or solving directly for the vector R f by solving the linear system in (15).

The latter might save slightly in the amount of computation; but if one wants

312 Chapter 4 Markov Chains

to reuse the same chain, the same discount factor , and compare several

different cost functions f, then it is efficient to compute the matrix R and

just matrix multiply to get R f for all desired cost functions.

Though we have been speaking in the context of cost, the function f
might just as well be a reward function, in which case R f becomes the

long-run expected discounted reward.

EXAMPLE 5. A gambler has the choice of two games, each consisting of

repeated plays. In the first game, he either wins $3 or nothing on each play

according to whether the result of the play is state 1 or state 2. If state 1

comes up on a given play, state 1 will be next with probability .25, or state 2

with probability .75; and if state 2 comes up on a play, then state 1 will be

next with probability .15, so that as the game progresses, the outcome of the

next play is conditionally independent of the past history of the game given

the present state. The second game available to the gambler is similar to the

first, except that he wins $2 or nothing on each play, and a return to state 1

happens with probability 1/3 and a transition from state 2 to state 1 happens

with probability .2, as shown in Figure 4.12. Which game is preferable if an

absolute dollar earned on the nth play is only worth .9n in present terms?

1 2

1 4

3 4

.15 .85

1 2

1 3

2 3

.2 .8

(a) Game 1: $3 for 1, $0 for 2 (b) Game 2: $2 for 1, $0 for 2

Figure 4.12 – Which is the better gamble?

There is a trade-off that we must analyze, between game 1 which pays

more per visit to state 1, and game 2 which visits state 1 more often. For

each game, we compute the expected long-run discounted reward with

discount factor .9. The Markov chain involved is defined in the same

way for each game, namely Xn state at play n. The absolute reward earned

when the state is k is the kth component of the reward vector for the corre-

sponding game. Those vectors are, respectively, f1 3 0 , f2 2, 0 .

The transition matrices for the two games were defined as matrix12a and

matrix12b in the closed cell that generated the graphics for Figure 4.12. For

the first game, by (14) we have:

4.5 Limiting Probabilities 313

ident 1, 0 , 0, 1 ;

Ralpha1 Inverse ident .9 matrix12a ;

MatrixForm Ralpha1

2.58242 7.41758
1.48352 8.51648

Hence, the expected discounted reward for game 1 is

Ralpha1. 3, 0

7.74725, 4.45055

Similarly for the second game,

Ralpha2 Inverse ident .9 matrix12b ;

MatrixForm Ralpha2

Ralpha1. 2, 0

3.18073 6.81927
2.04476 7.95524

5.16484, 2.96703

We conclude that game 1 is better, no matter whether the chain begins with

state 1 or state 2. We can easily answer another question: how much should

be won on a play of game 2 so that this game is equal in value to game 1,

when the initial state is 1? If the winnings at state 1 for game 2 equal some

unknown c, then for parity between games we require that row 1 of R2

times c 0 must equal the expected discounted reward from state 1 in

game 1, namely 7.74725.

Solve 3.18073 c 7.74725, c

c 2.43568

Again we see the versatility gained by computing the matrix R rather than

solving system (15) for R f.

314 Chapter 4 Markov Chains

Activity 5 – In Example 5, suppose that the game 1 transition matrix is

as on the left below, and the game 2 transition matrix is as on the right.

Do you really need the machinery of Markov chains to compare the two

games? Why or why not?

T1
1 4 3 4
1 4 3 4 , T2

1 3 2 3
1 3 2 3

Exercises 4.5

1. (Mathematica) For the chain of Exercise 6 of Section 4.4, whose transi-

tion matrix is reproduced below, find the limiting distribution within each

recurrence class.

0 1 0 0 0 0 0 0
3 4 0 1 4 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 2 3 1 3 0 0 0
0 0 1 2 1 2 0 0 0 0
0 0 0 1 3 0 0 1 3 1 3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

Exercise 1

2. (Mathematica) Find the limiting distribution for the following random

walk with "sticky barriers."

1

2 3

4

.5

.5

.5

.5

.5

.5

.5

.5

Exercise 2

3. (Mathematica) A company rents vans for personal moving. There are

three districts from which vans can be rented, and to which they can be

returned. The conditional probabilities that vans originating in each district

are returned to each district are given in the table below. Find the long-run

proportion of vans in each district.

4.5 Limiting Probabilities 315

 to

from

1 2 3
1 .1 .5 .4
2 .6 .2 .2
3 .3 .3 .4

4. For a general regular two-state Markov chain, find closed-form expres-

sions for the limiting probabilities.

5. (Mathematica) For the sales representative of Exercise 1 of Section 4.1,

suppose that there are weekly travel expenses of $500, $600, $700, and $800

respectively, in the four regions. Find the long-run average weekly travel

expense.

6. Two drill presses are under consideration by a manufacturer. If the first

press works one day, then the probability is .9 that it will also work the next.

If this press does not work one day, then it will be back in service on the

next day with probability .7. For the other drill press, these two conditional

probabilities are .95 and .6, respectively. Presuming that the two presses

cost the same, which should the manufacturer purchase?

7. Show that the system of equations T , where T is the transition

matrix of a Markov chain, must have infinitely many solutions.

8. For the chain of Example 1, find paths of length 4 from every state to

every other state in the set 4, 5, 6 , and check that 4 is the shortest path

length with this property.

9. For the random walk with a reflecting barrier at 0 pictured below, write

the stationary equations and verify that the vector 0 is the only solution such

that the sum of its components is bounded.

0 1 2 3

1

.5

.5

.5

.5

.5

.5

.5

Exercise 9

316 Chapter 4 Markov Chains

10. A college-owned van is used until it will not run anymore, and then it is

immediately replaced by a similar new one whose lifetime Z has discrete

distribution p1 P Z 1 , p2 P Z 2 , ... , where the times are in

months. The process continues through successive van replacements. Let

Xn be the chain defined by Xn = remaining life of the van in use at month

n. Notice that a new van has a remaining life with the distribution of Z;

otherwise the remaining life of a van next month is one month less than the

remaining life this month. Find the transition matrix of this Markov chain.

Show that if the mean van lifetime m is finite, then the limiting distribution

of Xn exists. Find that limiting distribution.

11. Let Xn be a finite, irreducible Markov chain with limiting distribution

, and let f be a real-valued function on its state space. We think of f Xn
as the reward earned at time n. Use the Dominated Convergence Theorem

(see Appendix A) to show that

limm
1

m 1 n 0
m E f Xn X0 i f

i.e., the time average expected reward converges to f, independent of the

initial state, as time becomes infinite.

12. A substitute teacher must choose between two school systems. In the

first, the probability that he will work on the next school day given that he

worked today is 2/3. The probability that he will work on the next day given

that he does not work today is 1/4. The corresponding probabilities for the

second school system are 3/5 and 1/5. In the first system he is paid $80 per

day worked, and in the second he is paid $90 per day worked. Compare the

two school systems based on: (a) long-run expected salary per day; and (b)

total expected discounted salary, based on a daily discount factor of .95.

13. Let Xn be a two-state Markov chain over which we have a degree of

control, in the sense that the transition matrix is

T
.5 .5

.2 2 .8 2

where may be chosen from .1, .1 . If we receive a reward of $2 when

state 1 is occupied, and $1 when state 2 is occupied, and there is a discount

factor .9, find to maximize the expected total discounted reward

starting at state 1.

14. A store stocks an item, for which there is a random demand D each day.

We suppose that demands on successive days are i.i.d. random variables

with the discrete uniform distribution on 0, 1, 2 . When the demand

exceeds the stock, excess demand is lost. If there are no items left in stock at

the end of the previous day, then an order for S items is placed. The order is

4.5 Limiting Probabilities 317

filled by morning. Let Xn be the number of items in stock at the beginning

of day n.

(a) Write the transition matrix of the chain Xn .

(b) Write the stationary equations and verify that the following is a

solution:

xk
2
3

xS 1 1 2 S k 1 , k 1, 2, ... , S,

where xk is the limit as n of P Xn k .

(c) Find xS . (The information in this problem would be needed, for

instance, to minimize, with respect to the reorder quantity S, the sum of

long-run expected storage cost and cost due to lost sales.)

4.6 Absorption Probabilities

We have not yet solved the problem of finding the limit as n of Tn i, j
for i transient and j recurrent. From Figure 4.8, repeated below, we see that

starting from state 1 the chain may or may not ever go to the set 2, 3 , since

the set 4, 5, 6 may capture the chain first.

1

2

3

4

56

1 4

1 2

1 4

1 4

3 4

3 4

1 4

1 32 3

1

1 3

2 3

Figure 4.8 (revisited) – Limiting probabilities from transient states to recurrent states

318 Chapter 4 Markov Chains

Intuitively, we suspect that the probability that the chain ever reaches

2, 3 starting from state 1 might be the ratio of the one-step probability of

going to 2, 3 to the total one-step probability of going to either 2, 3 or

4, 5, 6 , i.e.,

1
2

1
2

1
4

2
3

Our next aim is to develop a systematic approach, which works for more

complicated chains.

Activity 1 – Draw the transition diagram of the Markov chain with

transition matrix below, and guess the probabilities of ever going to

states 2, 3, 4, and 5 starting from state 1.

T

1 2 1 4 1 8 1 16 1 16
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Denote S j inft 1 t : Xt j , the time of first visit to state j, and

(1)fi j P S j X0 i

which is the probability that the chain will ever reach j, starting from state i.

THEOREM 1. Let D be the set of transient states of a Markov chain Xn
with finite state space E and transition matrix T. Let i D, and let j belong

to a recurrence class C. Then

(2)fi j k D T i, k fk j k C T i, k

Proof. The idea of the proof is to condition and uncondition on X1. If

X1 i, then at time 1 the chain could move to another state in D, to a state in

C, or to a state in some other recurrence class, i.e., to the set E D C .

From a state in E D C, j cannot be reached; and from a state in C, j is
certain to be reached. Thus, we have

fi j P S X0 i

k E P S X1 k, X0 i P X1 k X0 i

k D P S X1 k, X0 i T i, k

k C P S X1 k, X0 i T i, k
k D fk j T i, k k C 1 T i, k

4.6 Absorption Probabilities 319

We can now finish the computation of the limit of Tn. If i is transient

and j is recurrent, then

limn Tn i, j
limn P Xn j X0 i
limn P Xn j S j , X0 i P S j X0 i

The second factor in the line above is fi j. The fact that the former is j
requires an argument in which we condition on the state XS at the random

time S S j. To do this, an extension of the Markov property to random

times is needed. This extension is called the strong Markov property; for a

discusssion see Cinlar ([15], Cor. 5.1.26). We omit these details, and merely

appeal to the reader's intuition that, if it is known that j will be visited, then

in the long run, the proportion of time spent in j is unaffected by the finite

amount of time spent outside of the recurrence class of j. To summarize, we

have that for i transient and j recurrent,

(3)limn Tn i, j fi j j

where fi j may be computed by solving the system of linear equations in (2)

and j may be obtained from the stationary equations in the usual way.

Exercise 8 asks you to show that system (2) may be rewritten in a

compact matrix form.

EXAMPLE 1. Let us now complete the determination of the limiting

transition matrix for the chain of Figure 4.8. The only transient state is i 1.

Theorem 1 gives us

f12 T11 f12 T12 T13

1 T11 f12 T12 T13

3
4

f12
1
2

0

f12 2 3

A similar computation shows that f13 also equals 2/3. In fact, this is a

general result: If states k and j are in the same recurrence class and state i is
transient, then fi j fi k (see Exercise 3). Also, we have

f16 T11 f16 T14 T15 T16

1 T11 f16 T14 T15 T16

3
4

f16 0 0 1 4

f16 1 3

From the last line, and the observation above, we see that

f14 f15 f16 1 3. In light of the fact that the probability was 2/3 that

320 Chapter 4 Markov Chains

the chain would be absorbed by the other recurrence class 2, 3 , this answer

is not surprising.

Combining the results of Example 1 with those of Example 1 of Section

4.5, the limit of the nth power of T is

 2 3 4 5 6 1

limn Tn

2
3

4
5
6

1

1 2 1 2 0 0 0 0
1 2 1 2 0 0 0 0

0 0 3 13 1 13 9 13 0
0 0 3 13 1 13 9 13 0
0 0 3 13 1 13 9 13 0

1 3 1 3 1 13 1 39 3 13 0

The row corresponding to state 1 was obtained by multiplying f1 j by j as

suggested by (3).

Activity 2 – Apply Theorem 1 to the Markov chain of Activity 1.

EXAMPLE 2.This example illustrates a class of Markov chains called

random walks, as well as a famous problem in stochastic processes called the

gambler's ruin problem. In a random walk, a particle moves in discrete time

on an integer grid. In one time unit, the particle is allowed to move only to

an adjacent grid point. Future positions are independent of the past, given

the present position. In the gambler's ruin problem, the net wealth of a

gambler, who either wins or loses $1 on each independent play of a game,

follows a one-dimensional random walk. The gambler's ruin problem is to

find the probability that the gambler goes bankrupt before some level N of

wealth is reached.

In our application, at each discrete instant of time, a small business has

some whole number i of millions of dollars in assets. At the next time

instant the firm will gain a million with probability 5/8 or lose a million with

probability 3/8. Given an initial amount of 4 million in assets, what is the

probability that the business will reach 8 million before it becomes bankrupt?

If future asset levels are independent of the past given the present, then

the successive asset levels of the firm can be modeled as a Markov chain

with transition matrix as in the Mathematica command below, and transition

diagram as in Figure 4.13.

4.6 Absorption Probabilities 321

matrix13 1, 0, 0, 0, 0, 0, 0, 0, 0 ,

3 8, 0, 5 8, 0, 0, 0, 0, 0, 0 ,

0, 3 8, 0, 5 8, 0, 0, 0, 0, 0 ,

0, 0, 3 8, 0, 5 8, 0, 0, 0, 0 ,

0, 0, 0, 3 8, 0, 5 8, 0, 0, 0 ,

0, 0, 0, 0, 3 8, 0, 5 8, 0, 0 ,

0, 0, 0, 0, 0, 3 8, 0, 5 8, 0 ,

0, 0, 0, 0, 0, 0, 3 8, 0, 5 8 ,

0, 0, 0, 0, 0, 0, 0, 0, 1 ;

0

1 2 3 4 5 6 7

81
3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

1

Figure 4.13 – The gambler's ruin problem

Starting from state 0 (bankruptcy) the chain will remain there throughout

time, so that 0 is an absorbing state. For our purposes we can suppose that

state 8 is also absorbing, since we are only interested in the motion of the

chain up to the time that it hits 8. Note that from states 1, 2, ... , 7, it is only

possible to step to an adjacent state. Steps to the right have probability 5/8,

and steps to the left have probability 3/8. So, this chain is a random walk on

0, 1, 2, 3, ... , 8 with absorbing barriers at 0 and 8. Defining Xn = assets at

time n, we see that we have been asked for the quantity:

f48 P S8 X0 4

States 1 through 7 are clearly transient. Theorem 1 yields a system of

equations in the unknowns f18, f28, etc., as in the Mathematica command

below.

322 Chapter 4 Markov Chains

system13 f18
5

8
f28,

f28
3

8
f18

5

8
f38, f38

3

8
f28

5

8
f48,

f48
3

8
f38

5

8
f58, f58

3

8
f48

5

8
f68,

f68
3

8
f58

5

8
f78, f78

3

8
f68

5

8
;

Solve system13, f18, f28, f38, f48, f58, f68, f78

f18
78125
192032

, f28
15625
24004

, f38
153125
192032

, f48
625
706

,

f58
180125
192032

, f68
23275
24004

, f78
189845
192032

N %

f18. 0.406833, f28. 0.650933,
f38. 0.797393, f48. 0.885269,

f58. 0.937995, f68. 0.96963, f78. 0.988611

The answer originally sought was the probability of going to state 8

from state 4, which is 625/706, but the computation has given much more

information. We have computed the probability of reaching 8 million

before bankruptcy starting from each of the initial states. Also, since we

must either reach 8 million or bankruptcy eventually, the complementary

probabilities to the ones above are the bankruptcy probabilities. For instance,

the probability that the firm goes bankrupt starting with 2 million dollars is

about 1 .65 .35.

Exercises 4.6

1. For Exercise 4 of Section 4.1, the television inspection problem, find the

probability, starting from each of the states F and G, of being absorbed by

each of the states P and E. If half of the sets that are made are in fair condi-

tion initially, and half are in good condition, what proportion of sets are

eventually sent out for sale?

4.6 Absorption Probabilities 323

2. (Mathematica) For the chain with transition matrix below, find the

probabilities of absorption into each of the classes 1, 2, 3 and 4, 5 starting

from each of the transient states 6 and 7. Find also the limiting transition

matrix.

1 3 1 3 1 3 0 0 0 0
1 2 0 1 2 0 0 0 0
1 4 0 3 4 0 0 0 0

0 0 0 1 2 1 2 0 0
0 0 0 2 3 1 3 0 0

1 8 1 8 0 1 4 1 4 0 1 4
0 0 0 0 0 1 2 1 2

3. Let i, j, and k be states of a finite state Markov chain. If i is transient and

j and k are in the same recurrence class C, show that fi j fi k.

4. (Mathematica) Consider again Example 2, in which the firm gains or

loses one million in assets at each instant. If we now let the gain probability

p be general, what is the smallest p such that, starting with four million, the

probability is at least 2/3 that assets will hit eight million before bankruptcy?

5. A retail clothing store has begun to issue credit cards in May. Of its card

holders, 1000 have not paid the minimum payment in June. Company policy

states that if an account has still not been paid after two months, card

privileges will be revoked. The experience of similar stores indicates that

60% of one-month delinquent accounts pay up, and 75% of two-month

delinquent accounts pay up. How many of the 1000 cards mentioned above

can be expected to be revoked?

6. (Mathematica) Find the limit as n of Tn, where T is the transition

matrix of the Markov chain of Exercise 2 of Section 4.4. The transition

matrix and diagram are shown below for your convenience; note that when

multiple edges are directed out of a state, the chain is equally likely to visit

any of the states to which these edges point.

T

1 2 1 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 4 1 4 1 4 1 4 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 2 0 1 2 0 0
0 0 0 1 3 0 1 3 0 1 3 0
0 0 0 0 0 0 1 2 0 1 2
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 2 1 2

324 Chapter 4 Markov Chains

1 2 3

4

5

6

7

8

9

Exercise 6

7. (Mathematica) A graduate school offers a 5-year Ph.D. program in

mathematics. Its records show a 50% attrition rate between the first and

second years, 40% between the second and third, 10% between the third and

fourth, 10% between the fourth and fifth, and also 10% of those who reach

their fifth year fail to receive their degrees. Model this phenomenon as a

Markov chain, and find the probabilities that an entering student, a begin-

ning second-year, third-year, fourth-year, and fifth-year student will success-

fully complete their degree.

8. (Mathematica) In system (2), define a matrix F fi j to have a row for

each transient state in the set D of all transient states and a column for each

recurrent state in a given recurrence class C; define TD C to be the portion of

the transition matrix of the chain whose rows are the rows of the transient

states in D and whose columns are the states in C; define TD D to be the

portion of the transition matrix corresponding to the transient states, and let 1

be a square matrix consisting entirely of 1's, whose size equals the number of

states in C. Argue that (2) in matrix form is

F TD D F TD C 1

Execute this in Mathematica for the gambler's ruin problem of Example 2

for recurrence class 8 , and make sure that you get the same equations for

fi 8 as in that example.

9. Some elementary texts on Markov chains present the following procedure

for chains with absorbing states and transient states. Let S be the submatrix

of the full transition matrix T corresponding to the rows of transient states

and the columns of absorbing states. Let R be the submatrix corresponding

to the rows and the columns of transient states. Compute the matrix

4.6 Absorption Probabilities 325

Q I R 1, called the fundamental matrix of the chain. Show that Q i, j
is the expected number of visits to transient state j if the chain begins in

transient state i. (Here we suppose that Q i, i includes the occupancy of

state i at time 0.) Finally, compute the matrix A Q S. Show that A i, j is

the probability that the chain will be absorbed in state j given that it started

in state i. (Hint: To justify the meaning of Q, consider

E n 0 I j Xn X0 i , where the indicator function I j is 1 if its argument

equals j and 0 otherwise. For A, rewrite formula (2) in the notation of these

texts.)

10. (See Exercise 9) Let Xn be the Markov chain with transition matrix

below. Find the expected number of visits from each transient state i to each

other transient state j. Find, for each transient state i and absorbing state j,
the probability that the chain will be absorbed at j given that it starts at i.

T

1 0 0 0 0
1 2 1 4 1 4 0 0

0 0 1 0 0
0 1 3 1 3 0 1 3
0 1 4 0 1 2 1 4

326 Chapter 4 Markov Chains

5

Continuous Time Processes

Introduction

We turn now to stochastic processes that evolve in continuous time. In

Section 1, we discuss the simplest such process, the Poisson process, which
jumps upward by one unit in such a way that the times between jumps are

i.i.d. exponential random variables. This is generalized in Section 2 to the

birth-death process, which is allowed to jump downward by one unit as well

as upward. Then a different generalization of the Poisson process is intro-

duced in Section 3, called the renewal process, which again is constrained to
jump upward by one unit, but whose inter-jump times are not necessarily

exponentially distributed. The rudiments of one of the main applications of

stochastic processes, namely queueing theory, are covered in Section 4.

Finally, we study a process with continuous state space called the Brownian
motion in Section 5, together with some of its applications.

5.1 Poisson Processes

Definitions and Main Results

The process that we wish to study in this section is a member of a class

called arrival counting processes. The path of such a process for a typical

outcome is depicted in Figure 5.1. The main feature is that the process

proceeds consecutively through the non-negative integers, jumping by one

unit at each of a sequence of random times T1, T2, T3, For the out-

come displayed in the figure, T1 1, T2 2.5,

T3 3, T4 3.8, A different outcome might have jumps at

different times, but the structure of the graph is the same. The function

t Nt for fixed that is graphed below is referred to as a sample path
of the process.

327

1 2.5 3 3.8

0

1

2

3

4

Figure 5.1 – A sample path t Nt for a typical outcome

DEFINITION 1. A process Nt t is called an arrival counting
process if there is an increasing sequence of random variables

T0 0, T1, T2, T3, ... taking values in , such that

Nt n if Tn t Tn 1

The defining condition can be understood by thinking of a service

facility at which the nth customer arrives at time Tn. In order for t to be

between Tn and Tn 1, the nth customer must have arrived by time t but the

n 1 st customer has not. A total of n customers have therefore arrived by

time t. The random variable Nt is a counter that indicates this fact. More

generally, the times Tn may be successive times of occurrence of some

phenomenon, and Nt is the number of such occurrences up to and including

time t. Some common applications include arrivals of planes to an airport,

messages to a communication station, customers to a store, and users to a

time-sharing computer system.

Activity 1 – Suppose that the first five times between successive arrivals

of a certain arrival counting process are 2.1, 1.7, 3.4, 1.2, and 0.8.

Sketch the path of the process.

In order to derive some results easily, we specialize to a particular kind

of arrival process.

328 Chapter 5 Continuous Time Processes

DEFINITION 2. An arrival counting process is called a Poisson
process with rate if the differences:

S1 T1 T0, S2 T2 T1, S3 T3 T2, ...

are independent, identically distributed exponential random variables

with parameter .

Since we know the probability law of the inter-arrival times Si, we

suspect that we should be able to calculate many things about Poisson

processes. To compute the probability distribution of Nt = number of

arrivals by time t, we first derive the distribution of Tn = time of the nth

arrival.

THEOREM 1. If Tn is the time of the nth arrival in a Poisson process with

rate , then Tn has the n, 1 density, and furthermore,

(1)P Tn t
k 0

n 1
e t t k k

Proof. We can express Tn as the sum from i 1 to n of i.i.d. exponential

inter-arrival times Si. The moment-generating function of Tn is therefore

E et Tn E exp t i 1
n Si

E exp t S1 exp t Sn

E exp t S1 E exp t Sn

E exp t S1
n 1 t n

by the independence of the Si, and the well-known formula for the moment-

generating function of the exponential distribution. The last formula is the

moment-generating function of the gamma distribution with parameters n
and 1 . By uniqueness of the moment-generating function, Tn must have

the gamma density:

f x n xn 1 e x n 1 , x 0

It remains to show that the integral of this density from t to equals the sum

in the statement of the theorem. One application of integration by parts

(with u xn 1, d v e x) yields

t
n . xn 1 e x n 1 d x

n

n 1
xn 1 e x n 1

t xn 2 e x d x
n 1 tn 1 e t

n 1

n 1

n 2 t xn 2 e x d x

5.1 Poisson Processes 329

The first term on the right is the highest term in the summation of

formula (1). You should verify that repeated integration by parts generates

the other terms in the summation.

With Theorem 1 in hand, it is easy to compute the probability law of Nt.

THEOREM 2. If Nt is a Poisson process with rate , then

(2)P Nt n e t t n

n , n 0, 1, 2, ...

in other words, Nt has the Poisson distribution with parameter t.

Proof. The events Nt n and Tn t are the same, since both happen if

and only if the nth arrival has not occurred by time t. Thus, P Nt n is

equal to the expression in (1). Therefore,

P Nt n P Nt n 1 P Nt n

k 0

n
e t t k k

k 0

n 1
e t t k k

e t t n n

Activity 2 – The exponential distribution modeling the inter-arrival

times is highly skewed to the right, with a lot of its probability weight

near zero and a long right tail. What effect do you think that will have

on the appearance of typical sample paths as in Figure 5.1?

The definition of Poisson process that we have given is a constructive

definition. An arrival counting process is Poisson if it is the counting

process associated with i.i.d. exponential inter-arrival times. It can be

shown that this condition is equivalent to the following axiomatic definition.

DEFINITION 3. (Axiomatic definition of Poisson process) An arrival

counting process Nt is a Poisson process if both:

(a) For any t, s 0, the difference Nt s Nt is independent of all

random variables Nu for u t;
(b) For any t, s 0, the probability law of Nt s Nt does not depend

on t.

The first property in Definition 3 is a sort of probabilistic amnesia, which

says that arrivals occurring between times t and t s are independent of the

past history prior to t. This condition is usually called the independent
increments condition. Property (b) is called stationarity, which says that it

330 Chapter 5 Continuous Time Processes

doesn't matter whether we begin to count arrivals at time 0 or at time t. The

number of arrivals in a period of s time units (in the former case, the interval

0, s and in the latter, the interval t, t s) is a random variable whose

distribution depends only on s. Under our constructive definition, these

properties can be verified by appealing to properties of the exponential

distribution of the i.i.d inter-arrival times. To show the converse, that is to

show that the axiomatic definition implies that the inter-arrival times are

i.i.d. exponential random variables, is more difficult. We refer the reader to

Ross [52] or Cinlar [15] for this.

Another interesting and useful result about Poisson processes involves

the joint distribution of the arrival times given the number of arrivals in

0, t . It turns out that if the number of arrivals, say n, during 0, t is

known, then it is as if the n arrival times were thrown down at random on

0, t . To be more precise, let U1, U2, ... , Un be i.i.d. uniform random

variables on 0, t , and let U 1 , U 2 , ... , U n be these same values written in

increasing order (i.e., the order statistics of the sample). Then it is easy to

compute (see, e.g., Hogg & Craig ([36], Sec. 4.6)) that the joint density of

U 1 , U 2 , ... , U n is

(3)f u1, u2, ... , un
n
tn if 0 u1 u2 ... un t

THEOREM 3. Let T1, T2, T3, ... be the arrival times of a Poisson

process Nt with rate . Then the conditional density of T1, T2, T3, ... given

that Nt n is the function f in formula (3).

Proof. We will not prove Theorem 3 in complete generality, but we will do

the proof for n 1, i.e., we show that

P T1 s Nt 1 s t , s 0, t

In words, conditioned on the event Nt 1, T1 has the uniform distribution on

0, t .

The conditional probability above is equal to

P T1 s, Nt 1 P Nt 1 P Ns 1, Nt Ns 0 P Nt 1

P Ns 1 P Nt s 0 P Nt 1

e s s 1
1 e t s t s 0

0

e t t 1 1

s t

In the second line of the computation we have used the stationarity and the

independent increments properties. (See Exercise 10 for the n 2 case.)

Since the last expression is the uniform c.d.f. on 0, t , the proof for the n 1

case is complete.

5.1 Poisson Processes 331

Examples

With the main results in hand, let us now show some examples of Poisson

process computations.

Recall that Mathematica has standard packages that contain the distribu-

tion objects we need in order to make computations. Discrete distributions

like Poisson are contained in the first package loaded below, and continuous

distributions like the exponential and gamma distributions are contained in

the second.

Needs "Statistics`DiscreteDistributions "̀ ;

Needs "Statistics`ContinuousDistributions "̀ ;

The syntax for the three distributions we have met so far in our study of

Poisson processes is below. The usages of the parameter for the exponen-

tial distribution and the parameter for the Poisson distribution are precisely

as we are using it. Note that the second argument for the gamma distribution

is its scale parameter , which for us is 1 .

PoissonDistribution ;

ExponentialDistribution ;

GammaDistribution , ;

Computations of probabilities can be done by using the PDF and CDF

functions, contained in both the DiscreteDistributions and the ContinuousDis-

tributions packages:

PDF distribution, x ;

CDF distribution, x ;

The PDF function returns the probability mass function value

f x P X x for a discrete random variable X that has the distribution

specified in the first argument (including parameters of the distribution). In

the case of continuous random variables, PDF returns the density at point x.

The CDF function returns the cumulative distribution function value

F x P X x in both the discrete and continuous cases. You might also

find occasion to use the functions

332 Chapter 5 Continuous Time Processes

Mean distribution ;

Variance distribution ;

which return the mean and variance of the given distribution. To simulate

values from a given distribution, we have

Random distribution ;

RandomArray distribution, n ;

which, respectively, return a single value and a list of n values simulated

from the given distribution.

EXAMPLE 1. Suppose that arrivals of buses to a stop form a Poisson

process with rate equal to 4 per hour. Then, for instance, the probability

that there are strictly more than 4 arrivals during the next hour is:

P T5 1 P N1 5 1 P N1 4 1
k 0

4 e 4 4k

k

Note that by Theorem 2, the random variable N1 has the Poisson(4·1)

distribution. In Mathematica we can calculate P N1 4 either by directly

requesting the c.d.f. value at 4, or by adding the terms of the probability

mass function from 0 to 4, as shown below.

dist PoissonDistribution 4 ;

N 1 CDF dist, 4

N 1 Sum PDF dist, k , k, 0, 4

0.371163

0.371163

5.1 Poisson Processes 333

Carrying the example further, what is the probability that, given that there

have been exactly 4 arrivals in the first hour, there will be exactly 8 buses by

the end of the third hour? This is

(4)

P N3 8 N1 4 P N3 N1 4 N1 4

P N3 N1 4

P N2 4

e 4 2 4 2
4

4

N PDF PoissonDistribution 8 , 4

0.0572523

You are asked to verify the first line of (4) in Exercise 2. The second line of

(4) is by the independent increments property, and the third line is by

stationarity, since the number of arrivals between times 1 and 3 has the same

distribution as the number of arrivals in the first 2 hours. Only the elapsed

time matters.

Thus far, the small questions that we have asked could be answered by

hand computation; Mathematica was just a convenience. A more sophisti-

cated question necessitates the use of the computer. How fast must the rate

of arrivals be such that the probability that at least 4 buses will come in an

hour is at least 80%?

The probability of at least 4 buses in the first hour (or any hour) is

P N1 4 1 P N1 3 . Since the time period is 1 hour, the distribution

of N1 is Poisson(·1). To require that P N1 4 be at least .8 is to require

that P N1 3 be no more than .2. So we define a function of the parameter

 that returns the probability that N1 3, and study it to find out where the

probability hits .2.

P3orfewer _ : CDF PoissonDistribution , 3 ;

g1 Plot P3orfewer , .2 ,

, 1, 10 , DefaultFont "Times", 8 ,

DisplayFunction Identity ;

g2 Plot P3orfewer , .2 , , 5.51, 5.52 ,

DefaultFont "Times", 8 ,

DisplayFunction Identity ;

Show GraphicsArray g1, g2 ,

DisplayFunction $DisplayFunction ;

334 Chapter 5 Continuous Time Processes

2 4 6 8 10

0.2

0.4

0.6

0.8

1

5.512 5.514 5.516 5.518 5.52

0.1996

0.1998

0.2002

0.2004

(a) (b)

Figure 5.2 – Finding the rate such that P N1 3 is no more than .2

(Why does this curve decrease?) As shown in part (a) of Figure 5.2, the

crossover point seems to be around 5.5. Some zooming shows that to

the second decimal place, 5.52, as in part (b) of the figure.

Activity 3 – Referring to Example 1, at least how fast must the rate be

such that the expected number of arrivals in an hour is 4? (Yes, this is a

"Who is buried in Grant's Tomb?" question, but it directs your attention

to the meaning of , and why it is called the rate parameter of the

process.) How slow must the rate be so that the probability of 2 or fewer

buses in an hour is at least 50%?

EXAMPLE 2. Let us continue the bus example by calculating some

expectations. First, the expected number of buses to arrive during the time

period 2.5, 10 is

E N10 N2.5 E N7.5 4 7.5 30

by stationarity. By independent increments, this is the same, for example, as

E N10 N2.5 N1.5 3 .

The expected time of arrival of the fourth bus is

E T4 E T1 T2 T1 T3 T2 T4 T3

4 E T1 4 1 4 1

since the inter-arrival times Ti 1 Ti have identical exponential distribu-

tions with parameter 4, and the mean of such a distribution is 1/4.

If we know that the first bus arrived at time 2 hours (a long wait), then

the expected time of arrival of the second bus is

5.1 Poisson Processes 335

E T2 T1 2 E T1 T2 T1 T1 2

E T1 T1 2 E T2 T1 T1 2

2 E T2 T1 2 1 4

Notice that it does not matter that the first bus was late; the second bus is still

expected to arrive 15 minutes later, which is the average inter-arrival time.

This is another instance of the "memoryless" property of the exponential

distribution.

Finally, to compute probabilities involving the arrival times Tn we can

appeal to Mathematica. For instance, the probability that the 10th bus comes

between time 5 and 6 is P 5 Tn 6 F 6 F 5 , where F is the c.d.f. of

the distribution of Tn, which is 10, 1 4 , by Theorem 1. We compute this

below.

F x_ : N CDF GammaDistribution 10, 1 4 , x ;

F 6 F 5

0.00457002

EXAMPLE 3. Suppose that dividends on an investment arrive at the times

Ti of a Poisson process with parameter , and the worth to the investor of the

ith dividend in present day terms is f Ti . Typically the function f would be

a decreasing function of time, such as f t c e t, where 0. Let us

calculate the expected present worth of dividends received during the time

interval 0, t . Observe that this is the same as:

E i 1
Nt f Ti E E i 1

Nt f Ti Nt

where Nt is the number of dividends by time t, whose distribution is known

to be Poisson t . By Theorem 3, given Nt n, the random variables

Ti, i 1, ... , n have the same joint distribution as the uniform order statis-

tics on 0, t , and thus f Ti has the same distribution as f Ui , where

the variables Ui are independent and uniformly distributed on 0, t . The

expected value of this sum is therefore:

E i 1
n f Ui i 1

n E f Ui n E f U1 n
0

t f u 1
t d u

Hence,

E i 1
Nt f Ti E Nt

1
t 0

t f u d u
1
t 0

t f u d u E Nt

0

t f u d u

336 Chapter 5 Continuous Time Processes

since E Nt t.

Activity 4 – In Example 2, if dividends are constantly $50 and money

discounts continuously at rate 5% (that is, .05), find the present

value of the dividend stream through time 10.

EXAMPLE 4. Commuters arrive to a train station at which trains are ready

to load and depart. Under the current plan of the transit authority, a single

train leaves at precisely T minutes after the hour, and it is assumed to be

large enough to carry all waiting passengers. But the transit authority finds

that it is able to increase service by providing another train, to leave at some

time t earlier than T, taking with it all the commuters who have arrived to the

station by that time. At what time should this new train be scheduled to

leave so as to minimize the expected total waiting time of all commuters

arriving in 0, T ?

We shall assume that arrivals of commuters form a Poisson process Nt
with some rate . Let their times of arrival be denoted by T1, T2, T3, ... , as

usual. The expected total waiting time of all commuters is the sum of the

expected waits of those arriving before t plus the expected waits of those

arriving in t, T . If Ti t, then commuter i waits for t Ti minutes. Thus,

the total expected wait by arrivals prior to t is

(5)E i 1
Nt t Ti n 0

E i 1
Nt t Ti Nt n P Nt n

We have used the law of total probability in (5). Given Nt n, the inner

sum has the same distribution as the sum of n random variables t Ui ,

where the Ui's are uniformly distributed on 0, t . The conditional expecta-

tion in (5) is therefore

n
0

t t u 1
t d u n t 2

after calculation. Substituting back into (5) gives us the expected total wait

of commuters arriving prior to time t:

n 0 n t 2 P Nt n t 2 E Nt t2 2

The same reasoning applied to the time interval t, T , which has length

T t, shows that the total expected wait of commuters arriving after time t
is T t 2 2. Therefore the objective function for the problem of minimiz-

ing expected total waiting time has the form

f t t2 2 T t 2 2, t 0, T
f t t T t 1

5.1 Poisson Processes 337

It is easy to check that the critical point is t T 2, and that the absolute

minimum of the objective is taken on at the critical point. The conclusion is

that, regardless of the actual value of the arrival rate, as long as arrivals are

Poisson, we should dispatch the first train at the halfway mark T 2 in order

to minimize expected total waiting time. The value of the objective at the

optimum point, however, does depend on .

Activity 5 – Verify the claim in Example 4 that the expected total wait

of commuters arriving after time t is T t 2 2.

Exercises 5.1

1. (Mathematica) Calls arrive to a central telephone exchange according to a

Poisson process with rate 3.6 per minute. Let Nt be the total number of

calls up to and including the tth minute. Compute

(a) P N1.5 1

(b) P N1.5 1 N.7 0

(c) P N.7 0, N1.2 0, N1.5 1

2. Verify the first line of (4).

3. A clock hangs precariously on a wall, falling occasionally. The clock

ceases to work when it falls for the kth time. If falls occur according to a

Poisson process with rate 2 per week, find the probability distribution,

mean, and variance of the time until the clock breaks.

4. If Nt is a Poisson process with rate , find

(a) E Nt s Nt
(b) E Nt Nt s

5. Suppose that patients arriving to a doctor's office form a Poisson process

with rate per hour. Given that there are n patients during the 8-hour day,

what is the probability that there were k patients during the first 3 hours?

6. (Mathematica) In order for a machine to continue functioning, each of

two parts must work. One replacement is available for each of the parts. A

part lasts for an exponentially distributed amount of time with parameter

.03 before breaking, and parts behave independently of one another.

(a) If T is the time when the machine will no longer function, find and

graph as a function of t, P T t .

(b) Compute the probability density function of T.

338 Chapter 5 Continuous Time Processes

(c) Find E T .

(d) Graph as a function of the probability that the machine lasts for at

least 100 time units.

7. Suppose that cars traveling west on a two-lane highway pass a fixed point

on the road at the times of a Poisson process with rate 1, and similarly the

eastbound cars form a Poisson process with rate 2, independent of the first

process. Find the distribution of the total number of cars passing the fixed

point by time t. (Hint: Use moment-generating functions.)

8. In Example 3, suppose that f is a non-negative function such that

0
f t d t is finite. Find the expected present value of all dividends earned

throughout time.

9. (Mathematica) A telephone customer service system can give an accept-

able service level if it receives no more than two calls per minute. The

supervisor of the system has a quality goal of giving acceptable service 95%

of the time. If incoming calls form a Poisson process with rate , at most

how large can be without failing the quality goal?

10. Let T1 and T2 be the first two arrival times of a Poisson process Nt .

Show that the joint conditional density of T1 and T2, given Nt 2, is

f t1, t2
2 t2 if 0 t1 t2 t

0 otherwise

11. Cabs arrive to drop passengers off at an airport according to a Poisson

process with rate 1 per minute. A cab can contain 1, 2, or 3 passengers with

probabilities 2/3, 1/6, and 1/6, respectively. The number of passengers in a

cab is independent of the number in every other cab, and is also independent

of the cab arrival process. Find the expected number of passengers that

arrive in a 30-minute period. (To justify your answer, condition and uncondi-

tion on the number of cabs that arrive.)

12. Customers arrive to a store according to a Poisson process with rate

10 per hour. On average, one fourth of all customers buy something,

and their decisions are made independently of other customers and of the

arrival process. Find the expected number of purchases made during a

2-hour period. (To justify your answer, condition and uncondition on the

number of customers that arrive.)

13. Suppose that the number Nt of salmon that have passed a point on a

river by time t forms a Poisson process with rate 2 per minute. The probabil-

ity is 1/4 that a given salmon is over five pounds, and successive salmon

weights are independent of one another. Show that the arrival process that

5.1 Poisson Processes 339

counts only the number of salmon exceeding five pounds is also Poisson,

and find its rate.

14. As illustrated in the diagram below, Wagner Ct. and Schneider Dr. are

parallel one-way eastbound roads, and Scott Ave. is a one-way northbound

road that terminates at Wagner. Cars arriving to intersection 1 on Wagner,

intersection 2 on Schneider, and intersection 2 on Scott form Poisson

processes with rates 4 per minute, 6 per minute, and 3 per minute, respec-

tively. At intersection 2, the probability that a car from Schneider turns left

on Scott is 1/2 and the probability that a car from Scott turns right on

Schneider is 1/3. Decisions by a car to turn are made independently of all

other cars. Find the expected number of cars per unit time passing out of

intersection 1, east on Wagner.

1

2

Scott Ave.

Schneider Dr.

Wagner Ct.

Exercise 14

15. (Mathematica) (a) Write a Mathematica command to simulate a desired

number of arrival times T1, T2, ... of a Poisson process with a desired rate .

(b) Write a Mathematica command that accepts a list of arrival times and a

particular time t, and returns the value of Nt.

5.2 Birth and Death Processes

Preliminaries

We now study a different generalization of the Poisson process. The times

between successive jumps are once again exponentially distributed, but the

rate parameter may depend on the current state i of the process. Also, we

allow the process to jump down by one unit, as well as up by one unit. A

typical path is in Figure 5.3.

340 Chapter 5 Continuous Time Processes

0.5 1.2 2.3 3.1 3.7

0

0.5

1

1.5

2

Figure 5.3 – A sample path t Nt for a typical outcome of a birth–death process

One might choose such a model for population processes, in which a

jump upward represents a "birth" or migration into the system, and a jump

downward represents a "death" or migration out of the system. These

processes are also used as models in queueing theory, where a birth is an

arrival of a customer to the waiting line and a death is a departure from the

line after service. In Section 4, we will apply the results of this section to

queueing problems.

Before giving the precise definition of a birth–death process, some

motivation is required. At a moment when the current population level is i,
we may determine the amount of time until the next change in population, as

well as whether that change is a birth or a death, by observing two indepen-

dent random variables. The first, say U, is thought of as a "birth time," and

is exponentially distributed with rate i. The second is a "death time" W,

which is also exponentially distributed with some rate i. The next popula-

tion change will occur at the random time S min U , W . If this minimum

is U, then the next change is a birth, otherwise it is a death. To find the

probability distribution of the time S until the next change in population, we

compute

(1)

P S h P U h, W h
P U h P W h
e i h e i h

e i i h

Therefore the time until the next jump is exponentially distributed with rate

equal to the sum of the birth and death rates. The probability that the next

change is a birth is the same as the following probability:

5.2 Birth and Death Processes 341

(2)

P U W
0

u
i e i w d w i e i u d u

i
0

e i i u d u

i
i i

Hence, the probability that the next change is a death is

(3)1 i
i i

i

i i

The birth and death rates therefore completely determine the probabilistic

structure of the process.

Activity 1 – Is the exponential distribution special in this construction?

To address this, what do you get for the probability distribution of S if

you assume that U has the uniform distribution on 0, 2 i and W has

the uniform distribution on 0, 2 i ? What is the probability that the

next change is a birth?

The discussion above should make the following definition intuitive.

DEFINITION 1. For each i E 0, 1, 2, 3, ... , let there be given a

constant i and a constant i. Let Nt t 0 be a process with state space

E, such that almost every path t Nt increases or decreases by

jumps of size ±1 only. Let T0 0, T1, T2, ... be the sequence of jump

times of Nt , and let X0, X1, X2, ... be the sequence of states occupied

by Nt , i.e.:

Nt Xn if Tn t Tn 1

The process Nt is called a birth–death process with birth rates i and

death rates j if:

(a) For each n 1, the conditional distribution given Xn j of

Tn 1 –Tn is exponential with rate j j, and is conditionally indepen-

dent of T1, T2, ..., Tn and X1, X2, ... , Xn 1 given Xn j;
 (b) Xn forms a Markov chain with transition probabilities

P Xn 1 j 1 Xn j j

j j
 , P Xn 1 j 1 Xn j j

j j

342 Chapter 5 Continuous Time Processes

Roughly speaking, a birth–death process spends an exponential amount

of time in each state before moving to an adjacent state. Only the current

state affects the probability law of the waiting time until the next change, and

the law of the next state visited. The parameters j and j are the rates at

which transitions upward and downward, respectively, are made. Their sum

is the rate at which any sort of transition is made. The relative size of j to

j j dictates the probability that the next jump will be a birth rather than a

death. Observe that in order for the formula for P Xn 1 j 1 Xn j in

part (b) of the definition to make sense in the case j 0, we must have

0 0. That is, when the population has size 0, deaths occur at rate 0.

EXAMPLE 1. A hospital has N beds. New patients appear according to a

Poisson process with rate , but they are turned away if the hospital is full.

When j beds are occupied, we assume that the time until the next departure,

either by a death or a release of a patient, is exponentially distributed with

rate j. (This is an appropriate assumption if each of the j individuals

present tends to depart at the same rate .) Granting the independence of

future arrivals and departures from the past history, it is reasonable to model

the number of beds Nt occupied at time t by a birth–death process. The

parameters are

(4)j
if j 0, 1, 2, ... , N 1

0 if j N , j j, if j 0, 1, 2, ...

We have set j 0 for j N because when all beds are occupied, no one is

admitted, even if people are arriving in search of care. This fact also limits

the state space to 0, 1, ... , N , because in order to reach the complement of

this set, the process first must go through state N and hence,

P Xn 1 N 1 Xn N N
N N

0
0 N 0

It follows that for j N , it does not matter how j is defined.

To understand birth–death processes better, and to enable us to observe

their properties, it is helpful to develop a command in Mathematica to

simulate them. To characterize the sample path, we will need to produce the

sequence of jump times T1, T2, T3, ... and the sequence of states visited

X1, X2, X3, ... up to some fixed time t, which will be one of the input

parameters. As other input parameters, we will need the initial state X0, and

functions i and i that give the birth and death rates. We will use the

strategy of the beginning of the section, simulating an inter-jump time as

S min U , W , where U and W are suitable exponential random variables,

and simulating the next state as the current state plus or minus 1, depending

on whether U was smaller than W or not. Based on this discussion, the

5.2 Birth and Death Processes 343

following code should be straightforward. A slight technicality is that the

ExponentialDistribution is undefined if the parameter is 0; so we add If

statements to make sure that the parameter is positive, which will return if

not. The command below is also contained in the KnoxOR`StochasticPro-

cesses` package, which is loaded automatically in the electronic version of

this section when you evaluate initialization cells.

SimBirthDeathProcess x0_,

finaltime_, birthrate_, deathrate_ :

Module timelist, statelist,

U, W, S, currtime, i ,

initialize the lists

timelist ;

statelist x0 ;

currtime 0;

i 1;

While currtime finaltime,

while there is more time to go in

the simulation, simulate the next

birth and death time intervals

U If birthrate statelist i 0,

Random ExponentialDistribution

birthrate statelist i , Infinity ;

W If deathrate statelist i 0,

Random ExponentialDistribution

deathrate statelist i , Infinity ;

S Min U, W ;

update the list of jump times,

and the list of states

AppendTo timelist, currtime S ;

If U W,

AppendTo statelist, statelist i 1 ,

AppendTo statelist, statelist i 1 ;

advance clock to the jump time just

added, and advance subscript

currtime timelist i ;

i i 1 ;

timelist, statelist ;

344 Chapter 5 Continuous Time Processes

Here is an example in which births occur at a constant rate of 2 per unit

time when the population size is at least 0, and deaths occur at a rate of 3 per

unit time when the population size is at least 1.

i_ : If i 0, 0, 2 ;

i_ : If i 0, 0, 3 ;

SeedRandom 456347 ;

SimBirthDeathProcess 0, 4, ,

0, 0.16583, 0.387183, 1.06746,
1.29945, 1.52056, 1.7819, 1.81948, 1.83295,

2.4456, 2.57291, 2.62224, 2.89913, 3.04436,
3.12149, 3.43512, 3.57244, 4.04572 ,

0, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3

Then starting from state 0, at about time 0.166 the first birth happened,

followed by a death at about time 0.387. At about time 1.07 the next birth

occurrred, bringing the population size back up to 1, etc.

Activity 2 – Run the SimBirthDeathProcess command several more

times, for longer time periods than just 4 units. Make note of the largest

population size throughout time for each of your runs. Is it common to

get very large populations? What do you think the choice of values for

the constant rates and have to do with this question? Try to find

values of and that make the population grow very large within 5 time

units.

Kolmogorov Equations

In problems such as the hospital example above, we might well be interested

in such quantities as

(5)Pi j t P Nt j N0 i , i, j E

which is the probability that j beds will be occupied at time t, if there were i
patients initially. Unfortunately, these short-run probabilities are hard to

calculate. But by looking at Pi j t as a function of t, we can heuristically

derive a system of differential equations satisfied jointly by these functions.

The reasoning alone is worth seeing, for it appears often in the study of

5.2 Birth and Death Processes 345

stochastic processes. But more than that, as a consequence we will derive

explicit expressions for the limiting probabilities:

(6)p j limt P Nt j N0 i

which turn out to be independent of the initial population i.
Referring to equation (1), P S h e i i h, by a Taylor expansion of

the function exp i i h about 0, we see that when the current popula-

tion is i, the probability that there will be no change in population in the next

h time units is approximately

1 i i h

The error of approximation involves powers h2 or higher. Similarly, the

probability of a birth in the next h time units is approximately i h, and that

of a death is approximately i h. In an effort to form a differential equation

for Pi j t , let us write an expression for Pi j t h by conditioning on the

population at time t. First take j 1. If h is small enough, then the event of

having two or more births or deaths in h time units should have negligible

probability (order h2 or smaller). Ignoring such unlikely events, there are

only three ways in which we could have a population of j at time t h:

1. The population at time t was j 1, and there was a birth during the

time interval t, t h ; or

2. The population at time t was j, and there was neither a birth nor a

death during t, t h ; or

3. The population at time t was j 1, and there was a death during

t, t h .

Therefore, by the law of total probability, we have the following approxima-

tion, which ignores only events having probability of the order h2:

(7)Pi j t h Pi, j 1 t j 1 h Pi j t 1 j j h Pi, j 1 t j 1 h

Subtraction of Pi j t from both sides yields

Pi j t h Pi j t
h j 1 Pi, j 1 t j j Pi j t j 1 Pi, j 1 t

Now divide both sides by h and let h approach 0. The error term in the

above approximation, involving powers h2 or higher, approaches 0. Thus we

have the system of differential equations:

346 Chapter 5 Continuous Time Processes

(8)Pi j t j 1 Pi, j 1 t j j Pi j t j 1 Pi, j 1 t , j 1

Similar reasoning (see Exercise 3) for the j 0 case leads to the differential

equation

(9)Pi 0 t 0 Pi 0 t 1 Pi 1 t

The equations derived heuristically in the last paragraph are called the

Kolmogorov forward equations for birth–death processes, and can be given a

rigorous foundation under regularity conditions on the birth and death rates.

Reasoning again nonrigorously, it is at least plausible that if the limit as

t of Pi j t does exist, then this function should be stabilizing, so that its

derivative approaches 0 as t . Letting t on both sides of (8) and (9)

gives a system of linear equations for the limiting probabilities

p j limt Pi j t :

(10)

0 0 p0 1 p1

0 j 1 p j 1 j j p j j 1 p j 1

These equations can be solved recursively. We leave p0 temporarily

arbitrary, solve for the other p j in terms of p0, and then set

p0 p1 p2 1 to find p0. The first equation gives

1 p1 0 p0 p1
0

1
p0

Substituting this into the next equation in (10) (i.e., the equation for the case

j 1) yields

0 p0 1 1 p1 2 p2 0

2 p2 1 p1 1 p1 0 p0 1 p1

p2
1 p1

2

0 1

1 2
p0

Activity 3 – Show as above that p3
0 1 2

1 2 3
p0.

One can show easily by induction that, since the remaining equations in

system (10) have the same form as the second equation,

(11)p j
0 1 j 1

1 2 j
p0

The condition that the sum of all of the p j equals 1 implies that

5.2 Birth and Death Processes 347

1 p0 p0 j 1

0 1 j 1

1 2 j

If the series is convergent, then we have the non-zero solution:

(12)p0 1
j 1

0 1 j 1

1 2 j

1

Our detailed plausibility argument motivates the following theorem,

whose formal proof we omit.

THEOREM 1. If the infinite series in (12) converges, then the limiting

probabilities p j limt Pi j t for a birth-death process Nt with birth rates

i and death rates i are as in (11) and (12).

Examples

EXAMPLE 2. We return to the hospital problem, Example 1. The long-run

probability of having no patients is, by Theorem 1,

p0 1
k 1

N k

k k

1

k 0

N k

k k

1

For j 1, 2, ... , N , the long-run probability of having j patients is

p j
j

j j p0

Here are Mathematica functions that let us compute these quantities, in

terms of , , and the number of beds N0.

Clear , , N0, p0 ;

p0 _, _, N0_ :

1 1 NSum k k k , k, 1, N0 ;

p j_, _, _, N0_ :
j

j j
p0 , , N0 ;

348 Chapter 5 Continuous Time Processes

These functions allow us to easily examine the sensitivity of the distribution

of the number of patients to changes in the arrival rate , the departure rate
, and the number of beds N0. For example, for N0 20, and departure rate

4 per unit time, Figure 5.4 contains connected list plots of the distribu-

tions for 8 and 15 per unit time. The median occupancy grows only

from about 2 to about 4, which is unexpectedly modest; however, it is not

out of line when you remember that the overall rate of departure from the

system when k beds are occupied is k , not just , which tends to empty out

the hospital.

Needs "Graphics`MultipleListPlot "̀ ;

problist8 Join 0, p0 8, 4, 20 ,

Table j, p j, 8, 4, 20 , j, 1, 20 ;

problist15 Join 0, p0 15, 4, 20 ,

Table j, p j, 15, 4, 20 , j, 1, 20 ;

MultipleListPlot problist8, problist15 ,

PlotJoined True, PlotStyle

RGBColor 0, 0, 0 , Dashing .01, .01 ,

DefaultFont "Times", 8 ;

5 10 15 20

0.05

0.1

0.15

0.2

0.25

Figure 5.4 – Limiting bed occupancy probabilities, 8 (solid), 15 (dashed)

Most of the interesting questions about this example would have to be

answered numerically as we have just done, but there are some interesting

analytical results. Suppose that each patient pays at a rate of $200 per day.

Then the long-run expected revenue per day for the hospital is

5.2 Birth and Death Processes 349

limt E 200 Nt 200 limt E Nt

200 limt j 1
N j P Nt j N0 i

200 j 1
N j p j

200 p0 j 1

N
j

j

j

200 p0 k 0

N 1 k

k

200 p0
1
p0

N

N

200 1
p0

N

N

This can be calculated for a given number of beds N and given arrival and

departure rates and . It is interesting to note that this long-run expected

revenue per day reaches a limit as the number of beds N approaches infinity.

As N , the term N N approaches zero, thus the long-run

expected revenue per day converges to 200 . As shown in Figure 5.5 for

the case where 30 and 4, the convergence of the expected revenue as

a function of the number of beds is rather rapid; the hospital will get almost

all the revenue that it will be able to get by about N 15 beds.

exprev _, _, N0_ :

200 1 p0 , , N0
N0

N0
;

exprevlist Table N0, exprev 30, 4, N0 ,

N0, 5, 22 ;

ListPlot exprevlist, PlotJoined True,

DefaultFont "Times", 8 ;

7.5 10 12.5 15 17.5 20

900

1000

1100

1200

1300

1400

1500

Figure 5.5 – Limiting expected revenue per day as a function of the number of beds

350 Chapter 5 Continuous Time Processes

Activity 4 – Try several combinations of values of and for a 20-bed

hospital and plot the limiting distribution of the number of patients. If

is fixed at 4, about how large should be so that the peak of the distribu-

tion is around 10?

EXAMPLE 3. Suppose that at time 0, one person among a family of M
individuals has a cold. Other family members contract the cold at random

times T1, T2, Suppose that at any time, the distribution of the time until

the next person contracts the cold is exponentially distributed, independent

of the past. The rate at which the disease spreads is proportional to the

product of the number infected times the number uninfected. Find the

expected value and variance of the amount of time required for the whole

family to contract the cold.

A typical path of the process Nt = number infected by time t is in Figure

5.6, in the case of M 9 family members. (Why do you think that the path

exhibits a slight S-shape, longer at the ends and more vertical in the middle?)

0.8 1.4 2.6 3.3 3.9 4.8 6.1 7.1
0

2

4

6

8

Figure 5.6 – Number infected as a function of time for a fixed outcome

The process proceeds deterministically through the states 1, 2, ..., M in that

order, jumping at times Ti such that the intervals Ti 1 Ti are exponential

random variables. When there are i infected individuals, the uninfected

population contains M i individuals, and the rate at which a jump occurs is:

(13)i c i M i , i 0, 1, 2, ... , M

for some constant c. Thus, we have a special birth–death process called a

pure birth process in which there are no deaths, and the birth rates are given

by (13).

Notice that Ti 1, Ti is the time interval in which exactly i individuals

are infected (for convenience, we set T0 0), for i 1. Also, TM 1 is the

first time that Nt M , since, starting from state 1, the process must jump

5.2 Birth and Death Processes 351

M 1 times to reach state M . We can compute the mean and variance of

TM 1 by telescoping in the following way:

(14)TM 1 TM 1 TM 2 TM 2 TM 3 T2 T1 T1

Because the mean of the exponential distribution is the reciprocal of the rate,

(15)

E TM 1 i 1
M 1 E Ti Ti 1

i 1

M 1 1
c i M i

For example, if c .1, and the family size M 9, then the mean time until

the whole family gets the cold is

Sum
1

.1 i 9 i
, i, 1, 8

6.03968

Because the times between jumps are independent, and the variance of the

exponential distribution is the square of the reciprocal of the rate,

(16)

Var TM 1 i 1
M 1 Var Ti Ti 1

i 1

M 1 1
c i M i

2

For the case c .1 and M 9 again, the variance of the time until they all

get the cold is

Sum
1

.1 i 9 i

2

, i, 1, 8

5.26269

The previous results on limiting distributions do not apply here, because the

death rates are zero. But it is intuitively obvious that as time approaches

infinity, the number of infected individuals converges to M, and the limiting

distribution is therefore degenerate with all of its weight on M.

352 Chapter 5 Continuous Time Processes

Exercises 5.2

1. Let Nt be a birth-death process with only two states, 0 and 1. Denote by

 the birth rate at state 0, and the death rate at state 1.

(a) Write the Kolmogorov forward equations for P00 t and P11 t .

(b) Solve the equations obtained in part (a).

(c) A pay phone may be either engaged (state 1) or unengaged (state 0).

Assuming that a birth-death process is an appropriate model, find the

long-run proportion of time that the phone is engaged.

2. (Mathematica) Write a Mathematica function to take the output of the

SimBirthDeathProcess command and find the proportion of time that the

process was in each of the states it visited.

3. Give a plausibility argument for the forward equation for Pi 0 listed in (9).

4. (Mathematica) In Example 2, for 20 and 5, what number of beds

N is necessary so that the hospital can come within $5 of their highest

possible long-run expected profit per day?

5. A single individual in an essentially infinite population has a disease

initially. Let Nt be the cumulative number of individuals who have con-

tracted the disease by time t; thus Nt is a non-decreasing process. We

assume that the rate of transfer of the disease is, at every time, proportional

to the number of individuals who have had the disease.

(a) Make appropriate assumptions so that Nt forms a birth–death

process, and find the birth and death rates.

(b) It is possible to show inductively that the c.d.f. of the nth jump time

Tn is

 P Tn t N0 1 1 e t n

where is the proportionality constant mentioned above. (The idea is to

condition and uncondition on the value of Tn 1, producing a rather messy

integral that nonetheless yields to a succession of standard integration

techniques.) Use this formula to show that

 P1 j t P Nt j N0 1 e t 1 e t j 1

6. Write the Kolmogorov forward equations for the process in Exercise 5,

and verify that P1 j t listed in part (b) satisfies them.

5.2 Birth and Death Processes 353

7. (Mathematica) In Example 3, for a family of size 10, what is the smallest

value of the transmission constant c such that the mean time until everyone

has the cold is no more than 3 days?

8. A population begins with n individuals, who die at the times of a birth-

death process with death rates i, i 1, ..., n. Write an expression for the

mean and variance of the time until extinction of the population. If n is

even, j 1 4 for j n 2, and j 1 3 for j n 2, calculate the exact

mean and variance of the extinction time.

9. A delicatessan has four service lines, each manned by one server. The

food is not particularly good there, so customers who arrive when all servers

are busy just decide to go to some other restaurant. Suppose that the times at

which customers arrive form a Poisson process with rate 2 per minute, and

the duration of a service is exponential with mean 5 minutes, independent of

other services and of the arrival process. Find the long-run distribution of

the number of busy servers.

10. The size of a fish population follows a birth-death process. Suppose that

the birth rate when there are no fish is some positive constant 0 (i.e.,

migration to empty water is possible); otherwise the birth rate is proportional

to the number of fish present. The death rate when there is only one fish is

some positive constant 1; otherwise the death rate is proportional to the

population size minus one. Find the limiting distribution of the population

size.

11. An electric generator can be running at one of three speeds at any time:

high, low, or off. It cannot change directly from high to off, nor from off to

high. When it is on low, the probability is 2/3 that it will next go to high,

and consequently 1/3 that it will shut off when the next change of state

comes. The amount of time that the generator stays in each of the three

states H, L, and O is exponentially distributed, with rates H , L, and O,

respectively. Model the speed as a birth-death process, and find the limiting

probabilities for each state.

12. In deriving the forward equations, we conditioned on the population at

time t in order to approximate Pi j t h . Give a similar argument in which

you condition on the population at time h instead. The resulting differential

equations are called the Kolmogorov backward equations.

354 Chapter 5 Continuous Time Processes

5.3 Renewal Processes

Introduction

In this section, we generalize the Poisson process by permitting inter-arrival

times to have distributions other than exponential. The common distribution

function of the inter-arrival times will be denoted throughout the section as

F. And, in place of the phrase "arrival times" we will now use "renewal

times," anticipating that these times are instants of some kind of regeneration

of a process, so that the future of the process after one of these times looks

probabilistically the same as the future after any other of the renewal times.

As in Poisson processes, we use Nt to indicate the number of renewals

through time t.

DEFINITION 1. A counting process Nt with renewal times

T0 0, T1, T2, T3, ... is called a renewal process if the inter-renewal

times:

S1 T1 T0, S2 T2 T1, S3 T3 T2, ...

are i.i.d. random variables with c.d.f. F and mean 0, .

EXAMPLE 1. There are many situations in which renewal processes might

reasonably be used as models. For example, the times T1, T2, T3, ... may be

times of demand by customers for an item stocked in an inventory. Then Nt
is the number of items requested by time t. Alternatively, Ti might represent

the ith time at which a certain machine has been repaired. If each repair costs

c dollars, then c Nt is the total repair bill up to time t. Renewal processes

have also been used to advantage in the study of queues, in which Ti is the

time of arrival of the ith customer seeking service. In all of these illustra-

tions, the main hypothesis is that the times between renewals should be i.i.d.

random variables with a finite mean.

One interesting problem involving renewal processes is to find

P Nt n , n 0, 1, 2, ...

i.e., the distribution of the number of renewals up to time t. Also of interest

is the mean number of renewals in 0, t :

(2)m t E Nt ,

5.3 Renewal Processes 355

called the renewal function. Although the short-run probabilities in (1) can

be characterized in terms of the inter-renewal distribution F, calculations are

usually difficult. We take up this subject in the second subsection.

The long-run number of renewals per unit time:

(3)limt Nt t

is another item of interest. In contrast to the short-run behavior of renewal

processes, the long-run behavior will be simple and intuitive. This will be

examined in the third and fourth subsections. The latter concerns itself with

the following problem. Let rewards (or costs), denoted by Rn, occur at the

renewal times. We will compute the long-run average reward per unit time:

(4)limt n 1
Nt Rn t

To understand this expression, note that there are Nt renewals in 0, t . At

the nth renewal the reward Rn is received, and therefore the ratio is the total

reward during 0, t divided by t.

Short-Run Distributions

To approach the problem of calculating short–run probabilities, recall the

formula for the convolution of two distribution functions:

(5)F G t
0

tG t s d F s

In the case that F is continuous with density f, the notation d F s means

f s d s. For instance, the convolution of the exponential(1) c.d.f. F with the

identity function G u u, u 0, 1 is

0

t

t s s s

1 t t

In the discrete case, the integral in (5) is a sum of terms G t si p si over

all points si t that have positive positive probability p si .

The most important fact about convolutions for our purposes is that if F
and G are the distribution functions of two independent random variables X
and Y, then F G is the distribution function of X Y . For the continuous

case, we can see this from the following computation:

356 Chapter 5 Continuous Time Processes

P X Y t
0

t
0

t s fy u fx s d u d s

0

t
0

t s fy u d u fx s d s

0

tG t s fx s d s

 The iterates of a distribution function G are the repeated convolutions of

G with itself:

G 1 G, G 2 G G, G 3 G G G, …

Activity 1 – Consider the cumulative distribution function F t of the

trivial distribution that puts all probability at state t 0. Find the iterates

F 2 , F 3 . If, instead, the distribution puts all of its probability at t 1,

find the convolution. Give an intuitive explanation of the results, and try

to generalize.

Inductively, it is easy to prove that the n-fold convolution of a c.d.f. F
with itself is the distribution of the random variable X1 X2 Xn,

where the Xi are i.i.d. with the distribution characterized by F. (Try to show

this.) Thus, because inter-renewal times Si are i.i.d. with distribution F, and

because Tn is the sum of the first n of them, we have

(6)P Tn t F n t

But then,

P Nt n P Nt n P Nt n 1

P Tn t P Tn 1 t

which gives the following result.

THEOREM 1. If Nt is a renewal process with inter-renewal distribution

F, then

(7)P Nt n F n t F n 1 t

5.3 Renewal Processes 357

EXAMPLE 2.Suppose that the inter-renewal times have the density

f x
x e x if x 0,

0 otherwise

This is a member of the , family for which 2 and 1, some-

times called the Erlang 2, 1 density. The convolutions can be calculated

with some effort; for example,

F 2 t
0

tF t s d F s
0

t
0

t su e u d u s e s d s

Repeated integration by parts or an appeal to Mathematica can be used to

obtain a closed formula.

F2 t_ :
0

t

0

t s

u E u u s E s s;

F2 t Simplify

1
1
6

t 6 t 6 t 3 t

The third iterate may be obtained by convolving F 2 with F as follows:

F3 t_ :
0

t

F2 t s s E s s;

F3 t Simplify

1
12

2 t 3 2 t 17 7 t t

2 t 3 t 12 t2 3 7 t 5 t

But the larger the order of the iterate, the harder is the computation and the

messier is the answer. For this example, it is much easier to use moment-gen-

erating functions to compute F n . The m.g.f. of the gamma distributed

inter-renewal times is M t 1 1 t 2, hence the m.g.f. of the sum Tn of n
independent and identically distributed such times is the product of n
identical factors of this M t . It therefore follows that the m.g.f. of Tn is

1 1 t 2 n, which is identical to the m.g.f. of the 2 n, 1 distribution. In

other words, Tn has the Erlang 2 n, 1 distribution.

Into equation (7) we can now substitute appropriate gamma c.d.f.'s for

F n and F n 1 :

P Nt n
0

tx2 n 1 e x 2 n 1 d x
0

tx2 n 1 e x 2 n 1 d x

358 Chapter 5 Continuous Time Processes

To simplify, integrate by parts twice on the second integral above. You

should verify that the resulting expression for this integral is

e t t2 n 1 2 n 1 e t t2 n 2 n
0

tx2 n 1 e x 2 n 1 d x

Substitution into the previous line gives us the distribution of Nt:

(8)P Nt n e t t2 n 1 2 n 1 e t t2 n 2 n

There is a general expression for the renewal function m t , though it is

usually difficult to calculate explicitly. It is listed in the next theorem.

THEOREM 2. m t E Nt n 1
F n t .

Proof. Define a sequence In of random variables by

In
1 if Tn t
0 otherwise

Then E In P Tn t . (See the Activity below.) Also, it is easy to see that

Nt n 1 In. By the monotone convergence theorem, we may take expecta-

tion inside this infinite sum, to obtain

m t E Nt E n 1 In

n 1 E In

n 1 P Tn t

n 1 F n t

which establishes the claim.

Activity 2 – Why is it true, in the proof of Theorem 2, that

E In P Tn t ? Explain why it is true that Nt n 1 In.

EXAMPLE 3. Continuing Example 2, let us calculate the expected number

of renewals during 0, t when the inter-renewal distribution is Erlang 2, 1 .

As before, since F n is the c.d.f. of the 2 n, 1 distribution,

F n t
0

tx2 n 1 e x 2 n 1 d x

Hence, by Theorem 2,

5.3 Renewal Processes 359

(9)

m t E Nt n 1 F n t

0

t

n 1 x2 n 1 e x 2 n 1 d x

1
2

0

t
1 e 2 x d x

t
2

e 2 t

4
1
4

In this computation, the interchange of integration and summation in the

second line can be justified by the uniformity of convergence of the series

for x 0, t . Also, the series in the second line has been computed by

rewriting it as

1
2

e x 1 x x2

2
x3

3
1 x x 2

2

x 3

3
1
2

e x ex e x

Incidentally, the Erlang 2, 1 distribution is the distribution of the sum of

two i.i.d. exponential(1) random variables. This kind of inter-renewal

distribution might arise in the manufacturing of a piece of heavy equipment,

in which there are two phases, one after the other, and each phase takes an

exponential amount of time to complete. The renewal times are the succes-

sive times of completion of an entire piece, and the expression in (9) gives us

the expected number of pieces made by time t.

Activity 3 – In Example 3, what does the ratio m t t converge to as

t ? Interpret what this limit means.

Long-Run Results

In Example 3, formula (9) allows us to find the limit of the expected number

of renewals per unit time, as time becomes large:

limt
m t

t limt
t 2 e 2 t 4 1 4

t 1 2

Notice that for the given Erlang 2, 1 distribution of inter-renewal times, the

mean inter-renewal time is 2, which is the reciprocal of this long-run

expected number of renewals per unit time.

360 Chapter 5 Continuous Time Processes

We would now like to take a closer look at the limiting theory of renewal

processes. The next results characterize the long-run time average behavior

of Nt. First note that Nt as t , with probability one, since

P limt Nt P n Sn n 1 P Sn 0

The first equation follows from the fact that the only way that the number of

renewals Nt can approach a finite limit as t is for some inter-renewal

time Sn to be infinite. The inequality is by countable subadditivity. The fact

that Nt for almost every outcome is necessary for the proof of the

following important theorem. Its content is that the long-run average

number of renewals per unit time is the reciprocal of the average time

between renewals, for all but some exceptional outcomes in a set of probabil-

ity zero. The proof here follows along the lines of Ross ([52], Proposition

3.3.1).

THEOREM 3. (Renewal Law of Large Numbers) If Nt is a renewal

process with mean inter-renewal time , then

(10)P limt
Nt
t

1 1

Proof. Denote by T Nt the random time whose value for an outcome

such that Nt n is Tn . In other words, T Nt is the time of the Nt
th

arrival. Similarly, let T Nt 1 equal Tn 1 for outcomes where Nt n. It

can be seen that T Nt is the time of the last renewal prior to t, and T Nt 1

is the time of the first renewal after t. For all outcomes, we therefore have

the inequalities

T Nt t T Nt 1

Thus,

(11)
Nt

T Nt

Nt
t

Nt
T Nt 1

Nt
Nt 1

Nt 1
T Nt 1

But, by the strong law of large numbers,

Nt
T Nt

T Nt
Nt

1
i 1
Nt Si
Nt

1
1 as t

5.3 Renewal Processes 361

Similarly, Nt 1 T Nt 1 approaches 1 . Because Nt converges to

for almost every outcome, the ratio Nt Nt 1 converges to 1. Therefore,

the outsides of inequality (11) force the middle to approach 1 for almost

every outcome.

 Surprisingly, the corresponding theorem for expectations requires more

machinery; consequently we will list it without proof.

THEOREM 4. (Elementary Renewal Theorem) If Nt is a renewal process

with mean inter-renewal time and renewal function m t E Nt , then

m t
t

1 as t

To summarize, both the expected, and the actual, number of renewals per

unit time approach 1 in the long run.

EXAMPLE 4. A computer software marketing group wants to decide how

best to allocate their labor. If the supply of programmers is broken into three

groups, each working on a separate phase of a project, then it is estimated

that each phase requires an exponential amount of time to complete, with

parameter 1/2. If the programmers are broken into two groups, each work-

ing on a separate phase, then each phase requires an exponential amount of

time with parameter 1/4. We assume that successive projects are indepen-

dent of one another, that the groups can work simultaneously, and that work

on the next project does not commence until the previous one is complete.

Which organizational structure produces the fastest output of software in the

long run?

The successive completion times of software projects form a renewal

process. For the first organization, a typical inter-renewal time is the

maximum of the three completion times for the three work groups. Let

those times be labelled X1, X2, and X3. They are each exponentially distrib-

uted with parameter 1/2, and we assume that they are also independent.

Because of this, the distribution function of the maximum of the Xi's is

P S t P max X1, X2, X3 t
P X1 t P X2 t P X3 t

1 e t 2 3

Differentiation gives the probability density function of the inter-renewal

times:

f t 3
2

e t 2 1 e t 2 2

And the expected inter-renewal time for the first plan is as below.

362 Chapter 5 Continuous Time Processes

1
0

t
3

2
t 2 1 t 2 2

t

11
3

For the second organizational plan, the model is almost the same, except

that two independent groups must be finished before the project can be

finished. A typical inter-renewal time is therefore the maximum of two

random variables, say Y1 and Y2, each exponential with parameter 1/4.

Computing as in the last paragraph, we obtain the density of the inter-re-

newal time under plan 2:

g t 1
2

e t 4 1 e t 4

The mean inter-renewal time is

2
0

t
1

2
t 4 1 t 4 t

6

Therefore, the long-run number of projects completed per unit time is

1 1 3 11 under the first system, and 1 2 1 6 under the second, by

the Renewal Law of Large Numbers. The analysis shows that the first

system, with three programming groups, is better under this criterion.

Renewal Reward Processes

As our final renewal process model, suppose that at the renewal times

T1, T2, T3, ... of a renewal process Nt , we receive rewards (or are charged

costs) R1, R2, R3, ..., respectively. We assume that the sequence of pairs

Sn, Rn n 1,2,3,... are independent and identically distributed, where, as usual,

the Sn's are inter-renewal times. Let be the mean inter-renewal time, and

denote by r the common mean reward r E Rn . You are asked for a

proof of part (a) of the following theorem in Exercise 14. Part (b), the

version for expectations, is omitted because of the extra machinery required

for its proof.

THEOREM 5. (a) P limt n 1
Nt Rn t r 1

 (b) E n 1
Nt Rn t r as t

5.3 Renewal Processes 363

Activity 4 – Try to interpret Theorem 5 intuitively, then read on to check

your hypothesis.

We can interpret the result as follows. Since Nt is the number of rewards

received (or costs charged) during the time interval 0, t , the sum in part (a)

is the total reward up to time t. For all but some exceptional outcomes of no

probability, the average reward per unit time during 0, t converges to the

average reward r per renewal, multiplied by the average number 1 of

renewals per unit time. Part (b) says that the expectation of the average

reward per unit time reaches the same limit.

EXAMPLE 5. An office manager is considering the purchase of one of two

competing duplicating machines. Machine 1 survives for a random length of

time between repairs, with the following density function:

f1 x x 2 3 e x 2 1 3

3 21 3 if x 0

(This is a case of the so-called Weibull distribution.) Repair costs of this

machine are random variables R1, R2, ... , which are i.i.d. with the discrete

uniform distribution on the set 50, 51, ..., 99 . The times between repairs

for the second machine have the exponential distribution with parameter

1/10, and a service agreement is available such that the cost of a repair is

fixed at $60. Which machine is preferable from the point of view of minimiz-

ing long-run average cost per unit time?

Each machine has an associated renewal process. The times of renewal

are the successive times at which repair is done. For machine 1, the times

between renewals have the given Weibull density f1; and for machine 2, they

have the exponential distribution, whose mean inter-renewal time is 2 10.

The mean inter-renewal time for machine 1 is

1
0

x
1

3 21 3
x 2 3 x 2 1 3

x

12

Costs R1, R2, ... are charged at the times of repair of each machine. For

machine 1, the distribution of a typical cost R is discrete uniform, and so the

average cost per repair r1 E R is

364 Chapter 5 Continuous Time Processes

r1 N
k 50

99

k
1

50

74.5

For machine 2, the costs are constantly r2 60. Recall that Theorem 5

implies that as elapsed time becomes larger, the total cost incurred divided

by the elapsed time converges to r , so that a comparison of the two

machines yields

r1 1 74.5 12 6.2; r2 2 60 10 6.0

Therefore machine 2 minimizes long-run time average cost.

Exercises 5.3

1. If F x 1 e x for x 0, and zero otherwise, find a formula for the

n-fold convolution F n t .

2. Let G x be the c.d.f. of the continuous uniform distribution on 0, 2 , and

let F x be the c.d.f. of the discrete uniform distribution on the set of states

1, 2 . Find G F t and F G t .

3. (Mathematica) Suppose that the inter-renewal times of a renewal process

have the (discrete) Poisson distribution with parameter 2. Note that this

means it is possible for successive renewal times to be the same. Find a

series expression for the distribution of the number of renewals by time t,
and for the renewal function m t . Produce a connected line graph of the

large portion of the probability mass function of N6.5. Evaluate m 1

explicitly.

4. The preparation of a report requires the efforts of three people, each one

beginning after his predecessor finishes. When one report is finished, the

next one is begun, etc. Suppose that person i among the three requires an

exponentially distributed time with parameter i, i 1, 2, 3 to finish his

portion of the report, and that reports are independent of one another. Find

the long-run expected number of reports that can be finished per unit time.

Is it necessary to assume that the completion times of the three workers for a

given report are independent of one another?

5. The elementary renewal theorem does not follow trivially from the

renewal law of large numbers, because the convergence of a sequence of

random variables X1, X2, X3, ... to a constant does not necessarily imply

5.3 Renewal Processes 365

that their expectations converge to the same constant. Show this last state-

ment by considering the sequence of random variables defined by

Xn
0 if U 1 n
n otherwise

where U is uniformly distributed on 0, 1 . Show first that

P Xn 0 as n 1, and then compute E Xn .

6. (Mathematica) A machine receives shocks at the times T1, T2, T3, ... of a

renewal process, and incurs damage at a level of Di as a result of the ith
shock. The damage from each shock ebbs exponentially as time wears on.

We shall suppose that the times Ti 1 Ti between shocks are independent

of the damage levels Di, which are independent and identically distributed.

Hence the total damage sustained by the machine up to time t can be written:

D t i 1
Nt Di e t Ti

Write a simulation program that takes as parameters the probability distribu-

tion of the damages, the inter-renewal distribution, the constant , and a final

time t, and returns the cumulative damage level D t at time t. Exercise your

program in the case where the inter-renewal times have the exponential(2)

distribution, .01, the damage levels have the continuous uniform distribu-

tion on the interval 0, 1 . By running the simulation many times, use the

average damage level D t in the simulated trials to estimate the expectation

E D t . Repeat for several different times t and generate a list plot in time to

get an estimate of the function that maps t to E D t .

7. Customers arrive to a single server according to a Poisson process with

rate 3 per hour. Those customers who arrive when the server is busy are

simply lost. The server requires a constant time of c to activate, then an

exponential length of time with rate 2 per hour to actually perform service.

Find the long-run average number of customers served per hour. How many

customers are being lost per hour if the activation period is 10 minutes? 5

minutes?

8. Use Theorem 2 to find the renewal function in the case that the interre-

newal distribution is deterministic with all of its weight on the point 1.5.

Exercises 9–12 lead the reader through a renewal theoretic proof of the result

on convergence of Markov chains, Theorem 1 of Section 4.5.

9. A delayed renewal process is similar to a renewal process, except that the

c.d.f. G of the first renewal time T1 may be different from the common c.d.f.

F of the inter-renewal times Tn 1 Tn, n 1, 2, Show that for a delayed

renewal process Nt ,

366 Chapter 5 Continuous Time Processes

E Nt n 1 G F n 1 t

10. Given a Markov chain Xn n 0, argue that the times S1, S2, S3, ... of

successive visits to a state j, starting from a state i, form a delayed renewal

process, as defined in Exercise 8.

11. There is a theorem from renewal theory called Blackwell's Renewal
Theorem (see Ross ([52], Prop. 3.5.1) that is applicable to processes with

integer-valued renewal times that are otherwise non-periodic. It implies the

following for delayed renewal processes: the expected number of renewals

exactly at time n converges to the reciprocal of the mean inter-renewal time

as n . Prove parts (c) and (d) of Theorem 1 of Section 4.5 by presum-

ing that the hypotheses of Blackwell's Theorem are in force, and considering

the sequence of random variables I0, I1, I2, ... , defined by setting In to 1 or

0 according to whether Xn equals j or not.

12. Finally, with In as in Exercise 11 and Nt equal to the sum of the I's
through t, appeal to the Renewal Law of Large Numbers to establish part (e)

of Theorem 1 of Section 4.5.

13. A machine begins in good running condition, lasts for an exponential

length of time with rate 1, then breaks down. The repair of the machine

lasts for an exponential period of time with rate 2, after which the machine

is completely repaired, lasts for another exponential length of time with rate

1, is repaired again, etc. If a repair costs c dollars, find the long-run cost of

repairs per unit time.

14. Prove Theorem 5(a).

15. Three investments are available. The first pays fixed dividends of $100

at the times of a renewal process whose inter-renewal distribution is exponen-

tial with parameter 1/5. The second can pay either $80, $100, or $140, each

with probability 1/3, at the times of a renewal process whose inter-renewal

distribution is 2, 4 . The third pays an amount $50 Mi at the deterministic

times i 3, 6, 9, ... , where each Mi has the Poisson distribution with

parameter 1, and the Mi's are mutually independent. Which investment is

preferable from the point of view of maximizing the long-run expected

reward per unit time?

16. (Mathematica) A device is currently new. We replace it with an identi-

cal new device either when it breaks or at the fixed time T, whichever comes

first. The lifetime of a device has the Weibull density:

f x
1
2

x 1 2 e x1 2

if x 0

0 otherwise

5.3 Renewal Processes 367

The cost incurred due to breakdown is twice as much as the cost due to a

simple replacement of a functioning device. Show that to minimize long-run

average cost per unit time, it is optimal never to replace the device. (Note

that the inter-renewal time has a density on 0, T and puts positive mass on

the point T. Use a sensible extension of the definition of expectation for this

mixed discrete–continuous random variable.)

17. Consider a renewal process Nt with discrete, geometric inter-renewal

distribution:

g n 1 p n 1 p, n 1, 2, 3, ...

(a) Find the limit as t of Nt t.
 (b) Find explicitly the distribution of Nt. (Hint: Think about what kind of

experiment gives rise to geometric times between renewal.)

(c) Find explicitly m t t.
(d) If a reward of either $2 or $4, with equal probability, is earned at

each renewal time, find the expected average reward in the finite time

interval 0, t .

18. A common stock currently sells at $20 per share. The price changes by

plus $1 or minus $1 (respectively with probabilities p and 1 p) at times

T1, T2, T3, ... such that the times between changes are i.i.d. 4, 2 random

variables. For large time t, approximately what do we expect the price to be

at that time?

5.4 Queueing Theory

Preliminaries

A vital application of stochastic processes is the study of waiting lines, or

queues. In queueing problems, there are customers arriving to a service

facility as time passes (e.g., people to a store, jobs to a central processing

unit, cars to a parking lot, messages to a communication station, or planes to

an airport). Customers who do not go immediately into service must wait in

line. After their service is finished, they depart. One is interested in how

the queue length tends to rise and fall. Also, the waiting times of individual

customers are of interest.

There are several pertinent aspects of a queueing model:

368 Chapter 5 Continuous Time Processes

1. the probabilistic arrival pattern of the customers;

2. the probability law of the time taken by a server to serve a customer;

3. the number of servers present at the service facility;

4. the size of the waiting area, if only a limited number of customers may

wait;

5. the queue discipline, that is, the rule by which a new customer is

selected to be served when a server becomes available;

6. the presence of one or more other queues that interact with the one of

principal interest (e.g., customers may not be able to arrive to one queue

until they are serviced at another).

The variations to the underlying model are many, and there are also many

quantities of interest for a single model. In this brief introduction we will

concentrate on single queues as opposed to networks of several queues. The

queue discipline is first-in, first-out (FIFO), in which customers are served in

the order in which they arrive. We present two models with multiple

servers, and three with only one server. In one of our problems there will be

a finite waiting room, so that arrivals who come when the waiting room is

full are turned away. Either the inter-arrival times or the customer service

times or both will be exponentially distributed and mutually independent.

Our main goal will be to calculate the long-run distribution of queue length.

Let us look at a typical outcome of a queue length process. The table

below gives the first few arrival and service times.

arrival times Ti service times Si

3.5 5.3

5.8 3.0

7.0 2.8

16.2 2.9

The path of the queue length process Xt for this outcome is sketched in

Figure 5.9. The first arrival comes at time T1 3.5 and requires 5.3 time

units for service; therefore this customer departs at time 8.8. In the mean-

time, both the second and third arrivals have occurred, at times 5.8 and 7.0,

respectively. Therefore the queue length rises to 2 at time 5.8, then to 3 at

time 7.0. When the first customer leaves, the second goes into service, and

the queue size is reduced to 2. Since the second service time is 3.0, cus-

tomer 2 departs at time 8.8 3.0 11.8. At this time, the third customer

starts service; and since the service period takes 2.8 time units, the third

customer departs at time 11.8 2.8 14.6. The fourth arrival does not

appear until time 16.2, so that the queue is empty for 1.6 time units. The

queue size moves up to 1 at time 16.2, and the service process continues.

5.4 Queueing Theory 369

3.5 5.8 7 8.8 11.8 14.6 16.2 19 20

0

0.5

1

1.5

2

2.5

3

Figure 5.9 – Sample path of the queue length process

There is a standard shorthand that has arisen to specify the queueing

model under study. This consists of a string of characters separated by

diagonal slashes, of the form: A B n N . In the first position is an abbrevia-

tion for the distribution of the times between successive arrivals. The

symbol M is used for exponential, D for deterministic or non-random

arrivals, Ek for Erlang with parameter k, and G for a general distribution, for

example. The second position B represents the distribution of the service

times of a single customer. The same abbreviations are used. The third

position is the number of servers n, and the fourth position is the number of

waiting spots N. The latter is usually left blank when there is no bound on

the waiting room size. Thus, M M 1 6 indicates a single server queue

whose arrivals form a Poisson process, say with rate , such that service

times are i.i.d. exponential random variables, say with parameter , and such

that there are six waiting positions. The shorthand M G 2 means a two-

server queue with unlimited waiting space, such that arrivals form a Poisson

process and service times have some unspecified distribution function.

Activity 1 – Think of at least two queues that you have been in recently.

In the queueing shorthand, explain what the D M 4 5, M Ek , and

G M 1 models are.

Simple Poissonian Queues

EXAMPLE 1. (M G) Suppose that arrivals to a service facility occur at

the times T1, T2, T3, ... of a Poisson process, and upon arrival a customer is

immediately served by one of an infinite number of servers. This could be

an approximate model of a self-service facility such as a grocery store where

370 Chapter 5 Continuous Time Processes

shoppers select their own items, or a parking garage with a large number of

spaces. Service of a customer takes a random amount of time with distribu-

tion function G, and customers are served independently of one another. We

find the distribution of Xt, which denotes the number of customers in service

at time t.
Normally it is difficult to calculate the short-run distribution of queue

length, but here we have enough structure that it is relatively easy. The

random variable Nt, defined as the total number of arrivals by time t, is

Poisson with parameter t. By the law of total probability,

(1)

P Xt k n 0 P Xt k Nt n P Nt n

n k
P Xt k Nt n e t t n

n

The sum begins at k because it is impossible for the number of customers

still in the system at time t to be more than the number who have arrived by

time t.
Recall from Theorem 3 of Section 5.1 that, given Nt n, the arrival

times T1, T2, ..., Tn have the joint distribution of the uniform order statistics

on 0, t . The event that exactly k of these arrivals are still in the system at

time t is the event that exactly k of the events Ti Si t occur, where Si
denotes the service time of the ith customer. But this has the same probabil-

ity as the event that exactly k of the events Ui Si t occur, where the Ui's
are i.i.d. uniform random variables on 0, t . By this reasoning,

P Xt k Nt n is the probability of exactly k successes in a binomial

experiment of n trials. Conditioning and unconditioning on U , the success

probability per trial is

(2)

p P Ui Si t
0

t
P u S t U u 1

t d u

0

t
P S t u 1

t d u

1
t

0

t
1 G t u d u

1
t

0

t
1 G x d x

The last line is the result of the substitution x t u. By (1),

5.4 Queueing Theory 371

P Xt k
n k

n
k n k pk 1 p n k e t t n

n

t p k e t

k n k
t 1 p n k

n k

t p k e t

k e t 1 p

t p k e t p

k

We have proved that the number of customers Xt in the system at time t
has the Poisson distribution with parameter t p, where p is given by (2). In

particular, the mean number of customers in service at time t is

(3)E Xt t p
0

t
1 G x d x

In the case of the M M queue, where services are exponential with rate

, the mean number in service at time t is

E Xt 0

te x d x 1 e t

As t , the mean number in service approaches .

Activity 2 – In Example 1, what is the mean number in service if the

service time distribution is the continuous uniform distribution on the

interval 0, 2 ?

EXAMPLE 2. (M M s) Suppose that cars arrive to a toll station accord-

ing to a Poisson process with rate , and that their service times are i.i.d.

exponential random variables with parameter . There are s toll booths at

the station handling the incoming traffic. Let Xt be the number of cars at the

station at time t. We wish to find the limiting distribution of Xt as t .

We claim that Xt is a birth–death process. Consider a time such that

Xt n, i.e., there are n cars waiting at the toll station. Because both the

inter-arrival and service time random variables have the memoryless exponen-

tial distribution, the time t may as well be time 0 and the past history of the

queue is irrelevant given the current state. Regardless of how long we have

waited for a change of state, there is still an exponential amount of time until

the next arrival, and an exponential amount of time until the next service.

The queue size can only increase by one if the arrival comes first, and

decrease by one if the service happens first (if n 0, then of course the

queue size must increase by one). Thus, Xt satisfies the properties of a

birth–death process.

It remains only to compute the birth and death rates. Consider the case

372 Chapter 5 Continuous Time Processes

1 n s first. Let T be the time of the next arrival, and let S1, S2, ..., Sn be

the times at which the currently busy servers 1, ..., n finish their service.

Then the probability that the queue size does not change for u more time

units is

P T u, Si u for i 1, ... , n e u e u n e n u

The probability that the next change in queue length is a birth is

P T Si for i 1, ... , n

0 t t e s1 e sn d s1 d sn e t d t

0
e n t d t

n

The case where n s is similar, except that only the s servers can be work-

ing, so that n in the above expressions is replaced by s. When n 0, it is

easy to see that the birth rate is and the death rate is 0. In summary, the

queue length process Xt is a birth–death process with parameters

(4)n , n 0, 1, 2, ... n
n if n 0, 1, ... , s
s if n s 1, s 2, ...

We can use Theorem 1 of Section 5.2 to find the limiting probabilities.

Recall that p0 limt P Xt 0 is

p0 1
j 1

0 1 j 1

1 2 j

1

1
j 1

s j

j j j s 1

j

j s j s s

1

1
j 1

s j

j
s

s k 1 s
k 1

The infinite series in the last expression converges to s 1 s for

s. Under this condition, the limiting probabilities exist and

p0 j 0

s j

j
s

s s

1

after some algebraic rearrangement. Also, from the limit theorem on

birth–death processes, we have

5.4 Queueing Theory 373

pn limt P Xt n 0 1 n 1

1 2 n
p0

n

n p0 if n s
n

s sn s p0 if n s

If, for example, the arrival rate is 4 cars per minute, and each booth

can only serve at a rate of 3 cars per minute, then at least s 2 booths

are necessary to satisfy s, and thereby to save the queue from blowing

up. For these numbers, we have p0 1 5 as shown below.

p0 Sum 4 3 j j , j, 0, 2
4 3 2 4

2 3 2 4

1

1
5

Therefore,

pn

1
5

4 3 n

n if n 1, 2

1
5

4 3 n

2 2n 2

2
5

2
3

n
if n 3, 4, 5, …

We show this distribution in Figure 5.10 as a connected list plot. Notice that

the large preponderance of the time, there are 12 or fewer vehicles in queue.

p n_ : Which n 0, 1 5, 1 n 2,

1 5 4 3 n n , n 3, 2 5 2 3 n ;

longrundist Table n, p n , n, 0, 12 ;

ListPlot longrundist, PlotJoined True,

DefaultFont "Times", 8 ;

374 Chapter 5 Continuous Time Processes

2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

Figure 5.10 – Limiting distribution of queue length for M M 2 queue with 4, 3

Activity 3 – In Example 2, try increasing the arrival rate to see the

effect on the long-run queue length distribution.

EXAMPLE 3. (M M 1 N) Let arrivals to a barber shop form a Poisson

process with rate , and suppose that the time required for a haircut is

exponential with rate . There is a single barber, and there are only N chairs

in the shop, including the one that the barber is using for the customer he is

currently serving. When the shop is full, arrivals are turned away. We will

compute the limiting distribution of the number of customers in the shop.

By the same reasoning as in the last example, we can treat the queue

length process Xt as a birth–death process with parameters

j
if j 0, 1, …, N 1

0 otherwise
, j

0 if j 0

if j 1, 2, 3,

Then,

(5)

p0 limt P Xt 0 1
j 1

0 1 j 1

1 2 j

1

1
j 1

N j

j

1

1

1 N 1

The above computation is valid for ; when we can see directly

from the second line of (5) that p0 1 N 1 . We also have

(6)pn limt P Xt n n p0, if n 1, 2, …, N

Equation (6) holds in each of the cases , , and . (Try

verifying that (5) and (6) form a valid probability mass function.) Because

5.4 Queueing Theory 375

of the finite waiting room size, it is not necessary to impose the condition

that to ensure convergence of an infinite series in this problem. Also,

note that in the case we just have pn p0 1 N 1 for each

n 1, 2, ..., N .

In passing we note that the mean of the limiting distribution of the queue

length (the limiting average number of customers in the shop) can be com-

puted. This is

(7)L n 0
N n pn n 1

N n p0
n

Exercise 4 asks you to calculate that in the case ,

(8)L N N 1 N 1 N 1

1 N 1 1

and in the case , L N 2.

The ratio has arisen several times. We denote it by and call it the

traffic intensity of the queue, since it is the ratio of the arrival rate to the

service rate.

M/G/1 Queue

In this subsection we discuss a family of queues in which the service time

distribution is general, and the inter-arrival times are independent and

exponentially distributed. Accordingly, suppose that Poisson arrivals come

in to a single server, whose service times are independent and have some

unspecified distribution function G. We are interested in finding the limiting

distribution as time t of the queue length Xt. We will not be able to

compute this directly, but fortunately it can be shown (see Gross and Harris

[28]) to be the same as the limiting distribution of a discrete time embedded
Markov chain, defined as follows. Let Yn be the number of customers

waiting for service just after the nth departure. For the queueing outcome

depicted in Figure 5.9, the first three departure times are 8.8, 11.8, and 14.6.

For this outcome, Y1 2, since customers 2 and 3 are left behind by the

departing customer 1;Y2 1, since customer 2 leaves customer 3 still

standing in line; and Y3 0, since the fourth arrival has not yet occurred

when customer 3 finishes service.

376 Chapter 5 Continuous Time Processes

Activity 4 – If the first few arrival times are 3.1, 4.5, 6.7, 8.1, and 8.7,

and the service times are, respectively, 2.1, .8, 1.6, 2.4, and 1.2, sketch a

graph of the queue length as a function of time and determine the first

few values of the Markov chain Yn embedded at the departure instants.

If Yn is known, does Yn 1 depend on the past history before time n? In

the case Yn 0, the number of customers after the n 1 st departure is

(9)Yn 1 Yn 1 A

where A is the number of arrivals during the service period of the n 1 st

customer. In equation (9), 1 is subtracted because the n 1 st customer has

just left. In the case Yn 0, we just have

(10)Yn 1 A

Because of the memoryless property of the exponential distribution, the

number of arrivals A during the service of customer n 1 is completely

independent of the past arrival and service stream. Thus, Yn 1 is condition-

ally independent of past Yi's given Yn. This indicates that the queue length

chain Yn embedded at departure instants is Markov.

Let us compute the transition matrix of the embedded chain Yn . Formu-

las (9) and (10) indicate that we will need to know, for each k 0, 1, 2, ...,

the probability that there will be exactly k arrivals during a service. If the

duration of service is known to be t, then the number of arrivals is a Poisson

random variable with parameter t. Thus, conditioning and unconditioning

on the duration of service, we obtain

(11)qk P exactly k arrivals during a service
0

e t t k

k d G t

where the integral with respect to the distribution function G is interpreted as

g t d t if services are continuously distributed with density g, and as

g t if services are discretely distributed with probability mass function

g. Recall that Yn is the number of customers still to be served when the nth

customer departs. Given Yn 0, Yn 1 equals k if and only if k arrivals

occurred during the service of customer n 1. This event occurs with

probability qk as in (11). Given that Yn 1, the event Yn 1 k occurs with

the same probability qk. But given Yn 2, the nth customer leaves behind

the n 1 st customer plus one other, so that the event Yn 1 k is the same

as the event that exactly k 1 arrivals have occurred during the service of

customer n 1. By this reasoning we see that the transition matrix of Yn is:

5.4 Queueing Theory 377

(12)

 0 1 2 3

T

0
1
2
3

q0 q1 q2 q3

q0 q1 q2 q3

0 q0 q1 q2

0 0 q0 q1

The stationary equations T for this transition matrix are impossi-

ble to solve explicitly. However, the limiting probabilities n for the embed-

ded chain can be generated recursively. You should verify that the station-

ary equations have the form:

(13)i 0 qi j 1
i 1

j qi j 1, i 0, 1, 2, ...

The next theorem shows how to calculate 0, in order to initialize the

computation, and gives a rearrangement of (13) that directly expresses i 1

in terms of the previous i's. The proof, which involves probability generat-

ing functions, is outlined in Exercises 10–12.

THEOREM 1. Let denote the reciprocal of the mean of the service

distribution G for the M G 1 queue, let be the Poisson arrival rate, and let

 be the traffic intensity. Under the condition that 1, the limiting

distribution of the embedded chain Yn exists and satisfies

(14)
0 1

i 1 q0 i 0 qi j 1
i

j qi j 1

EXAMPLE 4. Suppose that a manufacturer keeps a large number of

machines, and that breakdowns of machines follow a Poisson process with

rate three breakdowns per week. One repairman is available to service the

machines, and a repair takes one day with probability 1/2, two days with

probability 1/4, and three days with probability 1/4. What is the long-run

probability that there will be at least three machines under repair?

Here, the queueing process is defined by Xt number of machines

waiting for repair at time t. We will calculate the first few entries of , the

limiting distribution of the chain Yn embedded at instants of repair. As

mentioned before, the discrete chain has the same limiting distribution as the

continuous process. Inter-arrival intervals of machines to the repair shop are

exponential random variables with rate 3 per week. The repairman is the

service facility in this application. The probability mass function of the

successive repair times is

378 Chapter 5 Continuous Time Processes

g x

1 2 if x 1 7 week

1 4 if x 2 7 week

1 4 if x 3 7 week

The expected value of the repair time is easily found to be 1/4 week, and

consequently the repair rate is 4 per week. Because of this, the traffic

intensity 3 4 satisfies the hypothesis of Theorem 1. We are asked for

limn P Yn 3 1 0 1 2

and by Theorem 1,

0 1 1 4

1
1
q0

0 0 q0

2
1
q0

1 0 q1 1 q1

To complete the solution of the problem, we must calculate q0 and q1.

Recall that these are the probabilities of having zero and one arrival, respec-

tively, during a service period. From (11),

qk t 1 7,2 7,3 7

e 3 t 3 t k

k g t

We can set up a function to compute these as follows:

g t_ : Which t 1 7,

1 2, t 2 7, 1 4, t 3 7, 1 4 ;

q k_ : NSum
E 3 t 3 t k

k
g t ,

t, 1 7, 3 7, 1 7 ;

Below are the q's that we need, followed by the 's, and the limiting probabil-

ity of 3 or more machines under repair, which comes out to around .32.

q 0 , q 1

0.500926, 0.319391

5.4 Queueing Theory 379

1
1

q 0

1

4

1

4
q 0

2
1

q 0
1

1

4
q 1 1 q 1

1 1 4 1 2

0.249076

0.179019

0.321905

In Exercise 9 you are asked to write a Mathematica function that implements

formula (14), with which to plot the limiting distribution.

G/M/1 Queue

Up to this point we have discussed queues for which arrivals form a Poisson

process. Our last example is the G M 1 family of queues, where interar-

rival times are i.i.d. random variables with distribution function G (i.e.,

arrivals form a renewal process), and service times are exponential with rate
. Let be the arrival rate, by which we mean the reciprocal of the mean

interarrival time, and let be the traffic intensity.

We again take an embedded chain approach. Let Yn be the number of

customers in the system when the nth arrival comes (excluding that nth

arrival). In Figure 5.9, the arrivals occur at times 3.5, 5.8, 7.0, and 16.2.

The first arrival finds no customers in the queue yet, hence Y1 0. The

second customer finds the first customer ahead, so that Y2 1. The third

customer finds both of the first two still in the system, hence Y3 2. But by

the time the fourth customer has arrived, all others have been served, so that

Y4 0.

Activity 5 – For the arrivals and departures listed in Activity 4, give the

first few values of the chain Yn embedded at arrival instants.

To relate Yn 1 to Yn, note that the n 1 st customer will arrive to find the

customers that were ahead of the nth customer, plus customer n, minus the

number of customers whose service has been completed since customer n
arrived. Therefore,

(15)Yn 1 Yn B 1

380 Chapter 5 Continuous Time Processes

where the random variable B is the number of services performed between

the times of arrival of the nth and n 1 st customers. As in the M G 1

queue, the Markov property of the embedded chain Yn for the G M 1

queue holds because of the memoryless property of the exponential service

time distribution. Also, (15) suggests how to compute the transition matrix.

If Yn 0, i.e., the nth customer finds no one ahead in the line, then Yn 1 can

only be 0 or 1, according to whether or not customer n has finished service

by the time that customer n 1 arrives. Similarly, if Yn 1, then Yn 1 can

only be 0, 1, or 2. It is 2 if neither customer n nor the customer in front of

customer n has finished service by the time customer n 1 arrives; it is 1 if

the customer in front of n has been served, but customer n has not, and it is 0

if both services have been performed, perhaps with some time to spare. By

the same argument used in (11) to obtain the M G 1 probability of k
arrivals during a service interval, we can write

(16)

qk P exactly k services during an inter–arrival interval

0

e s s k

k d G s

Thus, denoting ri 1 q0 q1 qi , we have that the transition matrix

of the chain embedded at the arrival instants of the G M 1 queue is

 0 1 2 3 4

T

0
1
2
3

r0 q0 0 0 0
r1 q1 q0 0 0
r2 q2 q1 q0 0
r3 q3 q2 q1 q0

The following remarkable result is proved by solving the stationary

equations.

THEOREM 2. Let Yn be the Markov chain embedded at the arrival

instants of the G M 1 queue, and suppose that 1. Then the

limiting probabilities j limn P Yn j exist and take the form

(17)j 1 j, j 0, 1, 2, ...

where 0, 1 is a solution of the equation

(18)q0 q1 q2
2

Proof. The stationary equations are

5.4 Queueing Theory 381

(19)

0 r0 0 r1 1 r2 2

1 q0 0 q1 1 q2 2

2 q0 1 q2 2

By the fact that ri 1 q0 q1 q2 qi , it is easy to see that the top

equation in (19) is just one minus the sum of all the others, and consequently

it is superfluous.

We leave unproved (see Cinlar [15]) the fact that if 1, then the

limiting distribution exists. But the limiting distribution must be unique

when it does exist, so that all we need do is show that our candidate

j 1 j satisfies the infinite linear system (19). Note that the vector

does form a good probability mass function for between 0 and 1.

For k 1, the kth equation in (19) has the form

k q0 k 1 q1 k q2 k 1

Substitute 1 i for each factor i on the right side of this equation, to get

q0 1 k 1 q1 1 k q2 1 k 1

1 k 1 q0 q1 q2
2

1 k 1

1 k

The third line follows from (18). This establishes that our candidate is a

solution of the stationary equations.

REMARK. Unfortunately it is not true, unless the queue is M M 1, that

j is the limiting probability of j in the queue for the continuous time queue

length process Xt . Also, for both the M G 1 and G M 1 queues, it can

be shown (see Çinlar [15]) that when 1, the limiting probabilities for all

states are 0.

EXAMPLE 5. (D M 1) Suppose that at a large bakery, cakes come off of

a conveyor belt non-randomly at exactly one per minute. The cakes are to be

iced by a single skilled icer, who requires an exponentially distributed

amount of time with mean 30 seconds to ice a cake. Find the limit as n
of the probability that the number of cakes waiting to be iced at the time of

the nth cake arrival is k, for each k 0, 1, 2,

In this problem, the customers are cakes, and the inter-arrival probability

mass function is

382 Chapter 5 Continuous Time Processes

g t
1 if t 1

0 otherwise

The arrival rate is 1 per minute. The single server is the icer, and the

service time distribution is exponential with mean 1/2 minute, hence the rate

is 2 per minute. Since the traffic intensity 1 2, Theorem 2

can be applied. To solve for , we will need to compute the q j's. Referring

to (16), the integral is just the discrete sum of one term, namely,

qk
e 1 1

k

k 1 e 2 2k

k

Thus, is the solution of

k 0

e 2 2k

k
k e 2

k 0

2 k

k e 2 1

Though 1 is a solution, it is not the one that we want, or else all of the

limiting probabilities in (17) would be 0. Other solutions are not available

analytically, so we must use a numerical procedure such as FindRoot to

approximate :

FindRoot E 2 1 , , .5

0.203188

The value of correct to three decimal places is 0.203. The limiting

distribution of the chain embedded at arrival instants is therefore

k limn P Yn k .797 .203 k , k 0, 1, 2, ...

Exercises 5.4

1. (a) Compute the birth and death rates for the M M 4 6 queue.

 (b) Find the limiting probabilities, if 4 and 2.

(c) What effect does doubling the service rate have on the long-run

probability that the queue is full?

2. Compute the traffic intensity of a single server queue in which arrivals

form a Poisson process with rate 5, and service times have the Weibull

distribution: g t 2 t e t2

, if t 0. Will this queue have a limiting

distribution?

3. Find the limiting distribution of the M G queue.

5.4 Queueing Theory 383

4. Verify expressions (7) and (8) for the limiting mean queue length of the

M M 1 N queue.

5. (Mathematica) For an M M 1 N queue with arrival rate 2 and

service rate 3, find the smallest value of N such that the limiting probabil-

ity of two or fewer in the queue is less than .75.

6. (Mathematica) In Example 2, set 5.2 and 1.3. At least how many

toll stations should there be so that 95% of the time in the long run, there are

ten or fewer vehicles in queue?

7. Suppose that the barber of Example 3 is unlucky enough to have only one

employee (himself), and no waiting space other than the chair used by the

customer on which he is currently working. He wishes to minimize the

long-run average queue length L by decreasing the traffic intensity (i.e., by

increasing the service rate), but counterbalancing this is an implicit cost

inversely proportional to . Find the traffic intensity that minimizes

f L 1
4

8. A cattle rancher is preparing to brand his cattle. A single brander is

working, who can finish one steer in exactly 5 seconds. If cattle arrive to the

brander according to a Poisson process with rate 10 per minute, find the limit

as t of the probability that there are 3 or fewer cattle waiting at time t.

9. (Mathematica) Write a Mathematica function that implements formula

(14) for the repair time distribution of Example 4. Use it to plot the limiting

distribution for states from 0 to 8.

Exercises 10–12 complete the proof of Theorem 1 on the limiting distribu-

tion of the M G 1 queue, by calculating 0.

10. Let pn n 0,1,2,... form a discrete probability mass function on the non-neg-

ative integers. Define the probability generating function of this distribution

as the function

P z n 0 pn zn p0 p1 z p2 z2

Show that P n 0 n pn, and show that P 1 is the mean of the

distribution.

11. Let z be the probability generating function of the limiting distribu-

tion for the M G 1 queue, and let Q z be the probability generating

function of the distribution qn in (11). Multiply both sides of (13) by zi and

sum from i 0 to to obtain the relation

384 Chapter 5 Continuous Time Processes

z 0 Q z z 1

z Q z

12. Send z 1 on both sides of the equation in Exercise 11, using L'Hopi-

tal's rule to evaluate the limit on the right side, to finish the proof that

0 1 . (Hint: To calculate the mean number of arrivals during a service

interval, condition and uncondition on the duration of the service interval.)

13. By viewing the M M 1 queue as a special case of the G M 1 queue,

find the limiting distribution of the queue length, embedded at arrival

instants. Compare this to the results of Example 2 for the M M s queue in

the special case that s 1.

14. Precisely one bit of information arrives to a processor every microsec-

ond. The processor requires an exponentially distributed amount of time

with rate ln 4 per microsecond to analyze a bit and then proceed to the next

bit. Find the limit as n of the probability that two or fewer bits are

waiting to be processed at the time of arrival of the nth bit.

15. (Mathematica) Arrivals come to a single server queue with exp(2.5)

service time distribution so that only two interarrival times, 0.8 and 1.2, are

possible, occurring with equal likelihood. Find the limiting distribution of

the chain embedded at arrival instants.

16. Cars arrive to a state vehicle testing station according to a Poisson

process with rate . It requires an exponential length of time with rate to

test a car. But, cars arriving when there is at least one vehicle waiting have a

probability p 0, 1 of joining the queue, and 1 p of driving away. Find

the limiting distribution of the queue length.

17. Consider an M M 1 N queue whose arrival and service rates are

equal. Suppose that customers who join the queue receive a reward R at the

end of service, but pay at a rate of C per unit time while they are waiting.

Find inequalities that characterize the optimal waiting room size N that

maximizes the long-run expected profit per customer, per unit time:

R limt P Xt N C limt E Xt

(Hint: If a function f on the integers has a maximum at n , then both

f n f n 1 and f n f n 1 .)

5.4 Queueing Theory 385

5.5 Brownian Motion

Relation to Random Walks

Thus far the stochastic processes that we have studied either had a discrete

time set or a discrete state space, or both. In this section we meet the most

important process in the realm of continuous-time, continuous-state pro-

cesses, the Brownian motion. It arises, however, as a limiting process of one

of the simplest kind of discrete-time, discrete-state processes, the random

walk. But in passing to the limit, some interesting and rather strange behav-

iors are introduced.

We will be able to do little more than scratch the surface of the Brownian

motion process and its applications, so the goal of this section is to allow you

to learn enough to give you background for future study. Because of its

continuous nature, it requires heavy analytical machinery to properly derive

results about this process, and in fact the true applications of Brownian

motion also can only be done with some background in measure theory and

partial differential equations, which we do not assume here. These applica-

tions are in such diverse areas as particle physics, the time variability of

economic quantities, and the changes in populations of individuals or in

levels of epidemics.

The history of the study of Brownian motion is filled with familiar

names in the sciences and mathematics. An English botanist by the name of

Robert Brown noted in 1827 that particles immersed in a liquid undergo

continual, irregular motions. Albert Einstein in 1905 theorized that such

Brownian motion was produced by countless collisions with the molecules

of the surrounding liquid, and derived using physical principles a mathemati-

cal description of the motion. Other famous scientists, such as Fokker and

Planck, continued to work out the physical theory of Brownian motion after

this. Beginning in 1918, and continuing for years after, the great mathemati-

cian Norbert Wiener gave a mathematical formulation of the Brownian

motion process and derived many of its properties. In his honor, Brownian

motion is also sometimes referred to as the Wiener process. But not only

scientists were interested in this stochastic process. As early as 1900, in his

Ph.D. dissertation, the French economist Louis Bachelier used the process to

model the motion of stock market prices. Its use in economic problems grew

slowly at first, but then very rapidly later, fueled by the work of Black and

Scholes [7] on the valuation of options in the 1970's, as well as the work of

other mathematical economists such as Merton [43] on portfolio and capital

market theory.

386 Chapter 5 Continuous Time Processes

Needs "KnoxOR`StochasticProcesses "̀ ;

To motivate Brownian motion and its paths, consider a symmetric

random walk starting at a point x0 in which a very short step up or down by

an amount of x is taken at time intervals separated by a short amount of

time t. So that a non-trivial limiting process of the kind we want exists, it

turns out that a connection should be made between the state increment x
and the time increment t. We take for the moment x t . To see

what such a process looks like, let us simulate it.

There is a function in the KnoxOR`StochasticProcesses` package that

plots the path of a simulated discretized Brownian motion as follows. The

initial state is x0, the parameter deltat is as described above, and numpoints

is the number of time points in the simulation.

PlotSimulateBrownianMotion

x0_,deltat_,numpoints_

It is educational for you to see how the function is written. First, we need

a utility function that takes the argument t and returns the size of the step,

t each with probability 1/2. This is routine and is shown below. (It is

also in the StochasticProcesses package.)

StepSize deltat_ : If Random 1 2,

Sqrt deltat , Sqrt deltat ;

Now to simulate the full random walk, starting with a list containing only the

initial state x0, we continually append the next state, which is the most recent

state plus the random step size. The function below does this, constructs the

corresponding series of time points t, 2 t, 3 t, ..., and ListPlots the

resulting (time, state) pairs. This version of the program joins neighboring

points with a line segment, essentially forming a continuous-time process

with continuous state space by linear interpolation.

5.5 Brownian Motion 387

PlotSimulateBrownianMotion

x0_, deltat_, numpoints_ : Module

statelist, timepoints , statelist x0 ;

Do AppendTo statelist, Last statelist

StepSize deltat , numpoints ;

timepoints Table n deltat,

n, 0, numpoints ;

ListPlot Transpose timepoints, statelist ,

PlotJoined True ;

Here is a simulation for initial state 0, t 0.001, and 1000 time points, so

that the terminal time in the simulation is 1. In the electronic text, you

should rerun the command many times to get an idea of the behavior of this

random walk.

PlotSimulateBrownianMotion 0, .001, 1000 ;

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0.2

0.4

0.6

Figure 5.11 – Approximate sample path of the standard Brownian motion process

Activity 1 – Modify the program to return the state of the random walk

at the final time; then write a program that generates a list of 100 such

random walk final states. To make your command run faster, use

t 0.01, and 100 time points. Use the command below, contained in

KnoxOR`StochasticProcesses`, to plot a histogram of the data with five

rectangles to study the empirical distribution of the final state.

Histogram datalist,numrectangles

388 Chapter 5 Continuous Time Processes

Definition and Properties of Standard Brownian Motion

The random walk construction above suggests several properties that the

limiting process should have. First, the state Xn t at time n t consists of

the sum of independent, identically distributed step sizes Yi, i 1, ... , n,

where each Yi has mean and variance

(1)
y

1
2

t 1
2

t 0,

y
2 E Y2 1

2
t 1

2
t t

The sum of the steps Xn t i 1
n Yi therefore has mean 0 and variance n t,

so the variance equals the time subscript. Because Xn t is an independent

sum of random variables, we expect it to have an approximate normal

distribution, and in the limit as n and t 0 in such a way that

n t t, a constant time, the distribution of Xt ought to be normal with mean

0 and variance t.
There are further properties to expect of the limiting random walk. If the

random walk is currently in a state Xn t, then the change in state over the

next, say m t units of time, depends only on the next m steps

Yn 1, Yn 2, ... , Yn m. Specifically,

(2)Xn t m t Xn t i n 1
n m Yi

The probability distribution of this change in state depends only on m, since

the Yi's are independent and identically distributed, not on the current state

Xn t or the current time n t. So changes in state should be independent of

the past, and moreover the distribution of the change in state should depend

only on the amount of time that elapses between the change.

Having made these observations, we have motivation to define the

following process.

DEFINITION 1. A stochastic process Xt t 0 is called a standard
Brownian motion (with initial state 0) if

(a) X0 0 and for all outcomes except possibly some in a set of

probability zero, the function t Xt is continuous at every t;
(b) For all t 0, Xt is normally distributed with mean 0 and variance

t;
(c) For all t, s 0, the distribution of Xt s Xt does not depend on t;
(d) For all t, s 0 Xt s Xt is independent of Xr for all r t.

Property (c) is called the stationarity property. The distribution of the

change in value of the Brownian motion between times t and t s is the

same for all t; consequently, choosing t 0, the distribution of Xt s Xt is

5.5 Brownian Motion 389

the same as that of Xs X0 Xs. In light of assumption (b), it follows that

Xt s Xt N 0, s for all s, t. Property (d) is called the independent incre-
ments property, which implies that the changes in value Xt s Xt and

Xr u Xr of the Brownian motion on disjoint time intervals t, t s and

r, r u are independent. We saw these properties earlier in the context of

Poisson processes.

Activity 2 – What changes should be made to properties (b), (c), and (d)

of Definition 1 if we allow standard Brownian motion to begin at a state

x0 other than 0?

EXAMPLE 1. The definition of Brownian motion permits us to make a

number of elementary probabilistic computations. Suppose that the process

Xt t 0 is a standard Brownian motion as in Definition 1. Let us compute:

(a) P X2.3 1 ;

(b) P X4.1 X1.8 1 X0.9 0 ;

(c) P X2.3 1 X0.9 .5 ; and

(d) P Xt s y Xt x .

For part (a), condition (b) of the definition yields directly that

X2.3 N 0, 2.3 , so the desired probability is the c.d.f. value below:

CDF NormalDistribution 0, 2.3 , 1

0.745174

To answer part (b), note that the time interval 1.8, 4.1 is disjoint from

the time interval 0, 0.9 , and so by the independent increments property, the

difference X4.1 X1.8 is independent of the event X.9 0. In addition, by

stationarity, X4.1 X1.8 has the same distribution as X2.3 X0 X2.3. Hence,

P X4.1 X1.8 1 X0.9 0 P X4.1 X1.8 1

P X2.3 1 0.745174

In part (c), the random variable X2.3 is not independent of X0.9, so we

must be more clever. Adding and subtracting X0.9 on both sides of the

inequality gives

390 Chapter 5 Continuous Time Processes

(3)

P X2.3 1 X0.9 .5 P X2.3 X0.9 X0.9 1 X0.9 .5

P X2.3 X0.9 .5 X0.9 .5

P X2.3 X0.9 .5

P X1.4 .5

The third line follows from the independent increments condition, and the

fourth line is by stationarity. The last probability on the right is

CDF NormalDistribution 0, 1.4 , .5

0.663698

Part (d) is simply a generalization of part (c). Following the steps of

display (3) for general starting time t and time increment s,

(4)

P Xt s y Xt x P Xt s Xt Xt y Xt x
P Xt s Xt y x Xt x
P Xt s Xt y x
P Xs y x

(Be sure that you can justify each line of this derivation.) The last probability

is a function of the time increment s, the starting state x, and y, which we

will denote by P s, x, y and call the transition c.d.f. of the standard Brown-

ian motion. Its derivative with respect to y, calculated below, is called the

transition density of the process:

(5)

p s, x, y d
d y P s, x, y d

d y P Xs y x

d
d y

y x
1

2 s
e

u2

2 s d u

1

2 s
e

y x 2

2 s

We can interpret the result of this last computation by saying that given

Xt x, the conditional distribution of the state at time t s is N x, s , which

is consistent with the defining properties of the standard Brownian motion.

One of the most prominent of the peculiar properties of Brownian

motion mentioned at the start of the section is this: If B 0 is a point in the

state space of the Brownian motion then the first hitting time of B is finite

with probability 1, but has infinite expectation. By the symmetry of the

Brownian motion, it is clear that the same property holds for B 0. Let us

5.5 Brownian Motion 391

now show this property.

Denote TB inf s 0, Xs B , the first hitting time of B 0. Because

the event Xt B is contained in the event TB t , we can write

P Xt B P Xt B, TB t P Xt B TB t P TB t

It can be shown rigorously that since XTB B, the conditional probability on

the right of the last string of equations is the same as P Xt XTB 0 , but to

do so we really need a stonger version of the Markov property applied at the

random time TB rather than at a deterministic time, so we will omit this

detail. But by stationarity, the increment Xt XTB would have a normal

distribution symmetric about 0, so this probability is exactly 1/2. Therefore,

(6)

P Xt B 1
2

P TB t

P TB t 2 P Xt B 2
B

1

2 t
e

u2

2 t d u

To show that TB is finite with probability 1 means to show that

P TB limt P TB t 1. To do this, make the substitution

z u t , d z d u t to obtain

limt P TB t limt 2 B
1

2 t
e

u2

2 t d u

limt 2 B t
1

2
e

z2

2 d z

2
0

1

2
e

z2

2 d z 1

The last line is true because the integrand is the standard normal density,

which is symmetric about 0, so the integral gives half of the total area under

that density. We have therefore proved that TB is finite with probability 1,

that is, no matter how distant is the target state B from the initial state of 0,

the standard Brownian motion is certain to hit it eventually. But let us

furthermore show that the expected value of TB is infinite, which means that

for a significantly probable set of outcomes, it may take the process very

long to reach B.

To do this, recall the standard result from the theory of non-negative,

continuous random variables that E X
0

P X x d x. Applying this to

X TB using the expressions derived above, we can compute that:

392 Chapter 5 Continuous Time Processes

E TB 0
P TB t d t

0
1 P TB t d t

0
1 2 B t

1

2
e

z2

2 d z d t

0 B t
B t 1

2
e

z2

2 d z d t

0

2
0

B t 1

2
e

z2

2 d z d t

In the last integral on the right, change the order of integration. Since

z B t , it must be that t B z t B2 z2. Thus,

E TB
0

2

2
e

z2

2
0

B2 z2

d t d z

2 B2

2 0

1
z2 e

z2

2 d z

By comparison with the integral of 1 z2 near the left endpoint of 0, the last

integral fails to converge. Thus, E TB as desired.

Activity 3 – In the computation of the distribution of the hitting time TB
above, try to give a rough argument that:

 P Xt B TB t P Xt XTB 0

EXAMPLE 2. We know that Brownian motion is the continuous analogue

to the discrete random walk. Let us try to solve a problem about Brownian

motion that we asked earlier about a random walk: the gambler's ruin

problem. Specifically, suppose that a standard Brownian motion starting at 0

is to be stopped either when it has reached a positive number M , or a

negative number N , whichever comes first. What is the probability that it

will reach M before N?

As often happens, it is helpful to generalize a bit and solve the more

general problem first, then apply it in the specific case. We will try to solve

for the quantity

(7)f x P Xt reaches M before N X0 x

for all x N , M . We will do so by using an approach similar to the

development of the Kolmogorov equations for birth–death processes, that is,

by deriving a differential equation for f .

It is clear that f N 0 and f M 1, so consider x N , M . Now

formula (6) and L'Hopital's Rule can be used to show that the probability

that standard Brownian motion hits a point at a fixed non-zero distance from

5.5 Brownian Motion 393

its starting point within a time h is of the order o h (see Exercise 14). In

light of this, if we condition and uncondition on the state of the Brownian

motion at a time h near zero, we may safely ignore the unlikely event that Xt
has already hit Mor N by time h starting from x. Thus, we may write:

f x E P Xt reaches M before N Xh, X0 X0 x
E f Xh o h X0 x

Expanding f in a Taylor series of order 2 about the point x yields

(8)
f x E f x f x Xh x 1

2
f x Xh x 2

terms in Xh x 3 and higher o h X0 x

Given X0 x, the moments E Xh x n equal zero for odd n, since the

distribution of Xh is normal with mean x; in particular, it is symmetric about

x. For n even and n 4, we have by symmetry,

E Xh x n X0 x 2 x y x n 1

2 h
e

y x 2

2 h d y

2 hn 2
0

zn 1

2
e z2 2 d z

after substituting z y x h (check this yourself). Dividing by h, the

limit is zero when n 4; and when n 2, E Xh x 2 X0 x 2 h 1
2

h,

since the integral is half of the integral representing the variance of the

N 0, 1 distribution. Putting these facts together with formula (8) gives us

(9)

f x f x f x E Xh x X0 x
1
2

f x E Xh x 2 X0 x o h
0 f x 0 1

2
f x h o h

f x 0

upon dividing both sides by h and letting h 0.

Therefore f must be a linear function; f x m x b, where also

f N 0 and f M 1. It is easy to check that the boundary conditions

imply that

f x x N
M N

Hence the quantity that we originally sought is f 0 N M N .

Brownian Motion with Drift

We now generalize the standard Brownian motion to allow the process to

experience a trend or "drift" with time. Here is the definition.

394 Chapter 5 Continuous Time Processes

DEFINITION 2. A stochastic process Xt t is called a Brownian
motion with drift rate , variance rate 2, and initial state x iff the

process defined by Yt
Xt t x

 is a standard Brownian motion with

initial state 0.

Several properties follow from Definition 2 and the definition of standard

Brownian motion:

(a) X0 x and for all outcomes except possibly some in a set of

probability zero, the function t Xt is continuous at every t;
(b) For all t 0, Xt is normally distributed with mean x t and vari-

ance 2t;
(c) For all t, s 0, the distribution of Xt s Xt does not depend on t;
(d) For all t, s 0, Xt s Xt is independent of Xr for all r t.

Activity 4 – Verify properties (a)–(d) above.

The non-standard Brownian motion can also be viewed as the limiting

process of a random walk as the time step and the state step approach 0. We
just need to begin with a non-symmetric random walk. For simplicity let the

random walk start at 0. Let the independent step size random variables Yi
have the distribution

Yi
t with probability p

t with probability 1 p

where the probability p of moving to the right is to be chosen presently in

order to make the drift rate equal to . Then,

E Yi p t 1 p t t 2 p 1

Var Yi p t
2

1 p t
2

t 2 p 1
2

2 t 1 2 p 1 2

5.5 Brownian Motion 395

The sum of the steps Xn t i 1
n Yi therefore has mean n t 2 p 1

and variance n 2 t 1 2 p 1 2 . So if we let p 1
2

1 t ,

then E Xn t n t ; that is, the drift rate times the time subscript.

Also, Var Xn t
2 n t 1 2 t 2 ; that is, the variance rate 2

times the time subscript times an expression approaching 1 as t 0.

Property (b) is motivated, and properties (c) and (d) are inherited by the

limiting process from the independence of the steps, as with standard

Brownian motion.

EXAMPLE 3. An epidemic in its rapidly spreading initial stages is such that

the number of units of population that are infected can be modeled by

It eXt , where Xt is a Brownian motion with drift rate 2, variance rate 1,

and initial state .5. Find (a) P I3 2 ; (b) E It ; (c) Var It .

To compute the probability in part (a), first note that Xt N .5 2 t, t .

Then,

P I3 2 P eX3 2

P X3 log 2

1 P X3 log 2

The numerical value is computed below, using the fact that

X3 N .5 2 3, 3 .

N 1

CDF NormalDistribution .5 2 3, 3 , Log 2

0.9996

For part (b), we also need to use the distribution of Xt, and we need to

recall that the moment-generating function of a N , 2 random variable Y
is M s E es Y e s 2 s2 2. Then,

E It E eXt

MXt 1

exp .5 2 t 1 1
2

t 12

exp .5 2.5 t

For the variance in part (c), we can use the computational formula

Var It E It
2 E It

2. The second moment of It can be found similarly

to the mean:

396 Chapter 5 Continuous Time Processes

E It
2 E e2 Xt

MXt 2

exp .5 2 t 2 1
2

t 22

exp 1 6 t

The variance is therefore

Var It exp 1 6 t exp 2 .5 2.5 t exp 1 6 t exp 1 5 t .

EXAMPLE 4. This example concerns the optimal balance of assets in a

portfolio of one risky and one non-risky asset. Before stating the problem in

a way that permits solution, we need to review a couple of economic con-

cepts.

If the price of a deterministic asset at time t is denoted by p0 t , and the

asset is experiencing exponential growth at rate r, as is often assumed, then

p0 t p0 er t, where p0 is the initial price of the asset. For an investment

period beginning at time 0 and ending at time t, the rate of return on the asset

per dollar invested is the difference between the final value and the initial

value, divided by the initial value:

rate of return =
p0 t p0

p0

p0 er t p0

p0
er t 1

Activity 5 – The instantaneous rate of return on an asset is the limit as

t 0 of the rate of return on time interval 0, t divided by t. What is

that limit for the deterministic asset?

A reasonable way to model a risky asset similar to the deterministic asset

is such that its price behaves as P1 t p1 eYt , where Yt is a Brownian

motion with drift rate , variance rate 2, and initial state 0. Then

Yt N t, 2 t so that the expected value of the random variable in the

exponent of P1 t is a constant times t. We normally assume that risky assets

grow on average faster than non-risky ones, hence r. Now if at time 0 an

investor has a total wealth of W0, which he chooses to apportion by buying

s0 shares of the deterministic asset and s1 shares of the risky asset, then

s0 p0 s1 p1 W0

Hence the proportions of initial wealth devoted to the deterministic and risky

assets, respectively, are

s0 p0

W0
w0,

s1 p1

W0
w1

Note that w1 1 w0. The final wealth at time t is

5.5 Brownian Motion 397

W1 s0 p0 t s1 P1 t
s0 p0 er t s1 p1 eYt

w0 W0 er t 1 w0 W0 eYt

hence the rate of return on the whole portfolio of assets, that is, the final

wealth minus the initial wealth divided by the initial wealth, is

(10)R W1 W0

W0

w0 W0 er t 1 w0 W0 eYt W0

W0
w0 er t 1 w0 eYt 1

The problem is to decide what proportion of initial wealth w0 to invest in

the deterministic asset, and consequently what proportion w1 1 w0 to

invest in the risky asset. So we seem to have a single variable optimization

problem, with variable w0, but we have not yet decided on a criterion for

optimization. It does not make sense to optimize rate of return, because that

is random and therefore not wholly subject to our control. We could opti-

mize the expected rate of return, but that would pay no attention to the

undesirability of the variation in the return on the risky asset. Reasonable

investors would attempt to weigh that risk negatively in their decision. A

commonly used optimization criterion is

(11)maximize E R a Var R

where a is a constant called the risk aversion. The greater is the value of a,

the more the investor considers the variance of the rate of return to be

undesirable. Note that in formula (10) the 1 that is subtracted on the right

will neither change the variance of R nor will it alter the value of w0 at which

the maximum occurs, so we will drop it.

To obtain an explicit expression for the objective function in (11), we

again use the formula for the moment-generating function of a N , 2

random variable: M s e s 2 s2 2. Then,

E R E w0 er t 1 w0 eYt

w0 er t 1 w0 E eYt

w0 er t 1 w0 e t 2 t 2

and

398 Chapter 5 Continuous Time Processes

Var R Var w0 er t 1 w0 eYt

1 w0
2 Var eYt

1 w0
2 E e2 Yt E eYt

2

1 w0
2 e2 t 2 2 t e2 t 2 t

Therefore we want to maximize the following with respect to w0:

(12)f w0 w0 er t 1 w0 e t 2 t 2 a 1 w0
2 e2 t 2 2 t e2 t 2 t

For concreteness, take the final time as t 1, and let r .05, .06,

.03. We set up f as a function of both w0 and a in order to see how the

optimal solution changes with the risk aversion.

f w0_, a_ : w0 E.05 1 w0 E.06 .032 2

a 1 w0 2 E.12 2 .032 E.12 .032 ;

Plot f w, 4 , w, 1, 1 ,

DefaultFont "Times", 8 ;

1 0.5 0.5 1

1.055

1.056

1.057

1.058

Figure 5.12 – Optimizing a portfolio with risk aversion 4

Figure 5.12 shows the case where the risk aversion constant a 4. An

unexpected result shows up, that hints at economic considerations. The

optimal value of the objective function occurs near w0 .5. It appears as

if, given that it is possible to hold a negative or short position (i.e., borrow

cash from the non-risky asset to buy more of the risky asset) in the non-risky

asset, that we should do so in order to optimize the objective. Specifically,

an amount w0 W0 should be borrowed against the non-risky asset at time zero

in order to buy shares at a total value of 1 w0 W0 in the risky asset. The

total value of the portfolio at time zero is then w0 W0 1 w0 W0 W0.

If w0 is constrained economically to be non-negative, then w0 0 is the

optimal value.

5.5 Brownian Motion 399

Let us use a surface graph to see how the optimal value of w0 changes

with the risk aversion a.

Plot3D f w, a , w, 1, 1 ,

a, 4, 12 , AxesLabel "w0", "a", " " ,

DefaultFont "Times", 8 ;

1

0.5

0

0.5

1

w0

4

6

8

10

12

a

1.04

1.05

1

0.5

0

0.5w0

Figure 5.13 – Dependence of optimal portfolio on risk aversion

You can see from the graph in Figure 5.13 that as a moves up between 4 and

12, the peak on the curve is found at higher and higher values of w0, which

makes intuitive sense because the more risk averse the investor is, the more

of his wealth he should choose to devote to the non-risky asset. In Exercise

9 you are asked to show this observation in general.

Exercises 5.5

1. Let Xt be a standard Brownian motion. Compute (a) P X5.4 2 ; (b)

P X3.1 X2.1 1 X.5 1.6 ; (c) the joint density of X2, X3, X4.

2. Let Xt be a Brownian motion with initial state 0, drift rate 2, and

variance rate 4. Compute (a) P X8.2 X4.5 6 ; (b) P X1 3, X2 4 .

3. (Mathematica) Write a program to simulate standard Brownian motion

many times, and to return the proportion of the replications in which the

process hits M before N , and compare your empirical results to the analyti-

cal result in Example 2 for several choices of M and N.

4. Extend the result of Example 2 for the probability f x of hitting M
before N starting at x to the case of Brownian motion with drift and

400 Chapter 5 Continuous Time Processes

variance rate 1. (Hint: Begin by following the steps of that example, but

look harder at the expected powers of Xh x.)

5. (Mathematica) Write a simulator for non-standard Brownian motion with

parameters and analogous to the PlotSimulateBrownianMotion com-

mand in the section, which was designed for standard Brownian motion.

(Hint: See the discussion subsequent to Definition 2.)

6. Consider as in Example 4 a risky asset whose price behaves as

P1 t p1 eXt , where Xt is a Brownian motion with drift rate , variance

rate 2, and initial state 0. Suppose that at time 0 an investor purchases an

option to buy a share of this asset at time T at a fixed price K if it is profit-

able to do so. If the market price of the asset at T exceeds this K, the

investor can purchase the share at K and immediately resell it at a profit;

otherwise the option is worthless. Find an expression for the expected value

of this option.

7. Let Xt be a standard Brownian motion with initial state 0, and for a

point M 0 let TM be the first time that the Brownian motion achieves a

value of at least M . Let Yt maxu t Xu. The process Yt is called the

maximum process for Xt. By relating the maximum process to hitting times

TM , show that the c.d.f. of Yt is G y 1 2 y
1

2 t
e x2 2 t x.

8. (Mathematica) Suppose that you have a parcel of land for sale, and you

receive offers of Xt at each time t 0, T , where Xt is a standard Brown-

ian motion with initial state x. At time T the game runs out and all offers are

withdrawn. Consider a policy that exercises the option at the first time the

offer exceeds a value y, and does not accept an offer otherwise. Find an

expression for the expected profit under such a policy as a function of y. If

T 10, x 100, use Mathematica to find the optimal value of y. (Hint:

Express the event of earning a positive profit in terms of the maximum over

times in 0, T of the Brownian motion Xt, and use the result of Exercise 7

regarding the distribution of the maximum.)

9. Use formula (12) to solve explicitly for the optimal value of w0 in terms

of a, and show that the optimal portion of wealth invested in the non-risky

asset increases as a increases.

10. In the portfolio problem with the same choice of parameters

t 1, r .05, .06, .03, how large should a be so that it is optimal to

keep at least half of the initial wealth in the non-risky asset?

11. A geometric Brownian motion is a process Yt such that its log forms a

standard Brownian motion. For such a process with initial state 1, find the

probability density function of Yt and compute P 2.3 Y1 5.6 .

5.5 Brownian Motion 401

12. If Xt is a standard Brownian motion, then the process

Yt M M Xt is called a Brownian motion with reflecting barrier at M .

Explain the terminology, and find the c.d.f. and density function of Yt.

13. In advanced courses in stochastic processes, it is possible to define a

stochastic integral with respect to a standard Brownian motion

a
b Xs Ws

where Xs is a stochastic process and Ws is the Brownian motion, by a

limit-taking process. These are used heavily in the area of mathematical

finance. The building blocks are the following simple versions of stochastic

integrals. Let xs be a deterministic step process, with jumps at times

t1, t2, ..., tn 1 and values

xs

x0 if a s t1
x1 if t1 s t2

xn 1 if tn 1 s b

Let the stochastic integral a
b xs Ws be defined as (the Riemann-Stieltjes

integral)

i 0
n 1 xi Wti 1

Wti

where t0 is taken to be a and tn is b. Note that a
b xs Ws is a random

variable. Find its mean and variance.

14. Show that the probability that standard Brownian motion hits a point at a

fixed distance 0 from its starting point within a time interval of length h
is of the order o h . (Hint: Express the question in terms of the hitting time

T , and use formula (6) and L'Hopital's Rule.)

402 Chapter 5 Continuous Time Processes

6

Dynamic Programming

Introduction

This chapter will introduce the reader to concepts, examples, and techniques

of stochastic dynamic programming. Roughly described, we are to control a

system that is moving from state to state as time progresses. As a result of

the sequence of controlling actions that we take, the motion of the system is

influenced, and a sequence of rewards (or costs) is accumulated. What

actions should be taken in order to maximize total reward (or minimize total

cost)? There are diverse applications of this general problem, including

re-ordering in inventory problems, production control problems, gambling

models, fishery harvesting models, and financial models, especially the

control of stock portfolios.

In the first section we describe the problem more precisely, first in the

context of the simpler deterministic dynamic programming model, then in

the stochastic case. Section 2 illustrates the dynamic programming tech-

nique that is used to solve problems in which control is exerted over finite

time. Then, Sections 3 and 4 extend the problem to control over infinite

time, with a discount factor incorporated into each time period. A related

problem, called the optimal stopping problem, is introduced in Section 5. In

this problem, reward is only earned at some final time which is subject to the

choice of the controller, and we will find that many ideas from other areas of

this text are united in a common setting. Finally, Section 6 gives further

applications of stochastic dynamic programming that are less straightforward

than the examples used in the earlier sections, featuring problems of inven-

tory control and optimal control of stock portfolios.

6.1 The Markovian Decision Model

In this chapter we will primarily focus on stochastic dynamic programming

problems. But before we include the influence of randomness in these

problems, we will begin with an example of a deterministic dynamic program-

ming problem to gain a better understanding of the structure and components

of the model. This example will also introduce us to the method of solving

finite horizon problems that starts at the end of the problem and works

backward. We explore this method in the stochastic context in Section 2.

403

Deterministic Dynamic Programming

EXAMPLE 1.One of the simplest dynamic programming problems is to

find the shortest path from a starting point to a destination. To place the

problem into context, suppose that a guide is giving a tour of a college to a

prospective student (see Figure 6.1). The guide wants to show the student

five key attractions on campus, including the starting point A and the

destination K, in 50 minutes. It is advantageous to make the travel time from

A to K as short as possible, in order that the prospective student can spend as

much of the 50 minutes as possible at the attractions. The other possible

attractions that can be visited are labeled B, C, D, F, G, H, I, and J. They

happen to be laid out in levels, so that, for instance, starting from A, you

have the option of visiting B, C, or D next.

A

B

C

D

F

G

H

I

J

K

4

3

6

5

2

3

4

6

4

3

4

5

6

4

n=0 n=1 n=2 n=3 n=4

Figure 6.1 – Possible routes on a campus tour

The edge weights indicate the number of minutes it takes to walk from

the attraction on the left of the arrow to the attraction on the right of the

arrow. An admissible campus tour is a path from the starting point A to the

destination K that follows existing arrows. Thus, the amount of time spent

walking during the tour is equal to the total weight of the path taken. We

want to minimize this sum among all admissible tours, so as to find the

optimal path that spends the least amount of time walking.

 A useful mathematical model for the problem is a sequence of states
x0, x1, x2, x3, and x4 where xn represents the state of a system at time n. The

times here correspond to the levels of the graph in Figure 6.1 as shown, from

left to right, and the state xn is the attraction the student is looking at in level

n. In particular, our tour constrains x0 to be A and x4 to be K. The set E of

all states consists of all the attractions, E = {A, B, C, D, F, G, H, I, J, K}.

 Another useful element of the model is a sequence of action functions

404 Chapter 6 Dynamic Programming

u0, u1, u2, ..., where un depends on the current attraction and gives the next

attraction chosen for the tour. An action function is therefore a function of

the state: un i is the action taken when the state is i and the time is n. The

graph tells us not only what actions are possible at each state, but also what

the next state will be given the current state and the action we take.

As you can see from the graph, for each current state, there are a limited

number of possible actions to take. For example, at state C you can only

move to state F or state G. In many problems, not all actions are possible

for every current state. Rather, when the current state is i, there is a given

subset Ai of admissible actions. This imposes a condition on the action

functions described below:

un i Ai , for each n 0, 1, 2, ... and each i E.

In addition to describing the permissible actions, the graph also shows

the cost structure of the problem. There is a cost of taking an action when we

are at a state, namely the amount of time it takes to go from current attraction

to the next attraction. In general, costs can be described by a function, called

the cost function r i, a , giving the cost when the state is i and the action is a.

The actual cost incurred at time n can then be denoted by: Rn r xn, un xn .

For example, if we were at attraction B and decided to go to attraction F,

then we would have n 1, x1 B, u1 x1 F, and R1 r B, F 5.

In summary, the building blocks of a mathematical model for the shortest

path problem, as well as many other deterministic dynamic programming

problems, are:

1. the space E of possible states the system can be in;

2. the sets Ai of possible actions that can be taken when the state is i;
3. a means for determining the next state given the current state and the

action taken;

4. the cost function r i , a .

The goal in such problems will be to find the sequence of action functions

un that yield smallest total cost.

Though we will go on to solve the campus tour problem in Section 2, a

word or two in the way of preview is in order here. This particular example

has relatively few possible tours, and with patience we could itemize them

all, compute the travel time that each one takes, and pick the shortest. If

there were many more attractions at each level, or many more levels, this

brute-force approach could quickly become unmanageable. So we will look

for something more systematic, and also amenable to solution by computer.

What makes the problem complicated is that there are several levels to go

through. If only levels 3 and 4 existed in the graph of Figure 6.1, for

example, then there would have been no decisions to make at all. The

6.1 The Markovian Decision Model 405

shortest (and only) paths from attractions H, I, and J, respectively, to K are

the single edges H , K , I, K , and J , K requiring 5, 6, and 4 minutes,

respectively. If we back up to level 2 and ask what is the shortest path from

attraction F to K, it seems intuitively reasonable that we can find it by

minimizing among the neighbors of F (H and I) the total of the edge cost

from F to the neighbor plus the shortest path cost from the neighbor to K,

which is known from the previous stage of the computation. We would

choose between path F, H, K with a total cost of 6 5 11 and path F, I, K

with a total cost of 4 6 10; hence the latter is the shortest path from F to

K. We can continue to back up to level 1, and then to level 0 in the same

way to ultimately find the shortest path from A to K, which was our original

goal. The complete solution will be given in the next section; the following

activity is a stepping stone.

Activity 1 – Use the approach suggested in the last paragraph to find the

shortest path from G to K, and use that to find the shortest path from C

to K.

Stochastic Dynamic Programming: The Finite Horizon

Problem

With an understanding of the concepts of states, actions, and costs in hand,

we can move on to the problem of stochastic dynamic programming. There

is a large amount of structure and notation in stochastic dynamic program-

ming problems; consequently we will use this section to set the notation and

discuss the main features of the problem, without yet trying to solve the

problem. Once again we will be working with a sequence X0, X1, X2, ... ,

where Xn represents the state of a system at time n. These Xn's are random

variables taking values in the state space E, which we will once again

assume to be finite. We also have a sequence of actions U0, U1, U2, ... ,

where Un is interpreted as the action taken by the controller at time n. These

actions are also random variables, because of their relationship with the Xn's,

which take values in a set A, called the action set. The sequence of pairs

Xn , Un n 0 will be called a Markov decision process if, for each n 0, the

probability distribution of Xn 1 is completely determined by the previous

state-action pair Xn, Un , in particular, it is not dependent on past states or

actions prior to time n. (Note that this does not necessarily mean that the

chain Xn itself is Markov, for we have not yet restricted to the case where

action Un is conditionally independent of the past prior to time n, given Xn.

We will do this shortly when we discuss admissible policies.)

The basic difference between deterministic dynamic programming and

stochastic dynamic programming is that in a deterministic problem, the

action taken at a current state completely determines what the next state will

406 Chapter 6 Dynamic Programming

be; while in a probabilistic problem, the action taken at a current state alters

the probability law of the next state of the process, but the next state is still a

random variable.

Activity 2 – Consider the following situation. You are playing a game

in which you have $5. If you use strategy A, you could win $2 with

probability 1/4, or stay the same with probability 3/4. If instead you use

strategy B, you could win $5 with probability 1/3, or lose $2 with

probability 2/3. Formulate this as a single-stage stochastic dynamic

programming problem. Which action should you take, and on what

basis do you make that decision?

To describe the probability law of the chain of states, we assume that

there is, for each possible action a A, a transition matrix Ta such that:

(1)Ta i, j P Xn 1 j Xn i, Un a .

The notations Ta i, j and T i, j; a will be used interchangably for the

probability that the next state will be j, given that the current state is i and the

action taken is a.

For example, if the two following transition matrices describe a problem

T1=

1
3

2
3

3
4

1
4

 and T2=

1
5

4
5

1
4

3
4

then, when action 1 is taken, the process behaves as on the left of Figure 6.2;

and when action 2 is taken, the process obeys the transition diagram on the

right.

A B

1 3

2 3

3 4 1 4

A B

1 5

4 5

1 4 3 4

(a) Action 1 (b) Action 2

Figure 6.2 – Transition diagrams for two actions in a Markov decision process

6.1 The Markovian Decision Model 407

For the most general kind of policy, the action Un taken at time n could

depend on the entire previous history of states and actions

X0, U0, X1, U1, ... , Xn 1, Un 1, Xn. In fact, Un may even be randomized,

in the sense that for a given history, we may flip a coin to determine whether

to take one action or another. But for the problems that we will consider, it

will be enough to take actions of a simpler kind, called feedback actions.

That is, we assume that the action taken at each time n is a deterministic

function of the state at time n:

(2) Un un Xn , for each n 0, 1, 2, ...

where un is a function mapping the state space E to the action space A. In

many problems, not all actions are practical for every current state. So, we

suppose that when the current state is i, there is a given subset Ai of permissi-

ble actions. This imposes a condition on the action functions described in

(2):

(3)un i Ai, for each n 0, 1, 2, ... and each i E.

DEFINITION 1. An admissible (feedback) policy is a sequence

u u0, u1, u2, ... of functions from E to A such that (3) holds. Such a

policy prescribes that action un Xn be taken if the state of the system at

time n is Xn. An admissible policy u is called stationary if all of its

component functions ui are the same.

REMARK. Under an admissible feedback policy, the chain Xn has the

Markov property (i.e., independence of past and future given present), but it

is not time-homogeneous (i.e., the transition probabilities are not indepen-

dent of time) unless the policy is stationary. The reader can check that we

have, for instance,

(4)

a P Xn 1 j Xn i P Xn 1 j Xn i, Un un i
T i, j; un i

b P X1 j1, X2 j2, ..., Xn jn X0 i
T i, j1; u0 i T jn 1, jn; un 1 jn 1

c P Xn jn X0 i

j1,..., jn 1
T i, j1; u0 i T jn 1, jn; un 1 jn 1

For the Markov decision process of Figure 6.2, for example, suppose that a

policy uses action function u0 A 2, u0 B 1 at time 0, and action func-

tion u1 A 1, u1 B 2 at time 1. To form the transition matrix of the

controlled process for time 0, we glue together the first row of T2 and the

408 Chapter 6 Dynamic Programming

second row of T1, since at state A action 2 is taken by u0, and at state B
action 1 is taken. Similarly, to form the transition matrix for time 1, because

of the way that u1 is defined, glue together the first row of T1 and the second

row of T2. The two transition matrices are then

 Tu0

1 5 4 5

3 4 1 4
, Tu1

1 3 2 3

1 4 3 4

Under this policy for example, following (4)(b),

P X1 B, X2 A X0 A 4 5 1 4 1 5

When more than one policy u is under study, it may be necessary to

exhibit the dependence of the probability distributions in (4) (a), (b), and (c)

on the policy. We do this by subscripting: Pu. Similarly, the associated

expectation operator under a policy is written Eu.

At a time when the state is x and the action taken is a, there will be a

current reward (or cost) r x, a . In the case that the state space E and the

action space A are both finite, this reward function is necessarily bounded.

Then, under an admissible feedback policy u u0, u1, u2, ... , there is a

sequence of reward random variables R0, R1, R2, ..., where

Rn r Xn, un Xn

The expected value of the reward received at time n, given the initial state, is

(5)Eu Rn X0 i j r j, un j Pu Xn j X0 i

The probability inside the summation is given by (4)(c).

Activity 3 – Consider again the Markov decision process illustrated by

Figure 6.2 and the policy with action functions u0 and u1 described

above. If the reward function is r A, 1 4, r B, 1 3, r A, 2 2,

r B, 2 5, find the expected reward Eu R1 X0 A .

Let us review for a moment. The building blocks of the Markov decision

model are the following:

(1) State space E;

(2) Sets Ai of actions that can be taken when the state is i;
(3) Transition matrices Ta i, j for each action a;

(4) Reward function r i, a .

The system begins in state X0. The controller takes an admissible action

u0 X0 . As a result, a reward r X0, u0 X0 is earned, and the system moves

6.1 The Markovian Decision Model 409

to a new state X1 according to transition probabilities T X0, j; u0 X0 . The

controller then takes another admissible action u1 X1 , dependent only on the

current state X1. Another reward r X1, u1 X1 is earned, and the system

moves to a state X2 according to the transition probabilities T X1, k; u1 X1 .

The system continues to move in this way.

The Markov decision problem is to find a policy, consisting of the action

functions u0, u1, u2, ... to maximize the expected total reward (or minimize

expected total cost). The following definition carefully sets down the finite
horizon problem, in which control is only exerted up to a finite time T, and a

terminal reward R XT is earned at time T .

DEFINITION 2. Let R x be a non-negative valued function on E, and

let T be a positive integer. The function

 V i, u Eu n 0
T 1 r Xn, un Xn R XT X0 i

is called the value function of policy u for the finite horizon problem

with time horizon T. The optimal value function for this problem is

V i maxu V i, u (minimum for a minimum cost problem)

A policy u is optimal if V i, u V i for all initial states i.

In this section and the following one, we will consider optimal policies

in Markov decision models for the finite horizon problem in the definition

above. Later, in Sections 6.3 and 6.4, we will focus on the infinite horizon

problem with a discounted reward, in which control is exerted forever.

A remark on the magnitude of the problem is in order. For the finite

horizon problem, a policy is a sequence u0, u1, ... , uT 1 of functions from

the finite set E to the finite set A (possibly with some admissibility restric-

tions). If the elements of E are labeled 1, 2, ..., N , then each component

function ui can be thought of as an N-tuple:

ui a1, a2, ..., aN ,

where a j is the action that ui prescribes if the state is j. There are n A j
possible such actions, so that there are n A1 n A2 n AN action functions

ui, by the fundamental counting principle. A sequence of T such functions ui
makes up a policy, hence there are

n A1 n A2 n AN
T

possible policies. As the action set, the state space, or the time horizon

grows, the number of policies grows rapidly. Even if we restrict to only the

class of stationary policies u u , by the above reasoning there are about

410 Chapter 6 Dynamic Programming

n A n E of those, a potentially very large number. Thus we need more

efficient methods of locating optimal policies than simple brute-force

evaluation of all policies.

Examples

Thus far, we have discussed the Markov decision problem in the abstract. A

"system" is in "state" i, an "action" a is taken that determines both a "reward"

r i, a and the probability T i, j; a that the system next will move to state j.
What concrete experiments can be so formulated? To close this section we

present two models. Other examples will be studied later in the chapter, and

still more are contained in the exercises.

EXAMPLE 2. The defense department has ordered exactly one rocket

booster from a contractor. Quality standards are strict, so that the chance

that a single manufactured rocket will be acceptable is just 1/4. The plan is

to use no more than 3 production runs. Either 0, 1, 2, or 3 rockets are to be

made on each run, and are checked after the run is complete. No more runs

will occur after a satisfactory rocket has finally been made. If a production

run makes any rockets, there is a fixed set–up cost C1 10 and a production

cost of C2 5 per rocket. There is a penalty cost of C3 64 if a successful

rocket has not been made by the third production run. What production

strategy minimizes the expected total cost of the process?

The "times" are represented by the production runs, so n 0, 1, 2, 3 ,

with time 0 representing the initial time before manufacturing begins. At

time 3, a terminal penalty may or may not be incurred. The action at time n
will be defined as the number of rockets made in production run n, but as it

often happens in dynamic programming, it is not so easy to see how the

"state" of the system should be defined. Since the cost at time n is only to be

dependent on the action, and the terminal cost depends only on whether a

successful rocket has been made, it would seem that we need to keep track of

whether or not a good rocket has been made yet. Accordingly, denote

(6)
Xn = # of good rockets (0 or 1) still to be made at the beginning of

the nth production run;

(7)Un = # rockets made in production run n.

The state space is clearly E 0, 1 . State 0 means that there are no more

rockets to make, consequently only action 0, the action of making no rock-

ets, is permissible at state 0. Likewise, for state 1, the state where 1 good

rocket still needs to be made, A1 0, 1, 2, 3 . The cost function for

state–action pairs x, a for each time period (prior to the terminal time) is

6.1 The Markovian Decision Model 411

(8)r x, a
10 5 a if x 1 and a 0

0 otherwise

and the terminal cost function at time 3 is

(9)R x
64 if x 1

0 otherwise

Among N rockets, the probability that all are unacceptable is 3 4 N . Thus,

a run that makes N rockets will produce an acceptable rocket with probabil-

ity 1 3 4 N . Because of this, it is easy to see that the transition matrices

Ta are as follows:

T0

0

1

1 0

0 1

0 1

 T1

0

1 1 4 3 4

0 1

T2

0

1 7 16 9 16

0 1

 T3

0

1 37 64 27 64

0 1

A policy for this production problem is a sequence u u0, u1, u2 , where

un x is the number of rockets to be made on production run n, if x good

rockets (x 0 or 1) remain to be made. Since we will obviously make no

more rockets after a good one has been made, un(0) is constrained to be 0.

We wish to minimize over u:

(10)V x, u Eu n 0
2 r Xn, un Xn R X3 X0 x

for x 0, 1, and we are of course most interested in the case x 1. We will

solve this problem in the next section.

EXAMPLE 3. A certain type of shellfish is harvested by fishermen as

years pass. The population can be at six levels, 0 population units up to 5

units. In the absence of harvesting, the population would form a Markov

chain with the transition diagram in Figure 6.3.

412 Chapter 6 Dynamic Programming

0

1 2 3 4

5

1

1 4

3 4

1 4

3 4

1 4

3 4

1 4

3 4

1 4
3

4

Figure 6.3 – Transition diagram for shellfish population change

Fishermen can only harvest as many population units of fish in a year as

there are in existence at the start of the year, and then a "natural" change

occurs due to randomness described by the transition diagram above. The

population at the start of a year will be the population at the start of the

previous year minus the amount harvested in the previous year plus the

natural change. To clarify the behavior near state 0, suppose that if i units

are harvested in a year in which the population level started at i units, the

population will remain extinct with certainty for all following years. The

government fishing bureau wants to determine how many fish to allow to be

harvested over the next 3 years. There is a net benefit of h monetary units

per population unit harvested, and a terminal benefit of R monetary units for

each population unit of fish remaining at the end of the 3 year fishing plan.

Model this problem as a Markov decision problem, including a description

of the state space, the action sets, the transition matrices, the reward func-

tion, and the optimal value function.

First, we need to determine what the state space is. The problem explains

that the population of fish can change over time and determines the terminal

reward. Thus, a reasonable choice is to let Xn be the population level at time

n, so that the state space is E 0, 1, 2, 3, 4, 5 .

The actions can be defined to be the number of units of fish to harvest.

The maximum that can be harvested is the population at the beginning of the

year. Thus, the action sets are as follows:

A0 0 , A1 0, 1 , A2 0, 1, 2 , A3 0, 1, 2, 3 ,

A4 0, 1, 2, 3, 4 , A5 0, 1, 2, 3, 4, 5

The dynamics of the fish population that are described in the problem

allow us to write the transition matrices Ta that describe how the chain

moves given that action a is taken (see below). For example, consider action

2 and the corresponding matrix T2; the states cannot be 0 or 1 (it is not

feasible to harvest more units than there are). If the initial state is 2 and 2

units are harvested, the population becomes extinct, that is the next state is 0,

with probability 1. If the initial state is 3, then after the 2 units are harvested,

leaving 1 unit, the population can go back up to 2 with probability 3/4, or

6.1 The Markovian Decision Model 413

down to 0 with probability 1/4. This explains the third and fourth rows of

T2, and the rest should be self evident.

T0

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4
0 0 0 0 1 4 3 4

 ,

T1

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4

,

T2
1 0 0 0 0 0

1 4 0 3 4 0 0 0
0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0

 ,

T3 1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0

T4

1 0 0 0 0 0
1 4 0 3 4 0 0 0

 , T5

1 0 0 0 0 0

The reward for harvesting a units is a h, by the conditions stated in the

problem. We could of course characterize the reward function by the

formula r x, a a h for x a, but for computational solution, it is also

convenient to characterize the reward as the matrix below, where r x, a is

the entry in row x and column a of this matrix.

 r x

0
1
2
3
4
5

0
0 h
0 h 2 h
0 h 2 h 3 h
0 h 2 h 3 h 4 h
0 h 2 h 3 h 4 h 5 h

a
0 1 2 3 4 5

414 Chapter 6 Dynamic Programming

At time T 3, a terminal reward may be incurred, given by R x R x. This

terminal reward can also be thought of as a vector:

R

0
R

2 R
3 R
4 R
5 R

We wish to find a policy u u0, u1, u2 to maxmize

V x, u Eu n 0
2 r Xn, un Xn R X3 X0 x

for every initial state x.

Activity 4 – Verify the entries of the other transition matrices Ta for the

fish harvesting example.

Exercises 6.1

1. Consider the Markov chain with the transition diagram below. Suppose

that there are two possible actions, labelled 0 and 1. Under action 0, the

chain moves according to this transition diagram, and under action 1, the

chain moves with certainty to state 2. Let u be the stationary policy with

action function defined by:

u i
0 if i 1, 2

1 if i 3, 4

If, for a certain experimental outcome , we observe X0 1,

X2 3, X3 2, what are the first four actions taken under this policy?

Again for this outcome, if the reward function is r i, a i a, what are the

first four rewards?

6.1 The Markovian Decision Model 415

1 2

3 4

1

1 2

1 2
1 3 1 3

1 3 1

Exercise 1

2. Prove formula (4)(b).

3. If the state space of a Markov decision process has size 4, the action

space has size 3, and all actions are admissible at all states, then how many

stationary policies are there? How many admissible feedback policies are

there for a finite horizon problem with terminal time T 5?

4. Below is a directed graph seen earlier in the book as Figure 1.26. Find the

shortest paths in the graph from vertices 7, 8, and 9 to vertex 10, and use

these to find the shortest paths from vertices 5 and 6 to 10. (Note that this

graph is not as simply partitioned into levels as Figure 6.1 was.)

1

2

3

4

5

6

7

8

9

10

2

4

3

1

2

4

5

2
4

4

3

2
1

2

1 6

1

3

4

Exercise 4

5. An advertising agency will conduct a campaign for a new soft drink. The

agency follows the share of the market possessed by the soft drink, in

increments of 5%, from month to month. Each month that advertising

continues, there is a cost of c dollars to the drink manufacturer. But there is

a reward of r dollars to the manufacturer for each 5% of the market pos-

416 Chapter 6 Dynamic Programming

sessed by their product. If no advertising is used in any given month, the

share of the market will not change. If there is advertising, the share of the

market will either increase by 5% (with probability 1/2) or stay the same

(also with probability 1/2), until a maximum of 30% is reached, where it will

stay forever. Formulate the problem of finding the optimal advertising

policy as a Markov decision problem, including a description of the state

space, the admissible action sets, the transition matrices, the reward function,

and the optimal value function.

6. Consider the Markov decision process illustrated by Figure 6.2. Suppose

that the time horizon is T 3, the terminal reward function is

R x 0; x A, B, and the per period reward function is r A, 1 4,

r B, 1 3, r A, 2 2, r B, 2 5. For the policy u that always uses action

1 at time 0, action 2 at time 1, and action 1 at time 2, compute V A, u and

V B, u .

7. How many stationary policies are there in the problem of Exercise 5?

8. How many admissible feedback policies are there in the fish harvesting

problem of Example 3?

9. For the Markov decision process of Exercise 1, find the transition matrix

corresponding to the stationary policy u, and calculate Eu n 0
2 Rn X0 1 .

10. For the Markov decision process of Exercise 1, calculate the expectation

Eu n 0
2 Rn X0 3 for the non–stationary policy for which u0 i 0 for

all i, u1 i 1 for all i, and u2 i 0 for all i.

11. At a small cellular phone company, servers must spend a half hour

discussing options with each possible customer who comes in. During any

half hour period, either 0, 1, or 2 customers will come in, with probabilities

1/2, 1/4, and 1/4 respectively. A total of three servers can be summoned to

work if necessary. Customers who are being served will not leave before

their service is complete. If there are 6 or more customers in the store,

including those in service, all of those not currently being served will leave

without being served, otherwise if there are 5 or fewer customers in the store

all of those who are not being served will stay for the next half hour period.

The company can control how many servers are on the floor, but they pay a

price of s dollars per half hour per server to keep them there. They earn a

profit of p dollars for each customer who stays and gets served. The store is

open from 9:00 am to 4:00 pm. Customers left over at closing time leave

without service or profit to the company. Formulate this problem as a

Markov decision problem, describing the state and action spaces, the transi-

tion matrices, and the per period and terminal reward functions.

6.1 The Markovian Decision Model 417

12. The population of a country can be approximately modelled so that it

has a value of either 0 units, 1 unit, 2, 3, 4, or 5 units. The population

undergoes a natural change from one time period to the next, increasing by

one unit with probability p and decreasing one unit with probability 1 p.

At the boundaries, when the population is 5, it stays the same at the next

time period with probability p or goes down to 4 with probability 1 p, and

at 0 it stays at 0 with probability 1. In any time period there is a net benefit

to the economy of the country of 10 units per unit of population. Immigra-

tion is possible; at any time a number of units of population can be admitted

to bring the net population after the natural change to 5 or less. But there is

a resettlement cost of 8 units per unit of immigrant population admitted.

Assume that new immigrants in a time period do not contribute to the net

benefit until the next time period. Let the immigration control be done for 6

time periods, and let the economic benefit at the end also be 10 units per unit

of population. Formulate this as a Markov decision problem.

6.2 The Finite Horizon Problem

Let us now turn to the solution of finite horizon dynamic programming

problems. Recall that for deterministic dynamic programming problems with

finite time horizon, we have a sequence of states x0, x1, x2, ... xT , where xn
represents the state of a system at time n. The state space E is finite. A

policy u u0, u1, u2 ... , uT 1 induces a chain of actions u0 x0 ,

u1 x1 , ..., uT 1 xT 1 . Some deterministic mechanism is in place to generate

the next state xn 1 from the previous state xn and action un xn . For times

n 0, ..., T 1 there is a cost (or reward) r xn, un xn . There may or may

not be a terminal cost (or reward) R xT at time T. We are to minimize total

cost subject to the choice of actions.

To gain an understanding of how to solve a deterministic dynamic

programming problem, we will start by solving the shortest tour problem

outlined in the previous section.

418 Chapter 6 Dynamic Programming

EXAMPLE 1. The diagram for the shortest campus tour problem is

repeated as Figure 6.4 for your convenience. Remember, the state space is

the set of vertices of the graph, the actions are the next attractions to be

visited, and the costs, indicated as edge weights, are functions of the current

state and the action taken at that state. There is no terminal cost at the final

level T 4, since that is our destination.

One last idea is important to understand before going on to solving the

problem: the optimal value function. Let Vn i be the optimal value func-

tion starting from level n and state i, which in our context means the cost of

the shortest path from the current attraction i at level n to the destination.

We are really interested in finding V0 A , but we can do so by finding the

other Vn i , working backwards from the right side of the graph.

Needs "KnoxOR`Graphs`"

A

B

C

D

F

G

H

I

J

K

4

3

6

5

2

3

4

6

4

3

4

5

6

4

n=0 n=1 n=2 n=3 n=4

Figure 6.4 – Possible routes on a campus tour

First, we will determine the shortest path to use during the last stage of

the tour from each possible current state at time n 3. Since there is only

one possible path from these attractions to the destination, we can see

immediately the shortest one: the only one. Hence,

V3 H 5 V3 I 6 V3 J 4

Next, we step backwards one time unit and determine the shortest path to the

destination from each possible attraction at n 2. It is rather simple to find

V2 F , which is the length of the optimal path from F to the destination,

6.2 The Finite Horizon Problem 419

and V2 G , the length of the optimal path from G to the destination. The

shortest path from attraction F must start with the edge from attraction F to

H or from F to I. From H or I, the path must follow the shortest path from

that attraction to the destination given by V3 H or V3 I , respectively.

V2 F min r F, H V3 H , r F, I V3 I
min 6 5, 4 6 10 at F I

Thus, we have found that the shortest path from F to the destination is the

path F I K, which has cost 10. Similarly,

V2 G min r G, I V3 I , r G, J V3 J
min 3 6, 4 4 8 at G J

Hence the shortest path from G to the destination is G J K, with cost 8.

Now, we step backward one more time unit and determine the shortest

path to the destination from each possible attraction at n 1 using the

information: V2 F 10 and V2 G 8. The shortest path from attraction B
must start with the edge from attraction B to F. From F, the path must

follow the shortest path from that attraction to the destination given by

V2 F . From vertex C, the two choices for the next attraction are F and G;

and from vertex D, the next attraction must be G. The appropriate computa-

tions are as follows:

V1 B min r B, F V2 F 5 10 15 at B F
V1 C min r C, F V2 F , r C, G V2 G

min 2 10, 3 8 11 at C G
V1 D min r D, G V2 G 4 8 12 at D G

The optimal path B F I K from B to the destination has cost 15, the

optimal path C G J K from C to the destination has cost 11, and the

optimal path D G J K from D to the destination has cost 12.

Finally, from A there are three choices: to use the edge from A to B, then

the optimal path from B to K, or to use the edge from A to C or from A to D
and then the corresponding shortest paths:

V0 A min r A, B V1 B , r A, C V1 C , r A, D V1 D
min 4 15, 3 11, 6 12

min 19, 14, 18 14 at A C

In words, the path that spends the least amount of time walking and allows

for the most time to look at the attractions is A C G J K and

this path takes 14 minutes to walk, leaving the student a total of 36 minutes

to look at the five attractions.

420 Chapter 6 Dynamic Programming

Activity 1 – At the beginning of the last example, we stated that there is

no terminal cost function. Could you take a slightly different modeling

perspective and recast the problem so that there is a terminal cost?

(Hint: Does the time horizon have to be T 4?)

Let us review how we solved this finite deterministic dynamic program-

ming problem. We started at the destination and worked backwards step by

step from the terminal time T to find the optimal value functions Vn evalu-

ated at each state, for times n T 1, using the following equation:

(1)

Vn 1 i mina Ai r i, a Vn j
minavailable actions current cost for next action

smallest total future cost resulting from that action

In formula (1), the state j is the next state to be visited if the current state is i
and the action taken is a. Thus, we worked backwards, at each time n
computing the optimal value function for a problem starting at time n and

ending at T , until we found the optimal value function for the complete

problem starting at n 0 and ending at time T .

Now we can move on to the stochastic version. Like the deterministic

problem, we start at the end and work backwards, but the problem is slightly

more complicated due to the random nature of the dynamics that govern the

motion of the controlled process.

Dynamic Programming Algorithm, Stochastic Case

Once again, let X0, X1, ... , XT be the chain of states for a Markov decision

process with a finite time horizon T and finite state space E. A policy

u u0, u2, ... , uT 1 induces a chain of actions U0, U1, ... , UT 1 by

Un un Xn . For times n 0, ..., T 1 there is a reward Rn r Xn, Un . A

terminal reward R XT is earned at time T . The probabilistic motion of the

chain is described by the one-step transition matrices Ta. Recall that

T i, j; a Ta i, j is the conditional probability, under action a, that the

next state will be j, given that the current state is i. Then,

 Pu Xn 1 j Xn i T i, j; un i

For a maximum problem, we wish to devise an algorithm to find a policy u

to maximize for all starting states i the expected total reward

 V i, u Eu n 0
T 1 r Xn, un Xn R XT X0 i

6.2 The Finite Horizon Problem 421

 The strategy will be to find uT 1 first, then work backwards step by step

to u0. At each time m we must compute the optimal value function for a

problem that starts at time m, and ends at T . So, let us define, for a policy u

and a time m T 1:

(2)Vm i, u Eu n m
T 1 r Xn, un Xn R XT Xm i

and the related time m optimal value function:

(3)Vm i maxu Vm i, u

The maximum is taken over all admissible policies. Notice that for time

m T 1,

(4)
VT 1 i, u r i, uT 1 i Eu R XT XT 1 i

r i, uT 1 i j E R j T i, j; uT 1 i

At time T 1 we have a simple decision to make. Knowing that the state of

the system is i, we must pick exactly one more action a uT 1 i to maxi-

mize the immediate reward r i, a , plus the expected reward

j R j T i, j; a to be earned at the terminal time. It is now clear that

(5)VT 1 i max a Ai r i, a j R j T i, j; a

which enables us to initiate the backwards programming process, since r, R,

T i, j; a , and the action sets Ai are all known quantities.

The key idea of dynamic programming, usually called the Principle of
Optimality, is this: an optimal policy is also optimal from each time m
onward. This means that if we have the optimal policy um, um 1, ... , uT 1

from time m onward, then we can find the optimal policy from time m 1

onward by adjoining an optimal action function um 1 to the front of this

policy, chosen at state i so as to maximize the sum of the immediate reward

r i, um 1 i plus the expected reward from time m onward under the optimal

time m policy. We step back in time until time 0 is reached, at which point

the optimal policy is completely determined. The following theorem makes

this idea more precise.

THEOREM 1. Let Vm, m 0, ... , T 1, be the sequence of optimal value

functions defined in (3) for the finite horizon Markov decision problem with

finite state and action spaces. Also, let VT equal the terminal reward func-

tion R. Then,

(6)Vm 1 i max a Ai r i, a j Vm j T i, j; a , m 1, ... , T

422 Chapter 6 Dynamic Programming

For m 1, ... , T , if we define a policy u* such that um 1 i is the maximiz-

ing action in expression (6) for each time m and state i, then u* is optimal.

Proof. The technique will be to show inductively on m, proceeding back-

ward from time T , that (6) holds for all m, and in so doing, show that u* is

optimal from time m onward. In particular, for m 0, u* is optimal from

time 0 onward, and V0 is the optimal value function for the entire problem.

Since there are no more actions to be taken at time T , the anchoring step

is trivial:

VT i VT i, u R i , i E

To proceed with the proof, we will need the following computation. For

times m 1, ... , T and an arbitrary admissible policy u u0, ... , uT 1 ,

we have that

(7)

Vm 1 i, u

Eu n m 1
T 1 r Xn, un Xn R XT Xm 1 i

Eu Eu n m 1
T 1 r Xn, un Xn R XT Xm 1 i, Xm Xm 1 i

Eu r i, um 1 i

Eu n m
T 1 r Xn, un Xn R XT Xm 1 i, Xm Xm 1

Eu r i, um 1 i Eu n m
T 1 r Xn, un Xn R XT Xm Xm 1 i

Eu r i, um 1 i Vm Xm, u Xm 1 i
r i, um 1 i j E Vm j, u T i, j; um 1 i

Now we suppose that u is optimal from time m onward, i.e.,

Vm i, u Vm i for all i E, and that the value functions VT , ..., Vm satisfy

the dynamic programming equation (6). We must extend this to time m 1;

that is, we must show (6) itself and also show that u is optimal from time

m 1 onward.

Return to the last line of (7). For all policies u and all states j,
Vm j, u Vm j . We can take the maximum over all admissible policies u

on the right side of (7) to obtain the inequality

Vm 1 i, u r i, um 1 i j E Vm j T i, j; um 1 i

But the right side of the last inequality is smaller than or equal to the maxi-

mum over all possible actions of a sum of similar form:

Vm 1 i, u maxa Ai r i, a j E Vm j T i, j; a

6.2 The Finite Horizon Problem 423

For u u , the first inequality is an equality by the induction hypothesis, and

the second inequality is also an equality by (7) and the construction of the

time m 1 component of u . Thus,

Vm 1 i, u maxa Ai r i, a j E Vm j T i, j; a Vm 1 i, u ,

u

This implies that u is optimal from time m 1 onward, i.e.,

Vm 1 i, u Vm 1 i for all states i, and that Vm 1 satisfies (6).

Activity 2 – Explain why each line of the computation in derivation (7)

is true.

Formula (6) is called the dynamic programming (DP) equation. In the

case of cost minimization, the procedure is the same, but the maxima are

replaced by minima. The theorem gives rise to the following algorithm,

which requires knowledge of the state space E, the admissible action sets Ai,
the transition matrices Ta, the reward functions r and R, and the terminal

time T . Since the state space is finite, we can consider the terminal reward R
and the time m optimal value function Vm as column vectors, with an entry

for each state. Note that the sum j E Vm j T i, j; a in the DP equation is

just the ith row of the matrix Ta dotted with the column vector Vm, or what is

the same thing, the ith row of the matrix product Ta Vm.

ALGORITHM. (Finite horizon Markov decision problem)

(1) Initialize column vector VT by VT i R i for each state i;
(2) For m T down to 1, do (3)–(4):

 (3) For each i E, do (a)–(c);

(a) Find ai Ai to maximize r i, a Ta Vm i
(b) Let um 1 i ai
(c) Let Vm 1 i r i, ai Tai Vm i

 (4) Output Vm 1 i and um 1 i for each i.

To paraphrase the algorithm, after first determining the parameters of the

problem, we set VT R, in order to initialize the computation. For each time

m, working backward from T , we do the following. In step (3)(a)–(c), we

find the optimal actions for time m 1 for each state, and at the same time

compute the next value function Vm 1, using the DP equation and the known,

current value function Vm. We continue to step back one time period at a

time until we reach time 0, when all optimal actions have been determined.

424 Chapter 6 Dynamic Programming

Examples

We will now use the dynamic programming algorithm to find the optimal

solutions to the rocket production problem and the fish harvesting problem.

You should refer now to Examples 2 and 3 of Section 1 for the notation and

problem conditions.

EXAMPLE 2. In Example 2 of Section 6.1, we were to decide how many

rockets to make at each of the times 0, 1, and 2. The per-period and terminal

cost functions were as follows:

r x, a
10 5 a if x 1 and a 0

0 otherwise

R x
64 if x 1

0 otherwise

These result from the assumptions that 10 is the set-up cost for a manufactur-

ing run, 5 is the cost per rocket manufactured, and 64 is the penalty if the

manufacturer does not fulfill the contract. There are two states, 0 and 1,

which indicate the number of good rockets remaining to be produced. At

state 0, only action 0 is permissible; and at state 1, the permissible actions

are A1 0, 1, 2, 3 , meaning that on a production run we can choose to

make between 0 and 3 rockets if we have not yet made a good rocket. The

transition matrices Ta are reproduced below for your convenience:

T0
0
1

1 0
0 1

0 1

 T1
0
1 1 4 3 4

0 1

T2
0
1 7 16 9 16

0 1

 T3
0
1 37 64 27 64

0 1

The terminal time is T 3. In the algorithm, the maxima are replaced by

minima.

Since V3 0 0, and for m 1, 2, 3,

Vm 1 0 r 0, 0 Vm 0 T0 0, 0 0 Vm 0 ,

it is clear that Vm 0 0 for all m, and the optimal (and only) action is a 0.

Thus, we confine our attention to the computation of Vm 1 for each m.

According to the dynamic programming algorithm, we initialize

V3 R 0 64 t. Then we calculate

6.2 The Finite Horizon Problem 425

(8)

V2 1 mina 0,1,2,3 r 1, a V3 1 Ta 1, 1

min 0 64, 10 5 64 3
4

, 10 10 64 9
16

,

10 15 64 27
64

min 64, 63, 56, 52

52 at action 3

To proceed backward to V1, we have

(9)

V1 1 mina 0,1,2,3 r 1, a V2 1 Ta 1, 1

min 0 52, 10 5 52 3
4

, 10 10 52 9
16

,

10 15 52 27
64

min 52, 54, 49.25, 46.9375

46.9375 at action 3

V0 is computed in the same way. You should check that the result is

(10)V0 1 44.801758, taken on at action 3.

Combining these facts, we see that u u0, u1, u2 is optimal, where for each

n,

(11)un 1 3 and un 0 0.

In words, we should make three rockets on each production run until an

acceptable rocket is made.

Activity 3 – Intuitively, what is it about the problem parameters in

Example 2 that gave us an optimal policy that always makes three

rockets? Speculate on how the nature of the solution would change if

the problem parameters change. In Exercises 1 and 2 you will be asked

to do some computations of this kind.

EXAMPLE 3. In Example 3 of Section 6.1, the problem was to determine

how many units of fish should be harvested at each time 0, 1, and 2 in order

to maximize the reward received. We will complete that problem now and

show how the use of Mathematica simplifies some of the computations. Let

us fix the values h 5 and R 50 for the parameters of the problem. Recall

that h is the amount paid for each population unit harvested, and R is the

426 Chapter 6 Dynamic Programming

terminal benefit for each population unit remaining after the third year.

Then we can write the two reward functions as:

r 0, , , , , ,

0, 5, , , , , 0, 5, 10, , , ,

0, 5, 10, 15, , , 0, 5, 10, 15, 20, ,

0, 5, 10, 15, 20, 25 ;

R 0, 50, 100, 150, 200, 250 ;

MatrixForm r , MatrixForm R

0
0 5
0 5 10
0 5 10 15
0 5 10 15 20
0 5 10 15 20 25

,

0
50
100
150
200
250

We are using to encode infeasible combinations of state and action.

Since we are maximizing total reward, it will never come out that one of

these infeasible combinations could be optimal. (What would you do for a

minimum cost problem?) Recall that the state space is E 0, 1, 2, 3, 4, 5 ,

which is the set of all possible population levels. Permissible actions are

limited by the fact that no more fish than are present at the beginning of the

year may be harvested. Thus, the action sets are Ai 0, ... , i . The transi-

tion matrices, as defined in the original example, are as in the output cell

below.

6.2 The Finite Horizon Problem 427

T0 1, 0, 0, 0, 0, 0 ,

1 4, 0, 3 4, 0, 0, 0 , 0, 1 4, 0, 3 4, 0, 0 ,

0, 0, 1 4, 0, 3 4, 0 , 0, 0, 0, 1 4, 0, 3 4 ,

0, 0, 0, 0, 1 4, 3 4 ;

T1 0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 ,

1 4, 0, 3 4, 0, 0, 0 ,

0, 1 4, 0, 3 4, 0, 0 , 0, 0, 1 4, 0, 3 4, 0 ,

0, 0, 0, 1 4, 0, 3 4 ;

T2 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 , 1 4, 0, 3 4, 0, 0, 0 , 0,

1 4, 0, 3 4, 0, 0 , 0, 0, 1 4, 0, 3 4, 0 ;

T3 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 , 1 4,

0, 3 4, 0, 0, 0 , 0, 1 4, 0, 3 4, 0, 0 ;

T4 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 , 1 4, 0, 3 4, 0, 0, 0 ;

T5 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 ;

AllTa T0, T1, T2, T3, T4, T5 ;

MatrixForm T0 , MatrixForm T1 , MatrixForm T2 ,

MatrixForm T3 , MatrixForm T4 , MatrixForm T5

428 Chapter 6 Dynamic Programming

1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

0 0 0 1
4 0 3

4

0 0 0 0 1
4

3
4

,

0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

0 0 0 1
4 0 3

4

,

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

Here we are setting row i of transition matrix Ta to be completely zero to

encode infeasible state-action combinations i, a . The sum

j Vm j T i, j; a in 6 is then computable in Mathematica as the ith row of

the matrix product Ta Vm, and the answer will be zero when action a is not

permissble for state i. In this case, when r i, a is added, the result of

will remind us that action a is not only suboptimal, but cannot be considered

for that state.

The following command will allow us to use the dynamic programming

equation (6) to solve the problem easily. It is contained in the KnoxOR`Dy-

namicProgramming` package, but we also show its code. The input parame-

ters are the list of transition matrices, called TransMats; the per-period

reward function r in matrix form, called RewardMatrix; and the current

value function Vm, called Val. You should compare to step 3(a) of the DP

algorithm above; for each state i, we make a list for each action a of the

quantities r i, a Ta Vm i , suitably converted to Mathematica syntax.

Needs "KnoxOR`DynamicProgramming "̀

6.2 The Finite Horizon Problem 429

DPEquation TransMats,RewardMatrix,Val

DPEquation TransMats_, RewardMatrix_, Val_ :

Table RewardMatrix i, a

TransMats a .Val i ,

i, 1, Length TransMats 1 ,

a, 1, Length TransMats

To initialize the computation at time 3, we must call DPEquation with

Val R the terminal reward vector. The sublists in the output correspond to

states 0, 1, ... , 5 respectively, and within each sublist the entries correspond

to actions 0, 1, ... , 5.

time2list DPEquation AllTa, r, R

0, , , , , ,

75, 5, , , , , 125, 80, 10, , , ,
175, 130, 85, 15, , ,

225, 180, 135, 90, 20, ,
475
2

, 230, 185, 140, 95, 25

The next command picks out the maximum elements in each sublist, and

forms them into the time 2 optimal value function V2 for the next step. The

actions that achive the maximum values are 0 in each case.

V2 Table Max time2list i ,

i, 1, Length AllTa 1

0, 75, 125, 175, 225,
475
2

Thus the time 2 optimal action function is u2 0, 0, 0, 0, 0, 0 . Here is the

analogous computation for time 1.

430 Chapter 6 Dynamic Programming

time1list DPEquation AllTa, r, V2

V1 Table Max time1list i ,

i, 1, Length AllTa 1

0, , , , , ,
375
4

, 5, , , , ,

150,
395
4

, 10, , , ,

200, 155,
415
4

, 15, , ,

1775
8

, 205, 160,
435
4

, 20, ,

1875
8

,
1815
8

, 210, 165,
455
4

, 25

0,
375
4

, 150, 200,
1775
8

,
1875
8

Again, the time 1 optimal action function is u1 0, 0, 0, 0, 0, 0 . Finally,

here is the result for time 0.

time0list DPEquation AllTa, r, V1

V0 Table Max time0list i ,

i, 1, Length AllTa 1

0, , , , , ,
225
2

, 5, , , , ,

2775
16

,
235
2

, 10, , , ,

6525
32

,
2855
16

,
245
2

, 15, , ,

7225
32

,
6685
32

,
2935
16

,
255
2

, 20, ,

925
4

,
7385
32

,
6845
32

,
3015
16

,
265
2

, 25

0,
225
2

,
2775
16

,
6525
32

,
7225
32

,
925
4

Comparing the maxima in the second output to the lists in the first, we again

see that u0 0, 0, 0, 0, 0, 0 . Thus, for all times it is optimal not to harvest

any units of fish for this choice of parameters. It must be the case that the

relative size of the terminal reward R to the per period reward r was so great

that there is a lot of incentive to wait and let the fish population grow. Do the

activity below to follow up on this result.

6.2 The Finite Horizon Problem 431

Activity 4 – Change the parameter R from 50 to 20 in Example 3 and

recompute the optimal policy. Does it change? If not, try reducing the

value of R gradually until you find a value for which it becomes optimal

to harvest under some conditions.

Exercises 6.2

1. Working by hand (rather than using the DPEquation command), find the

optimal policy for the rocket production problem, Example 2, if the cost

function r x, a is changed to

r x, a
16 8 a if x 1 and a 0

0 otherwise

2. (Mathematica) (a) Use the DPEquation command to confirm the computa-

tions in Example 2.

(b) Repeat the solution of Example 2 holding r as it is, but with values of the

terminal cost function of (i) 50; (ii) 45; (iii) 40 if a successful rocket is not

made.

3. (Mathematica) In Section 1 we introduced an example with two states and

two actions in which the reward function was r A, 1 4, r B, 1 3,

r A, 2 2, r B, 2 5 and the transition matrices were as below. For a

finite horizon stochastic dynamic programming problem with time horizon

T 6 and terminal reward R A 3, R B 5, find the optimal policy.

T1 =
1 3 2 3
3 4 1 4 and T2 =

1 5 4 5
1 4 3 4

4. (Mathematica) A house has a simple thermostat that can be set at 1 to turn

the furnace on, and 0 to turn it off. Potential changes in setting take effect

every 10 minutes. If the thermostat is on 0, in a 10-minute period the room

temperature will either stay the same or go down by a degree, with equal

probability. If it is on 1, the room temperature will go up by a degree with

certainty in the next 10-minute period. There is an energy cost of 1 cent for

each 10-minute period during which the furnace is on. There are also

discomfort costs of 1.5 cents per degree for each 10-minute period for each

degree of room temperature difference between the current temperature and

the ideal temperature of 68. Assume that room temperature must be kept at

all times between 65 and 71, and that the thermostat must turn on when the

temperature is 65, and must turn off when it is 71. How should the thermo-

stat be programmed to operate? Formulate the problem as a Markov deci-

sion problem, write out the DP equation, and solve it using Mathematica for

432 Chapter 6 Dynamic Programming

a time horizon of 50 minutes, using a terminal cost that penalizes differences

between final temperature and 68 as described above.

5. (Mathematica) In Exercise 1 of Section 6.1, suppose that the single period

reward function is r i, a i a, and at the terminal time T 4, a final

reward R X4 X4 is received. Find the optimal policy.

6. In the fishery example of Example 3, assume that there are only two

fishing seasons under study, and that the net benefit per unit of fish har-

vested is 5 and the net benefit per unit remaining at the end is 10. Find the

optimal policy by hand, that is, without using the DPEquation command.

7. (Mathematica) Using the original problem parameters of Example 3, find

the smallest time horizon T such that it is beneficial to harvest fish at some

time prior to that horizon.

8. For the two-state, two-action Markov decision process with transition

matrices and per period reward function as below, consider the finite horizon

problem with time horizon T 4 and terminal reward R 1 2, R 2 1.

Find the optimal policy.

T1
1 2 1 2
2 3 1 3 , T2

1 4 3 4
1 3 2 3

r 1, a
5 if a 1

4 if a 2
 , r 2, a

2 if a 1

3 if a 2

9. Let us presume that the dynamic programming equation (6) still holds

when the state and action spaces are not finite, for the purposes of the

following problem. An owner of a baseball team can spend any proportion

p 0, 1 of his currrent assets on free agents. He estimates that the team

will come through and return him twice the amount that he spent with

probability w, but the team will fail and he will lose what he spent with

probability l 1 w. The owner plans to keep the team for T years before

selling out. His goal is to maximize the expected value of the logarithm of

his wealth when he sells the team.

 (a) Model this problem as a Markov decision problem, including a descrip-

tion of the state and action spaces, a formula for the transition probabilities

T x, y; a , and the single period and terminal reward functions.

 (b) Write the dynamic programming equation for the problem.

 (c) If T 3 and w 1 2, show that the optimal action at each time 0, 1,

and 2 is to bet a proportion a 2 w 1 of the current wealth.

6.2 The Finite Horizon Problem 433

10. A person has $4000 available initially for investment in two risky

ventures A and B. Venture A will return nothing in a time period with

probability 2/3, and will return $3000 per thousand invested with probability

1/3. Venture B will return either $1000 or $2000 per thousand invested,

each with probability 1/2. Investment amounts are in units of a thousand

dollars, and the person may risk as much as $2000 per time period. Find the

strategy that maximizes the expected value of the square of the terminal

wealth at the end of 2 time periods.

11. The following is a deterministic dynamic programming problem. A

company is planning a marketing strategy for a new product. There are three

phases of the plan: (1) an introductory low price; (2) a subsequent intensive

advertising campaign in newspapers and magazines; and (3) a follow-up ad

campaign on radio. A total of $4 million, which can be spent in $1 million

blocks, is available. After each phase, it is possible for the product to have

one of the following shares of the market:

 5% 10% 15% 20% 25%

In the initial phase, allotments of $0–$4 million result in these five percent-

ages, respectively. The following table shows the changes in market share

that will result between phases 1 and 2, and between phases 2 and 3, under

the five possible investments.

Amount

invested

$millions Old share new share

0 5 % 5 %, 10 % 5 %, 15 % 5 %, 20 % 10 %, 25 % 15 %

1 5 % 5 %, 10 % 5 %, 15 % 10 %, 20 % 15 %, 25 % 20 %

2 Old new

3 5 % 10 %, 10 % 15 %, 15 % 20 %, 20 % 25 %, 25 % 25 %

4 5 % 15 %, 10 % 20 %, 15 % 25 %, 20 % 25 %, 25 % 25 %

Find the amount of money to be allocated in each phase in order to maximize

the share of the market at the end of the plan (there is no single period

reward r).

12. Solve Exercise 12 of Section 6.1 on immigration if the time horizon is

T 4 and the probability of population increase is p 1 2.

434 Chapter 6 Dynamic Programming

6.3 The Discounted Reward Problem

Method of Successive Approximations

To this point we have studied only the problem of maximization (or minimiza-

tion) over a finite time horizon. Now we examine the problem of maximiz-

ing the infinite horizon discounted reward:

 DEFINITION 1. Let 0, 1 . The value function of policy

u u0, u1, u2, ... for the infinite horizon discounted problem with

discount factor is

W i, u Eu n 0
n r Xn, un Xn X0 i

and the optimal value function for this problem is W i maxu W i, u

(minimum for a minimum cost problem).

In this problem, control is exerted forever, but the present value of a

reward of d absolute dollars earned at time n is only n d. Since the state

space is finite, the reward function r is bounded, and therefore the expected

total discounted reward is also bounded (see Exercise 2).

Activity 1 – For the infinite horizon discounted problem there are

infinitely many policies; but even if we restrict to only the class of

stationary policies u u, u, u, ... , there are potentially a very large

number of them. At most how many?

To motivate the dynamic programming equation that is the focus of our

investigation, consider a policy u u0, u1, u2, In the following, we

will denote by u1 the policy u1, u2, ... obtained from u by truncating the

first action function u0. In the infinite series in W i, u , split the time zero

reward away from the sum, factor out from what remains, and then

condition and un-condition on X1. We obtain the following expression:

6.3 The Discounted Reward Problem 435

(1)

W i, u

E r i, u0 i n 1
n 1 r Xn, un Xn X0 i

E r i, u0 i
E n 1

n 1 r Xn, un Xn X1, X0 i X0 i
E r i, u0 i W X1, u1 X0 i
r i, u0 i j E W j, u1 T i, j; u0 i

If u is a stationary policy with action function u, then the changes that

result in formula (1) are that u0 u and u1 u. In order for such a station-

ary policy to be optimal, it must choose the best action a u0 i u i in the

above equation, and its value W i, u will equal the optimal value function

W i for all states i. These remarks should help to motivate the following

theorem.

THEOREM 1. The optimal value function W satisfies the equation:

(2)W i max
a Ai

r i, a j E W j T i, j ; a

If u is defined as the stationary policy such that the action u i taken at

state i maximizes the right side of (2) for every i, then u is optimal.

Proof. We give a proof that assumes the existence of an optimal policy

v v0, v1, v2, ... , a fact that we will not prove. The existence can be

shown (see Derman ([17], Lemma 3.5) by proving that W i, u is a continu-

ous function of u, and that the set of admissible policies is compact.

Let v v0, v1, ... be an optimal policy. Then W i, v W i for all i.
As in the theorem statement, let u i be the maximizing action for state i.
We consider a sequence of policies u1, u2, u3 defined by

un u , u , ..., u , v0, v1, ... ,

that is, un uses the actions u i up through time n 1, and follows the

optimal policy thereafter. Notice that

W i, un

E k 0
n 1 k r Xk, u Xk k n

k r Xk , vk n Xk X0 i

Thus, it is clear that W i, un W i, u as n (since the two values

differ only in the tail sum, which is bounded by n times a constant).

Consider u1 u , v0, v1, By (1), the choice of u and the optimal-

ity of v , we have

436 Chapter 6 Dynamic Programming

W i, u1 r i, u i j E W j, v T i, j; u i
r i, v0 i j E W j, v T i, j; v0 i
W i, v W i

Thus, u1 is at least as good as v . Now consider the policy

u2 u , u , v0, v1, Iterating (1), that is, replacing W j, u1 in that

formula by the immediate reward r plus times the expected future reward

gives

W i, u2 r i, u i j E T i, j; u i
r j, u j k E W k, v T j, k; u j

r i, u i j E T i, j; u i
r j, v0 j k E W k, v T j, k; v0 j

r i, u i j E W j T i, j; u i
r i, v0 i j E W j T i, j; v0 i
W i, v W i

Thus, the policy u2 is at least as good as v .

One can obviously repeat the process to obtain

W i, un W i

Therefore, in the limit as n , W i, u W i . Since W is the optimal

value function, the reverse inequality is obvious; consequently, u* is optimal

and (2) follows from (1) and the choice of u i .

Equation (2) is called the dynamic programming equation for the

discounted problem. Intuitively, it says that if the initial state is i, then the

optimal action maximizes the sum of the immediate reward plus the discount

factor times the expected total reward under an optimal policy from time one

onward. For the problem of cost minimization, the maximum is simply

replaced by a minimum.

At first glance, the infinite horizon problem appears to be solved, since

we have characterized the optimal policy. Unfortunately, in order to find the

optimal actions in (2), we must know the optimal value function W . Unlike

the finite horizon problem, there is no terminal time from which we can

slowly step back until the optimal value function is reached. But there is a

way of approximating W to any desired accuracy by a sequence of functions.

We will describe this method next. In the next section a different way of

finding the optimal policy is given, in which we begin with an arbitrary

policy and successively improve it until, after finitely many steps, we reach

optimality.

6.3 The Discounted Reward Problem 437

The next theorem gives us the so-called method of successive approxima-
tions.

THEOREM 2. For each j E, let w0 j be an arbitrary real number, i.e., let

w0 be an arbitrary column vector. Define a sequence of vectors

w1, w2, w3, by

(3)wn 1 i maxa Ai r i, a Ta wn i

Then the sequence wn converges to the optimal value function W (again,

replace max by min in the case of cost minimization).

Proof. We will use the functional notation wn instead of the boldface

vector notation. We would first like to establish the inequality

(4)maxi E wn 1 i W i maxi E wn i W i

Let a be the maximizing action in (3) for state i. Since a may not be the

maximizer in the DP equation (2), we have the inequality

(5)

wn 1 i W i r i, a j E wn j T i, j; a
r i, a j E W j T i, j; a

j E wn j W j T i, j; a
maxk E wn k W k

The last line occurs because wn j W j is no larger than the stated

maximum, which is constant as far as j is concerned. The remaining sum

T i, j; a is the sum of all the entries in the i th row of a transition matrix,

which is 1.

By considering, instead of a , the maximizers u i in the DP equation

(2), one can show in a similar way (see Exercise 4) that

(6)W i wn 1 i maxk E wn k W k

Since both of the inequalities (5) and (6) are true for all i E, (4) is true.

Iterating (4), we obtain

(7)maxi E wn 1 i W i n 1 maxi E w0 i W i

Since the state space is finite, since the maximum on the right side is some

non-negative real constant, and since 0, 1 , the right side of (7) forces

the left side to zero, which means that wn i W i for each i E.

438 Chapter 6 Dynamic Programming

REMARK. The convergence of the sequence wn to W shows the unique-

ness of the solution to the dynamic programming equation, which is some-

thing that we will use implicitly in the examples. For, if W0 is another

solution to (2), consider the sequence of functions generated in (3) by using

W0 as the initial function. Since W0 is a solution of the DP equation, it is

easy to see that W0 w1 w2 , hence the limit W of the sequence must

equal W0.

The two theorems together give us a rough procedure for finding the

optimal policy. Beginning with an arbitrary function w0 on the state space,

we can generate a sequence of functions w1, w2, ... by (3), which approach

the optimal value function W . At some n, we decide that we have a good

enough approximation. This decision may be made on the basis of the

stabilization of the functions wn, or the stabilization of the optimal actions in

(3). For the function wn at which we stop, the optimal actions ai are found

for each state i from (3). One forms a stationary policy u from these actions

and computes its value function W i, u . If this value satisfies the DP

equation (2), then the policy is optimal. If not, then one can return to the

method of successive approximations to find a closer approximator for the

optimal value function, together with its corresponding optimal actions. To

solve for the value function of u, we use (1) to obtain a system of linear

equations for the unknowns xi W i, u :

(8)I Tu x ru

where Tu i, j T i, j; u i and ru r i, u i . Note that this is just the

system derived in Chapter 4, Section 5 for the long-run discounted cost (or

reward).

The structure of the DP equation (3) for the method of successive

approximations is identical to the DP equation for the finite horizon prob-

lem, with the single exception that the discount factor is a coefficient of

the second term. This means that the DPEquation command of the previous

section can be modified to produce the next function wn 1 given the current

function wn, and also it can be used to check to see whether a current value

function W i, u satisfies the DP equation (2), which indicates that policy u

is optimal. The command DiscountedDPEquation contained in the KnoxOR`-

DynamicProgramming` package takes the list of transition matrices Trans-

Mats, the reward function RewardMatrix, the current approximating value

function Val (i.e., wn), and the discount factor , and returns the list (for

each state i) of sublists (for each action a) on the right side of formulas (2) or

(3), the optimum values of which form next value function approximator

wn 1.

6.3 The Discounted Reward Problem 439

Needs "KnoxOR`DynamicProgramming "̀

DiscountedDPEquation

TransMats,RewardMatrix,Val,

Activity 2 – Try without referring to Section 2 to write the code for the

DiscountedDPEquation command. Compare your version to the code in

the closed cell above this Activity.

The method for using DiscountedDPEquation is to start with an arbitrary

initial function (vector) w0, iteratively compute a few of the next wi, noting

whether the optimal actions ai all remain the same from one time to the

other. When they do, pause to compute the value function of the current

policy u associated with the actions ai. Form the transition matrix Tu and

reward vector ru for this policy, where Tu i, j T i, j; u i and

ru r i, u i . Solve the linear system I Tu x ru; the solution vector x

is the value of the policy Wu. Use Wu as the Val argument in Discounted-

DPEquation command, and check whether the maxima are identical to the

values of Wu; and if so, u is an optimal policy. If not, resume the successive

approximations until the optimal actions restabilize differently and check for

optimality as in the previous sentence. Continue to do this until the optimal

policy is found. (Make sure that you can explain why Theorems 1 and 2
justify this approach.) We will use the standard Mathematica command

LinearSolve to do the necessary equation solving.

?LinearSolve

LinearSolve m, b finds an x which solves

the matrix equation m.x b. LinearSolve m

generates a LinearSolveFunction ... which

can be applied repeatedly to different b. More…

Examples

The application of the method of successive approximations is illustrated by

the following example.

440 Chapter 6 Dynamic Programming

EXAMPLE 1. Consider a two-state, two-action problem in which the states

are labeled 1, 2 and the actions are also labeled 1, 2. Let the two transition

matrices for these actions be

T1=
1
2

1 2 1 2
2 3 1 3

1 2

 , T2=
1
2

1 4 3 4
1 3 2 3

1 2

and suppose that the reward function is

r 1, a
5 if a 1

4 if a 2
 , r 2, a

2 if a 1

3 if a 2

Let the discount factor be .9. We will need the Mathematica definitions

below.

matT1 1 2, 1 2 , 2 3, 1 3 ;

matT2 1 4, 3 4 , 1 3, 2 3 ;

AllTas matT1, matT2 ;

r 5, 4 , 2, 3 ;

.9;

Start the sequence with w0 1 w0 2 0 . Then w1 is generated as follows:

w0 0, 0 ;

list1 DiscountedDPEquation AllTas, r, w0,

w1 Table Max list1 i ,

i, 1, Length AllTas 1

5, 4 , 2, 3

5, 3

The optimal actions are a1 1, a2 2. Let us compute w2 and w3.

list2 DiscountedDPEquation AllTas, r, w1,

w2 Table Max list2 i ,

i, 1, Length AllTas 1

6.3 The Discounted Reward Problem 441

8.6, 7.15 , 5.9, 6.3

8.6, 6.3

list3 DiscountedDPEquation AllTas, r, w2,

w3 Table Max list3 i ,

i, 1, Length AllTas 1

11.705, 10.1875 , 9.05, 9.36

11.705, 9.36

In each case the optimal actions are a1 1, a2 2. It is time to stop and

check the stationary policy defined by u 1 1, u 2 2 for optimality.

When the system is in state 1, this policy takes action 1; and when the

system is in state 2, action 2 is taken. Thus, the chain of states

X0, X1, X2, ... is a time-homogeneous Markov chain with transition matrix:

T Tu
1
2

1 2 1 2
1 3 2 3

1 2

We have a reward function

ru r 1, 1 r 2, 2 5 3

The value of the policy is

Tu 1 2, 1 2 , 1 3, 2 3 ;

ru 5, 3 ;

Ident 1, 0 , 0, 1 ;

Wu LinearSolve Ident Tu, ru

39.4118, 37.0588

Checking the DP equation (2),

ulist DiscountedDPEquation AllTas, r, Wu,

Table Max ulist i ,

i, 1, Length AllTas 1

39.4118, 37.8824 , 36.7647, 37.0588

442 Chapter 6 Dynamic Programming

39.4118, 37.0588

Since Wu matches the maximum values on the right side of (2), policy u is

optimal. Though it has turned out here that at each state i one acts in order

to receive the best immediate reward r i, a , it was not altogether obvious at

the outset that this had to be the case. For instance, from state 2 we receive 3

monetary units if we take action 2; but if this action is taken, there is a

relatively low probability that the chain next will go to the comparatively

high reward state 1.

Activity 3 – If you compare the results for w3 in Example 1 to the final

result for Wu, you see that w3 was not very close at all to the optimal

value function. Nevertheless, we quickly located the optimal policy

itself by interrupting the successive approximations and checking for

optimality of the current policy. Try computing the next several wn to

see whether they tend slowly or quickly to Wu. (See also Exercise 5.)

The following simple model of machine repair is an example in which

we can actually solve the dynamic programming equation without resorting

to successive approximations.

EXAMPLE 2. A machine can be in one of three conditions: like new,

mildly deteriorated, or badly deteriorated. At each time, our options are to

do nothing to the machine, to attempt a repair, or to replace the machine with

another that is like new. To simplify matters, we will assume that we never

interfere with a machine that is like new, and we must replace a badly

deteriorated machine. There is a known repair cost and a known replace-

ment cost. In addition, there are costs due to production of inferior items by

the machine, when it is not in best possible condition. The transition probabil-

ities under our various possible actions are known. Find the repair schedule

that will minimize expected total discounted cost for a given discount factor

.

Let us set down some notation first. The state space and the associated

costs for inferior production are

States Cost bad output

0 like new 0

1 deteriorated C1

2 badly deteriorated C2

6.3 The Discounted Reward Problem 443

Writing 0 for the action of doing nothing, 1 for repairing, and 2 for replac-

ing, we have that the action sets are

A0 0 , A1 0, 1, 2 , A2 2

Since only one action is allowed at each of states 0 and 2, the problem is

simply to decide what to do when the machine is in the mildly deteriorated

state. This simple structure will permit us to compute the optimal value

function directly from the dynamic programming equation. Suppose that

 C3 = cost of repairing a deteriorated machine

C4 = cost of a new machine

Therefore the cost c i, a when the state is i and the action is a can be written

c i, a

0 if i 0
C1 if i 1, a 0

C1 C3 if i 1, a 1
C1 C4 if i 1, a 2
C2 C4 if i 2

Suppose that the transition matrices for the three actions are

T0

0
1
2

3 4 1 4 0
0 7 8 1 8

0 1 2

, T1

0
1
2

1 2 1 2 0

0 1 2

,

T2

0
1
2

1 0 0
1 0 0

0 1 2

To say that T1 1, 0 1 2 , for example, says that if we choose to repair a

mildly deteriorated machine, the chance is only 50% that the repair will be

successful. To say that T0 0, 1 1 4 means that a good machine will

deteriorate with probability 1/4 if no maintenance is done.

Equation (2) can now be written for each of the states. Using Mathemat-
ica, we obtain the expressions inside the minimum.

444 Chapter 6 Dynamic Programming

T0 3 4, 1 4, 0 , 0, 7 8, 1 8 , 0, 0, 0 ;

T1 0, 0, 0 , 1 2, 1 2, 0 , 0, 0, 0 ;

T2 0, 0, 0 , 1, 0, 0 , 1, 0, 0 ;

c 0, , ,

C1, C1 C3, C1 C4 , , , C2 C4 ;

W W0, W1, W2 ;

AllTas T0, T1, T2 ;

ulist DiscountedDPEquation AllTas, c, W,

3 W0
4

W1
4

, , ,

C1
7 W1
8

W2
8

, C1 C3
W0
2

W1
2

,

C1 C4 W0 , , , C2 C4 W0

(Why did we define the cost function c in this way?) We have in full form

the following equations:

(9)

W 0 3 4 W 0 1 4 W 1

W 1 min C1 7 8 W 1 1 8 W 2 ,

C1 C3 1 2 W 0 1 2 W 1 ,

C1 C4 W 0

W 2 C2 C4 W 0

The first and third equations allow us to solve for W 0 and W 2 in terms of

W 1 :

W 0 4 3 W 1 ,

W 2 C2 C4
2 4 3 W 1

These may be substituted into equation (9) for W 1 to give

(10)

W 1 min C1 C2 C4 8 7 8 3 8 4 3 W 1 ,

C1 C3 2 2 2 4 3 W 1 ,

C1 C4
2 4 3 W 1

We now take some specific numbers in order to obtain a numerical

solution. Let

0.9, C1 1, C2 2 , C3 6, C4 10

The three expressions inside the minimum simplify as follows:

6.3 The Discounted Reward Problem 445

action0value 1 .9 2 10 8

7 .9 8 .9 3 8 4 3 .9 W1

action1value 1 6

.9 2 .9 2 2 4 3 .9 W1

action2value 1 10 .9 2 4 3 .9 W1

2.35 0.857596 W1

7 0.761538 W1

11 0.623077 W1

Now W 1 must equal one of these three expressions. This gives us three

linear equations and three corresponding solutions that are candidates for the

true W 1 . These turn out to be

Solve x 2.35 .857596 x, x ,

Solve x 7 .761538 x, x ,

Solve x 11 .623077 x, x

x 16.5023 , x 29.3548 , x 29.1837

If action 0 is optimal for state 1, then when W 1 16.5023 is substituted

into the expression to be minimized in the DP equation, action 0 should

produce the smallest number among the three. Upon substituting, we find

that the three numbers are

2.35 0.857596 16.5023 ,

7 0.761538 16.5023 , 11 0.623077 16.5023

16.5023, 19.5671, 21.2822

Because 16.5023 agrees with the minimum of these which does occur for

action 0, action 0 is indeed optimal, and the dynamic programming equation

is satisfied if W 1 16.5023. (To see what goes wrong when a non-optimal

action is picked, do the activity following this example.) This means that the

optimal policy is to wait until it is not functioning at all and replace it then.

For this choice of constants, the repair and replacement costs are apparently

too large in comparison with the costs of inferior production to attempt any

maintenance. To see how sensitive the optimal policy is to the costs, the

reader can do Exercise 8, in which the cost structure is more favorable to

446 Chapter 6 Dynamic Programming

maintenance. Exercise 9 looks at the sensitivity of the optimal policy to

changes in the discount factor .

Activity 4 – In Example 2, one of our candidate values for W 1 was

29.3501, corresponding to the case where action 1 is optimal at state 1.

By substituting into the minimum expressions in the DP equation, check

to see that this value cannot be the correct W 1 .

Exercises 6.3

1. Argue that for fixed i, the maximum in the optimal value function

W i maxu W i, u among only all stationary policies must be assumed by

some policy. Does your argument extend to the case where the supremum is

taken over all admissible policies?

2. Show that if the reward function r of a Markov decision problem is

bounded in absolute value by a constant c, then for any policy u, the infinite

horizon discounted value function of u with discount factor is bounded in

absolute value by c 1 .

3. Write an expression similar to (1) relating the value of a policy

u u0, u1, u2, u3, ... to that of u2 u2, u3,

4. Prove inequality (6) as suggested in the proof of Theorem 2.

5. (Mathematica) For the two-state, two-action problem (Example 1), write a

Mathematica program to compute the sequence of functions generated by

the method of successive approximations, until a termination condition is

achieved, which stops the computation after the successive approximating

functions differ by no more than a desired tolerance. The program should

output the number of iterations necessary to terminate and the final function

wn. Run the program for the initial function w0 1 w0 2 0 and for the

initial function w0 1 40, w0 2 30, and find the number of iterations

necessary to make the successive approximations differ by no more than .01.

6. Using the same problem parameters as in Example 1 and the initial

function w0 1 w0 2 0, estimate analytically how large n must be so that

wn is within .1 of the optimal value function W . (Hint: Use (7) and Exercise

2.)

7. (Mathematica) Redo Example 1, changing T1 2, 1 to 7/8 and r 1, 1 to 8.

8. Redo Example 2, changing the costs to C1 4, C2 6, C3 3, C4 5.

Keep set at .9.

6.3 The Discounted Reward Problem 447

9. (a) Redo Example 2, changing to .5.

(b) Redo Example 2, changing to .95.

(c) What happens to the solution W 1 of the dynamic programming

equation as 1? Why is this result intuitively obvious?

10. (Mathematica) Let us expand the model of Example 2. Suppose now

that the machine can be in "like new" condition (state 0), "badly deterio-

rated" condition (state 4), or one of three intermediate states of deterioration,

labeled 1, 2, 3, in order of increasing severity. Again suppose that we do not

act if the machine is in state 0, we must replace the machine if it is in state 4,

and for the intermediate states we have the option of doing nothing, attempt-

ing a repair, or replacing the machine. Suppose that if we do nothing, the

machine stays in its current state with probability 3/4 and reduces to the next

lower state with probability 1/4 (except that if it is badly deteriorated, it stays

in that state). If the repair option is chosen, the machine goes to the next

higher level with probability 1/2, or stays the same with probability 1/2.

Replacement always restores the state to "like new." Suppose that the costs

of poor output for the five states are 0, 3, 6, 9, and 12; the repair cost is 4;

and the replacement cost is 10. Let the discount factor be .95. Find the

optimal policy.

11. (a) Recall the advertising problem (Exercise 5 of Section 6.1). Consider-

ing the problem as an infinite horizon discounted reward problem with

discount factor .9, write the DP equation.

(b) Find the optimal value function and the optimal action at the state where

the soft drink has the maximum 30% of the market, as a function of the

problem parameters r and c.

(c) Let r 10, c 2, and find the optimal value function and the optimal

policy for the advertising problem, without resorting to successive

approximations.

12. (Mathematica) For the advertising problem (Exercise 5 of Section 6.1)

viewed as an infinite horizon problem with discount factor .9, use the

parameters in Exercise 11(c) to find the value of the policy that never

advertises. Use this value as the initial function in the method of successive

approximations and compute w1, w2, and w3.

13. (Mathematica) A reservoir holds 3 units of water. We will control the

chain defined by Xn = # units of water in the reservoir at the beginning of

month n, by deciding how much water to release from the reservoir at the

beginning of the month. Each unit of water released produces a monetary

benefit of 1 unit, due to the production of power and irrigation. But if the

448 Chapter 6 Dynamic Programming

reservoir is dry, there is a loss of 2 monetary units due to the need to pur-

chase power from another source. During a month, rainfall produces either 0

units or 1 unit of inflow to the reservoir, each with probability 1/2. Any

rainfall occurring when the reservoir is already full is simply lost. Use the

method of successive approximations to find the optimal value function and

optimal water release policy for the infinite horizon Markov decision

problem with discount factor .95.

6.4 Policy Improvement

Main Theorem and Policy Improvement Algorithm

Consider again the discounted reward problem with discount factor ,

expressed by Definition 1 of the last section. Recall that there exists an

optimal stationary policy. When u u is a stationary policy, the chain of

states Xn is Markov, with transition matrix defined by

(1)Tu i, j P Xn 1 j Xn i, Un u i T i, j; u i

As we saw in Chapter 4, there is a system of linear equations for the value

W i, u Wu i of a stationary policy. Defining ru i r i, u i , this system

can be written in matrix form as

(2)I Tu Wu ru

where I is the identity matrix of the appropriate size, and we view Wu and ru

as column vectors.

Since there are usually many policies, we need an efficient way of

searching through policies to find an optimal one. In the last section, we

discussed the method of successive approximations, which can be used to

approximate the optimal value function W , from which the optimal policy

can be found. But there are problems with this method. Nothing guarantees

that the sequence wn of approximating functions converges to W at some

finite step n. For a given reward function, it is possible to find n large

enough to ensure that wn is very close to W , but the policy we find from wn
may not be optimal. As in Example 1 of Section 6.3, the value function of

this policy must be computed, and checked with the dynamic programming

equation below:

(3)W i max
a Ai

r i, a j E W j T i, j ; a

6.4 Policy Improvement 449

If the policy is still not optimal, then our only recourse would be to continue

to generate functions wn by successive approximations, in hopes that later

we may locate the optimal policy.

Thus, the method of successive approximations does not give us a

perfectly satisfactory algorithm, and we now look for something else. The

algorithm studied in this section is called the policy improvement algorithm.

Instead of creating a sequence of better and better approximate value func-

tions, we form a sequence of better and better policies. Below is the key

result.

THEOREM 1. Let u u be a stationary policy, whose value function is

W i, u Wu i . Define a new stationary policy v v , such that for each

i E, v i achieves the maximum in

(4)maxa Ai r i, a j E T i, j; a Wu j

Then for each i E,

Wv i Wu i

and if equality holds for all i, then u and v are optimal policies. (As always,

the maxima are replaced by minima in the case of cost minimization

problems.)

Proof. By choice of v i and formula (2),

r i, v i j E T i, j; v i Wu j
r i, u i j E T i, j; u i Wu j Wu i

The left side of this inequality is the value of the non-stationary policy v1

that uses v for one period, and uses u in every period thereafter. Thus, the

inequality can be restated as

W i, v1 W i, u for each i E

For n 1, 2, 3, ..., let the policy vn use action function v up through time

n 1, and u thereafter. We have just shown that v1 is better than u, and we

will now prove inductively that vn is better than u for all n. Assuming that

this is true for a given vn, it suffices to prove that vn 1 is a better policy than

vn in order to complete the argument.

The policies vn and vn 1 both use v through time n. Thereafter, vn 1 uses

the non-stationary policy v1 introduced above, whereas vn uses u. Therefore,

W i, vn 1

Ev k 0
n k r Xk, v Xk X0 i Ev

n 1 W Xn 1, v1 X0 i

450 Chapter 6 Dynamic Programming

and

W i, vn

Ev k 0
n k r Xk, v Xk X0 i Ev

n 1 W Xn 1, u X0 i

The difference between the values of the two policies is

W i, vn 1 W i, vn n 1 Ev W Xn 1, v1 W Xn 1, u X0 i

Since v1 is better than u, and expectation is a monotonic operator, this

difference exceeds 0, as desired.

As in the proof of Theorem 2 of Section 6.3, W i, vn W i, v

as n . Since each member of this sequence is bounded below by

W i, u , we must have that W i, v W i, u , which establishes the first

claim of Theorem 1.

Now suppose the value of the new policy v equals the value of the old

policy u. Then, by the choice of v, we have that for each i E,

(5)

Wv i r i, v i j E T i, j; v i Wv j
r i, v i j E T i, j; v i Wu j
maxa Ai r i, a j E T i, j; a Wu j
maxa Ai r i, a j E T i, j; a Wv j

Since Wv satisfies the dynamic programming equation, Wv must equal the

optimal value function, i.e., v is optimal. Since the value of u was the same

as the value of v, the old policy u is also optimal.

Thus, starting with a policy, we may compute its value by (2). Theorem

1 gives us a new policy that is at least as good. If there is a state i such that

the new value for i is strictly better than the old, then find the value of the

new policy, and improve once again using Theorem 1. Since there are

finitely many stationary policies, we can only strictly improve the policy

finitely many times. At some stage we will find a new policy that has the

same value as the old. The theorem proves that this policy is optimal. This

discussion motivates the following algorithm.

6.4 Policy Improvement 451

ALGORITHM. (Policy improvement for discounted Markov decision

problem)

(1) Pick an initial policy u u .

(2) Repeat steps (3)–(6) until done:

(3) Let Tu i, j T i, j; u i and let ru i r i, u i for i, j E.

(4) Find the solution W to I Tu W ru.

(5) For each i E, find the action ai v i Ai to maximize

(minimize for costs)

r i, a j E T i, j; a W j
(6) If v i u i for each i, then u and v are optimal and the

algorithm is done, otherwise let u = v to set up the next pass

through loop (3)–(6).

Activity 1 – What happens in the policy improvement algorithm if the

initial policy happens to be optimal? Must there be just one optimal

policy?

Step 5 in the algorithm suggests that once again it is possible to make use

of a version of the DiscountedDPEquation command to carry out the algo-

rithm. Actually, the KnoxOR`DynamicProgramming` package contains a

streamlined function (see Exercise 5) that essentially does steps (3)–(5) all at

once.

Needs "KnoxOR`DynamicProgramming "̀

PolicyImprovementOneStep

TransMats,RewardMatrix, ,policy

The command called PolicyImprovementOneStep takes the list of transition

matrices, the reward function in matrix form, the discount factor, and a

current policy represented as a list u 1 , u 2 , ... and outputs a list of

sublists like DiscountedDPEquation from which the next policy can be

obtained. It assumes that the state space is of the form 1, 2, ... , n and the

action space is of the form 1, 2, ... , a . We illustrate its use in the next

example.

452 Chapter 6 Dynamic Programming

Examples

EXAMPLE 1. To illustrate the policy improvement approach, consider a

three-state, three-action problem with .9, and transition matrices and

reward matrix as defined below.

Clear T1, T2, T3, AllTas, r, ;

9 10;

T1 3 10, 2 10, 5 10 ,

4 10, 1 10, 5 10 , 6 10, 2 10, 2 10 ;

T2 0, 5 10, 5 10 , 5 10, 0, 5 10 ,

5 10, 5 10, 0 ;

T3 0, 1, 0 , 0, 0, 1 , 1, 0, 0 ;

AllTas T1, T2, T3 ;

MatrixForm T1 , MatrixForm T2 , MatrixForm T3

3
10

1
5

1
2

2
5

1
10

1
2

3
5

1
5

1
5

,

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

,

0 1 0
0 0 1
1 0 0

r 3, 3, 1 , 4, 5, 2 , 2, 3, 5 ;

MatrixForm r

3 3 1
4 5 2
2 3 5

Let us begin the policy improvement algorithm with the stationary policy

u u that takes action 1 at state 1, action 2 at state 2, and action 3 at state

3. The transition matrix and reward vector for this policy are

MatrixForm 3 10, 2 10, 5 10 , 1 2, 0, 1 2 ,

1, 0, 0 , MatrixForm 3, 5, 5

3
10

1
5

1
2

1
2 0 1

2

1 0 0

,

3
5
5

(Make sure you see where these came from.) The command PolicyImprove-

mentOneStep finds these, solves the linear equations (2) to find Wu, and

6.4 Policy Improvement 453

outputs a list whose ith element is the sublist, one for each action, of the

quantities in braces in the DP equation (4).

u 1, 2, 3 ;

N PolicyImprovementOneStep AllTas, r, , u

38.3109, 38.7686, 37.0053 ,

39.1584, 40.0058, 37.5319 ,
36.9953, 38.2425, 39.4798

The output shows us that the maximizing actions are now action 2 at state 1,

action 2 at state 2, and action 3 at state 3. With this as our next policy, we

repeat the computation:

u 2, 2, 3 ;

N PolicyImprovementOneStep AllTas, r, , u

40.1151, 40.4875, 38.6801 ,
40.991, 41.8668, 39.2949 ,

38.8583, 40.0595, 41.4388

We see that the maximizing actions are still 2, 2, and 3, respectively, at states

1, 2, and 3, and so the stationary policy with action function u 1 2,

u 2 2, u 3 3 is optimal. Notice that the actions taken at each state

maximize the immediate reward earned. Here the shortsighted policy turns

out to be optimal.

The other important thing to notice is that we can easily check the result;

examining the sublist maxima in the output above, we have

Wu 1 40.4875, Wu 2 41.8668, Wu 3 41.4388. The computation

below verifies that this Wu is the solution of the linear system (2), and that

these values agree respectively with the maxima for states 1, 2, and 3 found

from the sublists in the second part of the output generated by the Discounted-

DPEquation command. This means that this particular Wu satisfies the

dynamic programming equation (3), hence this u is optimal.

454 Chapter 6 Dynamic Programming

Clear Tu, ru, Ident, Wu ;

Tu 0, 1 2, 1 2 , 1 2, 0, 1 2 , 1, 0, 0 ;

ru 3, 5, 5 ;

Ident IdentityMatrix 3 ;

Wu N LinearSolve Ident Tu, ru

N DiscountedDPEquation AllTas, r, Wu,

40.4875, 41.8668, 41.4388

40.1151, 40.4875, 38.6801 ,
40.991, 41.8668, 39.2949 ,

38.8583, 40.0595, 41.4388

Activity 2 – Redo the problem in Example 1 starting from the policy that

takes action 3 at state 1, action 2 at state 2, and action 1 at state 3. Are

more or fewer iterations required than were required above? What do

you predict the answer would be before performing the calculation?

EXAMPLE 2. A small rental van operator must service returned vans

before returning them to the pool. One van is returned in a day with probabil-

ity p .6, otherwise no vans are returned. The operator can either service

all of the vans that might be waiting on a particular day, at a fixed cost of

c $300 (since he has a contract with a local handyman), or service none of

them, except that the contract says that the repairman will do no more than

five at a time, so that when the fifth van comes the service must be done.

Each van waiting for service on a particular day entails a cost for lost

opportunity of l $100. Using a discount factor of .95, model the problem

as an infinite horizon discounted Markov decision problem, and find the

optimal servicing policy.

The states and actions are rather easy to recognize: let Xn = # vans

waiting for service at the end of day n, and let action Un be the number of

vans serviced at the end of day n. We will suppose that we know whether

another van has arrived in a particular day before we make the decision to

service all of them or none, and that the service is complete within a day, so

that those vehicles are back in the pool and do not contribute to Xn 1. The

state space is then E 0, 1, 2, 3, 4, 5 , and by the conditions of the prob-

lem, the action space is A 0, 1, 2, 3, 4, 5 and the admissible action sets

are Ai 0, i , i 0, ..., 4 due to the "all or nothing" nature of the decision.

The action set for state 5 is A5 5 . The probabilistic dynamics of the

system are summarized by the equation:

6.4 Policy Improvement 455

(6)Xn 1

Xn Un 1 with probability p .6

Xn Un with probability 1 p .4

This indicates that on the next day, we have the vans waiting from the

previous day, less those that were serviced, plus either one or zero, depend-

ing on whether a new van has come in. Admissibility also implies that Un
can only be either Xn or 0 for Xn 0, 1, 2, 3, 4 and Un Xn for Xn 5.

From these observations we can create the transition matrices Ta:

Clear T0, T1, T2, T3, T4, T5, AllTas, , c, Tu, cu ;

T0 .4, .6, 0, 0, 0, 0 , 0, .4, .6, 0, 0, 0 ,

0, 0, .4, .6, 0, 0 , 0, 0, 0, .4, .6, 0 ,

0, 0, 0, 0, .4, .6 , 0, 0, 0, 0, 0, 0 ;

T1 0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T2 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

.4, .6, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T3 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T4 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

.4, .6, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T5 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ;

AllTas T0, T1, T2, T3, T4, T5 ;

.95;

MatrixForm T0 , MatrixForm T1 , MatrixForm T2 ,

MatrixForm T3 , MatrixForm T4 , MatrixForm T5

456 Chapter 6 Dynamic Programming

0.4 0.6 0 0 0 0
0 0.4 0.6 0 0 0
0 0 0.4 0.6 0 0
0 0 0 0.4 0.6 0
0 0 0 0 0.4 0.6
0 0 0 0 0 0

,

0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0

The cost structure has two components: servicing cost and lost opportu-

nity cost. The following per-period cost function captures the problem

assumptions:

(7)c i, a
300 if a i, a 0

100 i if a 0

This means that the cost matrix is as follows:

c 0, , , , , ,

100, 300, , , , , 200, , 300, , , ,

300, , , 300, , , 400, , , , 300, ,

, , , , , 300 ; MatrixForm c

6.4 Policy Improvement 457

0
100 300
200 300
300 300
400 300

300

The discount factor was given to be .95, and we are interested in minimiz-

ing among stationary policies, for each initial state i, the policy value

Wu i Eu k 0
k c Xk, u Xk X0 i .

Let us try a policy of the "threshhold" type, that is, service all of the vans

that are waiting if and only if the number waiting is at least some threshhold

value m. If we choose m 3 to start, then the action function determining

the stationary policy is

u 0 0, u 1 0, u 2 0, u 3 3, u 4 4, u 5 5

Remember, though, that because Mathematica indexes lists beginning at 1,

we should treat our states as 1, 2, 3, 4, 5, 6 and our actions as

1, 2, 3, 4, 5, 6 as well. So we can define the policy as below, and make a

first attempt at policy improvement.

u 1, 1, 1, 4, 5, 6 ;

N PolicyImprovementOneStep AllTas, c, , u

2933.62, , , , , ,
3190.96, 3233.62, , , , ,

3295.42, , 3233.62, , , ,
3371.94, , , 3233.62, , ,
3471.94, , , , 3233.62, ,

, , , , , 3233.62

We seem to have come close to the optimal policy. It is only at state i 2

that the value Wu 2 3295.42 is not equal to the minimum element of the

list for i 2, 3295.42, , 3233.62, , , . The optimal action there is

a 2, so we switch to the threshhold policy v v that services the vans

when 2 or more are there. Explicitly, we have v 0 0, v 1 0, v 2 2,

v 3 3, v 4 4, v 5 5. We can reuse earlier commands in edited form

to recalculate the policy value Wv and the DP equation lists.

458 Chapter 6 Dynamic Programming

v 1, 1, 3, 4, 5, 6 ;

N PolicyImprovementOneStep AllTas, c, , v

2596.13, , , , , ,
2823.87, 2896.13, , , , ,
2951.33, , 2896.13, , , ,

3051.33, , , 2896.13, , ,
3151.33, , , , 2896.13, ,

, , , , , 2896.13

Since the optimal actions in the last output above are again 0, 0, 2, 3, 4, 5,

policy v is optimal by Theorem 1.

Activity 3 – Write out the dynamic programming equation for the

problem in Example 2. Notice that the optimal value function takes the

same value at states 2, 3, 4, and 5. Why intuitively do you think that

happens?

REMARK. It is very interesting to note that there is yet another attack on

the infinite horizon discounted Markov decision problem, which uses linear

programming. It turns out that the optimal value function is the smallest

function V V i satisfying:

V i maxa Ai r i, a j E T i, j; a V j

for each i E. Therefore one can find it by solving the linear programming

problem:

(8)

minimize: j E V i
subject to: V i r i, a j E T i, j; a V j

 for all a Ai and all i E

For more information on linear programming approaches to dynamic pro-

gramming problems, the reader may refer to Ross [53] or Derman [17]. The

reader is asked to show the above result in Exercise 12. We will see this

idea again when we study optimal stopping problems in the next section.

Exercises 6.4

1. (Mathematica) Solve Example 1 of Section 6.3 by policy improvement,

starting with the policy that takes action 1 at both states.

6.4 Policy Improvement 459

2. (Mathematica) Redo Example 2 on van servicing with problem parame-

ters: (a) c 400, l 300; (b) c 500, l 200.

3. (Mathematica) Solve the advertising problem (Exercise 5 of Section 6.1)

viewed as an infinite horizon problem with .9, r 10, and c 2 by

policy improvement, starting with the policy that never advertises.

4. (Mathematica) Solve the reservoir problem (Exercise 13 of Section 6.3)

by policy improvement, starting with the policy that releases all water

present.

5. (Mathematica) Write your own version of the command PolicyImprove-

mentOneStep as described in the section.

6. (Mathematica) We have a machine that is in one of five possible condi-

tions at each time. State 1 is the best condition, etc. down to state 5, which is

the worst condition. We can replace a machine with one that is in condition

1 at any time. If we do not replace, the machine in operation will stay in its

current condition with probability 3/4, or go to the next worst condition with

probability 1/4 at the next instant of time. If the machine is currently in the

worst condition 5, it will stay there until it is replaced. There are costs for

inferior production in each period, dependent on the machine's condition:

 C1 0, C2 2, C3 4, C4 6, C5 8.

A new machine costs a constant C6 12 monetary units. What replacement

strategy should be adopted in order to minimize expected total discounted

cost, with a discount factor 9 10? For your solution, use policy improve-

ment with the initial policy of replacing the machine whatever is its condi-

tion.

7. (Mathematica) Redo the machine replacement example Exercise 6 by

policy improvement, beginning with the initial policy of replacing the

current machine if it is in condition 4 or worse.

8. Consider the machine replacement example Exercise 6, in which all costs

Ci, i 1, ..., 6 are replaced by b Ci, where b is a positive constant. Show

that the policy that replaces the current machine if its condition is 3 or worse

is still optimal for this new problem.

9. Create an infinite horizon problem in which the optimal policy is not

unique.

10. Consider again Example 3 of Section 6.2 on fishery planning, but in an

infinite horizon context with discount factor .99. Assume the same

per-period reward function r and transition matrices Ta are in effect. Solve

460 Chapter 6 Dynamic Programming

for the optimal harvesting policy starting with the initial policy of harvesting

nothing when the population is 0 or 1, and 1 unit otherwise.

11. Does the optimal policy in the fishery example (see Exercise 10) change

if the reward function r i, a is changed to 10 a? If not, can you provide an

intuitive reason for it?

12. Consider an infinite horizon Markov decision problem with the usual

notation, and let V be a function on the state space satisfying the linear

programming problem (8). Adjoin to E an absorbing state of no reward,

and adjoin to the action space an action a such that r i, a V i and

T i, ; a 1. In other words, under action a the chain proceeds

immediately to absorbing state , entailing a reward V i for that move but

no reward thereafter.

 (a) For the new problem, use (8) to show that the optimal policy is to take

action a immediately.

 (b) Deduce from (a) that V exceeds the optimal value function W . Con-

clude that W satisfies the LP problem (8).

13. Use the linear programming formulation (8) in the remark at the end of

the section to solve for the optimal value function in Example 1. Once the

optimal value function is in hand, discuss how you would obtain the optimal

policy from it.

6.5 Optimal Stopping of a Markov Chain

Dynamic Programming Approach

The problem that we will discuss in this section shows beautifully the unity

of the four areas of Operations Research that have been studied in this book:

graph theory, linear programming, stochastic processes, and dynamic

programming. To illustrate the problem, consider the six-state Markov chain

whose transition diagram is in Figure 6.4. Graph-theoretic considerations

show us easily that states 1–5 are transient, since there is a path from each of

these states to the absorbing state 6.

6.4 Policy Improvement 461

1 2

2 2 3 3

4 5

5 6

6 0

1

1

1 3

1 3

1 3

1 2

1 2

3 4

1 4

1

Figure 6.4 – A Markov chain with rewards

Suppose that at any time we can stop the chain and collect a reward depen-

dent on the state occupied at that time. These potential rewards are shown in

parentheses in the diagram beside the state numbers. At what time should

we collect the reward in order to maximize the expected payoff? We would

like to wait long enough to hit one of the large payoffs (5 and 6 monetary

units at states 4 and 5, respectively), but to wait carries a risk that the chain

will be absorbed by state 6, which yields no reward.

The optimal time to stop and collect the reward will turn out to be the

time of first entry to a set of states characterized by the optimal value

function of a Markov decision problem. Moreover, we will be able to solve

for that value function using linear programming techniques. In this way,

the optimal stopping problem ties together the apparently distantly related

topics of this book.

The Markov chain of Figure 6.4 has enough special structure that we can

use our intuition to find the optimal stopping time. First, examine states 1

and 2. Beginning from these states, state 3 will be reached with certainty.

Since state 3 has a higher reward than states 1 and 2, it is clear that we

should not stop at states 1 and 2. The decision is also clear at states 5 and 6.

State 5 possesses the best possible reward, hence we should stop at state 5.

There is no decision to be made at the absorbing state 6; we must stop and

collect a reward of 0.

The interesting behavior is at states 3 and 4. Consider state 4 first. If the

chain is at state 4, we can either stop immediately, for a certain reward of 5,

or permit the chain to make one more jump. In the latter case, the chain

either moves to state 5 to produce a reward of 6, with probability 1/2, or the

chain moves to state 6 for no reward, with probability 1/2. The expected

reward if we do not stop at state 4 is therefore

1 2 V 5 1 2 V 6 1 2 6 1 2 0 3,

462 Chapter 6 Dynamic Programming

where we have written V i for the value starting at state i under the optimal

policy. Since this expected reward is smaller than the immediate reward of 5

units that could be earned by stopping, it is optimal to stop at state 4. Hence,

V 4 5.

Knowing the optimal value starting at states 4, 5, and 6, we can now

decide what to do when the chain is at state 3. If we stop immediately, we

can collect a reward of 3. Let us compare this to what we expect to get using

an optimal policy, if we do not stop at state 3. Since the chain will jump to

state 4, state 5, or state 6 with equal probability, the expected earnings under

the policy of not stopping at state 3 are

1 3 V 4 1 3 V 5 1 3 V 6

1 3 5 1 3 6 0 11 3

.

This exceeds the immediate reward at state 3, thus it is optimal not to stop at

state 3. Common sense has led us to the optimal stopping policy, which is

that we should stop at the first time T such that the chain is in the set:

A 4, 5, 6 .

The main thing that you should notice about this example is that deci-

sions are made on the basis of finding the larger of the immediate reward

f i and the expected (optimal) value of waiting one more time unit:

 j E T i, j V j .

Viewed as a column vector, the optimal value function therefore satisfies

(1)V i max f i , T V i .

We stop at states i such that this maximum is f i , i.e., the optimal stopping

time is the time of first entry to the set

(2)A i E : V i f i .

Our advantage in the simple example above was that we had states i for

which the value V i was "obvious," and we could use these states to com-

pute V for the less obvious states.

Activity 1 – In the example above, at least how large would the reward

at state 3 have to be so that it is optimal to stop there? By how much can

the reward at state 4 be reduced without changing the optimal stopping

policy?

6.5 Optimal Stopping of a Markov Chain 463

Equation (1) looks like a dynamic programming equation, and indeed we

can obtain it by formulating the optimal stopping problem as a problem of

Markov decision theory. Let X0, X1, X2, ... be the chain of states. Suppose

that the state space E is finite and contains an absorbing state of no

reward. For each state i, let the action space be A Ai 0, 1 , where action

1 is to stop and collect the reward, and action 0 is to continue. A stationary

policy for the problem is determined by a function u : E A. If u i 1,

then we stop at state i; and if u i 0, then we let the chain continue. There

are rewards f i given for each state i E, that determine the reward func-

tion for the Markov decision process:

r i, a
0 if a 0 or i
f i if a 1 and i

To construct the transition matrices, note that if we choose action 0, then

the probability law of the next state is the same as that of the uncontrolled

Markov chain. Thus,

T0 i, j T i, j , i, j E

If we choose action 1, then no more rewards are to be earned. A convenient

way of reflecting this fact is to assume that under action 1, the next state is

certain to be , i.e.:

T1 i, j
1 if j
0 otherwise

for all i E. The optimal stopping problem is to find a stationary policy

u u , where u is a function from the state space E to the set A 0, 1 of

actions, to achieve the maximum value in the following expression, for all

i E:

(3)
V i maxu V i, u maxu Eu n 0 r Xn, u Xn X0 i

States i for which u i 1 are those at which we stop the chain. This model

defines an infinite horizon undiscounted Markov decision problem. The

value V i, u of any stationary policy u u is still finite because only one

term in the infinite series will actually be non-zero.

Let us proceed, at least formally, as if the results of Section 3 still apply,

with 1. If this is so, then the DP equation (Formula (2) of Section 3)

becomes:

464 Chapter 6 Dynamic Programming

(4)

V i max
a 0,1

r i, a j E V j T i, j ; a

max r i, 0 j E V j T i, j ; 0 ,

r i, 1 j E V j T i, j ; 1

max 0 j E V j T i, j , f i V 1

max T V i , f i

for all i . Clearly V 0. Thus, formula (1) arises as a result of a

Markov decision process formulation, granting the truth of the dynamic

programming equation in this new setting.

EXAMPLE 1. Let us see how expression (1) might be used directly to

solve an optimal stopping problem. Suppose that you have a piece of real

estate up for sale. Each day, an offer of some amount comes in. Assume

that there are n possible offers, f1 f2 ... fn, and independent of the

previous history of offers, you receive an offer of level fi with probability pi.
But, there is a positive probability p0 that another offer will never come.

Find a strategy that tells you when to accept an offer, so as to maximize the

expected value of the offer accepted.

To model this as an optimal stopping problem, let Xk be the value of the

offer received on day k. The state space is E 0, f1, f2, ... , fn , where we

have included 0 to represent the state of not receiving an offer. By the stated

conditions, Xk is almost a completely memoryless Markov chain, with the

exception that once state 0 is reached, the chain stays there forever. The

transition matrix is

T

0
f1
f2
:
fn

1 0 0 0 ... 0
p0 p1 p2 p3 ... pn
p0 p1 p2 p3 ... pn
: : : : : :

p0 p1 p2 p3 ... pn

0 f1 f2 f3 ... fn

Since V 0 is clearly 0, to characterize the optimal stopping policy we

must solve for n variables yi V i , i 1, 2, ..., n. The structure of the

transition matrix gives a very special form to equation (1):

V i max f i , T V i
yi max fi, j 1

n p j y j p y

So we must have both of the following:

yi p y, yi fi i 1, 2, ... , n

Each component yi of the optimal solution vector y exceeds the correspond-

ing fi, and exceeds the constant p y. One of these inequalities must be an

6.5 Optimal Stopping of a Markov Chain 465

equality. Since the offers fi increase as i increases, there must be some

cutoff level i , such that the first set of constraints yi p y are binding for

i i , and the second set yi fi are binding for i i . For i i , the optimal

value function agrees with the reward function; thus the optimal policy

accepts offers of fi or higher. Hence the value function satisfies

(5)yi V i
p y for i i

fi for i i

As a numerical example, suppose that the possible offers are 10, 20, 30,

40, and 50 thousand dollars, occurring with probabilities 1/16, 1/8, 1/8, 1/2,

and 1/8, respectively. Thus, the probability of not receiving an offer is p0 =

1/16. Since there are few possibilities here, we can attempt by trial and error

to arrive at the offer that maximizes expected returns. Let us start by calculat-

ing the value of the policy that accepts offer 2 (20,000) or more. For i 2,

yi fi 10000 i. Clearly y0 0. For y1, we can solve the linear equation

y1 p y in the first part of (5), where p is the vector of probabilities and y is

the vector of yi's. Then, initializing variables and solving as below we find

y1 104, 000 3 34666.7.

f f0, f1, f2, f3, f4, f5

0, 10000, 20000, 30000, 40000, 50000 ;

y y0, y1, y2, y3, y4, y5

0, y1, f2, f3, f4, f5 ;

p p0, p1, p2, p3, p4, p5

1 16, 1 16, 1 8, 1 8, 1 2, 1 8 ;

T 1, 0, 0, 0, 0, 0 , p, p, p, p, p ;

Solve y1 p.y, y1

y1
104000

3

466 Chapter 6 Dynamic Programming

y1 104000 3;

f0, T.y 1 , f1, T.y 2 ,

f2, T.y 3 , f3, T.y 4 ,

f4, T.y 5 , f5, T.y 6

0, 0 , 10000,
104000

3
,

20000,
104000

3
, 30000,

104000
3

,

40000,
104000

3
, 50000,

104000
3

The maxima are 0, 104000
3

, 104000
3

, 104000
3

, 40000, 50000 , whereas the

value of our current policy is 0, 104000
3

, 20000, 30000, 40000, 50000 . This

mismatch indicates that the current policy is not optimal. Similarly we can

find that the policy of accepting offers 3 (30,000) or more is unsuitable (see

Activity 2 below).

Now we evaluate a policy that accepts an offer of 40,000 or more. Then

y0 0, y4 40000, y5 50000, and y1, y2, y3 can be solved for using the

equations y1 y2 y3 p V from formula (5). We obtain y1 y2 y3

420000 11 38181.81, as below.

Clear y, y0, y1, y2, y3, y4, y5 ;

y

y0, y1, y2, y3, y4, y5 0, y1, y2, y3, f4, f5 ;

Solve y1 p.y, y2 p.y, y3 p.y , y1, y2, y3

y1
420000
11

, y2
420000
11

, y3
420000
11

Again we compute for each state the two expressions inside the maximum in

(1):

y1 420000 11; y2 420000 11; y3 420000 11;

f0, T.y 1 , f1, T.y 2 ,

f2, T.y 3 , f3, T.y 4 ,

f4, T.y 5 , f5, T.y 6

6.5 Optimal Stopping of a Markov Chain 467

0, 0 , 10000,
420000
11

,

20000,
420000
11

, 30000,
420000
11

,

40000,
420000
11

, 50000,
420000
11

The maxima are 0, 420000 11, 420000 11, 420000 11, 40000, 50000

which agree with the values of the current policy. Therefore the policy of

accepting an offer of 40000 or more is optimal.

Activity 2 – Check in Example 1 that the policy that accepts an offer of

30,000 or more is not optimal.

Linear Programming Approach

We cannot count on special structure similar to Example 1 all the time. We

now search for a computationally useful characterization of the optimal

value function and the optimal policy. The characterization of the optimal

stopping policy has already been suggested earlier in the section, and it is

repeated in Theorem 1 below. To find the policy explicitly requires the

calculation of the value function. A method for doing this will arise from

Theorem 2. Regrettably, the proofs of these two theorems would take us

rather far afield. They require a careful definition of the notion of stopping
time, and a study of general properties of stopping times, as well as functions

on Markov chains called excessive functions (see the Remark below Theo-

rem 2). Consequently, we omit the proofs. For a thorough development, see

Cinlar ([15], Section 7.3).

THEOREM 1. Let A be the set:

(6)A i E : V i f i

where V is the optimal value function. Define a stationary policy by

u i 1 iff i A . Then u is optimal. In other words, the optimal time to

stop is the time at which the chain Xn first visits A .

Theorem 1 reduces the problem to that of computing the optimal value

function V . Since f is known, it is easy to find those states i at which V and

f agree, and these are the stopping states.

From (1), we see that V is a function g from E to satisfying the

properties:

468 Chapter 6 Dynamic Programming

(7)
a g i T g i
b g i f i

(We continue to view functions on E as column vectors.) We have the

following.

THEOREM 2. The optimal value function V satisfies (7a) and (7b); and if

g is another function on E satisfying (7a) and (7b), then g i V i for all

i E.

REMARK. A function g : E is called excessive if it satisfies (7a).

Thus, the theroem may be restated as: The value function of the optimal

stopping problem is the minimal excessive function dominating the reward

function. There is an interesting intuitive interpretation of excessive func-

tions based on the fact that

(8)

g i T g i j E T i, j g j

j E P X1 j X0 i g j
E g X1 X0 i

One can iterate the inequality to show that also

(9)g i E g Xn X0 i

for all n 0. View g as a reward function. If g is excessive, then for each

starting state i, the reward g i that can be collected immediately exceeds the

expected reward that can be collected at any later instant of time. In fact, (9)

forms the basis for the proof of Theorem 2 because we can replace g by f
inside expectation, by the monotonicity of expectation and the fact that

g f , to obtain

 g i E f Xn X0 i n 0

That is, g exceeds the expected reward we could collect at any fixed time n.

From this it is not too difficult to show that g must exceed the optimal value

function V of the problem.

Theorem 2 enables us to compute V as the optimal solution of a linear

program. View the optimal value function V as a column vector
y y1, …, ym

t, where m is the size of E. Since V is the minimal exces-

sive function dominating f , for any other vector y y1, …, ym
t satisfying

yi T y i and yi f i for all i, we have yi yi for all i. Since y is the

smallest such vector in every component, in particular the sum of its compo-

nents is the smallest among all such vectors. This means that y is an

optimal solution of the linear program:

6.5 Optimal Stopping of a Markov Chain 469

 minimize i 1
m yi

subject to: yi j 1
m T i, j y j i 1, 2, ... , m

yi f i

To summarize, in order to find the optimal stopping policy, solve the

linear program (10) for the values yi V i of the optimal value function.

Then compare these values to f i . The optimal policy is to stop at those

states for which f i V i , and continue otherwise.

 One final remark is that we can often simplify the computation, because

the value function is constant over any recurrence class of the Markov chain

Xn , and equals the maximum reward f i for states i in the class. To see

this, note that if C is a recurrence class and the chain begins in C, then the

chain will reach every state in C. Thus, we can wait until the state i , whose

reward is maximal in C, is reached. We stop there to receive a reward of

f i . This reduces the problem to finding V i for transient states i.

Activity 3 – Suppose that a Markov chain has a transient state labeled

state 1, and two recurrence classes C1 and C2. The rewards for the three

states in C1 are 6, 5, and 3, and the rewards for the four states in C2 are

2, 8, and 5. State 1 has reward 6, and from state 1, it is equally likely to

go back to state 1, or into class C1 or into class C2 at the next move.

What is the optimal stopping policy?

EXAMPLE 2. Let Xn be the state at time n of a game, in which the gambler

can stop at any time and collect the reward that accrues to the current state.

Suppose that there are two "bust" states (states 1 and 5 in the transition

diagram of Figure 6.5) and three active game states (2, 3, and 4). If the

potential rewards are as indicated, at what states should the gambler quit the

game in order to maximize his expected reward?

1 0

2 2 3 2 4 3

5 01

1 3

2 3

1 2

1 2

1 3

2 3

1

Figure 6.5 – Markov chain of Example 2

470 Chapter 6 Dynamic Programming

The transition matrix and reward vector are below:

T

1 0 0 0 0
1 3 0 2 3 0 0

0 1 2 0 1 2 0
0 0 1 3 0 2 3
0 0 0 0 1

 f

0
2
2
3
0

There are two absorbing states, namely 1 and 5. Clearly,

V 1 0, V 5 0

States 1 and 5 belong to the set A of states where the gambler should (in

fact, must) stop. Write yi for V i , i 1, 2, ... , 5. Since y1 y5 0, we

have, from (10), that the vector y 0, y2, y3, y4, 0 is the optimal solution

to the three-variable linear program:

(11)

minimize: y2 y3 y4

subject to:

y2 2 3 y3

y3 1 2 y2 1 2 y4

y4 1 3 y3

y2 2

y3 2

y4 3

By suitable algebraic rearrangement, this problem can be written in standard

minimum form, and then dualized. You can check that the dual standard

maximum problem is

(12)

maximize: 2 x4 2 x5 3 x6

subject to:

x1
1
2

x2 x4 1

2
3

x1 x2
1
3

x3 x5 1

1
2

x2 x3 x6 1

 xi 0 i

This can be solved by the simplex algorithm. We use the Dictionary com-

mand to produce the final system of equations. In the electronic version of

the text you can reproduce the intermediate steps.

6.5 Optimal Stopping of a Markov Chain 471

Needs "KnoxOR`LinearProgramming "̀

Clear f ;

system2 x1 1 2 x2 x4 x7 1,

2 3 x1 x2 1 3 x3 x5 x8 1,

1 2 x2 x3 x6 x9 1, f 2 x4 2 x5 3 x6 ;

Dictionary system2, x7, x8, x9, f ,

x1, x2, x3, x4, x5, x6

x7 1 1 x1 1
2 x2 0 x3 1 x4 0 x5 0 x6

x8 1 2
3 x1 1 x2 1

3 x3 0 x4 1 x5 0 x6

x9 1 0 x1 1
2 x2 1 x3 0 x4 0 x5 1 x6

f 0 0 x1 0 x2 0 x3 2 x4 2 x5 3 x6

Dictionary system2,

x7, x8, x6, f , x1, x2, x3, x4, x5, x9

Dictionary system2,

x7, x5, x6, f , x1, x2, x3, x4, x8, x9

Dictionary system2,

x4, x5, x6, f , x1, x2, x3, x7, x8, x9

Dictionary system2,

x4, x2, x6, f , x1, x3, x5, x7, x8, x9

x4 3
2

2
3 x1 1

6 x3 1
2 x5 1 x7 1

2 x8 0 x9

x2 1 2
3 x1 1

3 x3 1 x5 0 x7 1 x8 0 x9

x6 3
2

1
3 x1 5

6 x3 1
2 x5 0 x7 1

2 x8 1 x9

f 15
2

1
3 x1 13

6 x3 1
2 x5 2 x7 5

2 x8 3 x9

Here, x7, x8, x9 are the slack variables for the maximum problem. We find:

V t 0, 2 , 5 2, 3, 0

472 Chapter 6 Dynamic Programming

since, as you will recall, the optimal solutions y2, y3, y4 to the minimum

problem are the negatives of the slack coefficients in the objective row of the

final system of the dual maximum problem. The stopping set is the set of

states for which V and f have the same value, hence the optimal stopping

time is the time of first entry to the set:

A 1, 2, 4, 5 .

Exercises 6.5

1. (Mathematica) For the chain with transition matrix below, the rewards for

states 1–5 are, respectively, 1, 0, 5, 2, and 3. Draw the transition diagram,

and use your intuition to guess at the optimal stopping policy. Then solve

the linear program associated with the value function of the problem to

verify that your solution is correct.

T

1 2 1 2 0 0 0
1 3 0 1 3 1 3 0
2 3 1 3 0 0 0

0 0 0 0 1
0 0 0 1 0

2. For the chain with the transition diagram below, the number of the state is

equal to its reward. Find the optimal stopping time.

1

2 3

4

1

3 4

1 4
3 4

1 4

1

Exercise 2

3. Consider the Markov chain of Figure 4.8, whose transition matrix is

reproduced below. Suppose that the reward function is f i 7 i,
i 1, ... , 6 Find intuitively the optimal stopping time.

6.5 Optimal Stopping of a Markov Chain 473

 2 3 4 5 6 1

T

2
3

4
5
6

1

1 4 3 4 0 0 0 0
3 4 1 4 0 0 0 0

0 0 0 1 3 2 3 0
0 0 0 0 1 0
0 0 1 3 2 3 0 0

1 2 0 0 0 1 4 1 4

4. Let Xn be a Markov chain with the transition matrix below. Show that

the constant function f 2 is excessive (i.e., f T f). More generally,

show that for an arbitrary Markov chain with finite state space, the constant

function f c is excessive.

T
1 2 1 2 0
1 3 1 3 1 3
1 4 0 3 4

5. A shady character has a sports betting operation. Each month he either

makes one more monetary unit, or else he is closed down by the police and

all profits are confiscated. The latter occurs with probability 1/8. His

desired profit level is 6 monetary units; if that is reached he will abandon the

operation and retire to Florida. But he realizes that it may be better for him

to quit early, since he risks the loss of all money.

(a) Formulate the problem as an optimal stopping problem.

(b) Write the system of inequalities V T V for the value function V of

the problem.

(c) Use expressions (1) and (2) to find the optimal stopping policy.

6. (Mathematica) You have a contract called an option to purchase a share of

stock when you desire, at the fixed price of 3 monetary units. The day-to-

day price of the stock follows a Markov chain with the transition diagram

below. If the option is exercised when the price is s, then the stock can be

immediately resold at a profit of s 3. You do not have to exercise the

option at all if it is not beneficial, but note that there is a chance that the

company will go bankrupt before the option is exercised if you wait too

long, in which case it will be worthless. When should you exercise the

option?

474 Chapter 6 Dynamic Programming

0

1 2 3 4 5

1

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1

Exercise 6

7. On a television game show, a contestant is offered a sequence of prizes,

which are independent and identically distributed random variables taking

possible values $1000, $2000, and $3000 with probabilities 1/2, 1/8, and 1/8,

respectively. The contestant may at any time choose to accept a prize, at

which point the game is over. The game show host may, at some point,

choose to offer no more prizes, and the contestant departs with nothing.

This happens with probability 1/4. When should the contestant accept a

prize?

8. Suppose, in the optimal stopping problem, that there is a discount factor of

0, 1 per period. That is, the reward collected when the game is

stopped at time S is only S f XS in present-day terms.

 (a) Use a dynamic programming argument to show that the optimal value

function satisfies

 V i max f i , T V i ,

 where T is the transition matrix of the Markov chain.

 (b) Let us presume that it is still true that the optimal stopping time is the

time at which the chain first enters the set A i E : f i V i . Find the

optimal stopping time for the chain whose transition diagram is below, if the

reward function is f i i, and the discount factor is .5.

6.5 Optimal Stopping of a Markov Chain 475

0

1 2

3

1

1 2

1 2
1 2

1 2

1

Exercise 8

9. Suppose that the reward function f itself in an optimal stopping problem is

excessive. Show that the optimal strategy is to stop immediately.

10. (Mathematica) Can you develop a policy improvement approach to the

optimal stopping problem? Try it on the problem of Figure 6.4.

11. (Mathematica) In the game show "Who Wants To Be A Millionaire?," a

contestant is given a sequence of multiple choice questions with four alterna-

tive answers. The contestant can choose to keep the amount of money that

he or she has currently earned and bow out of the game, or to gamble on

answering the next question correctly. Each question answered correctly

doubles the contestant's winnings; but with the first question that is answered

incorrectly, the contestant loses the game and goes away with nothing. The

game stops if the contestant reaches an amount in excess of $1 million. The

questions become harder as the game proceeds; suppose that the chance of

answering the ith question correctly is 3 2 i 1 . If the contestant starts

with $1000, when should he quit the game?

6.6 Extended Applications

In this section we present two examples that are larger and more complicated

than any we have done so far: (1) a model for the valuation of an investment

object called an American call option, and (2) an inventory management

problem. There are two purposes: first, you will see other applications of

dynamic programming in which the initial modeling is more subtle, and

second, the main ideas covered in this chapter will be reviewed.

476 Chapter 6 Dynamic Programming

American Option Problem

EXAMPLE 1.Suppose that there is a risky investment opportunity (such as

a common stock) whose market price changes with time in a probabilistic

way. The transition diagram of the price process is drawn in Figure 6.6.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

q

1 q

q

1 q

q

1 q

q

1 q

q

1 q

q

1 q

Figure 6.6 – Markov chain for risky asset motion

The state labels in the diagram have been denoted generally as x1, x2, x3,

etc., but we actually assume that the states are connected to one another as

follows. If at time n, the price is X , then at time n 1, the price is either

1 u X or 1 d X , where u and d represent the percentage increase and

decrease, respectively, in the price of the risky asset (which we may refer to

occasionally as rates of return, or interest rates). Hence if the state at time 0

is x1, then the possible states at time 1, which are states x2 and x3, respec-

tively, represent 1 u x1 and 1 d x1; states x4, x5, and x6 represent

1 u 2 x1, 1 u 1 d x1, and 1 d 2 x1; etc. The "up" probability is q
at each time, and the "down" probability is 1 q.

Activity 1 – Consider as a numerical example the case where at time 0,

the share price is x1 $55. Return rates are u .04 and d .02.

Assume that the probability q is exactly 1/2. Draw a tree diagram

representing the possible motions of the stock price. What is the

expected price at time 3?

A call option on a risky asset such as our stock is a contract, tradeable in

the marketplace, which permits the owner of the option to purchase a share

6.6 Extended Applications 477

of the stock for a prespecified price E if it is in the option owner's interest.

An option of so-called American type allows the owner to exercise the

option at any time up through a fixed termination time T . For example, if

the option contract specifies a termination time of three months, the exercise

price is $60 per share, and the current price is $55, it is not in the owner's

interest to exercise the option immediately because he can purchase a share

in the open market for a lower price than the option permits. But if at any

time in the next three months the stock price rises to $63, for example, then

the option holder can exercise the option to buy a share at $60, then immedi-

ately resell the share in the open market for a profit of $3. Because the

option holder can benefit in this way, the option has some value of its own,

and the option can be traded on the market just like the stock on which it is

based. Intuitively, the option value ought to depend on the price of the stock

at the current time, how much time remains before the termination time, and

perhaps some other parameters of the stock price process or the economic

market as a whole. We would like to find that option value.

Activity 2 – Would you expect the option value to increase or to

decrease as a function of (a) stock price; (b) time remaining until

termination?

Though it is not obvious, we can consider the problem as a dynamic

programming problem with a finite time horizon equal to the termination

time T of the option. At each (discrete) time up to time T , the investor has a

decision to make as to whether to exercise the option or not. Let action 1

represent the action of exercising, and action 2 the action of not exercising

the option. The state space of the system is the set of prices that are attain-

able by the stock on which the option is based; but as we have done before,

we can introduce a special death state of no reward to which the process

goes if the option is exercised; otherwise the process follows the probability

law of the stock price as shown on the tree of Figure 6.6. When action 1 is

taken, there is a reward of max X E, 0 earned by the investor by exercis-

ing the option at price E and reselling at current price X in the open market.

We will also assume a time discounting factor of using which future

money values are translated to present value, as in Sections 3 and 4. The key

observation is that the value of the option to the investor equals the maxi-

mum expected discounted value that the investor can possibly receive by

using an optimal policy in the DP problem. This DP problem is closely

related to the optimal stopping problem of Section 6.5, except for the

discount factor and the fact that the termination time prevents the investor

from waiting indefinitely to act.

A brief note on the economics of the situation is in order. Assume that

there is a non-risky asset available whose value increases deterministically

by a factor of 1 r. Then it can be shown that in order to avoid arbitrage in

478 Chapter 6 Dynamic Programming

the market, i.e., the possibility that investors can achieve riskless profits by

balancing portfolios of stocks and options on those stocks, the probability q
must be related to the parameters of the model by q r d u d . (See,

for example, Baxter and Rennie [4].)

With this introduction, it should be clear that we ought to define the

parameters of the DP problem as follows:

 T1 x, y
1 if y
0 otherwise

 T2 x, y
q if y 1 u x

1 q if y 1 d x

r x, 1 max x E , 0 x ;

r x, 2 0 x ;

r , a 0 for a 1, 2

R 0; R x max x E, 0 x ;

The value of the option at time 0 solves the DP problem:

V0 x maxu Eu n 0
T 1 k r Xk, uk Xk

T R XT

We can solve the problem of valuing the option as in Section 6.2 by the

backward programming algorithm beginning at the final time T with the

function VT R and working back to time 0 using the DP equation:

(1)

Vn 1 x maxa 1,2 r x, a Eu Vn Xn

max max x E, 0 , 0 q Vn 1 u x
1 q Vn 1 d x

In the process of executing the algorithm, we also derive the option value at

all times n between 0 and T by finding the value functions Vn.

EXAMPLE 1. Suppose that at time 0, the share price is $10, interest rates

are u .04 and d .02, and q .5 (which would follow from the anti-arbi-

trage principle if the riskless rate was r .01). Let the termination time be

T 3, let the discount factor be .9, and let the exercise price be

E 10.50. Setting the initial state to be x1, the possible values x2 and x3 of

the stock price at time 1 are

x1 10;

x2, x3 1 .04 10, 1 .02 10

10.4, 9.8

The possible values at time 2 are

6.6 Extended Applications 479

x4, x5, x6
1 .04 2 10, 1 .04 1 .02 10, 1 .02 2 10

10.816, 10.192, 9.604

And the possible values at time 3 are

x7, x8, x9, x10
1 .04 3 10, 1 .04 2 1 .02 10,

1 .04 1 .02 2 10, 1 .02 3 10

11.2486, 10.5997, 9.98816, 9.41192

The tree representing the possible motions of the stock for this particular set

of parameters is below.

10

10.4

9.8

10.82

10.19

9.60

11.25

10.60

9.99

9.41

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 6.7 – Risky asset motion, x1 $10, u .04, d .02

The dynamic programming algorithm initializes

V3 x R x max x 10.50, 0 , for x x7, x8, x9, x10

and the DP equation (1) becomes

480 Chapter 6 Dynamic Programming

(2)
Vn 1 x

max max x 10.50, 0 , .45 Vn 1.04 x .45 Vn .98 x

The values of V3 at the states x x7, x8, x9, x10 are computed below:

Clear V3, V2, V1, V0 ;

V3 x_ : Max x 10.50, 0 ;

V3 x7 , V3 x8 , V3 x9 , V3 x10

0.74864, 0.09968, 0, 0

This gives us the obvious result that the call option is only valuable at the

expiration time T 3 if the stock price is at one of its two highest values,

x7 11.25 or x8 10.60, in which case the profit to the option holder is the

stock price minus the exercise price of 10.50. The option is not exercised,

and consequently it expires worthless, if the stock price is x9 9.99 or

x10 9.41.

We use Mathematica to simplify the expression inside the maximum in

(2) to find V2. So that we can see the maximizing action, we compute the list

of two values in the DP equation, then find the maximum of the two. Begin-

ning with x4, note that the two states that it leads to are x7 and x8; hence we

can find V2 x4 as follows:

V2x4list

Max x4 10.50, 0 , .45 V3 x7 .45 V3 x8
V2 x4 Max V2x4list

0.316, 0.381744

0.381744

Since the second action achieves the maximum, it follows that the option

should not be exercised at state x4. Repeating for x5 below, we see that it is

again optimal not to exercise.

6.6 Extended Applications 481

V2x5list

Max x5 10.50, 0 , .45 V3 x8 .45 V3 x9
V2 x5 Max V2x5list

0, 0.044856

0.044856

The next computation shows that the option is without value at x6. (Look at

the tree of Figure 6.7 to decide why this is true.)

V2x6list

Max x6 10.50, 0 , .45 V3 x9 .45 V3 x10
V2 x6 Max V2x6list

0, 0

0

We proceed to V1, working along the same lines.

V1x2list

Max x2 10.50, 0 , .45 V2 x4 .45 V2 x5
V1 x2 Max V1x2list

0, 0.19197

0.19197

V1x3list

Max x3 10.50, 0 , .45 V2 x5 .45 V2 x6
V1 x3 Max V1x3list

0, 0.0201852

0.0201852

At both x2 and x3, it is optimal not to exercise. Finally, at the initial state x1

we have

482 Chapter 6 Dynamic Programming

V0x1list

Max x1 10.50, 0 , .45 V1 x2 .45 V1 x3
V0 x1 Max V0x1list

0, 0.0954698

0.0954698

Thus, the value of the option when there are three time periods remaining

and the initial price is $10 is just V0 x1 $.10, rounded to the nearest cent.

Activity 3 – In Example 1, redo the American call option valuation

problem assuming that the expiration time is T 4. Is there any path of

the stock price process under which the option is exercised before the

termination time?

Inventory Problem

EXAMPLE 2.A retail store stocks a certain dishwasher. We are interested

in controlling the number of dishwashers in stock over an indefinite period

of weeks. During a given week, a total demand for either 0, 1, or 2 dishwash-

ers occurs, each with probability 1/3. After the store closes on Friday night,

it is possible to place an order with the manufacturer for more dishwashers.

The order will be filled by the following Monday morning when the store

reopens. The management has decided that the store will never keep more

than two dishwashers on hand. Demands for a dishwasher that occur when

no dishwashers are in stock are lost. Each dishwasher is sold at retail price r
and can be ordered from the manufacturer at wholesale price m r. There is

a weekly storage cost, which for simplicity we assume is s dollars for each

dishwasher in stock on Monday morning, regardless of whether any are sold

during the week. If there is a discount factor of .99, how should the

store reorder dishwashers on each Friday night in order to maximize

expected total discounted profit?

A reasonable first guess at how to model the problem as a Markovian

decision problem is to say that the "state" of the system is the inventory

level, and the "actions" are orders for more dishwashers. In each weekly

time period there is a profit, which is the sales revenue minus storage and

reorder costs. Let us adopt the following notation:

Yn = # dishwashers in stock at beginning of week n, n 0, 1, 2, …;

Dn = # dishwashers demanded during week n, n 0, 1, 2, …;

6.6 Extended Applications 483

Un = # dishwashers ordered at end of week n, n 0, 1, 2, …;

Rn = net profit during week n (including reorder cost, if any).

Note that if the demand Dn in week n is less than or equal to the stock level

Yn, then Dn dishwashers are sold, otherwise Yn are sold. In other words, the

smaller of these two numbers gives the number of dishwashers sold. The

sequence of operations is shown in Figure 6.8.

order U0 order U1 order U2

week 0 week 1 week 2 week 3

M F M F M F M F
Y0 demand D0 Y1 demand D1 Y2 demand D2 Y3 demand D3

Figure 6.8 – Sequence of operations in the inventory problem

Consider the net profit during week n, for n 0, 1, 2, …. We sell

min Dn, Yn dishwashers at r dollars apiece, we store Yn dishwashers at a

cost of s dollars each, and we order Un dishwashers from the manufacturer at

a cost of m dollars apiece. Hence, we can write

(3)Rn r min Dn, Yn s Yn m Un, n 0, 1, 2, … .

Notice also that the amount that can be ordered after week n depends on

both Yn and Dn. For example, if there are 2 dishwashers at the start of the

week, and none are demanded during the week, the rules say that no dish-

washers can be ordered. This observation indicates that the inventory level

Yn is an insufficient description of the "state" of the system. The demand Dn
should be recorded as well. A typical state is of the form i y, d , where y
is the inventory level at the start of the week and d is the weekly demand.

Under the problem conditions, both y and d can take on the values 0, 1, and

2, and the set of possible actions a (a = # dishwashers ordered from the

manufacturer) is also 0, 1, 2 , with some restrictions dependent on the

current state. You should have no difficulty checking the sets Ai of admissi-

ble actions displayed in Figure 6.9 for the states i E.

states 0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

actions 0, 1, 2 0, 1, 2 0, 1, 2 0, 1 0, 1, 2 0, 1, 2 0 0, 1 0, 1, 2

Figure 6.9 – Admissible action sets for inventory problem

By (3), the per-period reward function r0 is

(4) r0 i, a r0 y, d , a r min d, y s y m a

484 Chapter 6 Dynamic Programming

Recall that r is the retail price per dishwasher, the minimum in the two

expressions above is the number of dishwashers sold during the week, s is

the storage cost per dishwasher, m is the reorder cost per dishwasher, and a
is the number of dishwashers ordered. We use the notation r0, since r is

being used for the retail price.

The transition matrices for the three possible actions 0, 1, and 2 are

below. You should check all of the entries; here we explain just a few.

Consider the i 1, 0 row of T0 i, j . We are given that this week we

began with 1 dishwasher, none were demanded, and none were reordered.

Then we must start next week with 1 dishwasher. Demands next week for 0,

1, or 2 dishwashers have equal probability 1/3, so that the 1, 0 row of T0

clearly has 1/3 in each of the columns in which the first component is 1, and

has zeros elsewhere in the row. This is the thought process behind all of

these computations. As another example, consider the 2, 1 row of T1.

Here, we are given to have started the week with 2 dishwashers, of which 1

was demanded, and 1 was ordered at the end of the week. Thus, it is certain

that we start next week with 2 dishwashers, and demands of 0, 1, or 2 will

occur with probability 1/3 each. Note, for instance that the 1, 0 row of the

matrix T2 is omitted, because if we begin a week with 1 dishwasher and none

are sold during the week, we are not permitted to order two more under the

conditions of this problem.

T0

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 1 3 1 3 1 3 0 0 0 0 0 0

0, 1 1 3 1 3 1 3 0 0 0 0 0 0

0, 2 1 3 1 3 1 3 0 0 0 0 0 0

1, 0 0 0 0 1 3 1 3 1 3 0 0 0

1, 1 1 3 1 3 1 3 0 0 0 0 0 0

1, 2 1 3 1 3 1 3 0 0 0 0 0 0

2, 0 0 0 0 0 0 0 1 3 1 3 1 3

2, 1 0 0 0 1 3 1 3 1 3 0 0 0

2, 2 1 3 1 3 1 3 0 0 0 0 0 0

T1

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 0 0 0 1 3 1 3 1 3 0 0 0

0, 1 0 0 0 1 3 1 3 1 3 0 0 0

0, 2 0 0 0 1 3 1 3 1 3 0 0 0

1, 0 0 0 0 0 0 0 1 3 1 3 1 3

1, 1 0 0 0 1 3 1 3 1 3 0 0 0

1, 2 0 0 0 1 3 1 3 1 3 0 0 0

2, 0

2, 1 0 0 0 0 0 0 1 3 1 3 1 3

2, 2 0 0 0 1 3 1 3 1 3 0 0 0

6.6 Extended Applications 485

T2

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 0 0 0 0 0 0 1 3 1 3 1 3

0, 1 0 0 0 0 0 0 1 3 1 3 1 3

0, 2 0 0 0 0 0 0 1 3 1 3 1 3

1, 0

1, 1 0 0 0 0 0 0 1 3 1 3 1 3

1, 2 0 0 0 0 0 0 1 3 1 3 1 3

2, 0

2, 1

2, 2 0 0 0 0 0 0 1 3 1 3 1 3

Mathematica definitions of the matrices T0, T1, and T2, and the list of all

three denoted by AllTa are in the closed cell below this paragraph.

Activity 4 – Why is the 2, 0 row of T1 deleted? Justify the 2, 2 row

of T2. Why are the 0, 0 , 0, 1 , and 0, 2 rows of each matrix identical?

A stationary policy for this problem of inventory control is a function u,

where u i u y, d = number of dishwashers ordered at the end of each

week n, if week n started with y dishwashers and during week n, d dishwash-

ers were demanded. We wish to find a stationary policy to maximize

W i, u Eu n 0
n r0 Yn, Dn, un Yn, Dn Y0, D0 i

for every initial state i.

Let us now fix values for the coefficients of the reward function. Let the

storage cost s be 1 unit, and suppose that there is a 100% mark-up on the

price of the dishwashers, i.e., the wholesale price m 1 2 r, where r is the

retail price. Then we have

(5) r0 i, a r0 y, d , a r min d, y y 1
2

r a,

We will leave r as a parameter of the problem, and do two examples with

different values of r. Here is the reward function in tabular form in Mathemat-
ica.

Needs "KnoxOR`DynamicProgramming "̀ ;

486 Chapter 6 Dynamic Programming

Clear r ;

r0 0, 1 2 r, r , 0, 1 2 r, r ,

0, 1 2 r, r , 1, 1 1 2 r, ,

r 1, r 1 1 2 r, r 1 r ,

r 1, r 1 1 2 r, r 1 r ,

2, , , r 2, r 2 1 2 r, ,

2 r 2, 2 r 2 1 2 r, 2 r 2 r ;

tabheads " 0,0 ", " 0,1 ", " 0,2 ", " 1,0 ",

" 1,1 ", " 1,2 ", " 2,0 ", " 2,1 ",

" 2,2 " , "a 0", "a 1", "a 2" ;

TableForm r0, TableHeadings tabheads

a 0 a 1 a 2

0,0 0 r
2 r

0,1 0 r
2 r

0,2 0 r
2 r

1,0 1 1 r
2

1,1 1 r 1 r
2 1

1,2 1 r 1 r
2 1

2,0 2

2,1 2 r 2 r
2

2,2 2 2 r 2 3 r
2 2 r

Let us try to use the method of successive approximations to approxi-

mate the optimal value function and find the optimal policy. From Section

6.3, the DP equation is

(6)wn 1 i maxa Ai r i, a Ta wn i

First, for r 10, and an initial function w0 that is identically zero, the

DiscountedDPEquation command can be used to generate for each state the

list of values from which to choose the maximum.

Clear , w0, reward ;

.99; w0 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

reward r0 . r 10;

6.6 Extended Applications 487

wlist

DiscountedDPEquation AllTa, reward, w0, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w1 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 5. 10.
0,1 0. 5. 10.
0,2 0. 5. 10.
1,0 1. 6.
1,1 9. 4. 1.
1,2 9. 4. 1.
2,0 2.
2,1 8. 3.
2,2 18. 13. 8.

0, 0, 0, 1, 9, 9, 2, 8, 18

Comparing the maximum values reported in the second list to the first

column of the table, we see that action 0 for each state maximizes the

quantity on the right of the DP equation. We repeat the process with w1.

wlist

DiscountedDPEquation AllTa, reward, w1, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w2 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 0.61 2.08
0,1 0. 0.61 2.08
0,2 0. 0.61 2.08
1,0 4.61 1.92
1,1 9. 9.61 6.92
1,2 9. 9.61 6.92
2,0 5.92
2,1 13.61 10.92
2,2 18. 18.61 15.92

488 Chapter 6 Dynamic Programming

0.61, 0.61, 0.61, 4.61,

9.61, 9.61, 5.92, 13.61, 18.61

Since action 0 is no longer the maximizing action for each state, stabilization

has yet to occur, and we should try another step. The current maximizing

actions are a 1, 1, 1, 0, 1, 1, 0, 0, 1, respectively, for the nine states.

wlist

DiscountedDPEquation AllTa, reward, w2, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w3 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0.6039 2.8639 2.5862
0,1 0.6039 2.8639 2.5862
0,2 0.6039 2.8639 2.5862
1,0 6.8639 6.5862
1,1 9.6039 11.8639 11.5862
1,2 9.6039 11.8639 11.5862
2,0 10.5862
2,1 15.8639 15.5862
2,2 18.6039 20.8639 20.5862

2.8639, 2.8639, 2.8639, 6.8639,

11.8639, 11.8639, 10.5862, 15.8639, 20.8639

The maximizing actions are a 1, 1, 1, 0, 1, 1, 0, 0, 1, which are the same

as those in the previous step, but let us try one more time.

wlist

DiscountedDPEquation AllTa, reward, w3, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w4 Table Max wlist i ,

i, 1, Length AllTa 1

6.6 Extended Applications 489

a 0 a 1 a 2
0,0 2.83526 5.09526 5.61362
0,1 2.83526 5.09526 5.61362
0,2 2.83526 5.09526 5.61362
1,0 9.09526 9.61362
1,1 11.8353 14.0953 14.6136
1,2 11.8353 14.0953 14.6136
2,0 13.6136
2,1 18.0953 18.6136
2,2 20.8353 23.0953 23.6136

5.61362, 5.61362, 5.61362, 9.61362,

14.6136, 14.6136, 13.6136, 18.6136, 23.6136

We hit the policy below that always orders to restore the inventory to level 2,

defined in the offset formula below:

u0 0, 0 u0 0, 1 u0 0, 2 2;

u0 1, 0 1; u0 1, 1 u0 1, 2 2;

u0 2, 0 0; u0 2, 1 1; u0 2, 2 2

This differs from the previous policies, but let us pause here to check for

optimality of this policy. What we must do is to construct the transition

matrix Tu of the chain under this policy and the reward vector ru. These are

below, and you should check to see that the definitions are correct.

Tu 0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ;

ru 10, 10, 10, 6, 1, 1, 2, 3, 8 ;

Ident IdentityMatrix 9 ;

Wu LinearSolve Ident Tu, ru

287., 287., 287., 291., 296., 296., 295., 300., 305.

490 Chapter 6 Dynamic Programming

To check whether the current policy value function Wu satisfies the DP

equation, we use it as the third argument of the DiscountedDPEquation

command.

wlist

DiscountedDPEquation AllTa, reward, Wu, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 284.13 286.39 287.
0,1 284.13 286.39 287.
0,2 284.13 286.39 287.
1,0 290.39 291.
1,1 293.13 295.39 296.
1,2 293.13 295.39 296.
2,0 295.
2,1 299.39 300.
2,2 302.13 304.39 305.

287., 287., 287., 291., 296., 296., 295., 300., 305.

Our function Wu does satisfy the DP equation, so for the value r 10 it is

optimal to restore the inventory to its maximum possible level of 2 at the

start of every week. You will observe that the same solution can be found

more easily using the policy improvement method in Exercise 11.

Activity 5 – We are about to do some parametric analysis of the inven-

tory problem, which is continued in the exercises. Try to answer the

following before reading on: In what way do you think the parameter r
(the dishwasher retail price) might be changed in order that the optimal

policy no longer restores the inventory level to 2 at the start of the week?

In the activity above you should have concluded that the balance

between the profit on dishwashers and the cost of storing them determines

the nature of the solution. If we reduce the value of r in comparison with s,

we might expect that the optimal inventory level might decrease. Let us try

the value r 2 and proceed through the same computations as in the

example.

6.6 Extended Applications 491

Clear , w0, reward, r ;

.99; w0 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

reward r0 . r 2;

wlist

DiscountedDPEquation AllTa, reward, w0, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w1 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 1. 2.
0,1 0. 1. 2.
0,2 0. 1. 2.
1,0 1. 2.
1,1 1. 0. 1.
1,2 1. 0. 1.
2,0 2.
2,1 0. 1.
2,2 2. 1. 0.

0, 0, 0, 1, 1, 1, 2, 0, 2

The first policy that achieves the maximum in the DP equation is the policy

that never orders. We see that in the next step of successive approximations

this policy does not change.

wlist

DiscountedDPEquation AllTa, reward, w1, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w2 Table Max wlist i ,

i, 1, Length AllTa 1

492 Chapter 6 Dynamic Programming

a 0 a 1 a 2
0,0 0. 0.67 2.
0,1 0. 0.67 2.
0,2 0. 0.67 2.
1,0 0.67 2.
1,1 1. 0.33 1.
1,2 1. 0.33 1.
2,0 2.
2,1 0.33 1.
2,2 2. 1.33 0.

0, 0, 0, 0.67, 1, 1, 2, 0.33, 2

Let us check to see whether this policy is optimal. Its value is computed

below.

Ident IdentityMatrix 9 ;

ru 0, 0, 0, 1, 1, 1, 2, 0, 2 ;

Wu LinearSolve Ident T0, ru

2.22045 10 16, 2.22045 10 16, 2.28773 10 16,

0.507463, 1., 1., 1.75741, 0.492537, 2.

wlist

DiscountedDPEquation AllTa, reward, Wu, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2

0,0 2.22045 10 16 0.507463 1.75741

0,1 2.22045 10 16 0.507463 1.75741

0,2 2.22045 10 16 0.507463 1.75741

1,0 0.507463 1.75741
1,1 1. 0.492537 0.757407
1,2 1. 0.492537 0.757407
2,0 1.75741
2,1 0.492537 0.757407
2,2 2. 1.49254 0.242593

6.6 Extended Applications 493

2.22045 10 16, 2.22045 10 16, 2.22045 10 16,
0.507463, 1., 1., 1.75741, 0.492537, 2.

So we have swung over to the other extreme for our optimal policy, in

which, for r 2 it is best not to order any replacement dishwashers. (Why

intuitively it is clear that this should be the optimal policy?) Exercises 8 and

9 ask you to find values of r that yield intermediate policies.

Conclusion

Let us review briefly the highlights of this chapter. In the first section we

introduced the model. A controller is to make a sequence of decisions based

upon observation of the system. Those decisions change the course of the

system and incur rewards. The goal is to find the optimal plan, which

determines what the decision will be at each time, and for each possible

state. In Section 2 we introduced the backtracking procedure for finding the

optimal value function at any time for the problem in which control is

exerted over a finite time interval. Though the backward programming idea

had been known for some time, it was only in the 1950's and 1960's that

Bellman and others formalized the procedure in the modern way, and began

to fully exploit it.

Section 3 began the study of the infinite horizon discounted problem,

which continued in Section 4. In those sections we used a dynamic program-

ming equation to generate two approximation procedures. The first, the

method of successive approximations, constructs a sequence of functions

approaching the optimal value function. This method is not guaranteed to

converge in finitely many steps; hence another method, the policy improve-

ment algorithm, due to Howard [37], was introduced. Instead of approximat-

ing the value function, the idea was to approximate the optimal policy by a

sequence of strictly improving policies. Here it is required to solve for the

value function of each policy in the sequence, and this can be computation-

ally burdensome, but Mathematica provides assistance.

Section 5, on finding an optimal time to stop a Markov chain and accept

a reward, primarily followed Cinlar [15]. There are obvious applications of

this problem to games of chance, and also to problems such as the accep-

tance of the best offer for an item up for sale. We saw in this section that it

is possible to solve for the optimal value function by the methods of linear

programming. The optimal stopping problem therefore serves to unify the

diverse elements of this text: graph theory (transition diagrams), linear

programming, stochastic processes, and dynamic programming. There are

linear programming approaches to the computation of the optimal value

function for other dynamic programming problems as well. Both Ross [53]

and Derman [17] have details. Finally, we presented two extended examples

of the ideas and methods of this chapter in Section 6 on option valuation and

494 Chapter 6 Dynamic Programming

inventory control. Here, more than anywhere else in our brief introduction,

one sees the intricacies of the modeling process.

Our formulation of the Markovian decision problem was somewhat less

general than that of some sources. In selecting actions, no dependence on

the past history of the system was allowed, and the only sense in which

actions were random was in their dependence on the random variables

representing the state of the system. By contrast, it would be possible to

consider randomized policies, in which we observe the state, then perform

some randomized procedure based on the state to determine the action. The

rewards were also non-random functions of state and action. The extra

generality was dispensed with for the sake of clarity in this introduction to

the subject. The reader may see Derman [17] for a discussion of more

general problems. From the standpoint of the finite horizon and infinite

horizon discounted problems, our restricted view of policy suffices, for it

can be shown that the optimum among the broader class of policies occurs

among policies of the special form studied in this chapter. Much of our

material was patterned after Ross [53], who discusses the finite and infinite

horizon discounted problems, as well as some others. Hillier and Lieberman

[31] devote two chapters to dynamic programming and Markov decision

processes. Additional applied examples can be found in that source. Bell-

man [5], and Dreyfus and Law [21] are other good references.

Such extensions and generalizations are numerous. Also, as with

stochastic processes, serious technical issues arise when one moves to the

case of countably or uncountably infinite state or action spaces, or to a

continuous time parameter. The latter typically involves partial differential

equations. But even in the context of a discrete time parameter and finite

action set, questions about existence of optimal policies arise when the state

space is countable. As a simple example, consider the two transition dia-

grams in Figure 6.10. The state space is taken to be {0, 1, 2, ...}, and there

are only two actions available, a and b. The first diagram is the transition

diagram of the chain of states under action a, the second, action b.

0
1

2

3

1

1

1

1

0

1

2

3

1

1

1

1

1

(a) (b)

Figure 6.10 – Transition diagram of a Markov chain under (a) action a; (b) action b

6.6 Extended Applications 495

Suppose that the reward function is

r i, a 0 for all i; r 0, b 0, r i, b 1 1 i for i 1

Under action a, the chain drifts to the right deterministically and no reward

can be collected. Under action b, the chain immediately goes to the absorb-

ing state 0; an immediate reward 1 1 i can be collected if this action is

taken at state i, but no further rewards are possible. The supremum of all

possible rewards is 1, but no stopping policy can have a value of identically

1. Moreover, the DP equation is

V i max r i, a Ta V i , r i, b Tb V i
max V i 1 , 1 1 i
V i 1 1, at action a

The policy indicated by the DP equation is to take action a at every state, and

the value of this policy is 0. Not only does there not exist an optimal policy,

but the DP equation gives us a very bad policy. In general, there are topologi-

cal and analytical subtleties in the question of existence of optimal policies

when either the state or action space is not finite, and also in the case of

continuous time parameter. And, the problem of actually calculating the

solution in the infinite case is not insignificant.

An optimization criterion that we have not discussed is the maximization

of long-run average reward:

limn Eu k 0
n r Xk, uk Xk X0 i n 1

Does there exist an optimal policy at all? If so, is it stationary, as in the

discounted problem? In general, the answer is no to both questions (for

counterexamples, see Ross ([53], Sec. 5.1)). But under some regularity

conditions, there is a dynamic programming equation that characterizes an

optimal stationary policy. Furthermore, there is a way of translating the

problem to a discounted problem with the same optimal policy, so that one

could use the methods developed here to solve the latter problem.

To summarize, the methods of dynamic programming come into play in

applications in which there is a sequence of interrelated decisions to be

made. We have seen examples in inventory, fisheries, production, and

option valuation among others in this chapter, and the imaginative reader can

think of other applications as well. The breadth of the examples is impres-

sive, and the methodologies used to analyze them are rather simple, yet

powerful, and are often algorithmic in nature. In fact, one could make the

same statements about the other subject areas in this book. We have tried to

show not only the useful examples, but also some of the interesting mathemat-

ics of operations research, and how the pieces of the puzzle make an aestheti-

cally appealing picture. This picture is by no means complete. New prob-

496 Chapter 6 Dynamic Programming

lems in need of study arise frequently in business, government, engineering

and many other areas, and it is to be hoped that you will choose to investi-

gate some of them.

Exercises 6.6

1. (Mathematica) In the American option valuation problem, suppose that at

time 0, the share price is x1 $20. Return rates are u .07 and d 0. Use

the remark in the section to compute the probability q if there is a non-risky

asset whose rate of return is r .02. For an option that expires in 4 time

units and has exercise price $23, draw a tree diagram representing the

possible motions of the stock price. If the discount factor is .995, find

the value of the option at each node of the tree, in particular at time 0.

2. (Mathematica) For the scenario in Exercise 1, redo the problem for values

u .08 and u .09, and comment on how the solution depends on u.

3. (Mathematica) For the scenario in Exercise 1, redo the problem for values

of the exercise price E $22 and E $24, and comment on how the solution

depends on E.

4. (Mathematica) For the scenario in Exercise 1, redo the problem for values

of the discount factor .95 and .9, and comment on how the solution

depends on .

5. (Mathematica) A put option is an option that allows its owner to sell,

rather than buy, an asset at an agreed-upon exercise price E by a certain

expiration time T . This option is valuable to the holder if the asset value

falls below E, because then the option holder can buy the asset in the market

at the lower price, then sell it at a price of E, thus making a profit. Redo the

analysis of Example 1 to give the value of an American put option. Use the

same parameter values, except that the initial price of the asset should be

taken as $11.

6. For the dishwasher inventory problem, Example 2, relabel the state space

such that states 0, 0 , 0, 1 , and 0, 2 are lumped together as, say, state 0*,

and states 1, 1 and 1, 2 are lumped together as state 1*. Write the new

transition matrices Ta, and write dynamic programming equations similar to

(6) for the redesigned problem. Expand the equations out in full.

7. (Mathematica) Redo the inventory problem, Example 2, for (a) parameter

value r 4; (b) parameter value r 6.

8. (Mathematica) In the inventory problem, Example 2, try to find the

smallest value of r 2 that you can for which for some state it is optimal to

6.6 Extended Applications 497

reorder some positive number of dishwashers. Obtain the r only to the

nearest .1.

9. (Mathematica) In the inventory problem, Example 2, try to find the largest

value of r 10 that you can for which for some state it is optimal to reorder

less than the maximum possible number of dishwashers. Obtain the r only to

the nearest .1.

10. (Mathematica) Suppose in the inventory problem of Example 2 that we

are only interested in controlling the system during a particular ad campaign

that ends after the third week. No additional order is placed at the end of

week 3. The other problem conditions are the same, but we use no discount

factor. Solve the problem in finite time horizon.

11. (Mathematica) Use the method of policy improvement to find the

optimal policy in the dishwasher inventory example of Example 2, beginning

with the policy that orders only enough to restore the inventory level to 1

when necessary, ordering nothing when the inventory level is 2.

12. (Mathematica) Consider an inventory problem as in Example 2, but with

finite time horizon T 2 and no discount factor. Let r remain as a parameter

and work through the backward programming method for times 1 and 0 to

find the optimal action functions, which will depend on the interval of values

to which r belongs. (Hence you should be able to make statements of the

form: "For state i, at time n, action a is optimal for r belonging to a set;

otherwise action b is optimal" for each of the two times and nine states.)

Exercises 13–17 lead you through another financial model. A risky asset

moves in the manner of Figure 6.6. We follow the progress of an investor

who owns a portfolio of some shares in this asset as well as a checking

account (0% interest) containing some amount of money at time 0. The

investor can decide to either invest in more shares of the same asset or to sell

some number of the shares he holds currently. The investor is to decide how

to change the portfolio and how to consume money as time progresses, in

order to maximize the expected total consumption. In the finite time horizon

investment problem, all wealth is consumed at the terminal time T and only

then. (In a similar infinite horizon discounted problem, the investor maxi-

mizes the expected total discounted consumption over all periods.) To begin

modeling this situation, let the information contained in the state of the

process be given by

x = current price of risky asset;

r = current number of shares of risky asset;

y = current checking account balance.

498 Chapter 6 Dynamic Programming

Therefore, a state i is a three-dimensional vector: i x, r, y . The associ-

ated stochastic process has three component processes: Xn , Rn, and Yn,

indicating the share price and quantity held of the risky asset and the check-

ing account balance at time n. At a time such that the state of the process is

x, r, y , the total wealth of the investor is r x y. We will suppose that as

time progresses, the investor can shift money from the risky asset to the

checking account and vice versa.

13. Describe the possible actions of the investor and the transition probabili-

ties under those actions. What are the per-period and terminal reward

functions for the finite horizon problem? Describe the conditions for a policy

to be feasible. Write an expression for the optimal value function.

14. Write in general the DP equation for the problem formulated in Exercise

13. Suppose that at time 0, the share price x0 $5. The investor holds

exactly 10 shares initially and the checking account starting balance is

y $50. Interest rates are u .08 and d .05. The investor wants to

maximize wealth at the end of 3 years assuming that q .5. Write the DP

equation using these parameter values and draw a tree diagram representing

the possible paths of the risky asset.

15. (Mathematica) To solve the problem, it is convenient at this stage to

impose a continuous approximation to the actual problem: we suppose that

the investor can buy and sell fractional shares of stock so that all real values

of a between the constrained bounds in Exercise 13 are possible. This could

be the case if one was able to work through a consortium of investors that

allows joint ownership of a share of stock. Use Mathematica to simplify the

expression inside the DP equation for V2 in terms of V3. What action leads to

the maximum? Find V2. Continue to find V1, V0, and the optimal policy.

Given the nature of the problem parameters, is the optimal policy intuitively

obvious?

16. (Mathematica) Redo the investment problem with q .4, u .05,

d .04, T 4, and explain the result intuitively.

17. For the investment problem, show that as long as the expected change in

stock price from one time to the next is positive, the optimal strategy is to

invest all wealth in the stock.

6.6 Extended Applications 499

 Appendix A

 Probability Review

Introduction

This appendix is not meant to take the place of a course in probability

theory, but rather to refresh your memory of notions such as sample spaces,

random variables, expectation, conditional distributions, and moment-generat-

ing functions. In addition, some limit theorems are listed at the end of the

appendix that are often omitted in elementary treatments. We will try to

present only those definitions and results that are used directly in Chapters

4–6. Consequently, some standard features of introductory courses, such as

Chebyshev's inequality, the Central Limit Theorem, and elementary combinat-

orics, are omitted. Good references for the material in this appendix are:

Devore [18], Hastings [30], and Hogg & Tanis [35], and at a somewhat

higher level: Feller [22], Hastings [29], Hogg & Craig [36], and Parzen [48].

A.1 Definitions and Properties

Probability theory is concerned with random experiments, the possible

results of which are called outcomes. We leave these two terms undefined,

except to say that a random experiment is a phenomenon whose result cannot

be predicted exactly before the phenomenon is observed. An outcome is one

possible, indecomposable result of the experiment. By indecomposable, we

mean that an outcome cannot be broken down into a combination of other

outcomes.

Perhaps the simplest experiment is the flip of a coin, in which the

outcomes are head (H) and tail (T). Another experiment, in which there are

uncountably infinitely many outcomes, is the observation of the time until

the next comet comes into view in the night sky. The set of outcomes is the

set of all real-valued times t 0. The experiment is random, since we cannot

predict exactly when the next comet will appear. The reader should note that

when we say random, we do not mean that nothing whatsoever is known

about the experiment, but only that the exact outcome is not known in

advance. In the coin flip experiment, for example, we believe that if a coin

is uniformly weighted and fairly flipped, then both outcomes should have

equal chance of occurring.

501

DEFINITION 1. The sample space of a random experiment is the set

of all possible outcomes of the experiment.

Consider the experiment of picking two balls in succession, without

replacement, from a box that contains ten balls numbered 1–10. Typical

outcomes are 1, 5 and 6, 3 , and we can describe the sample space as

(1)i, j : i j and i, j 1, 2, ... , 10

It is apparent that there are 90 outcomes in , since there are ten possibilities

for the first component i, and for each of these, nine possibilities for the

second component j.
The sample space for the comet experiment is clearly

(2): 0,

Another experiment with an uncountably large sample space is the experi-

ment of watching a machine and noting its times of failure. A typical

outcome is depicted in Figure A.1.

1.5 2 2.5 3
time

Figure A.1 – Outcome representing successive failure times

The information that is recorded is the sequence of times t1, t2, t3, ... at

which the failures occur, from which comes the set theoretic description of

:

(3)t1, t2, t3, ... : ti 0, and ti ti 1 for all i

DEFINITION 2. An event is a subset of the sample space.

Since we have defined events as sets, they satisfy all of the usual set

theoretic properties. In the experiment of picking two numbered balls from

ten, the event described in English by "the first ball is 1" consists of the

outcomes 1, 2 , 1, 3 , ... , 1, 10 . In the comet experiment, the event

described by "the arrival time is less than 4" is the interval 0, 4 on the real

line. Although we do not discuss it in detail here, we must be careful of

502 Appendix A Probability Review

what subsets can be called events in the case where the sample space is not

countable in size. In this case there may be difficulties in measuring the size

of the set, which is roughly what must be done to give it a probability.

When the real line is the sample space, the sets that we will use are express-

ible as countable disjoint unions of intervals, which have enough structure to

avoid such technical problems. An advanced course in measure theoretic

probability treats more complicated events.

If the precise outcome of a random experiment cannot be known in

advance of the performance of the experiment, then the next best thing is to

have a probability measure that tells us how likely each event is. Under

some conditions it is possible to constructively define a probability measure.

Almost trivially, the assumption of a fair coin suggests that we define for the

coin flip experiment:

(4)P H 1 2, P T 1 2, P 0, P 1

These four sets, H , T , , , are the only events for this experiment. To

say that the empty set has probability zero means that it is impossible for

nothing to happen (e.g., the coin cannot land on its side); and to say that the

probability of the whole sample space is one means that some outcome is

certain to happen.

Less trivially, for the sample space of (1), suppose that balls are drawn

randomly, meaning that no preference is given to any pair i, j . Then each

of the 90 outcomes should be given 1 90th of the total probability of the

sample space, which we take to be 100 % 1. Hence P i, j 1 90 for

each outcome i, j . Also, probability should be an additive function, so

that, for example, the event that the first ball is a 1 should be given probabil-

ity equal to the total of the probabilities of outcomes satisfying the event,

namely 9 90 1 10.

For an arbitrary finite sample space one can constructively define a

probability measure by assigning non-negative probabilities P to each

outcome in such a way that the sum of all of the outcome probabilities

is one. Then define probabilities of events by

(5)P E P

The same procedure works for countably infinite sample spaces; but when

the sample space is uncountable, we cannot assign non-zero probability to

every outcome and still have finite total probability. As we shall see shortly,

one way of defining the probability of an event E in such a case is to inte-

grate a suitable function over the set E.

Following is a non-constructive, axiomatic definition of probability.

Appendix A Probability Review 503

DEFINITION 3. A probability measure P on the sample space of a

random experiment is a function from the events of to the real num-

bers such that:

(a) P 1;

(b) If E is an event, then P E 0;

(c) If A and B are disjoint events, then

 P A B P A P B .

It can be quickly checked that the probability defined in (5) satisfies the

three axioms. We remark that by induction, Axiom (c) of Definition 3

extends to unions of finitely many pairwise disjoint events, and in fact with a

little more effort it extends to countable disjoint unions.

Several useful consequences of the axioms are easy to prove.

(6)P 0

(7)For any event E, 0 P E 1

(8)
For any event E, P Ec 1 P E , where Ec denotes the

complement of E in

(9)If A B, then P A P B and P B Ac P B P A

For any two events A and B,

(10)P A B P A P B P A B

Property (9) is easy to see from the Venn diagram in Figure A.2(a) and the

additivity property of probability on disjoint sets. The Venn diagram in

Figure A.2(b) indicates why (10) is true. If P A and P B are simply added,

then the probability associated with the overlap P A B has contributed

twice; so that to obtain the correct P A B , we must subtract this intersec-

tion probability. Notice also that (10) implies that P A B P A P B .

This result extends to the case of countable unions, and is referred to as

countable sub-additivity:

(11)P i 1 Ai i 1 P Ai

504 Appendix A Probability Review

A

B

B Ac

A B

A B

(a) Subset rule (b) General rule for unions

Figure A.2 – Two rules of probability

A.2 Random Variables and Their Distributions

Often in applications of probability we are interested in a numerical-valued

function of outcomes. For example, let X1 be the number of the first ball

drawn in the experiment of (1). Then X1 6, 1 6, X1 3, 8 3, and in

general, X1 i, j i. In the experiment of observing the machine breakdown

times, a random variable of interest is T2, the time of the second breakdown.

Then T2 1, 3.5, 6.2, ... 3.5, for example.

DEFINITION 4. A random variable X is a real-valued function whose

domain is the sample space of a random experiment. The set of

values E that X can take on is called its state space.

Thus, as in the examples described above, a random variable is able to take

an outcome of an experiment and assign a number to it.

Another simple example of a random variable is the following, in which

we again consider the flip of a single coin: X is defined to be 0 for the

outcome T, and X is 1 for the outcome H. The state space is 0, 1 ; and if p
is the probability of head, then we can write

(12)P X 1 p; P X 0 1 p

This is a listing of what is called the probability distribution of X . Inciden-

tally, we have used a well-accepted shorthand in (12). Recall that probabil-

ity measures act on subsets of the sample space. In the first part of (12), we

mean

(13)P X 1 P : X 1 P H

The short form on the left side is preferable in clarity and brevity to the long,

albeit correct, expression in the middle of (13). We make the agreement that

"the event X 1" means the set of outcomes in the sample space for which X

Appendix A Probability Review 505

has the value 1. But a random variable should never be confused with a

numerical constant. The former is a function; the latter is a value taken on

by the function.

We will not adopt the most general way of characterizing probability

distributions of random variables, but will instead restrict to random vari-

ables belonging to one of two special classes.

DEFINITION 5. (a) X is said to be a discrete random variable with

probability mass function (p.m.f.) p x if X takes on at most count-

ably many values, and

 P X x p x

(b) X is said to be a continuous random variable with probability density
function (p.d.f.) f x if, for every subset A of the state space E for which

the integral is defined,

 P X A
A

f x d x

That is, the probability that X takes a value in the set A is the area beneath

the graph of the density function f corresponding to A, as in Figure A.3.

A

Figure A.3 – A density function

In order for the axioms of probability to be satisfied, a probability mass

function p must be non-negative, and

x E p x 1

where E is the state space. Similarly, a p.d.f. f must be non-negative and

E f x d x 1

506 Appendix A Probability Review

Also, for a continuous random variable with p.d.f. f,

P X x x
x f t d t 0

EXAMPLE 1. (a) Recall the experiment of picking two numbered balls,

and recall the random variable X1, which was the number of the first ball

picked. If outcomes are equally likely, then it is easy to see that the probabil-

ity mass function of X1 is

(14)p x P X1 x
1 10 if x 1, 2, 3, ... , 10

0 otherwise

This distribution is called the discrete uniform distribution. Note that the

sum of the values p x for x 1, ..., 10 is indeed 1, as it should be. Using

this mass function, we can compute, for instance,

P X 5 x 5
10 p x 6 10

(b) A similar continuous uniform density with state space a, b can be

defined by

(15)f x
1 b a if x a, b
0 otherwise

This is the density function of the random variable X, which represents a

randomly selected point in the interval a, b . Notice that, as desired for a

density, the integral of f over the entire interval a, b is 1. For the uniform

distribution on 0, 1 , we can compute, for instance

P X 1 3
0

1 3
1 d x 1 3

In general, for the continuous uniform distribution, the probability that the

associated random variable falls into a set is the length of that set divided by

the length of the entire state space.

Special Discrete Distributions

Several discrete mass functions come up often in stochastic processes and

operations research.

1. Binomial distribution. Let an experiment consist of repeated trials, in

which each trial results in either a "success" or a "failure." Success occurs

with probability p, and failure occurs with probability 1 p. Under the

assumption that the trials are independent of one another (to be discussed

Appendix A Probability Review 507

later), it can be shown by elementary combinatorics that the probability mass

function of the random variable X = number of successes among n trials is

(16)p k P X k
n

k n k pk 1 p n k
if k 0, 1, ... , n

0 otherwise

This distribution is the binomial distribution with parameters n and p.

2. Geometric distribution. Let T be the trial on which the first success

occurs for a binomial experiment as described above. Then the probability

mass function of T is

(17)p n P T n
p 1 p n 1 if n 1, 2, 3, ...

0 otherwise

This can be seen from the observation that in order for the nth trial to be the

one on which the first success occurs, we must see a string of n 1 failures,

each happening with probability 1 p, and then a single success, with

probability p. The distribution characterized by the mass function in (17) is

called the geometric distribution with parameter p.

3. Poisson distribution. A random variable X is said to have the Poisson
distribution with parameter if

(18)g k P X k
e k

k if k 0, 1, 2, 3, ...

0 otherwise

This arises later as the distribution of the number of occurrences of a certain

phenomenon during a fixed time interval.

Mathematica knows about the main discrete distributions, including the

ones that we have introduced here. They are referred to by their names and

the values of their parameters as follows.

BinomialDistribution n, p

GeometricDistribution p

PoissonDistribution

They can be used as arguments to four main commands, contained in the

standard package Statistics`DiscreteDistributions`.

508 Appendix A Probability Review

Random distribution

RandomArray distribution, n

PDF distribution, x

CDF distribution, x

The Random command simulates a single random observation from the

given distribution. Similarly, RandomArray simulates a list of n such

observations. The PDF function gives the value of the probability mass

function of the distribution at the given x. For instance, the probability that a

Poisson(2) distributed random variable X takes the value 1 is computed as

follows. (We must load the package first.)

Needs "Statistics`DiscreteDistributions "̀ ;

PDF PoissonDistribution 2 , 1

N %

2
2

0.270671

The CDF function works like the PDF function, except that it returns values

of the cumulative distribution function of the distribution, described in a

later subsection.

Special Continuous Distributions

The continuous distributions that are most common in stochastic processes

are instances of the gamma density, which depends on two constant parame-

ters and . The defining formula for the , density is

(19)f x
1

a x 1 e x if x 0

0 otherwise

In this expression, the gamma function is given by

(20)
0

y 1 e y d y

One can show, using integration by parts, that if n is an integer, then

n n 1 . We will see that gamma densities are appropriate for

random variables T that are times of occurrence of certain phenomena. An

Appendix A Probability Review 509

important special case of the gamma density is the one for which 1 and

1 , where is a constant called the rate. The resulting density is the

exponential density:

(21)f x
e x if x 0

0 otherwise

This density is often suitable for random variables that are defined as times

between successive arrivals of customers to a service facility.

The well-known normal distribution will be involved when we look at

Brownian motion processes. The formula for the normal density function,

with parameters and 2 state space , , is below:

(22)f x 1

2 2
e x 2 2 2

Its graph is similar to the density of Figure A.3, symmetric about and with

spread determined by the magnitude of 2. The parameter is called the

mean, and is the standard deviation of the distribution. The square 2 of

the standard deviation is called the variance.

Again the Random, RandomArray, PDF, and CDF functions are avail-

able to apply to continuous distributions after you load the standard package

Statistics`ContinuousDistributions`. The names of the distributions above

are

GammaDistribution ,

ExponentialDistribution

NormalDistribution ,

Notice that the second argument in NormalDistribution is the standard

deviation, not the variance. To illustrate, the following computes the

probability that an exponentially distributed random variable with parameter

.5 takes value between 2 and 4.

Needs "Statistics`ContinuousDistributions "̀ ;

f x_ : PDF ExponentialDistribution .5 , x ;

NIntegrate f x , x, 2, 4

0.232544

510 Appendix A Probability Review

Cumulative Distribution Functions

Another way to characterize the probability law of a random variable is to

measure how probability accumulates as we move through the state space.

DEFINITION 6. The cumulative distribution function (c.d.f) of a

random variable X is the function

F x P X x

In particular, in the case that X is discrete with p.m.f. p,

(23)F x t x p t

and in the case that X is continuous with p.d.f. f,

(24)F x
x

f t d t

In the discrete case, the cumulative distribution function F is a step

function whose jumps are located at the points of the state space of X. To

see this, imagine moving to the right along a real axis on which the states of

X are laid out in increasing order. Strictly between two successive states, no

extra probability is accumulated, and so the c.d.f. remains constant until the

next state is reached. But when that next state, say t, is reached, it contrib-

utes its probability p t to the previous total, which implies that F jumps by

an amount p t at this point. This is illustrated in Figure A.4 for the discrete

distribution with p.m.f. p t 1 3 if t 1, 2, 3. In the continuous case, F x
is the area under the graph of the density function f that lies to the left of x,

which is shaded in Figure A.5.

1 2 3 4

1

3

2

3

1

x

f t

 Figure A.4 – A discrete c.d.f. Figure A.5 – F x is the area under the density up to x

Appendix A Probability Review 511

Also, by the Fundamental Theorem of Calculus, for continuous distribu-

tions we have the important relation F x f x , where F is the c.d.f. of the

distribution and f is the p.d.f.

EXAMPLE 2. (a) The c.d.f. of the discrete uniform distribution on

1, 2, ..., 10 is

F x
0 if x 1

k 10 if k x k 1, for k 1, ... , 9

1 if x 10

(b) The c.d.f. of the exponential distribution with rate is

F x P X x
0

x e t d t 1 e x, x 0

Often useful is the complementary result: 1 F x P X x e x.

Multivariate Distributions

The notion of the probability distribution of a random variable extends in a

natural way to several random variables X1, X2, ..., Xn. Again we consider

separately the discrete and continuous cases.

DEFINITION 7. (a) Discrete random variables X1, X2, ..., Xn have

the joint probability mass function p x1, x2, ..., xn if

P X1 x1, X2 x2, ..., Xn xn p x1, x2, ..., xn

(b) Continuous random variables X1, X2, ..., Xn have the joint probabil-
ity density function f x1, x2, ..., xn if, for all subsets A1, A2, ..., An of

the real line for which the integral is defined,

P X1 A1, X2 A2, ... , Xn An

A1 A2 An
f x1, x2, ... , xn d x1 d x2 d xn

In the discrete case, notice that

(25)
P X1 A1, X2 A2, ... , Xn An

x1 A1 x2 A2 xn An
p x1, x2, ... , xn

which is similar in form to the corresponding probability in the continuous

case.

We can define a joint c.d.f. by

512 Appendix A Probability Review

(26)F x1, x2, ... , xn P X1 x1, X2 x2, ..., Xn xn

The one variable sum and integral in formulas (23) and (24) are simply

replaced by multiple sums and integrals over the n variables.

Let X1, X2, ... , Xn have joint discrete mass function p, and denote the

state space of Xi by Ei. Then, by (25),

P X1 x1 P X1 x1, X2 E2, ... , Xn En

x2 E2 xn En
p x1, x2, ... , xn

Therefore, we can obtain the distribution of X1 alone (called its marginal
distribution) by adding the values of p over all other variables x2, x3, ... , xn.

Similarly, we can find the marginal of any other X j by adding over all xi for

i j. The joint marginal distribution of two of the random variables Xi and

X j can be found by adding over all xk such that k is neither equal to i nor j,
etc.

The idea of marginal distributions introduced in the last paragraph

carries over directly to the continuous case, with sums replaced by integrals.

For example, the marginal of X1 is

f1 x1 E2 En
f x1, x2, ... , xn d x2 d xn

In general, to get the joint density of a combination of the X j's , integrate the

joint density with respect to those variables xi not included in the

combination.

EXAMPLE 3. If X1, X2, X3 have the joint density

f x1, x2, x3

6 if 0 x1 x2 x3 1

0 otherwise

then the joint marginal density of X1 and X2 is

f x1, x2
x2

1
6 d x3 6 1 x2 if 0 x1 x2 1

0 otherwise

The marginal density of X1 is

f1 x1
x1

1
6 1 x2 d x2 3 x1

2 6 x1 3 if 0 x1 1

0 otherwise

A.3 Conditional Probability and Independence

If it is known that an event A has occurred, then the sample space is essen-

tially limited to A, and probabilities of other events change correspondingly.

Appendix A Probability Review 513

By way of motivation, suppose there are ten equally likely outcomes in the

sample space depicted in Figure A.6. Five outcomes are in A, four are in

B, and A and B share two outcomes. If A has occurred, then B now has two

of the five equally likely outcomes in A, hence the new probability that B
will occur is 2/5. Note that this is the same as

P A B
P A

2 10

5 10

A B

A B

Figure A.6 – Conditional probability of event B given event A

DEFINITION 8. The conditional probability that B occurs given that

A has occurred is defined by

 P B A P A B
P B

provided that P A 0.

We obtain the following useful equation, called the multiplication rule,

by simply rewriting the definition of conditional probability:

(27)P A B P A P B A

This property extends by induction to intersections of many events. Each

conditional probability factor in the product conditions on all of the previous

events. For example, in the case of three events,

(28)P A B C P A P B A P C A B

EXAMPLE 4. Suppose that the time T until arrival of the next bus has the

exponential distribution with rate . The probability that a bus does not

arrive by time t s, given that it has not arrived by time s is

514 Appendix A Probability Review

P T t s T s P T s T t s P T s
P T t s P T s
e t s e s e t P T t

This property is called the memoryless property of the exponential distribu-

tion. Given that we have waited s time units for the bus, the probability that

we wait for t more time units is the same as the probability that we wait for t
time units had the last bus just left. Having waited for s time units does not

help at all; the wait until the next bus is still an exponentially distributed

random variable with rate .

EXAMPLE 5. The multiplication rule is often useful for experiments that

occur in stages. For instance, if a device can be either working or not

working at each time period, and we have information about the probability

that the device works at time 1, and the conditional probability that the

device will be working at time 2 given that it works at time 1, then we can

compute

P device works at both times 1 and 2

P device works at time 1 P device works at time 2 device works at time 1

This kind of computation is fundamental to the study of Markov chains in

Chapter 4.

If the occurrence of an event A does not affect the probability of another

event B, then we call these two events independent. We adopt the following

definition, which does not require P A and P B to be non-zero.

DEFINITION 9. Events A and B are independent if

P A B P A P B

Notice that by the definition of conditional probability, if A and B are

independent of each other and if P A 0, then

(29)P B A P A B
P A

P A P B
P A P B

This coincides with our intuition about the meaning of independence.

The definition of independence extends to more than two sets in the

following way.

Appendix A Probability Review 515

DEFINITION 10. Events A1, A2, ... , An are called mutually indepen-
dent if, for any m 2, 3, ..., n and any choice of m of these events,

P Ak1
Ak2

Akm P Ak1
P Ak2

P Akm

EXAMPLE 6. Suppose that a system consists of three components con-

nected in series, as in Figure A.7. The system fails at the time T of first

failure of any component. Let T1, T2, and T3 be the failure times of the

individual components. If the Ti's each have the 2, 1 distribution, and for

all fixed t the events Ti t are mutually independent, find the density of T.

1 2 3

Figure A.7 – A series system

By (19), the p.d.f. of each random variable Ti is

f t
t e t if t 0

0 otherwise

A simple integration by parts yields that the c.d.f. associated to this density is

F t
0

t

x E x x

1 t 1 t

We will compute the c.d.f. of T min T1, T2, T3 , then differentiate it to

obtain the probability density function of T. The key observation is that the

system failure time T is greater than t if and only if all three component

failure times are greater than t. The c.d.f. of T is

516 Appendix A Probability Review

G t P T t 1 P T t
1 P T1 t P T2 t P T3 t
1 1 P T1 t 3

1 e t 1 t 3

Therefore, the density of T is

Simplify D 1 E t 1 t
3
, t

3 3 t t 1 t 2

As illustrated by the last example, we are mostly concerned with indepen-

dence in connection with random variables. The next definition follows

along the lines of Definition 10.

DEFINITION 11. Random variables X1, X2, ..., Xn are called mutu-
ally independent if for any subsets B1, B2, ..., Bn of the state spaces of

the random variables,

P X1 B1, X2 B2, ... , Xn Bn

P X1 B1 P X2 B2 P Xn Bn

Independence of random variables can be shown to be equivalent to the

factorization of the joint density (or mass function, in the discrete case) into

the product of the marginal densities:

f x1, x2, ... , xn f1 x1 f2 x2 fn xn

Independence is also equivalent to the factorization of the joint c.d.f. into the

product of the marginal c.d.f.'s. When a group of random variables is

independent and each has the same probability distribution, we say that they

are i.i.d (for independent and identically distributed). The statistical term for

a group of n i.i.d. random variables is a random sample of size n.

In stochastic processes, we often have observations X1, X2, ... made at

times 1, 2, ... , respectively. These observations may or may not be indepen-

dent. One might be interested in gaining information about Xn 1 given one

or more of the previous observations X1, X2, ..., Xn. For this reason,

conditional distributions of random variables given other random variables

play an important role in this subject.

Appendix A Probability Review 517

DEFINITION 12. Let random variables X and Y have joint density (or

mass function) f x, y , and let X have marginal density (or mass func-

tion) f1 x . The conditional density (or conditional mass function) of Y
given X x is defined by

 f y x f x,y
f1 x

for those x such that f1 x 0, and it is left undefined otherwise.

The definition of conditional probability mass function for discrete

random variables is consistent with the earlier definition of conditional

probabilities of events. When the event X x has non-zero probability, we

can write

P Y y X x P X x,Y y
P X x

The ratio on the right is exactly the right side of the defining formula for

conditional mass function. Thus, in the discrete case, f y x means

P Y y X x . The situation is not quite as simple in the continuous case,

since the probability that a continuous random variable exactly equals a

value x is zero. It is possible to take a conditional c.d.f. approach to justify

the definition in the continuous case, but it is enough for us to work by

analogy with the discrete case. You should simply understand that to

calculate the conditional probability of the event Y B given X x, one

integrates in the usual way, using the conditional density:

(30)P Y B X x B f y x d y

EXAMPLE 7. Consider the random variables X1 and X2 from Example 3.

Suppose we observe the event that X1 1 4. Let us find the conditional

probability that X2 1 2. We can use Mathematica to compute f1 1 4 :

f1 x_ : 3 x2 6 x 3;

f1 1 4

27
16

Then, since f x2 x1 1 4 f 1 4, x2 f1 1 4 , we have

518 Appendix A Probability Review

P X2 1 2 X1 1 4

1 (27/16)
1 2

1

6 1 x2 x2

4
9

Conditional distributions are defined similarly in the multiple variable

case. For completeness, we give the definition next, together with a new

idea called conditional independence.

DEFINITION 13. (a) The conditional density (or conditional mass
function) of a set of random variables Y1, Y2, ..., Ym given

X1 x1, X2 x2, ... , Xn xn is

f y1, y2, ... , ym x1, x2, ... , xn
f x1,x2,...,xn,y1,y2,...,ym

fn x1,x2,...,xn

where f is the joint density of all of the X's and Y's, and fn is the joint

marginal of the X's.

 (b) Two random variables Y and Z are conditionally indepen-
dent given another random variable X if

P Y A, Z B X x P Y A X x P Z B X x

for all subsets A and B of the state spaces of Y and Z, respectively.

The property of conditional independence is crucial in the study of

Markov processes. In the discrete case, we can show easily that conditional

independence of Y and Z implies the following equation about the condi-

tional mass functions:

(31)f z x, y f z x

which essentially says that knowledge of both X and Y gives no more

information than knowledge of X alone for the predicition of Z. To show

(31), we can apply the definition of conditional independence to the single-

ton sets A y and B z to obtain

Appendix A Probability Review 519

f z x, y f x, y, z f12 x, y
f1 x f y x f z x f12 x, y
f12 x, y f z x f12 x, y f z x

The same result is true in the continuous case, but a deeper study of the

theory of integration is required to prove it.

EXAMPLE 8. A traveling salesman begins at a randomly selected city

from among the four in Figure A.8. At time 1 he goes to some other city,

and at time 2 to a third city such that the city he visits at time 2 is condition-

ally independent of the city at time 0, given the city at time 1. If the one-step

conditional probabilities of visiting cities from other cities are the weights in

the directed graph, find the probability that the salesman is in city 3 at time

2.

1 2

3 4

1
.5

.5.5

.5
1

Figure A.8 – Space of states of a traveling salesman

Let X0 be the initial position, let X1 be the position at time 1, and let X2 be

the position at time 2. An inspection of the graph shows that there are only

two ways to reach city 3 in two time steps, namely the paths 3, 4, 3 and

2, 4, 3. Thus, by the disjoint union property and the multiplication rule,

P X2 3

P X2 3, X1 4, X0 3 P X2 3, X1 4, X0 2

P X2 3 X1 4, X0 3 P X1 4 X0 3 P X0 3

P X2 3 X1 4, X0 2 P X1 4 X0 2 P X0 2

But X2 has been assumed to be conditionally independent of X0 given X1, so

that as in the remark just before this example, the probability that X2 3

depends only on the event X1 4, not on the value taken on by X0. Reading

the one-step conditional probabilities from the graph, and noting that X0 has

probability 1/4 of being at each city, we see that

520 Appendix A Probability Review

P X2 3 1 1 2 1 4 1 1 2 1 4 1 4

In the example above we have used one of the most important computa-

tional devices in probability theory, which we formalize in the following

theorem.

THEOREM 1. (Law of Total Probability) Let B1, B2, ... be pairwise

disjoint events whose union is the entire sample space, and let A be another

event. Then,

(32)P A n P A Bn n P A Bn P Bn

provided the conditional probabilities in the last line exist.

The first equation in (32) is apparent from Figure A.9 because the sets Bn
break A into the union of disjoint pieces of the form A Bn. The second

equation in (32) is just the multiplication rule. This approach was used in

the example, with A equal to the event X2 3, and the sets B1 and B2

representing the two possible previous paths traveled by the salesman.

A

B1 B2 ... Bn

Figure A.9 – The Law of Total Probability

EXAMPLE 9. Let X have the marginal mass function p1 x , and suppose

that the conditional mass function of Y given X x is

p y x P Y y X x . Then,

(33)
P Y y x P Y y X x P X x

x p y x p1 x

This method for computing probabilities involving Y is sometimes called

"conditioning and un-conditioning on X." There is a corresponding continu-

ous version. If f x, y is the joint density of X and Y, f y x is the condi-

tional density of Y given X x , and f1 x is the marginal density of X, then

Appendix A Probability Review 521

(34)P Y B Ex
P Y B X x f1 x d x

A.4 Expectation

The next definition captures the notion of the average value of a function of

a random variable.

DEFINITION 14. Let X be a random variable with p.d.f. f x and state

space E. The expected value of a function g X is

E g X E g x f x d x

provided that the integral exists. If X is discrete with mass function p x ,

then we define

E g X x E g x p x

 Since g X is a random variable that takes on possible values g x for x
in the state space E, we see that E g X is a weighted average of the states

of g X , where the weighting function is the density f, or the mass function p
in the discrete case. As an elementary example, you can check that on the

flip of two fair coins, the expected number of heads is one.

There are several expectations worth noting. We illustrate the continu-

ous case; the discrete case merely replaces integrals by sums.

(35)E X x f x d x, called the mean of X

(36)2 E X 2 x 2 f x d x, called the variance of X

By expanding the square, we easily obtain the computational formula

(37)2 E X 2 2

We now define

(38)E X n xn f x d x, called the nth moment of X

(39)
M t E et X et x f x d x, called the moment-generating

function of X

In the moment-generating function (m.g.f.), t is a real number belonging to

the set of all numbers such that the integral exists. The m.g.f. is unique to

522 Appendix A Probability Review

the distribution, that is, no two distributions share the same m.g.f.

The mean measures the central tendency of the distribution, while the

variance measures spread about the mean. The moment-generating function

can be used to find the moments in the following way:

(40)

d M
d t t 0 E X et X

t 0 E X

d n M
d tn t 0 E X n et X

t 0 E X n

The following table summarizes the means, variances, and moment-generat-

ing functions of some of the most common distributions.

distribution mean variance moment–generating function

Binomial n, p n p n p 1 p 1 p p et n

Geometric p 1 p 1 p p2 p et 1 1 p et 1
, t ln 1 p

Poisson exp et 1

Uniform a, b a b 2 b a 2 12 et b et a t b a , t 0

Gamma , 2 1 t , t 1

Exponential 1 1 2 1 t 1, t

Normal , 2 2 exp t 1
2

2 t2

EXAMPLE 10. (a) As an example of the computation of means, let X
have the exponential distribution with rate 3. Then,

E X
0

x 3 3 x x

1
3

 (b) To illustrate the computation of moment-generating functions, let

us verify the m.g.f. of the Poisson distribution. We have

M t E et X
k 0

et k e k

k

e
k 0

et k

k

e exp et exp et 1

You may show easily that, upon differentiating M once and setting t to 0, we

get E X μ. Differentiating a second time and setting t 0 gives

Appendix A Probability Review 523

E X 2 2. From this, and (37), the variance of the Poisson distribu-

tion is 2 2 2 .

We occasionally have situations where we must compute the expected

value of a random variable that can only take on the values 0 and 1, called a

Bernoulli or indicator random variable. Suppose that the probability that

X 1 is p, and consequently the probability that X 0 is q 1 p. Then,

(41)E X 1 p 0 1 p p

Note that this is the special case of the expectation of a binomial random

variable with n 1.

When random variables X and Y are independent, then it can be shown

that the expectation of their product is the product of their expectations. The

next theorem takes this a little farther and establishes the basis for a powerful

technique for finding the distribution of the sum of independent random

variables.

THEOREM 2. Let X and Y be independent random variables, and let g and

h be functions. Then, provided the expectations exist,

E g X h Y E g X E h Y

In particular, the moment-generating function of the sum X Y is

MX Y t E et X Y E et X .E et Y MX t MY t

The proof is an easy consequence of the fact that if X and Y are indepen-

dent, then their joint density function factors into the product of their mar-

ginal densities. The result extends easily by induction to n mutually indepen-

dent random variables. The fact that the m.g.f. of the sum of independent

random variables is the product of the individual m.g.f.'s of those variables

often enables us to find the m.g.f. of the sum before we know its distribution.

If this m.g.f. can be simplified and recognized, then one can recognize the

distribution of the sum, since moment-generating functions are unique to the

distribution.

EXAMPLE 11. Let X1, X2, and X3 be independent Poisson random

variables with parameters 1, 2, and 3, respectively. The moment-generat-

ing function of X1 X2 X3 is

E et X1 X2 X3 E et X1 E et X2 E et X3

exp 1 et 1 exp 2 et 1 exp 3 et 1

exp 1 2 3 et 1

524 Appendix A Probability Review

Since this is the moment-generating function of a Poisson distribution, we

see that the sum X1 X2 X3 is Poisson with parameter 1 2 3.

Conditional expectations are defined similarly to ordinary expectations.

The only difference is that the weighting functions are conditional densities

(or mass functions in the discrete case) instead of ordinary densities as in

Definition 14.

DEFINITION 15. Let X and Y be jointly distributed continuous

random variables, such that the conditional density of Y given X x is

f y x . Then the conditional expectation of a function g X , Y , given

X x, is

E g X , Y X x g x, y f y x d y

In the discrete case, if the conditional mass function of Y given X x is

p y x , then the conditional expectation is

E g X , Y X x g x, y p y x

Notice that the definitions imply that

E g X , Y X x E g x, Y X x

In addition, since the definition allows the function g to depend on X, we can

obtain the following intuitive result:

(42)

E g X X x g x f y x d y

g x f y x d y
g x

That is, if the event X x is known to have occurred, then it is certain that

X x and all references to X may be replaced by the constant x. In (42),

g X is essentially non-random, given X x.

EXAMPLE 12. Referring again to the random variables X1 and X2 of

Examples 3 and 7, the conditional expectation of X2 given X1 1 2 is

E X2 X1 1 2
1 2

1 x2 f x2 1 2 d x2

1 2

1 x2
f12 1 2,x2

f1 1 2
d x2

4
3 1 2

1 x2 6 1 x2 d x2 2 3

Appendix A Probability Review 525

after a simple integration.

One special property of conditional expectation comes up often. First,

notice that

(43)h x E g X , Y X x

defines a function of x. Then h X is a random variable, which we write as

(44)h X E g X , Y X

We can take the expectation of this random variable. In the continuous case,

(45)

E E g X , Y X E h X h x f1 x d x

g x, y f y x d y f1 x d x

g x, y f x, y d y d x
E g X , Y

In this derivation we have used the usual notations f1 x , f y x , and f x, y
for the marginal density of X, the conditional density of Y given X x, and

the joint density, respectively. The discrete case is similar. Loosely stated,

formula (45) says that the expected value of the conditional expectation is

the ordinary expectation.

We have one final note in this very brief review of expectation. It is easy

to show, using properties of sums and integrals, that expectation and condi-

tional expectation are linear operators:

(46)E a X b Y a E X b E Y

Also, because the integral of a density function (or sum of a mass function)

over the entire state space is one, it is a simple matter to prove that the

expected value of a constant is that constant:

(47)E c c

526 Appendix A Probability Review

A.5 Convergence Theorems

Let A1, A2, ... be a sequence of events in a sample space on which there

is a probability measure P. Suppose that these sets are nested increasing, as

shown in Figure A.10(a), i.e., for all n 1, An An 1. Then the "limiting

set" approached by the sequence of sets is the union

n 1 An

A1 A2 A3 A3 A2 A1

(a) A nested increasing sequence of sets (b) A nested decreasing sequence of sets

Figure A.10 – Monotone continuity of probability

Suppose, on the other hand, that the sequence is nested decreasing, as in

Figure A.10(b), that is, for all n 1, An An 1. Then the "limiting set" is

the intersection

n 1 An

How does the probability of the limiting event depend on the individual

event probabilities? The answer is provided by the following theorem,

usually called the monotone continuity of probability.

THEOREM 3. (a) If A1 A2 A3 , then

P n 1 An limn P An

(b) If A1 A2 A3 , then

P n 1 An limn P An

EXAMPLE 13. Let X be a random variable. Clearly,

An X x 1 n X x 1 n 1 An 1

Also, the event X x occurs if and only if the event X x 1 n occurs

for all n 1. Therefore, by part (b) of Theorem 3,

P X x P n 1 X x 1 n limn P X x 1 n

Appendix A Probability Review 527

This shows that if F is the cumulative distribution function of X, then

F x 1 n F x as n . The same argument, applied to a general

sequence of points converging from the right to x, shows that the c.d.f. of a

random variable must be right-continuous.

Perhaps the most famous theorem in probability is the Strong Law of
Large Numbers. To facilitate the statement of this result and some of its

consequences to be encountered elsewhere in the book, we introduce the

following notion. An event A is said to occur for almost every outcome in

the sample space (alternatively, A occurs almost everywhere, abbreviated

a.e.) if P Ac 0. That is, A occurs almost everywhere if the set of outcomes

for which A does not occur has probability zero.

THEOREM 4 (Strong Law of Large Numbers). Let X1, X2, X3, ... be a

sequence of independent, identically distributed random variables with finite

mean E X1 . Then,

limn k 1
n Xk n

for almost every outcome .

EXAMPLE 14. Suppose that a coin with head probability p is flipped

repeatedly. Define Xn to be 1 if the nth flip is a head, and 0 otherwise. If

the flips are independent, then the sequence Xn satisfies the hypotheses of

the Strong Law of Large Numbers. Also, E X1 p, by (41). The sum of

the first n Xk 's is the total number of heads in the first n flips, hence the

quantity

X k 1
n Xk n

is the proportion of heads in the first n flips. The strong law implies that for

all but some exceptional outcomes of probability zero, the proportion of

heads in the first n flips converges to p as n .

There are occasions when expectation must be interchanged with limits.

It is not always possible to do this, but the next two theorems give sufficient

conditions under which the interchange can be done. The question is as

follows. Let X1, X2, X3, ... be a sequence of random variables that reach a

limit X for almost every outcome. Does the sequence of expectations

E X1 , E X2 , E X3 , ... approach E X ?

THEOREM 5 (Monotone Convergence Theorem). If Xn is an increas-

ing sequence of random variables whose expectations exist, then

E limn Xn limn E Xn

528 Appendix A Probability Review

THEOREM 6 (Dominated Convergence Theorem). Let Xn be a

sequence of random variables. If there exists a random variable Y with finite

expectation such that Xn Y for all n, then

E limn Xn limn E Xn

The proofs are beyond the scope of this text, but can be found in

advanced probability texts such as Chung [14] and Tucker [58]. The special

case of the Dominated Convergence Theorem in which the dominating

random variable Y is just a constant, that is, the sequence Xn is bounded, is

called the Bounded Convergence Theorem. The Monotone Convergence

Theorem often arises in the context of infinite series of random variables, as

in the following example.

EXAMPLE 15. Let Y1, Y2, Y3, ... be an i.i.d. sequence of random variables

with the probability mass function:

p k P Y k
1 3 if k 0, 1, or 2

0 otherwise

Notice that the mean of the distribution is 1. Suppose Yn represents a reward

received at time n, and the value of that reward in present day dollars is

.95 n Yn. Find the expected present value of the total of all rewards.

The total discounted reward is a random variable given by

X k 1 .95 k Yk

Then X is the limit of the sequence of partial sums Xn k 1
n .95 k Yk .

Since the Yk 's are non-negative valued, the sequence X1, X2, X3, ... is

increasing. By the Monotone Convergence Theorem,

E X E limn Xn

limn E Xn

limn k 1
n .95 k E Yk

limn k 1
n .95 k 1

1 1 .95 1 19

It is easy to check that the Dominated Convergence Theorem could also have

been used to justify the interchange of limit and expectation in the second

line of the computation.

Appendix A Probability Review 529

Appendix B

Answers to Selected Exercises

Section 1.1

1. The adjacency matrix A and its third power are:

1 0 0 0
1 0 1 0
0 1 0 1
0 0 0 1

1 0 0 0
2 0 1 1
1 1 0 2
0 0 0 1

7. There is a mismatch in vertex degrees.

11. (a) The graph is strongly connected.

(b) The graph is also quasi-connected.

14. The connected components are 1, 2, 3, 4, 6, 14 , 5, 7, 8, 10, 13, 16 ,

and 9, 11, 12, 15 .

17. The components are: 1, 2, 10 , 3, 4, 6, 7 , and 5, 8, 9 .

19. (a) 1: 4, 5; 2: 4, 5, 6; 3: 5, 6; 4: 1, 2; 5: 1, 2, 3; 6: 2, 3

(b) 1: 2; 2: 3; 3: 2, 4, 5; 4: 5; 5: 1,4

(c) 1: 2, 4; 2: 1, 7; 3: 6; 4: 1, 5, 7; 5: 4, 8; 6: 3; 7: 2, 4, 8; 8: 5, 7

Section 1.2

1. A spanning tree has edges: 1, 2 , 2, 5 , 2, 3 , 4, 7 , 2, 6 , 1, 4 .

2. (a) The spanning tree has edges 5, 6 , 4, 5 , 3, 4 , 2, 6 , 1, 6 . The

total cost of these edges is 15.

(b) The new spanning tree is 1, 2 , 2, 6 , 1, 4 , 5, 6 , 1, 3 . The total

cost of these edges is 9.

5. The optimal tree uses edges

 {1,2},{1,3},{1,6},{1,7},{1,8},{1,9},{1,10},{3,4}, and {3,5}.

9. This list of degrees is not possible.

12. At most
n n 1 2

n 1
 trees can form.

13. One tree is 1, 2 , 1, 5 , 1, 6 , 2, 3 , 2, 4 . It is not unique.

530 Appendix B Answers to Selected Exercises

15. The edge set is:

 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 ,

2, 7 , 2, 8 , 5, 9 , 5, 12 , 7, 10 , 8, 11

.

16. The directed spanning tree contains edges

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 4, 7 , 5, 8 , 6, 9 .

Section 1.3

1. The Kruskal minimal spanning tree is

 1, 4 , 6, 7 , 1, 2 , 1, 3 , 3, 6 , 7, 8 , 4, 5 . Its total cost is 15.

2. The best set of edges is

 3, 6 , 5, 8 , 1, 2 , 5, 7 , 2, 4 , 4, 7 , 5, 6 , 5, 9 .

 The total weight is 19.

4. The edges in the best tree are

 2, 5 , 2, 7 , 3, 4 , 1, 5 , 10, 11 , 12, 14 , 8, 10 ,

2, 12 , 4, 5 , 6, 13 , 12, 15 , 2, 13 , 9, 15 , 1, 8 .
The total weight of the spanning tree is 241.

8. The best edges are

 1, 4 , 1, 2 , 8, 9 , 3, 4 , 6, 7 , 7, 9 , 9, 10 , 4, 6 , 5, 7 ,

 and the total weight is 25.

11. The spanning tree includes edges

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 5, 7 , 6, 8 . Edge 7, 8 may be substi-

tuted for edge 6, 8 with no loss.

12. The paths are 1,2; 1,3; 1,4; 1,5; 1,2,6; 1,3,7; 1,3,8; 1,5,9; 1,3,7,10.

13. The paths are 1,2 ; 1,3; 1,4; 1,5; 1,4,6.

17. The edges in the minimal directed spanning tree are

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 4, 7 , 6, 9 , 7, 8 .

Section 1.4

2. There is a maximal path 1, 2, 4, 8, 10, and another maximal path

1, 3, 7, 9, 10, both of total cost 14.

3. The unique critical path is 1, 3, 6, 10 of length 13.

4. The critical path is B, D, F, H , J , of cost 20.

Appendix B Answers to Selected Exercises 531

6. The debugging takes 7 days, with critical tasks B, D, and F.

8. The project takes 13 days, and the critical, delay-causing tasks are

B, D, F, H , and J .

9. The sequence of tasks A, B, C, E, H , I, J is critical, and the commercial

takes 18 days in all.

11. Tasks A, D, F, H form a chain that must be done in succession, and

therefore the project cannot be done in less than 2 5 4 3 14 time units.

Section 1.5

 1. (a) For V0 1, 2 , the cut is K 1, 3 , 1, 4 , 2, 3 , 2, 5 and its

capacity is 8. For V0 1, 2, 3 , the cut is K 1, 4 , 2, 5 , 3, 5 , 4, 3

and its capacity is 8. For V0 1, 4 , the cut is

K 1, 2 , 1, 3 , 4, 3 , 4, 5 and its capacity is 10.

(b) Flow on 1, 2 : 4; flow on 1, 3 : 2; flow on 1, 4 : 2; flow on 2, 3 : 1;

flow on 2, 5 : 3; flow on 4, 3 : 0; flow on 3, 5 : 3; flow on 4, 5 : 2.

4. The capacity of the cut is 19. It is not minimal.

8. Flow on 1, 2 : 3; flow on 1, 3 : 2; flow on 2, 3 : 0; flow on 1, 4 : 1;

flow on 2, 4 : 3; flow on 3, 4 : 2.

9. The first augmenting path is 1, 2, 5 on which a flow of 3 may be added.

Then we find path 1, 3, 5 on which a flow of 2 can be added. Then 1, 4, 5

receives a flow of 2. Finally 1, 2, 3, 5 is the last augmenting path, receiving

a flow of 1 unit. Flow on 1, 2 : 4; flow on 1, 3 : 2; flow on 2, 3 : 1; flow

on 1, 4 : 2; flow on 2, 5 : 3; flow on 3, 5 : 3; flow on 4, 5 : 2.

10. The maximal flow is 8.

11. The maximal flow is 11.

12. Flow on 1, 2 : 4; flow on 1, 3 : 3; flow on 2, 4 : 1; flow on 3, 4 : 3;

flow on 2, 5 : 3; flow on 4, 6 : 4; flow on 5, 6 : 3.

Section 1.6

2. The matching v1, w1 , v2, w3 , v3, w2 is maximal.

3. One path is 5, 8, 2, 6, which leads to the matching 2, 6 , 3, 7 , 5, 8 .

4. The path 3, 7, 2, 8 is augmenting, producing the matching

 1, 6 , 2, 8 , 3, 7 , 4, 9 .

532 Appendix B Answers to Selected Exercises

8. (a) L1 5, 6, 4, 3, 4, 6, 0, 0, 0, 0, 0, 0 . (b) The revised labeling is

3, 6, 2, 3, 4, 6, 0, 2, 0, 0, 0, 0 .

9. (a) L1 4, 3, 5, 3, 6, 0, 0, 0, 0, 0 (b) L2 4, 2, 4, 2, 6, 0, 1, 1, 0, 0 .

12. There are two complete matchings, both of which are maximal, namely

1, 5 , 2, 6 , 3, 8 , 4, 7 , and 1, 6 , 2, 5 , 3, 8 , 4, 7 .

13. The maximal matching is 1, 6 , 2, 10 , 3, 8 , 4, 7 , 5, 9 .

14. One maximal matching is

 1, 8 , 2, 7 , 3, 9 , 4, 10 , 5, 11 , 6, 12 .

15. One maximal matching is 1, 6 , 2, 7 , 3, 8 , 4, 9 , 5, 10 .

16. An optimal matching is

 1, 9 , 2, 10 , 3, 11 , 4, 12 , 5, 14 , 6, 13 , 7, 16 , 8, 15 .

 The optimal weight is 60.

Section 2.1

1. It is optimal to buy x 100 Jeeps and y 0 vans.

2. The minimum value of the objective is 3, taken on at 3, 0 .

3. The optimum is 12000 taken on at all points on the segment between

1, 2 and 2, 1 .

4. The best arrangement is 16 mice and 8 rats.

5. This problem has no feasible solutions.

6. The minimum toxin dosage is 40, using none of substance 1 and 40 gms

of substance 2.

7. The problem is unbounded.

9. (a) 3 2, 1 1
2

1, 2 1
2

2, 0 .

(b) 1, 1 2
5

0, 5 2 1
2

2, 0 1
10

0, 0 is one choice.

11. (a) One choice is 3 2, 1 1
2

1, 2 1
3

3, 0 1
6

0, 0 .

(b) 1, 1 1
2

0, 1 1
4

1, 2 1
4

3, 0 is one of many choices.

14. The direction of most rapid increase is the vector 3, 2 . Moving in this

direction, x 3 2, y 1 is the intersection point.

Appendix B Answers to Selected Exercises 533

Section 2.2

2. (b) The answer is yes, with t 3 4. (c) x3 must be between 0 and 1/2, and

x2 1 2 x3.

8. One basic feasible solution is 0, 0, 0, 2, 4, 6 ; another is 2, 0, 0, 0, 2, 4 .

Section 2.3

1. The point 0, 0, 5 , corresponding to 5 miles of road, all repaired at level

3, is one optimal point. There is a second corner point solution 0, 10, 0 ,

corresponding to 10 miles of road all at level 2. Any point on the line

segment t 0, 0, 5 1 t 0, 10, 0 is therefore also optimal.

3. One optimal solution is x1 0, x2 0, x3 0, x4 5. Another optimal

solution is x1 3, x2 0, x3 0, x4 7 2. The set of all solutions is the set

of all points on the line segment connecting these two.

4. The optimal combination of animals is x1 1000 cattle, and x3 4000

buffalo (no horses).

5. One optimal solution is x1 0, x2 2, x3 0. Another is x1 0, x2 0,

 x3 2.

7. No single family dwellings, 10 apartments, and a $500,000 profit.

13 (a) The optimal value is 10/3 taken on at 8 3, 2 3 . (b) The conditions

are h2
1
2

h1 1, and 8 2 h1 h2.

Section 2.4

1. Use 6 lbs. of feed 1.

2. The optimal solution is y1 8 5, y2 8 5, g 16 5.

4. y1 4 hours of calisthenics, y2 1 hour of jogging, y3 1 hour of biking,

y4 0 hours of rowing.

9. The optimal value of the objective is 120/7, taken on when

y1 0, y2 45 7, y3 25 7.

13. The maximum value for the dual problem of 8 is taken on at the point

4, 0 . The minimum occurs at y1 0, y2 0, and y3 2.

534 Appendix B Answers to Selected Exercises

14 (a) The dual is

maximize f 10 x1 7 x2

subject to:

x1 2 x2 2

4 x2 1

5 x1 1

x1 0, x2 unrestricted

 (b) The minimum value is 1/4.

Section 3.1

1. There are two optimal solutions, with x1 5, x2 1 and with

x1 2, x2 4.

3. The unique optimal solution is x1 11, x2 6, x3 0, f 17.

4. One optimal solution is x1 2, x2 0, x3 2, for the three pastry types,

and another is x1 2, x2 4, x3 0.

6. The minimum of the objective is 5, taken on at x1 0, x2 5.

7. The maximal solution is x1 13 3, x2 8 3, and the optimal value of

f is 2/3.

9. The point x1 6, x2 5 is optimal for the original problem.

10. $5000 from the in-town bank and $5000 from the out-of-town bank, or

$5000 from the in-town bank, $2500 from the savings and loan, and $2500

from the out-of-town bank. The minimal interest is $900.

12. (a) The optimal amounts are x1 60, x2 20, x3 20 grams of A, B,

and C, respectively.

13. The problem is:

maximize f x12 x13

subject to:

x12 4, x13 5, x23 3, x24 2,

x34 6, x35 2, x45 3, x46 4, x56 4,
x12 x23 x24, x13 x23 x34 x35,

x24 x34 x45 x46, x45 x35 x56

xi j 0 for all i, j

Appendix B Answers to Selected Exercises 535

Section 3.2

1. The optimal solution is

 x11 0, x12 0, x13 100, x21 150,

x22 50, x23 0, x31 0, x32 100, x33 0.

2. The optimal solution is:

 x11 200, x12 0, x13 0, x14 800,

x21 600, x22 500, x23 400, x24 0,

 and f 49000.

5. The optimal cost is 540, taken on at x11 0, x12 60, x13 20, x14 0,

x21 50, x22 0, x23 0, x24 0, x31 0, x32 0, x33 60, x34 40,

x41 10, x42 40, x43 0, x44 0.

12. The solutions are x13 10, x22 4, x23 4, x34 7, x41 10, x52 4,

x51 2, x54 0, where xi j is the number of units of bread that truck i
delivers to supermarket j. The optimal cost is 126.

13. (c) The optimal cost is 11, taken on with x13 1, x32 1, and x21 1;

i.e., matching 1 with 3, 3 with 2, and 2 with 1.

Section 3.3

2. The key coefficients are

cb 0, 4 , cn b 2, 0 , B 1 1
0 2 , N 1 0

1 1 .

4. (a) The two optimality conditions are

 1000 2 1 0, 4400 1 0.

 Individually, 1 1000 and 2 1000.

 (c) The new optimal solution is x1 0, x2 12, f 54000.

7. (a) The inequalities are

1
3

6200 3 1 2 2 3 0

1000 2 3 0

4000 3 0

(b) 5 19000 3 2 3 .

(c)

 1 6200 3

536 Appendix B Answers to Selected Exercises

 2 6200 and 2 1000

 3 6200 2 3100 and 3 1000 3 1000

8. (a) The inequalities are

5000 1 5 2 0

5 2 200 0

(b) The new objective value is 20 2

50
.

(c)

1 5000

2 1000 and 2 1000

11. The current solution is still optimal iff 2

8
5 3

4
5
4

.

12. The old solution is still optimal under the perturbation iff 1 3600.

13. (a) 1
3

. (b) The problem becomes unbounded.

Section 4.1

1.

0 3
5

0 2
5

1
3

0 1
3

1
3

1
3

1
3

0 1
3

0 1 0 0

2. The row 1 column 4 element of T2 is 1 5.

4. P X1 F, X2 F, X3 E X0 F 27
1000

.

6(a) A, A, B, C, A, B, A, B, C, D.

(b) The transition matrix is T
1 2 1 2 0 0
1 2 0 1 2 0
1 2 0 0 1 2

0 0 0 1

Section 4.2

1. (a) 3 4, 1 4, 0 . (b) The probabilities are 1 32 n

4
, 32 n

4
, 0 .

2 (a) T3 3, 4 .121116. (b) p 0 T5 3 .186337.

4. The limit as n of Tn is the matrix, both of whose rows are
q 1

q p 2
,

p 1

q p 2
.

Appendix B Answers to Selected Exercises 537

6. P X3 0 X0 5 109 120 and P X2 1, X3 0 X0 5 13 60.

7. 55 288.

8. n 54.

Section 4.3

1. Fk 3, 1 1
3

1
2

k 3 2 k 1

1 2
1 .

2. 1 2, 0, 1 12, 1 18, 11 216.

3. Fk 1, 2 0 for all k.

Fk 3, 2 3
5

1
15

k 1
, k 1, 2, 3, ...

Fk 2, 2
1 4 if k 1

3 5 1 15 k 2 1 4 if k 2

5. Fk 2, 4
3 10 if k 1

3 10 k 3 10 5
2

1 2 k 1 1 3 5 k 1 if k 2

6. Fk 1, 4 2 1
3

k 3
1 3 4 k 2 .

8. E T4 X0 2 17 6.

Section 4.4

1. The closed sets are 1, 2, 3, 4 , 2, 3, 4 , 3, 4 , and 4 .

2. Since states 1 and 2 form an irreducible set and a recurrence class. States

7, 8, 9 comprise an irreducible set and a recurrence class. States 3, 4, 5,

and 6 are transient.

4. States 1 and 2 are transient. State 3 has its own recurrence class C1. The

set 4, 5 makes up a second recurrence class C2.

5. The group of states 1, 5, 6 is one recurrence class. State 3 is in a class

by itself. Also, the group of states 2, 4, 7 is a third recurrence class. State

8 is the only transient state.

6. States 1, 2, 6, and 7 are transient. State 8 is absorbing, and states 3, 4, and

5 form a recurrence class.

538 Appendix B Answers to Selected Exercises

Section 4.5

1. The recurrence classes are 3, 4, 5 and 8 , the latter of which has the

trivial limiting distribution 1 . For class 3, 4, 5 , the limiting distribu-

tion is 3 1 9, 4 2 3, 5 2 9.

2. The limiting probabilities for all states are 1/4.

3. In the long run, 1/3 of the vans occupy each district.

5. The long-run average cost is 647.22.

6. We should decide in favor of the second press.

12 (a) The long-run average salary per day for school system 1 is 34.29, and

for system 2 is 30. On this basis, system 1 is the better choice. (b) For

system 1, the long-run discounted reward vector R f1 is 761.38, 628.97 ;

and for system 2, it is 696.77, 551.61 . Again, for both possible starting

states, the long-term reward for system 1 dominates that of system 2.

13. The maximum value occurs at the left endpoint .1.

Section 4.6

1. f21 1, f24 0 f31 6 7, f34 1 7, where state 1 is E, state 2 is G,

state 3 is F, and state 4 is P. If half are fair and half are good initially, the

proportion reaching the excellent state is 13
14

.

2. Each of the two transient states has probability 1/3 of being absorbed by

class 1, 2, 3 and 2/3 of being absorbed by class 4, 5 .

This means that the limit of Tn is

3 10 1 10 3 5 0 0 0 0
3 10 1 10 3 5 0 0 0 0
3 10 1 10 3 5 0 0 0 0

0 0 0 4 7 3 7 0 0
0 0 0 4 7 3 7 0 0

1 10 1 30 1 5 8 21 2 7 0 0
1 10 1 30 1 5 8 21 2 7 0 0

4. The smallest such value of p is about .542.

5. 100.

6. The limiting matrix is

Appendix B Answers to Selected Exercises 539

 1 2 7 8 9 3 4 5 6

limn Tn

1
2
7
8
9
3
4
5
6

2 3 1 3 0 0 0 0 0 0 0
2 3 1 3 0 0 0 0 0 0 0

0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0

2 9 1 9 4 15 2 15 4 15 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0

7. About 22% of entering students graduate, 44% of second-year students,

73% of third-year students, 81% of fourth-year students, and 90% of fifth-

year students.

Section 5.1

1. (a) .0243895; (b) .161668; (c) .00487791

3. The k, 1 distribution, mean k , and variance k 2.

4. (a) s Nt; (b) t s t t 2.

5.
n
k

3
8

k 5
8

n k
.

8.
0

f u d u.

9. approximately equal to .82 is the value at which the probability reaches

.95.

11. 45.

12. 5.

14. 9 per minute.

Section 5.2

1. (c) The long-run proportion of time in state 1 is .

4. 10 beds.

7. c is approximately .188598.

8. Under the stated conditions, E T 7 n 2 . Also, Var T 25 n 2 .

540 Appendix B Answers to Selected Exercises

9. 0.00155199, 0.0155199, 0.0775996, 0.258665, 0.646663 .

10. p0 1 0

1

1
1

1
 and p j

0
j 1

1
j 1 1 0

1

1
1

1
.

11. The limiting probabilities are

p0 1 3 O
L

2 O
H

1
; p1

3 O
L

p0; p2
2 O

H
p0

Section 5.3

1. F n t
0

t
n

n 1
sn 1 e s d s.

2. G F t

0 if t 1

1
4

t 1
4

if 1 t 2

1
2

t 3
4

if 2 t 3

1
4

t if 3 t 4

1 if t 4

F G t

0 if t 1

1
2

1
2

t 1 if 1 t 2

1
2

1
2

t 1 1
2

t 2 if 2 t 3

1
2

1 1
2

t 2 if 3 t 4

1
2

1 1 if t 4

4. The long-run expected number of reports that can be finished per unit

time is 1 1 1 1 2 1 3 .

7. The expected number of renewals per unit time converges to

1 1 5 6 c .

8. m t 2
3

t .

13. The long-run cost per time is c
1 1 1 2

.

15. Investment 1 is best.

17 (a) p; (c) p; (d) 3 t p.

18. The final price itself is expected to be about 20
2 p 1 t

8
.

Appendix B Answers to Selected Exercises 541

Section 5.4

1. (a) i
if i 0, 1, …, 5

0 otherwise
 j

j if j 1, 2, 3, 4

4 if j 5, 6

0 otherwise

(b) 2
15

, 4
15

, 4
15

, 8
45

, 4
45

, 2
45

, 1
45

.

(c) Doubling the service rate changes the probability that the queue is full to

1/1045.

2. The traffic intensity is 5
2

. The queue will have no limiting distribution.

3. The limiting distribution is Poisson with parameter .

5. N 6 suffices.

6. s 6 suffices.

7. The minimum cost occurs when 1.

8. The total probability of 3 or fewer is about .692882.

13. pn

n

n p0 if n 1
n

1 1n 1 p0 if n 1

14. 7/8.

15. The limiting distribution is j 1 j, j 0, 1, 2, ..., where

.122365.

16. p0 1
1 p

1
, pn

n pn 1

n p0, n 1.

Section 5.5

1. (a) .194712; (b) .841345.

(c) f x2, x3, x4
1

2
e

x4 x3
2

2
1

2
e

x3 x2
2

2
1

2
e

x2
2

2

2. (a) .357962 ; (b) .23906.

4. f x e2 M N e2 M x

e2 M N 1
.

542 Appendix B Answers to Selected Exercises

6. K p1 ex K 1

2 2 T
e x T 2 2 2 T x.

10. After some experimentation we find the value to be about a 10.85.

11. g y 1
y

1

2 t
e log y 2 2 t. The desired probability is .159983.

12. The density function is

g y 1

2 t
e y2 2 t 1

2 t
e 2 M y 2 2 t, y M

13. The mean is 0 and the variance is i 0
n 1 xi

2 ti 1 ti .

Section 6.1

1. For this policy, actions 0, 0, 1, and 0 are taken. The rewards are 1, 2, 2, 2.

3. A stationary policy can be created in 81 ways. In the second scenario,

there are 815 3486784401 policies.

4. The path 5, 8, 10 is the shortest path from 5 to 10, with cost 6. The

shortest path from 6 to 10 is 6, 8, 10 with cost 4.

6. V A, u 11.23 and V B, u 8.96.

7. There are 27 stationary policies.

8. There are 6 3 373248000 admissible policies.

9. The transition matrix under u is

Tu

0 1 0 0
1 2 0 1 2 0

0 1 0 0
0 1 0 0

The expected total reward is 4.5.

10. The expected total reward is 11/2.

Section 6.2

1. It is optimal to make no rockets at any time.

2. (b) (i) When the terminal cost is 50 we manufacture as many rockets as

possible at each time. (ii) Again at all times, 3 rockets should still be made.

(iii) This time it is always optimal to make 0 rockets.

Appendix B Answers to Selected Exercises 543

3. For each time n, un A 1, un B 2.

4. At all times, the optimizing actions are to turn the furnace on when the

temperature is below 68, and turn it off otherwise.

5. The stationary policy that always takes action 0 is optimal.

6. V1 0, 15, 25, 35, 45, 50 , with optimal action function

 u1 i 0, i 1, 2, 3, 4; u1 5 1.

 At time 0, V0 0, 75 4, 30, 40, 185 4, 205 4 , with the same optimal

action function u0 i 0, i 1, 2, 3, 4; u0 5 1.

7. For T 5, it is optimal to harvest a single unit of fish at time 0, when

there are 5 units available.

8. At each time we see that the action function u 1 1, u 2 2 is optimal.

10. At each time, it is optimal for the investor to invest $2000 in Venture B.

11. The only stream of investments that results in a share of 15 at phase 3 is

to save all the money for the last period: 0, 0, and $4 million and no better

final share is possible.

12. At time 3, the optimal immigration policy is

 u3 0 4, u3 1 3, u3 2 2, u3 3 1, u3 4 0, u3 5 0.

 Notice that immigration is permitted to bring the population up to 4 for

states 0 through 4. At times 2, 1, and 0, the optimal actions are

 un 0 5, un 1 4, un 2 3, un 3 2, un 4 0, un 5 0.

 Except for population 4, it is optimal to let immigration raise the population

to 5.

Section 6.3

5. 58 steps are required for the initial function w0 1 w0 2 0, yielding

the vector [39.3275, 36.9745]; and for the initial function w0 1 40,

w0 2 30, just 33 steps are required, resulting in the vector [39.3294,

36.9764].

6. The computation shows that n should be at least as large as 59 to guaran-

tee convergence to within .1.

7. The stationary policy defined by u 1 1, u 2 1 is optimal.

8. With the new cost parameters, action 2 is now optimal at state 1.

544 Appendix B Answers to Selected Exercises

9. (a) action 0 is optimal at state 1 and W 1 3.14607; (b) action 0 is still

optimal at state 1 and W 1 32.095.

10. The policy u that uses action 0 at state 0, action 1 at state 1, and action 2

at states 2, 3, and 4 is optimal.

12. w1 = 43, 143, 243, 343, 443, 543, 600 ;

 w2 = 81.7, 181.7, 281.7, 381.7, 481.7, 562.35, 600 ;

w3 = 116.53, 216.53, 316.53, 416.53, 507.823, 571.058, 600 . Note that in

all three cases, the optimizing actions suggest to advertise at all states other

than state 6.

13. The policy u 0 0, u 1 0, u 2 1, u 3 2 is optimal. The optimal

value function is w 4.78571, 9.5, 10.5, 11.5 .

Section 6.4

1. The optimal policy is u 1 1, u 2 2.

2. (a) u i i is optimal. (b) The computation shows the optimality of the

policy u i 0 for i 2 and u i i otherwise.

3. The policy u i 1, i 0, ..., 5; u 6 0 is optimal.

4. The policy that releases 0 when i 0, 1; releases 1 when i 2; and

releases 2 when i 3 is optimal.

6. The policy that replaces when the machine is in condition 3 or worse is

optimal.

10. The policy that harvests 0 at levels 0, 1, 2, 3 and 4; and harvests 1 at

level 5 is optimal.

13. The solution vector V to the DP equation has entries 34050/841,

35210/841, and 34850/841.

Section 6.5

1. The policy that stops at states 3, 5 is intuitively optimal. The optimal

values, that is V 1 , V 2 , V 3 , V 4 , and V 5 , are 4, 4, 5, 3, and 3,

respectively.

2. V i i; i 1, 2, 3, 4 and it is optimal to stop at every state.

Appendix B Answers to Selected Exercises 545

3. The stopping set is 1, 2, 4 , and the value function is V 1 6,

V 2 V 3 5, V 4 V 5 V 6 3.

5. (c) It is optimal not to stop when his wealth is 1, 2, 3, 4, 5, but only when

it is 0 or 6.

6. The only states for which V i f i are states 0 and 5, so we stop when

the stock price reaches those values.

7. The optimal policy is to stop at rewards 0, 2000, or 3000.

8. (b) It is optimal to stop immediately at every state.

11. The contestant should answer the first question and then quit.

Section 6.6

1. The option is worth .12 at time 0.

2. For u .08, the time 0 option value is .18; for u .09, it is .24.

3. For E 22, the time 0 option value is .41; for E 24, it is .05.

4. For .95, the time 0 option value is .10; for .9, it is .08.

5. The put option value is .01 at time 0.

7. (a) The policy whose optimal actions are 1, 1, 1, 0, 1, 1, 0, 0, 1 at the

states in their usual order is optimal when r 4. (b) The same policy as in

(a) is optimal when r 6.

8. The parameter value r 3.1 is the cutoff value to the nearest tenth.

9. The parameter value r 6.1 is the cutoff value to the nearest tenth.

10. At time 2, the optimal action function is u2 1, 1, 1, 0, 1, 1, 0, 0, 1 ;

the same action function is optimal at time 1; but at time 0, the optimal

strategy changes to u0 2, 2, 2, 1, 2, 2, 0, 1, 2 .

15. At all times it is optimal to buy as much stock as the checking account

will afford.

16. The optimal action at each period is to sell all existing stock.

546 Appendix B Answers to Selected Exercises

Appendix C

Glossary of Mathematica Commands

The commands below are grouped by the Mathematica package in which

they reside. Also contained in the four packages are utility commands that

are needed by the other commands, although the user does not interact

directly with them. We list the usage messages that are identical to the

on-line help messages that a user will see when querying for information

about the commands.

KnoxOR`Graphs`

AddFlow

AddFlow[capacities, flows, augmentingpath, epsilon] takes the capacity and

flow matrices for a maximal flow problem, and the augmenting path and

amount of new flow epsilon to augment by, and it returns the new flow

matrix.

AdjustComponents

AdjustComponents[u, v, components] is used by Kruskal and SpanningTree-

OneStep. It accepts two vertices, u and v, and returns an updated compo-

nents list obtained by setting the component number which is larger of that

of u and v, and also all similar component numbers, to the smaller of that of

u and v.

AugmentMatching

AugmentMatching[matching, augmentingpath] returns a revised matching

that augments using a given augmenting path on the given previous match-

ing M. It keeps all edges in the matching that were not on the augmenting

path, and deletes edges that are, replacing them by edges in the augmenting

path that were not in the original matching. Edges must be written with

left-side vertices first and right-side vertices second.

ComputePathCosts

ComputePathCosts[theTree, theRoot] computes the costs of all paths to all

vertices in the given tree from the given root.

ComputeSlacks

ComputeSlacks[theGraph, theTree, pathcosts] takes a directed graph, a

directed spanning tree for that graph, and the list of path costs in the tree to

each vertex and computes a matrix of slack values, that is, path cost to v

minus the path cost to u plus the cost of omitted edge (u,v), for all omitted

edges. Entries of the slack matrix are 0 for edges that are not omitted.

Appendix C Glossary of Mathematica Commands 547

ConvertToAdjMatrix

ConvertToAdjMatrix[listofedges, numberofvertices, opts] takes a list of

edges and converts it to an adjacency matrix. Options are GraphType

Undirected, which may be set to Directed; and Weighted False, which can

be set to True if the list of edges has a third component that gives the weight

of the edge that is to be stored in the weighted adjacency matrix.

DirectedSpanningTree

DirectedSpanningTree[theGraph, initialTree, theRoot, opts] takes a given

initial spanning tree of a given directed, quasi-connected graph, both in

adjacency matrix form, and the vertex number of the root of the tree. It

performs the full minimal directed spanning tree algorithm, displaying all

intermediate graphs unless the option ShowTree is set to False, and returns

the minimal spanning tree in adjacency matrix form. The display options of

DisplayGraph may be passed in.

DirectedSpanningTreeFirstStep

DirectedSpanningTreeFirstStep[theGraph, initTree, theRoot, opts] displays

the initial spanning tree supplied by the user, together with unused edges in

the whole graph and slack values for the unused edges. The option Show-

Tree is made True by default, and if so the first tree is displayed. All graphs

are in adjacency matrix form. The display options of DisplayGraph may be

passed in.

DirectedSpanningTreeOneStep

DirectedSpanningTreeOneStep[theGraph, currentTree, theRoot, newedge,

opts] performs one step of the directed spanning tree algorithm, inserting the

new edge into the current tree in the graph with the given root, and deleting

the edge that had pointed to the same vertex as the new edge. The option

ShowTree is made True by default, and if so the new tree is displayed. The

value returned by the function is the new tree. All graphs are in adjacency

matrix form. The display options of DisplayGraph may be passed in.

DisplayBipartiteGraph

DisplayBipartiteGraph[weightmatrix, opts] takes the weight matrix of a

bipartite graph, in which the rows mean vertices on one side and the columns

mean vertices on the other, and displays the graph. Its options are Show-

Weights True indicating the edge weights are to be shown; Labeling

Automatic, which may be set to a list of vertex labels L(v) in the matching

algorithm; Matching None, which can be set to a list of edges in a current

matching; and the options of DisplayGraph. EdgeLabels will be superceded

though. DisplayBipartiteGraph computes the matrix of EdgeLabels to pass to

DisplayGraph if ShowWeights is true. If Matching is set, then edges in the

matching will be shown as solid, and the edges not used by the matching will

be shown dashed. The VertexPositions and VertexLabelPositons options are

548 Appendix C Glossary of Mathematica Commands

preset to give the graph a satisfactory appearance, but may be changed by

the user.

DisplayGraph

DisplayGraph[adjmatrix, opts] shows the graph associated with the given

adjacency matrix. Options are GraphType Undirected, which may be set

to Directed to obtain a directed graph; VertexLabels Automatic, which

may be set to a list of labels for vertices; VertexPositions Automatic,

which may be set to a list of coordinates for the vertices; VertexLabelPosi-

tions Automatic, which may be set to a list of values such as Above,

Below, ToLeft, ToRight to indicate where the vertex labels should be

positioned relative to the vertex points; EdgeLabels Automatic, which can

be set to a matrix whose elements are to be used as labels on the edges;

EdgeLabelPositions Automatic, which like VertexLabelPositions can be

set to directional offsets from the midpoint of the edge; EdgeSeparation-

>.01, which controls the separation between double arrows in a directed

graph; and EdgeStyle Thickness[.005], which can apply a style to edges.

It also accepts the options of SelfLoops, which are LoopPositions Auto-

matic, which can be set to a list of values such as Above, Below, ToLeft, and

ToRight to indicate where the loops should be drawn relative to the points;

and LoopSize .05, which controls the size of loops by setting the percent-

age of the overall picture size that the loop radius will be.

EdgeLabelPositions

EdgeLabelPositions is an option for DisplayGraph, which may be set to a

matrix of values such as Above, Below, ToLeft, ToRight to indicate where

the edge labels should be positioned relative to the edge midpoints.

EdgeLabels

EdgeLabels is an option for DisplayGraph, which can be set to a matrix

whose elements are to be used as labels on the edges.

Edge Separation

EdgeSeparation is an option for DisplayGraph, set to .01 by default, which

controls the gap between the two arrows in a double edge

EdgeStyle

EdgeStyle is an option for DisplayGraph, set to Thickness[.005] by default,

which can apply a style to edges.

EqualitySubgraph

EqualitySubgraph[weightmatrix, labeling] produces the weight matrix of the

equality subgraph for a labeling in the maximal matching problem, given the

weight matrix and the labeling.

Appendix C Glossary of Mathematica Commands 549

FindAugmentingPath

FindAugmentingPath[capacities, flows, source, sink, opts] is a breadth-first

search for the maximal flow problem. It takes the capacity matrix and flow

matrix, and the source and sink vertices. The command returns the

list{augmentingpath,epsilon}, or {{},0} if the augmenting path could not be

found and the sink could not be labeled. It accepts one option, ShowLabels

True, which displays a table of vertex labels found by BFS if it is kept at

True, and suppresses the table if it is set to False.

FindChildren

FindChildren[A, parents] is a function used by ComputePathCosts to find all

children of the vertices in the list parents. The argument A is the adjacency

matrix of the graph.

FindDirectedRoot

FindDirectedRoot[digraph] returns the root of a directed graph if one exists,

else Null and a message indicating that a root was not found.

FindNeighbors

FindNeighbors[capacities,vert] returns a list of children or parents of the

given vertex in the graph indicated by the given capacity matrix.

GraphType

GraphType is an option for DisplayGraph. It is Undirected by default, and

can be set to Directed for a directed graph.

Kruskal

Kruskal[adjlist, n, opts] performs Kruskal's algorithm to find a minimal

undirected spanning tree, given a list of weighted edges, each element of the

form {v1,v2,weight}, and the number of vertices. Options accepted are

ShowTree True to display the new tree, Weighted True for a weighted

graph, and the options of DisplayGraph.

Labeling

Labeling is an option for DisplayBipartiteGraph, set to Automatic by default,

which can be set to a list of vertex labels in the maximal matching algorithm.

The labels will be shown when the graph is displayed.

LoopPositions

LoopPositions is an option for DisplayGraph, which can be set to a list of

values such as Above, Below, ToLeft, and ToRight to indicate where the

loops should be drawn relative to the points. Its default value of Automatic

positions all loops above the points.

LoopSize

LoopSize is an option for DisplayGraph, initialized to .05, which controls

550 Appendix C Glossary of Mathematica Commands

the size of loops by setting the percentage of the overall picture size that the

loop radius will be.

Matching

Matching is an option for DisplayBipartiteGraph, set to None by default,

which can be set to a list of edges in a matching. These edges will be shown

as solid segments, and others will be shown as dashed.

MaximalDirectedSpanningTree

MaximalDirectedSpanningTree[theGraph,initialTree,theRoot,opts] takes a

given initial spanning tree of a given directed, quasi-connected graph, both

in adjacency matrix form, and the vertex number of the root of the tree. It

performs the full maximal directed spanning tree algorithm, displaying all

intermediate graphs unless the option ShowTree is set to False, and returns

the maximal spanning tree in adjacency matrix form. The display options of

DisplayGraph may be passed in.

MaximalFlow

MaximalFlow[capacities, source, sink, opts] takes the capacities, source, and

sink in a maximal flow problem as its parameters. It returns the final flow

matrix. The Option ShowSteps True can be set to choose whether to

display the intermediate steps or not. The command also accepts the ShowLa-

bels True option to display tables of breadth-first search labels, and it

accepts the display options for DisplayGraph.

MaxSlack

MaxSlack[slackmatrix] returns a pair {maximum, {row,column}}, which are

the maximum element and its position in the given slack matrix.

MinSlack

MinSlack[slackmatrix] returns a pair {minimum, {row,column}}, which are

the minimum element and its position in the given slack matrix.

QuasiConnectedQ

QuasiConnectedQ[digraph] returns True or False respectively according to

whether the given directed graph is quasi-connected or not.

ReviseLabeling

ReviseLabeling[weightmatrix, labeling, S, T] finds the for a revised

labeling in the maximal matching problem, given the weightmatrix of the

bipartite graph and the sets of vertices S and T on the left and right sides of

the graph that were found in the previous unsuccessful search for an augment-

ing path. It returns the result in the form of a list { , newlabeling}.

Appendix C Glossary of Mathematica Commands 551

ShowLabels

ShowLabels True is a boolean option for FindAugmentingPath and Maxi-

malFlow, which if True displays a table of vertex labels.

ShowSteps

ShowSteps True is an option for MaximalFlow, which if set to True shows

all the intermediate flow augmenting steps.

ShowTree

ShowTree is an option for SpanningTreeOneStep, True by default, which

can be set to False to suppress the tree display.

ShowWeights

ShowWeights is an option for DisplayBipartiteGraph, initialized to False,

which determines whether the edge weights should be displayed.

SortEdges

SortEdges[adjlist] takes a list of weighted edges, each element of the form

{v1,v2,weight}, and sorts it into increasing order of weight. It is used by the

Kruskal command to prepare the edges.

SpanningTreeOneStep

SpanningTreeOneStep[treelist, edgelist, edgenumber, componentlist, opts] is

one step of Kruskal's algorithm for minimal undirected spanning trees. It

takes a current tree, a list of edges of the whole graph, the number of the

edge in that list to substitute, and the list of connected components of the

vertices. If the new edge has vertices that belong to different components, it

is added to the tree and the component numbers of all vertices like the one

that has the larger component between the two that are incident on the new

edge are adjusted down to the component number of the smaller. The

command returns the revised tree and componentlist. Options accepted are

ShowTree True to display the new tree, Weighted True for a weighted

graph, and the options of DisplayGraph.

VertexLabelPositions

VertexLabelPositions is an option for DisplayGraph, which may be set to a

list of values such as Above, Below, ToLeft, ToRight to indicate where the

vertex labels should be positioned relative to the vertex points.

VertexLabels

VertexLabels is an option for DisplayGraph, which may be set to a list of

labels for vertices.

552 Appendix C Glossary of Mathematica Commands

VertexPositions

VertexPositions is an option for DisplayGraph, which may be set to a list of

coordinates for the vertices.

Weighted

Weighted is an option for ConvertToAdjMatrix, which may be set to True to

construct a weighted adjacency matrix. It is also an option for SpanningTree-

OneStep, which may be set to False for an unweighted graph.

KnoxOR`LinearProgramming`

Dictionary

Dictionary[system, basiclist, nonbasiclist] takes the system of constraint

equations with the objective equation adjoined, a list of basic variables

including the objective variable, and a list of non-basic variables, and

displays the equivalent dictionary system of equations. The basic variables

are solved for and the system is well-aligned with variables in columns.

ObjectiveLines

ObjectiveLines is an option for PlotFeasibleRegion, which can be set to a list

of constant values. Lines in which the objective function is set equal to each

of the constants are displayed on the feasible region.

ObjectiveLineStyle

ObjectiveLineStyle is an option for PlotFeasibleRegion, which can be used

to apply a plot style to the objective lines in the feasible region.

PlotFeasibleRegion

PlotFeasibleRegion[constrainteqns, xdomain, ydomain, corners, objective,

opts] takes the list of constraint equations, both x and y domains for plotting,

the list of corners to use to bound the polygon, and the name of the objective

function. The option ShowTable True shows a table of objective function

values at the corners. The option ObjectiveLines Automatic can be set to a

list of constant values c that will result in the display of lines of constant

objective value equal to c on the graph. The option ShadingStyle can be set

to a style for the feasible region. The option ObjectiveLineStyle can be set to

a plot style for these lines. Other options are those of ImplicitPlot.

ShadingStyle

ShadingStyle is an option for PlotFeasibleRegion, which applies a style to

the feasible region.

ShowTable

ShowTable is an option for PlotFeasibleRegion, which, if set to True, shows

a table of objective function values at the corner points.

Appendix C Glossary of Mathematica Commands 553

SimplexOneStep

SimplexOneStep[tableau, varlist, enteringbasic, departingbasic, basicvaria-

blelist] takes the current simplex tableau, in the usual Mathematica form of a

list of lists, the list of all variable names, the names of the entering and

departing basic variables, and the list of current basic variable names. It

performs one simplex step and prints the new tableau, with both row head-

ings for the basic variables and column headings for all variables. Then it

returns a pair {newtableau, newbasicvariablelist} for use in the next step.

TransportationOneStep

TransportationOneStep[tableau, varlist, enteringbasic, pivotrow, basicvaria-

blelist] takes the current transportation simplex tableau, the list of all vari-

able names, the name of the entering basic variable, the row in which it is to

be made basic, and the list of current basic variable names, some of which

can be blank. It prints the new tableau, with both row headings for the basic

variables and column headings for all variables. Then it returns a pair

{newtableau, newbasicvariablelist} for use in the next step of the phase 1

transportation algorithm.

KnoxOR`StochasticProcesses`

AbsorptionProbability

AbsorptionProbability[transmatrix, transientstatelist, recurrenceclass] takes

the transition matrix of a Markov chain, the list of transient states, and a list

that is a recurrence class of the chain, and returns a list of probabilities of

absorption into the recurrence class, with one entry for each intial transient

state.

DotSize

DotSize is an option for PlotStepFunction. It controls the size of the dots on

the graph.

FirstPassageTime

FirstPassageTime[transmatrix, j, time] accepts the transition matrix of a

Markov chain, a target state number j, and a time, and returns a list with an

element for each initial state, of probabilities that the time of first visit from

the initial state to state j equals this time.

Histogram

Histogram[datalist, numrectangles] plots a histogram of a list of data, with a

desired number of rectangles. It inherits some of the options of Generalized-

BarChart and has four of its own. The option Type has any of the values

Relative (default), Absolute, or Scaled, depending on whether you want bars

to have heights that are relative frequencies, absolute frequencies, or relative

frequencies divided by interval length. The option Endpoints may be set to a

554 Appendix C Glossary of Mathematica Commands

list {a,b} of real numbers with a<b to force the histogram to be plotted

between these endpoints. Otherwise the command uses the min and max of

the datalist as endpoints. The option NumDigits (initialized to 2) can be used

to set the number of decimaldigits used in the tick marks on the x-axis. The

option Distribution->Continuous may be reset to Discrete in order to force a

histogram whose boxes are at the integer values between the lowest and

highest integer data value. The user cannot override the PlotRange option,

nor AxesOrigin, nor Ticks, nor BarOrientation, in the interest of having a

well-formed graph.

LimitingProbs

LimitingProbs[transmatrix] takes the transition matrix of a regular Markov

chain and returns the vector of limiting probabilities.

Nt

Nt[arrtimes, t] takes a list of arrival times of a Poisson process and a time t

and returns the cumulative number of arrivals by time t.

PlotContsProb

PlotContsProb[density, domain, between] plots the area under the given

function on the given domain between the points in the list between, which

is assumed to consist of two points in increasing order. Options are the

options that make sense for Show, and ShadingStyle->RGBColor[1,0,0],

which can be used to give a style to the shaded area region.

PlotSimulateBrownianMotion

PlotSimulateBrownianMotion[x0, deltat, numpoints] takes an initial state x0,

a timestep deltat, and a number of time points and simulates a standard

Brownian motion. It produces a connected list plot of the path.

PlotStepFunction

PlotStepFunction[fn, domain, jumplist] plots a step function on the domain

specified, with jumps at the points in jumplist, which is a list of sorted

numbers. The step function is assumed to be right continuous, as a c.d.f. is.

It accepts option DotSize .017 to change the size of the dots, StepStyle

RGBColor[0,0,0] to assign a style to the steps, and it inherits any options

that make sense for Show.

ProportionOfTime

ProportionOfTime[processlist] takes the output of the SimBirthDeathProcess

command in the form {jumptimelist,statelist} and finds the proportion of

time that the process was in each of the states it visited, in the form of a list

of pairs {state, proportion}.

Appendix C Glossary of Mathematica Commands 555

ReachableSet

ReachableSet[transmatrix, state] returns the list of states reachable from the

given state for the Markov chain with the given transition matrix.

SimBirthDeathProcess

SimBirthDeathProcess[x0, finaltime, birthrate, deathrate] takes an initial

state x0, a finaltime to end simulation, a birthrate and a deathrate for a

birth–death process, and returns a list of jumptimes and states passed

through in the form {timelist, statelist}.

SimDiscreteDist

SimDiscreteDist[problist] is used by SimMarkovChain. It takes a list of

numbers that forms a valid probability distribution and simulates a value

having that distribution.

SimMarkovChain

SimMarkovChain[transmatrix, start, numsteps] returns a list of numsteps

simulated states for a Markov chain with the given transition matrix and

starting state.

SimulateNArrivals

SimulateNArrivals[lambda, n] returns a list of n simulated arrival times for a

Poisson process with rate lambda.

StepSize

StepSize[deltat] is a function used by PlotSimulateBrownianMotion to

generate a random step size of either positive or negative deltat.

StepStyle

StepStyle is an option for PlotStepFunction, which gives a style to the steps.

Its default is RGBColor[0,0,0], or black.

KnoxOR`DynamicProgramming`

DPEquation

DPEquation[TransMats, RewardMatrix, Val] takes the list of transition

matrices, one for each action; the reward matrix as a function of state and

action; and the current value function for the finite horizon stochastic

dynamic programming problem, and returns a list, one for each state, of

dynamic programming equation values for each action. The rowwise max-

ima or minima form the next value function.

DiscountedDPEquation

DiscountedDPEquation[TransMats, RewardMatrix, Val, alpha] takes the list

of transition matrices, one for each action; the reward matrix as a function of

state and action; the current value function for the infinite horizon stochastic

556 Appendix C Glossary of Mathematica Commands

dynamic programming problem; and the discount factor alpha, and returns a

list, one for each state, of dynamic programming equation values for each

action. The rowwise maxima or minima form the next value function.

PolicyImprovementOneStep

PolicyImprovementOneStep[TransMats, RewardMatrix, alpha, policy] takes

the list of transition matrices, one for each action; the reward matrix as a

function of state and action; the discount factor alpha; and a current policy

represented as a list whose ith element is the number of the action taken

when the state is i. It returns a list, one for each state, of dynamic program-

ming equation values for each action. The actions at which the rowwise

maxima or minima are taken on form the next policy.

Appendix C Glossary of Mathematica Commands 557

References

(1) Aho, A., J. Hopcraft, and J. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, MA (1983).

(2) Barlow, R.E., and F. Proschan. Mathematical Theory of Reliability.

Wiley, New York (1965).

(3) Barlow, R.E., and F. Proschan. Statistical Theory of Reliability and Life
Testing. Holt, Reinhart and Winston, New York (1974).

(4) Baxter, M., and A. Rennie. Financial Calculus: An Introduction to
Derivative Pricing. Cambridge University Press (1996).

(5) Bellman, R. Dynamic Programming. Princeton University Press, Prince-

ton, NJ (1957).

(6) Bertsekas, D., and S. Shreve. Stochastic Optimal Control. Academic

Press, New York (1978).

(7) Black, F., and M. Scholes. "The Pricing of Options and Corporate

Liabilities," Journal of Political Economy 81, pp. 637–659 (1973).

(8) Blumenthal, R.M., and R.K. Getoor. Markov Processes and Potential
Theory. Academic Press, New York (1968).

(9) Bradley, S., A. Hax, and T. Magnanti. Applied Mathematical Program-
ming. Addison-Wesley, Reading, MA (1977).

(10) Breiman, L. Probability and Stochastic Processes, 2nd ed. Scientific

Press, Palo Alto, CA (1986).

(11) Busacker, R., and T. Saaty. Finite Graphs and Networks. McGraw-Hill,
New York (1965).

(12) Carter, M., and C Price. Operations Research: A Practical Introduction.
CRC Press, Boca Raton, FL (2001).

(13) Chung, K.L. Elementary Probability Theory with Stochastic Processes.

Springer-Verlag, New York (1979).

(14) Chung, K.L. A Course in Probability Theory. Academic Press, New

York (1974).

(15) Cinlar, E. An Introduction to Stochastic Processes. Prentice Hall,

Englewood Cliffs, NJ (1975).

558 References

(16) Dantzig, G. Linear Programming and Extensions. Princeton University

Press, Princeton, NJ (1963).

(17) Derman, C. Finite State Markovian Decision Processes. Academic

Press, New York (1970).

(18) Devore, J. Probability and Statistics for Engineering and the Sciences,
3rd ed. Brooks/Cole, Pacific Grove, CA (1991).

(19) Dierker, P., and W. Voxman, Discrete Mathematics. Harcourt, Brace,

and Jovanovich, Orlando, FL (1986).

(20) Dossey, J., A. Otto, L. Spence, and C. VandenEynden, Discrete Mathe-
matics, 4th ed. Addison Wesley, Boston (2002).

(21) Dreyfus, S., and A. Law. The Art and Theory of Dynamic Program-
ming. Academic Press, New York (1977).

(22) Feller, W. An Introduction to Probability Theory and Its Applications,
Vol. 1 & 2. John Wiley, New York (1968).

(23) Gale, D., H.W. Kuhn, and A.W. Tucker. "Linear Programming and the

Theory of Games," in Activity Analysis of Production and Allocation, T.C.

Koopmans, Ed. John Wiley, New York, pp. 317–329 (1951).

(24) Gass, S. Linear Programming: Methods and Applications, 5th ed.
McGraw-Hill, New York (1985).

(25) Gaylord, R., S. Kamin, and P. Wellin. An Introduction to Programming
with Mathematica, 2nd ed. Springer-Verlag, New York (1996).

(26) Gibbons, A. Algorithmic Graph Theory. Cambridge University Press

(1985).

(27) Gribik, P., and K. Kortanek. Extremal Methods of Operations Research.

Marcel Dekker, New York (1985).

(28) Gross, D., and C. Harris. Fundamentals of Queueing Theory, 2nd ed.
Wiley, New York (1985).

(29) Hastings, K. Probability and Statistics. Addison-Wesley, Reading, MA

(1997).

(30) Hastings, K. Introduction to Probability with Mathematica. Chapman &

Hall/CRC Press, Boca Raton, FL (2001).

References 559

(31) Hillier, F., and G. Lieberman. Introduction to Operations Research, 5th
ed. McGraw-Hill, New York (1990).

(32) Hoel, P., S. Port, and C. Stone. Introduction to Probability Theory.

Houghton Mifflin, Boston (1971).

(33) Hoel, P., S. Port, and C. Stone. Introduction to Statistical Theory.

Houghton Mifflin, Boston (1971).

(34) Hoel, P., S. Port, and C. Stone. Introduction to Stochastic Processes.

Houghton Mifflin, Boston (1972).

(35) Hogg, R.V., and E. Tanis. Probability and Statistical Inference, 3rd ed.
Macmillan, New York (1988).

(36) Hogg, R.V., and A. Craig. Introduction to Mathematical Statistics, 4th
ed. Macmillan, New York (1978).

(37) Howard, R. Dynamic Programming and Markov Processes. MIT Press,

Cambridge, MA (1960).

(38) Jeter, M. Mathematical Programming. Marcel Dekker, New York

(1986).

(39) Johnson, L.A., and D.C. Montgomery. O.R. in Production Planning,
Scheduling, and Inventory Control. Wiley, New York (1974).

(40) Karlin, S., and H. Taylor. A First Course in Stochastic Process, 2nd ed.
Academic Press, New York (1975).

(41) Karlin, S., and H. Taylor. A Second Course in Stochastic Processes.

Academic Press, New York (1981).

(42) Knuth, D.E. The Art of Computer Programming, Vol. 1, 2nd ed. Addi-

son-Wesley, Reading, MA (1973).

(43) Merton, R. "Optimum Consumption and Portfolio Rules in a Continu-

ous-Time Model," Journal of Economic Theory 3, pp. 373–413 (1971).

(44) Minieka, E. Optimization Algorithms for Networks and Graphs. Marcel

Dekker, New York (1978).

(45) Mood, A., F. Graybill, and D. Boes. Introduction to the Theory of
Statistics, 3rd ed. McGraw-Hill, New York (1974).

560 References

(46) Mott, J.L., A. Kandel, and T. Baker. Discrete Mathematics for Com-
puter Scientists & Mathematicians, 2nd ed. Prentice Hall, Englewood Cliffs,
NJ (1986).

(47) Papadimitriou, C.H., and K. Steiglitz. Combinatorial Optimization.

Prentice Hall, Englewood Cliffs, NJ (1982).

(48) Parzen, E. Modern Probability Theory and its Applications. Holden-

Day, San Francisco (1962).

(49) Rao, S.S. Optimization Theory and Applications, 2nd ed. Wiley Eastern,

Ltd., New Delhi (1984).

(50) Rockafellar, R.T. Convex Analysis. Princeton University Press, Prince-

ton, NJ (1972).

(51) Ross, S. Simulation, 3rd ed. Academic Press, San Diego (2002).

(52) Ross, S. Stochastic Processes. Wiley, New York (1983).

(53) Ross, S. Introduction to Stochastic Dynamic Programming. Academic

Press, New York (1983).

(54) Ross, S. Applied Probability Models with Optimization Applications.

Holden-Day, San Francisco (1970).

(55) Saaty, T. Elements of Queueing Theory with Applications. Dover, New

York (1961).

(56) Strang, G. Introduction to Applied Mathematics. Wellesley-Cambridge

Press, Wellesley, MA (1986).

(57) Swamy, M.N.S., and Thulasiraman, K. Graphs, Networks, and Algo-
rithms. Wiley, New York (1981).

(58) Tucker, H. A Graduate Course in Probability. Academic Press, New

York (1967).

(59) Walker, R. Introduction to Mathematical Programming, Prentice Hall,

Upper Saddle River, NJ (1999).

(60) Wolfram, S. The Mathematica Book, 3rd ed. Cambridge University

Press (1996).

(61) Winston, W.L. Operations Research: Applications and Algorithms, 2nd
ed. PWS-Kent, Boston (1991).

References 561

Index

562

Index

Absorption probabilities 318–319
Absorbing state 293
Action 404
 Admissible 405
Action function 404
Action set 405
Adjacency list 23
Adjacency matrix 4
 Powers of 7, 11
Admissible policy 408
 Feedback 408
 Optimal 410
 Stationary 408
Algorithm:
 Big M method 226
 Classification of states 298
 Connected components 15
 Critical path 75
 Dijkstra’s 71
 Directed spanning tree 38
 Dual simplex 258
 Finite horizon Markov decision

problem 424
 Kruskal’s minimal undirected

spanning tree 47
 Labeling 99
 Matching 118, 123
 Maximal flow (Ford-Fulkerson)

101
 Minimal directed spanning tree

59
 Northwest corner rule 240
 Phase 1 214, 220
 Policy improvement 449, 452
 Prim’s 69
 Simplex 145, 166, 170–175
 Spanning tree 29
 Transportation 233

Ancestor 8
Arbitrage 478
Arrival counting process 328
Artificial variable 216
Augmenting path 92
 Flow 92, 96
 Matching 117

Basic feasible solution 163
Basic solution 208
Basic variable 172
Binomial distribution 507
Binomial random variable 507
Bipartite graph 114
Birth–death process 327, 340–
342
 Birth rate 341
 Death rate 341
 Kolmogorov equations 345
 Limiting probability 348
 Pure birth 351
Blackwell’s renewal theorem 367
Breadth-first search 40
Brownian motion 327, 386
 Geometric 401
 Maximum process 401
 Reflecting barrier 402
 Standard 389
 With drift 394

C-level set 149
Capacity of a cut 94
Closed set 19, 292
Complete graph 45
Conditional density function 518
Conditional expectation 525
Conditional independence 519
Conditional mass function 518

Index

563

Conditional probability 514
Conditioning and unconditioning

521
Connected components 15
Connected graph 10
Connectivity 10
Constraints 145
Continuous time queue length

process 369
Convolution 356
Countable subadditivity 504
Convex combination 153
Convex function 169
Convexity 153, 160
Cost function 405
Critical path 74
Critical path algorithm 75
Cumulative distribution
Cut 93
 Capacity 93
 Minimum 93
Cycle 8, 73

Degeneracy 163, 180
Degree 9–10, 26
Density function 506
 Conditional 518
 Continuous uniform 507
 Erlang 358
 Exponential 329
 Gamma 329
 Joint probability 512
 Normal 510
 Probability 506
Descendant 19
Deterministic arrivals 382
Dictionary method 170, 184
Dijkstra’s algorithm 71
Directed graph 3
Directed network 73
Discount factor 435
Distribution 505
 Binomial 507
 Cumulative 511
 Discrete uniform 507
 Exponential 329, 510

 Gamma 329, 509
 Geometric 508
 Marginal 513
 Multivariate 512
 Normal 510
 Poisson 330, 508
 Probability 505
Dominated convergence theorem

317, 529
Double quasi-connectivity 87
Duality 145, 193-198, 209
 Maximum problem 195
 Minimum problem 195
 Strong 198
 Weak 195
Dummy edge 83
Dynamic programming 403
 Deterministic problem 403–406
 Equation 57, 422–424,

436–437, 463-464
 LP approach 459

Edge 1, 3
 Capacity 91
 Forward 96
 Reverse 96
Eigenvalue 277
Eigenvector 277
Elementary renewal theorem 362
Equality subgraph 119
Erlang density function 358
Event 502
Excessive function 469
Expectation 522
 Conditional 525
Expected value 522
Exponential distribution 329, 510
Extreme point 153, 162

Feasible region 145, 151, 161
Feedback action 408
Final tableau 185
Finite horizon problem 418
First passage time 284
Flow 91–92
 Edge capacity 91

Index

564

 Maximum 92
 Value 92

Gambler’s ruin problem 321, 393
Gamma density function 329, 509
Geometric Brownian motion 401
Geometric distribution 508
Graph 3
 Bipartite 114
 Complete 45
 Connected 10
 Definition 3
 Directed 3
 Double quasi-connected 87
 Isomorphic 21
 Quasi-connected 10, 36
 Regular 13
 Subgraph of 3
 Undirected 3
 Weighted 3
Graph coloring problem 136

Hall’s theorem 133
Hitting time 392
Hyperplane 160

Independent events 515–516
Independent increments condition

330, 390
Independent random variables 517
Infeasible LP problem 152
Initial tableau 184
Integer programming 212
Inventory problem 310, 483
Irreducible set 293
Iterates of a distribution function

357

Joint probability density function

512
Joint probability mass function

512

Kolmogorov backward equation

354
Kolmogorov forward equation

347
Kruskal’s algorithm 47

Lagrange multiplier 191
Law of total probability 521
Limiting set 527
Line segment 527
Linear programming 143
 Artificial variable 216
 Basic variable 172
 Basic feasible solution 163
 Big M method 226
 Constraints 145, 215
 Degenerate problem 163, 180
 Dictionary method 170, 184
 Duality 145, 193–198, 209
 Extreme point 162
 Feasible region 145, 151, 161
 Final tableau 185
 Infeasible problem 152
 Initial tableau 184
 Maximization, negative of

objective function 213
 Mixing problem 202-203
 Multiple solutions 150, 178
 Non-basic variable 172
 Nonstandard maximum problem

211
 Nonstandard minimum problem

211, 213
 Optimal solution 149
 Sensitivity analysis 242
 Shadow price 205
 Slack variable 155
 Standard equality form 159
 Standard LP problem 144
 Standard maximum problem

144, 170
 Standard minimum problem

195
 Surplus variable 215
 Tableau method 184
 Transportation problem 212,

227
 Unbounded problem 152, 176
Limiting distribution 303

Index

565

Locally optimal solution 170
Marginal distribution 513
Markov chain 262–263
 Absorbing state 293
 Absorption probabilities

318–319
 Closed set 292
 First passage time 284
 Irreducible 293
 Limiting probabilities 303, 305
 Long-run average cost 311
 Long-run expected discounted

cost 311
 Matrix 272
 Recurrence class 294, 298
 Regular 303
 Short-run distribution 274
 State 262
 Stationary distribution 305, 309
 Strong Markov property 320
 Time homogeneous 263–264
 Transient state 293–294
 Transition matrix 263–264
 Transition probability 263
Markov decision problem 403
 Finite horizon 406
 Infinite horizon discounted 435
 Method of successive

approximations 438
 Transition probability 407
Markov decision process 406
Markov matrix 272
Markov process 262–263
 Transition function 263
Mass function 506
 Conditional 518
 Joint probability 512
 Probability 506
Matching 2, 114
 Complete 114
 Maximal 115
Mathematical programming 143
Matrix 4
 Adjacency 4
 Transition 263
 Weight 4

Maximal flow problem 91–92
Maximal flow algorithm 101
Maximal matching algorithm 118,

123
Maximum flow 96
Maximum matching problem 113
Mean 510, 522
Memoryless property 336
Minimal directed spanning tree

56–57
Minimal undirected spanning tree

47
Minimum cut 96
Mixing problem 202–203
Moment generating function 522
Monotone continuity of

probability 527
Monotone convergence theorem

528
Multiplication rule 514
Multivariate distribution 512
Mutually independent events 516
Non-basic variable 172
Nondegeneracy 163, 180
Normal distribution 510
Nth moment 522

Objective function 145
Occurrence for almost every

outcome 528
Optimal assignment problem 113
Optimal stopping problem 403,

461
Optimal stopping time 462
Optimal value function 410
Option 474, 477
Order statistics 331
Outcome 501

Path 8
 Augmenting for matching 117
 Augmenting for maximal flow

92, 96
 Critical 75
 Definition 7
 Maximal 74

Index

566

 Number of 11
 Simple 7
 Weight 8–9
Phase I algorithm 214, 220
Poisson distribution 330
Poisson process 327, 329
 Axiomatic definition 330
 Rate 329
Poisson random variable 330, 508
Policy 408
Policy improvement 61, 449–452
Portfolio problem 397, 498
Postoptimality analysis 244
Predecessor 8
Prim’s algorithm 69
Principle of optimality 422
Probability 503–504
 Density function 506
 Distribution 505
 Generating function 384
 Mass function 506
 Measure 503–504
Project completion 1, 72

Quasi-connectivity 10, 36
Queue 368
 Embedded Markov chain 376,

380
 G/M/1 380
 Limiting distribution 373, 378,

381
 M/G/1 376
 M/M/s 372
 Simple Poissonian 370
 Traffic intensity 376
Queue discipline 369
Queueing problem 368
Queueing theory 327, 368

Random experiment 501
Random variable 261, 505
 Binomial 507
 Continuous 506
 Discrete 506
 Independent 517
 Poisson 508

Random walk 282, 315–316, 321,

389
 With reflecting barriers 282,

316
Rate of return 477
Recurrence class 294
Recurrent state 294
Regularity 303
Renewal function 356
Renewal law of large numbers

361
Renewal process 327, 355
 Delayed 366
 Interrenewal distribution 355
 Long-run average reward 356
 Long-run time average behavior

360–361
 Short-run probability 355–357
Renewal reward process 363
Renewal theory 355
Renewal time 355
Reward 409
 Function 409
 Long-run average 496
 Terminal 410
Risk aversion 398
Root 24, 73

Sample space 502
Self-loops 4
Sensitivity analysis 242–244
 Change in b 252
 Change in c 249
 Change in constraint coefficient

column 255
Shadow price 205
Shortest paths problem 138
Simple path 7, 9
Simplex algorithm 145, 166,

170–175
Simulation 268
Sink 73, 92
Slack 58
 Edge 58, 75
 Vertex 99

Index

567

Slack variable 155
Source 24, 73, 92
Spanning tree 2, 25
 Directed 24
 Maximal directed 74
 Minimal directed 56–57
Standard Brownian motion 389
Standard deviation 510
Standard maximum problem 144,

170
Standard minimum problem 195
State space 262, 505
 Nondiscrete 386
Stationarity 330, 389
Stationary (steady state)

distribution 305, 309
Stationary equation 305, 309
Stationary policy 408
Stochastic dynamic programming

403
Stochastic integral 402
Stochastic process 261
 Discrete time 262
 Continuous time 262
Strong connectivity 10
Strong law of large numbers 528
Strong Markov property 320
Subgraph 3
Successive approximations 438
Surplus variable 215

Tableau method 184
Terminus 73
Time horizon 410
Trace 278
Transient state 293–294
Transition c.d.f. 391
Transition density 391
Transition diagram 264
Transition matrix 263
Transition probability 407
Transportation algorithm 233
Transportation problem 212,

227–228
 Algorithm 233
 Demand constraints 228

 Dependency 229, 232
 Destination 227
 Minimum cost rule 230
 Northwest corner rule 240
 Source 227
 Supply constraints 228
 Transportation cost 228
 Undeclared variables 230
Traveling salesman problem 2,

139
Tree 24
 Directed 24
 Maximal directed 74
 Minimal undirected 47
 Spanning 25
 Undirected 24–25

Unbounded LP problem 152, 176
Uniform distribution 331, 507

Value function 410
 For finite horizon problem 410
 For infinite horizon problem

435
 Optimal for finite horizon

problem 410
 Optimal for infinite horizon

problem 435
 Optimal stopping problem 464,

468
Variance 510, 522
Vertex 3
 Adjacent 4
 Degree of 10, 26
 Saturated 114
Vertex labeling 119

Weibull distribution 364
Weighted graph 3
Weight function 2
Weight matrix 4, 115
Wiener process 386

	Hastings K.J. Introduction to the Mathematics of Operations Research with Mathematica
	Title
	Copyright
	Dedication
	Preface
	Contents
	Chapter 1: Graph Theory and Network Analysis
	1.1 Definitions and Examples
	1.2 Spanning Trees
	Undirected Spanning Trees
	Directed Spanning Trees

	1.3 Minimal Cost Networks
	Undirected Graphs
	Directed Graphs

	1.4 Critical Path Algorithm
	1.5 Maximal Flow Problems
	Problem Description
	Main Results and Algorithm
	Examples

	1.6 Maximum Matching Problems
	Definitions and Problem Description
	Matching Algorithm
	Examples

	1.7 Other Problems of Graph Theory
	Graph Coloring Problem
	Shortest Paths Problem
	Traveling Salesman Problem

	Chapter 2: Linear Programming
	2.1 Two-Variable Problems
	2.2 Geometry of Linear Programming
	2.3 Simplex Algorithm for the Standard Maximum Problem
	The Simplex Algorithm
	Special Behavior
	Tableau Method

	2.4 Duality and the Standard Minimum Problem

	Chapter 3: Further Topics in Linear Programming
	3.1 Non-Standard Problems
	3.2 Transportation Problem
	3.3 Sensitivity Analysis
	Discussion of the Problem
	Matrix-Geometric View of the Simplex Method
	Determining Sensitivity of Parameters

	Chapter 4: Markov Chains
	4.1 Definitions and Examples
	Simulation

	4.2 Short-Run Distributions
	4.3 First Passage Times
	4.4 Classification of States
	4.5 Limiting Probabilities
	Main Results
	Long-Run Discounted Cost

	4.6 Absorption Probabilities

	Chapter 5: Continuous Time Processes
	5.1 Poisson Processes
	Definitions and Main Results
	Examples

	5.2 Birth and Death Processes
	Preliminaries
	Kolmogorov Equations

	5.3 Renewal Processes
	Introduction
	Short-Run Distributions
	Long-Run Results
	Renewal Reward Processes

	5.4 Queueing Theory
	Preliminaries
	Simple Poissonian Queues
	M/G/1 Queue
	G/M/1 Queue

	5.5 Brownian Motion
	Relation to Random Walks
	Definition and Properties of Standard Brownian Motion
	Brownian Motion with Drift

	Chapter 6: Dynamic Programming
	6.1 The Markovian Decision Model
	Deterministic Dynamic Programming
	Stochastic Dynamic Programming: The Finite Horizon Problem
	Examples

	6.2 The Finite Horizon Problem
	Dynamic Programming Algorithm, Stochastic Case
	Examples

	6.3 The Discounted Reward Problem
	Method of Successive Approximations
	Examples

	6.4 Policy Improvement
	Main Theorem and Policy Improvement Algorithm
	Examples

	6.5 Optimal Stopping of a Markov Chain
	Dynamic Programming Approach
	Linear Programming Approach

	6.6 Extended Applications
	American Option Problem
	Inventory Problem
	Conclusion

	Appendix A. Probability Review
	Appendix B. Answers to Selected Exercises
	Appendix C. Glossary of Mathematica Commands
	References
	Index

