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PREFACE 
 
In the time that has elapsed since the first edition of the book, titled 
Introduction to the Mathematics of Operations Research, was published in 
1989, changes have occurred in the discipline of Operations Research. The 
field is in the midst of a crisis, partly a result of unnecessarily poor image and 
partly because of real problems.  The result is that its members question the 
future of operations research.  Meanwhile, better, faster, and more widely 
available technology has made its way into the workplace of the O.R. 
professional and into the mathematics curriculum, and lively discussion has 
taken place about pedagogy, especially revolving around the passivity of 
many students and the need to get them more actively involved with their 
courses. I saw that the time had certainly come to revisit the first edition of 
this book in an attempt to attune the book to current circumstances.  
 The first edition sprang from the following observations (paraphrased 
from its preface). In industry, problems involving such areas as 
telecommunications, scheduling, inventory, production, transportation, and 
finance abound.  Besides the inherent interest of these problems, there is also 
aesthetic beauty in the mathematics.  Operations Research is both an 
assemblage of descriptive and analytical techniques to facilitate decision 
making in business and industry, and a way of approaching problems.  There 
are concrete questions such as: what is the best way to schedule servers at a 
service facility, what is the best mix of several kinds of products using scarce 
raw materials, and how does one best maintain a machine that is deteriorating 
with time? But looked at as a problem-solving approach, O.R. involves 
defining and modeling the problem precisely, with enough detail to capture its 
essence without making the problem intractable; deciding on objectives; 
coming up with a solution, often an algorithm to improve a current 
configuration; implementing that algorithm; and finally observing the 
consequences of the answer.  Much as in computer programming, the solution 
process is often a cycle in which the researcher goes back to the beginning to 
refine the model, the objectives, or the algorithm one or more times. The point 
of view taken by the first edition of this book was that the vast assortment of 
apparently unrelated questions in the field of O.R. is unified by the common 
features of the mathematical models used to describe them, and the way of 
going about solving problems.  So the text was designed to show the 
mathematics that underlies the applied problems, and subsequently to show 
the “real-world” problems as examples of the application of the mathematical 
and algorithmic thinking that will live on indefinitely as the passage of time 
changes the kinds of problems that capture the attention of practitioners. 
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 Also, it is as true now as it was fifteen years ago that there is a general 
shortage of faculty experienced in O.R, especially at the small university and 
private college level.  The breadth of Operations Research and the 
corresponding voluminous nature of most sources add to the difficulty of 
course design for the non-specialist.  I wanted a concise book whose focus 
was on the mathematics of Operations Research, which would be a more 
suitable introduction to the subject in a mathematical sciences department 
with limited resources than other texts might be.  
 There is much in the first edition that remains meaningful, and which 
validates the approach, given the criticism that has been leveled from inside 
and outside of the field of Operations Research. One hears that Operations 
Research groups are being phased out in many organizations because the 
groups are not worth the investment. Criticisms usually include: our O.R. 
people are trained to execute a few algorithms under stringent assumptions but 
when it comes to an actual messy problem that does not fit a stereotype they 
are lost; or, O.R. people prefer to do their esoteric research on some little 
corner of the field about which only a few people really care. But my first 
book took the point of view that a student of Operations Research cannot and 
should not simply step through every method for every problem in every 
application area without a feel for the core of the field or an understanding of 
the complete problem-solving process. I believe that the subject is still vital, 
useful, and an excellent part of an undergraduate mathematics major because 
it gives deeper perspective on mathematics and its use, it exposes students to 
mathematical modeling in situations grounded in reality, and, done correctly, 
it greatly enhances their general reasoning and problem-solving ability. Even 
if the phrase “Operations Research” dies out and even if O.R. departments 
disappear, these kinds of skills will always be valuable to organizations in the 
private and public sectors. And at least a few specific topics will always 
occupy an important position in applied mathematics: representations of 
problems using graphs, optimization of linear functions subject to linear 
constraints, modeling and prediction of random events occurring through time, 
and the optimal control of such random events. This is, and will remain, the 
governing structure of the book: Graph Theory, Linear Programming, 
Stochastic Processes, and Dynamic Programming.  
 The challenge in producing a new edition was to retain the character of 
the book, yet take into account new developments in the spheres of 
mathematics pedagogy and the field of O.R. In keeping with the comments 
above, the following are the main areas in which the second edition differs 
from the first: 
 
1. The book is more interactive. Self-check questions, and suggestions to 
investigate the material further are interspersed in the development. 
 
2. Technology is smoothly integrated into the development in such a way as to 
expose new issues and possibilities, enhance students’ desire to experiment, 
and drastically reduce computational burden.  
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3. The problem sets emphasize problem solving even more. Longer projects 
are included that do not fit into existing molds, for which the students must 
develop their own techniques.  
 
4. A few new topics are included for more breadth: the traveling salesman 
problem and other famous graph theory problems are introduced briefly in a 
new section of Chapter 1, simulation has been integrated into Chapters 4 and 
5, and a treatment of Brownian motion has been appended to Chapter 5, which 
permits examples of problems in the growing field of mathematical finance to 
be presented. 
 
5. The review of topics from probability has been moved to an appendix, so as 
not to interrupt the flow unnecessarily. Students taking this course ought to 
have a course in probability as a prerequisite anyway. 
 
6. Not the least important, answers to selected exercises are in another 
appendix. Publication timing problems in the first edition prevented them 
from being included there.  
 
 The integration of technology requires special discussion. At the time I 
wrote the first edition there were lots of programs to execute the simplex 
algorithm for linear programming, and a few others for other kinds of special 
problems, but there was no common environment for doing operations 
research, from pictorial representation, to symbolic derivation, to 
computation, to technical typesetting of reports. Since then there have arisen 
such environments. In fact, it has become possible to have an electronic, fully 
executable version of the printed text with which the students can interact 
directly; in short, a living textbook. While there are several possible symbolic 
algebra-graphical packages that can suffice, and countless other very powerful 
and very specialized professional programs, I prefer the one that I think will 
be left standing after intense competition: Mathematica.  This package is 
extremely general, and more importantly, programmable, and with the advent 
of its most recent versions (3.0 and higher) it provides the ability for students 
to create professionally typeset mathematical documents with text integrated 
with computation. Mathematica already has facilities to support much of the 
material in the book, and what it does not have directly is easily 
programmable. I have found that it helps to teach the meaning of the simplex 
algorithm very well, and greatly simplifies the burdensome computations in 
graph theory and dynamic programming. Its simulation capability is quite 
good because it provides simple tools that students can adapt, and in the 
process learn more about model building and better understand the system 
they are trying to simulate. I have also found students doing significantly 
higher quality work when asked to turn in typeset Mathematica notebooks 
than they do by hand. Perhaps the professional appearance of their product 
gives them more of a sense of pride in it, which induces them to do even better 
work next time. In fact, the program is such an integral part of this second 
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edition that the title has been modified to: Mathematics of Operations 
Research with Mathematica.  This is a completely self-contained printed text, 
accompanied by an electronic version, together with a package of useful 
commands that I have written. The electronic version is in the form of 
Mathematica notebooks, one per section, and all Mathematica input cells will 
be live, so that the students can reexecute commands, edit them, devise new 
ones, etc.  In this way, the student can direct his or her own study, which 
increases greatly the level of involvement, and one hopes, the level of 
comprehension and problem-solving.   
 Here are a few of the ways in which Mathematica has significant impact 
on the book:   
 
1.  A Mathematica tool for drawing labeled graphs allows students to redraw 
graphs in graph algorithms conveniently.  
 
2.  Students can experiment with large powers of adjacency matrices of large 
graphs to verify the theorem about path counting in Chapter 1, and to check 
regularity of Markov chains in Chapter 5. 
 
3.  Students are asked to implement some algorithms in Mathematica, which 
forces more thorough understanding. 
 
4.  Students can make good use of Mathematica’s equation-solving tools to 
construct feasible regions of linear programming problems in Chapters 2 and 
3, and to use the “dictionary” method to solve them without headaches, and 
yet with understanding of how the method proceeds from step to step.  
 
5. In Chapters 4 and 5, students can write simulators in Mathematica for 
processes such as Markov chains, Poisson processes, and Brownian motions, 
not only to observe their properties, but also to aid their understanding of the 
defining conditions of those processes.  
 
6.  Naturally recursive problems such as first passage times and absorption 
probabilities can be solved recursively in Mathematica. 
 
7.  Theoretically simple but tedious probabilistic computations regarding 
Poisson processes and queues in Chapter 6 are made easier to carry out using 
Mathematica’s distribution tools.   
 
8.  Mathematica’s symbolic algebra ability can be used to greatly simplify the 
task of solving dynamic programming problems, permitting longer time 
horizons and larger state and action spaces to be used, and focusing attention 
back on the modeling aspect of such problems where it belongs. 
 
9. In general, the shift in emphasis from hand to computer computations 
facilitates examination of sensitivity of solutions to parameter changes.  
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 It remains true that Operations Research is an endless source of 
interesting problems, which has never failed in my experience to stimulate the 
students of mathematics who I have taught, and to open their eyes to ideas and 
applications that they never before imagined. My wish continues to be that 
students take this book as a jumping-off point to further work in Operations 
Research or related areas such as Statistics, Management, Applied 
Mathematics, or Finance, as many of my students have done.  
 Finally, I would like to think the staff at Taylor & Francis publishing, 
including Kevin Sequeira and Fred Coppersmith, for all their help in bringing 
this project to fruition.  
  
Kevin J. Hastings 
Knox College 
August 31, 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 





Notes on Electronic Book xv

Note on Mathematica Packages and Electronic Book 
 
This is a book that exists not only in the print medium but also electronically. 
The CD that accompanies the print version contains Mathematica  notebooks, 
one per section, which together contain all of the material in the book and 
which should run quite well in Mathematica  versions 5.0 or later, and perhaps 
(with no guarantees) in earlier versions.  It also contains special packages that 
I have written with commands to support the book.  To use them, simply make 
a new folder called KnoxOR in the AddOns/ExtraPackages directory of your 
Mathematica folder, and copy into it from the CD the files Graphs.m, 
LinearProgramming.m, StochasticProcesses.m, and DynamicProgramming.m.   
 When you boot up Mathematica  and open one of the notebook files, you 
will notice that the output cells are not included; but if you select the Kernel 
menu command to execute all initialization cells, then the output that is 
contained in the printed text should be regenerated automatically. Some 
graphics in GraphicsArray cells will need to be resized to look well, and in 
general graphics would need to be sized and centered in order to look 
precisely like those in the printed text. The manufacturer of Mathematica, 
Wolfram Research, has made some changes since I first started this edition of 
the book and wrote the packages, including relocating some of its commands 
that my packages call on into different packages, and they may do so again in 
the future.  So far, these path problems have not affected the notebooks so 
badly that any commands would not run, although warning messages are 
generated.  In particular, the notebooks that use the StochasticProcesses.m 
package produce shadowing warnings relative to the names Type, 
Distribution, Absolute, and Relative.  I decided to leave things as they were so 
that the notebooks would run on earlier versions of Mathematica, but if 
problems develop, you are encouraged to look using a text editor at the four 
".m" packages near the top of the file to see what Mathematica packages are 
being loaded in, and correct the names of those packages as the warning 
messages indicate.    

In its most recent versions, Mathematica  has come up with a more 
refined ShowGraph command in its DiscreteMath`Combinatorica` package, 
which probably outshines the DisplayGraph command in my 
KnoxOR`Graphs` package. This change also took place as I was writing.  But 
instead of rewriting the whole text I decided to stay with my own version, 
which is somewhat more attuned to what I wanted to use it for anyway.  You 
might want to experiment with ShowGraph yourself.  
 Finally, bear in mind that the usual copyright privileges apply to the 
electronic version; you should no sooner share the notebook files with others 
than allow others to duplicate the printed text.  
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Graph Theory and Network  Analysis

Introduction

In this chapter we are concerned with problems of optimization on a network

of  points  connected  by  weighted  edges.  To  illustrate  one  such  problem,

suppose that in Figure 1.1 the points represent stations among which commu-

nication  is  to  be  maintained.  The  weight  of  a  line  segment,  or  edge,  is  the

cost  of  direct  communication  between  the  two  stations  connected  by  the

edge.  It  might  happen  that  it  is  impossible  for  a  pair  of  stations  to  directly
communicate, so that there may not be an edge between every pair. It is not

even  desirable  for  all  stations  to  be  linked  directly  to  all  others,  as  long  as

each station can reach each other station through one or more intermediaries.

The  problem is  to  find  a  set  of  edges  of  minimum cost  that  does  not  break

communication between any pair of stations in the network.
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 Figure 1.1 – Finding a sparse network         Figure 1.2 – Project completion

A second type of problem involving networks is that of finding paths of

maximal  weight.  In  Figure  1.2,  suppose  that  the  edges  represent  tasks  and

the weight of an edge is the time required to finish the task. Some tasks may

require  the  completion  of  a  previous  task  before  they  can  begin.  For  this

reason we give a direction to edges; if task x  points to a node on the graph,

and task y points away from the same node, then x must be completed before

y. For instance, both of the tasks represented by (2,5) and (3,5) must be done

before the task represented by (5,8). Task (1,2) requires two time units, (1,3)

requires three, etc. The problem is to find a path from node 1 to node 10 with

maximum  weight.  This  sequence  of  tasks  will  be  such  that  if  there  is  an

1



unexpected delay at any stage, then the entire project will be delayed.

Another  problem of network theory is exemplified by the assignment of
jobs  to  workers  in  such  a  way  as  to  maximize the  total  effectiveness  of  all

workers  at  the  jobs  assigned to  them. In  the  graph  of  Figure  1.3,  the  nodes

on  the  left  are  workers,  those  on  the  right  are  jobs,  and  the  weights  on  the

edges are measures of effectiveness. For instance, worker 1 has a rating of 4

at job  4.  We will  find a way of  matching workers  uniquely to jobs to solve

the  maximization  problem  mentioned  above,  as  a  specific  instance  of  the

more general class of matching problems for graphs.

1

2

3

4

5

6

4

3 2

1

35

4

4

23

1

5 3

4

 Figure 1.3 – Matching problem

Section  1.1  introduces  the  basic  notions  relevant  to  such  graphs  as  are

depicted  in  Figures  1.1,  1.2,  and  1.3.  In  Section  1.2,  we  discuss

spanning trees,  which  are  the  sparsest  possible  connected  subgraphs  of  a

graph.  Section  1.3  contains  algorithms  for  the  solution  of  minimal  cost

network  problems  of  the  sort  illustrated  by  Figure  1.1.  The  algorithms  to

solve the critical path problem of Figure 1.2, and other problems of maximal

flow  through  a  network,  are  given  in  Sections  1.4  and  1.5.  The  matching

problem  is  solved  in  Section  1.6.  Several  other  important  graph  theory

problems, including the so-called traveling salesman problem,  are discussed

in  the  concluding  Section  1.7.   Along  the  way we will  use  Mathematica  to

characterize  and  display  graphs,  to  make  computations,  and  to  implement

algorithmic solutions  to graph theoretic  problems.   In  the electronic version

of the text,  you may want to open up the closed cells preceding each of the

figures above to see the Mathematica  code that generated the graphics.  We

will learn shortly how to produce such code. 

1.1 Definitions and Examples

The intuitive meanings of "graph" and "directed graph" should be clear from

the  preceding  discussion.  A graph  is  a  collection of  vertices  (or  nodes)  and

2 Chapter 1  Graph Theory and Network Analysis



edges (or  arcs)  connecting those vertices.  The graph is directed if  there is  a

notion of direction for its edges. A more precise set–theoretic definition is as

follows.

DEFINITION 1.  A graph G is a pair (V , E) where V v1, v2, ..., vn
is  a  finite  set  of  elements called vertices  and   E vi, v j  is  a  set  of

two-element  subsets  of  V .  Each  member  of  E  is  called  an  edge.  A

directed graph is similar, except that edges are ordered pairs (vi,v j). 

We  allow the  possibility  of  an  empty graph  (n  =  0),  but  henceforth  we

usually dismiss it as a trivial case without special mention. 

Figure 1.1 is a graph with V 1, 2, 3, 4, 5, 6  and edge set

 E = { {1,2},{1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, 

{2,6},{3,4},{4,5}, {5,6} }

Figure  1.2  is  a  directed  graph,  with  the  vertex  set

V 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , and edge set 

E 1, 2 , 1, 3 , 2, 4 , 2, 5 , 3, 5 , 3, 6 , 3, 7 , 4, 8 , 4, 9 ,

5, 8 , 6, 9 , 7, 9 , 8, 10 , 9, 10

Activity 1 – Write the formal description of the graph in Figure 1.3.  Try

to describe carefully what special geometry this graph has.

In the following definitions we use the word "graph" generically to mean

either a directed or an undirected graph, when the item being defined makes

sense  in  both  cases.  When  necessary  we  include  the  adjectives  "directed"

and "undirected."

DEFINITION 2.   A  subgraph  of  a  graph  G V , E  is  another  graph

G V , E  such  that  V V  and  E E.  A  graph  G V , E  is

weighted by a weight function w if w : E .

The  problems  discussed  in  the  introduction  involve  the  location  of  an

optimal subgraph of a weighted graph, satisfying certain constraints.

A graph may be characterized by a matrix of 0's and 1's. There is a row

and a  column for  each vertex  in  the  graph,  and  the  matrix has  1  in  compo-

nent  i, j  if  and  only  if  there  is  an  edge  from  vertex  i  to  vertex  j  in  the

graph.  We  have  spoken  in  the  context  of  directed  graphs,  but  note  that  an

1.1 Definitions and Examples 3



undirected  edge  vi, v j  may  be  viewed  as  two  directed  edges  vi, v j  and

v j, vi .  Thus,  undirected  graphs  are  just  special  cases  of  directed  graphs  in

which v j, vi E whenever vi, v j E.

DEFINITION  3.   Vertex  v j  is  adjacent  to  vi  if  vi, v j E.  The

adjacency matrix  of  a  graph  G  with  n  vertices  is  an  n n  matrix

A aij  with components

ai j
1 if vi, v j E
0 otherwise

 

The  weight matrix  of  a  weighted  graph  G  with  n  vertices  and  weight

function w vi, v j  is the n n matrix W wij  with components

wi j
w vi, v j if vi, v j E
0 otherwise

For example, the graph of Figure 1.3 has adjacency matrix 

A

0 0 0 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

By  the  remark  prior  to  the  definition,  the  adjacency  matrix  of  an  undi-

rected graph is symmetric. We have not forbidden vertices to be adjacent to

themselves;  indeed,  in  Chapter  4  we  will  study  transition  diagrams  of

Markov  chains  that  have  this  property.  But  in  this  chapter  we  will  usually

have  no  self-loops,  that  is,  edges  from  a  vertex  into  itself,  and  hence  the

adjacency matrices will usually be zero along their diagonals.

Activity 2 – Write the adjacency matrix for the graph of Figure 1.2

The  KnoxOR`Graphs`  Mathematica  package  that  is  available  with  the

electronic  version  of  the  text  contains  a  function  to  display  graphs.  You

should  have installed the KnoxOR suite of  packages  in your ExtraPackages

directory,  and  to  access  the  commands  for  graph  theory  you  must  load  the

package as in the first line of input below.  The syntax of the DisplayGraph

function  follows.   Note  that  it  assumes the  graph  is  represented  as  an  adja-

cency matrix or weight matrix.  

4 Chapter 1  Graph Theory and Network Analysis



Needs "KnoxOR`Graphs`"

DisplayGraph graph,options

Options DisplayGraph

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

There  are  several  important  options  to  control  the  appearance  of  the

graph.  You can set GraphType to Directed to sketch a graph with arrows for

directed edges.  VertexLabels can be set to a list of names, one per vertex, in

order  that  vertices  can  be  displayed  with  names  other  than  the  standard

integer  names  1, 2, 3, …, n .   In  other  functions  to  come,  however,  when

individual vertices are referred to it is by their number not their name.  The

option  VertexPositions  can  be  set  to  a  list  of  pairs  x1, y1 , x2, y2 , … ,

which  are  the  coordinates  in  the  plane  of  the  vertices  1,  2,  ….   Sometimes

graph  features  can  overlap,  and  so  to  enhance  visibility,  the  user  has  some

control  over  where  labels  appear.   For  example,  the  VertexLabelPositions

option  can  be  set  to  a  list  such  as  {Above,  Below,  ToLeft,  ToRight,...}  to

indicate  where  the  vertex  labels  should  appear  relative  to  the  vertex  dots.

Take care with this and other options to make sure that sizes are consistent;

for  example,  the  value  set  for  VertexLabelPositions  should  be  a  list  of  the

same length as the number of vertices in the graph.  EdgeLabels can be set to

a  matrix,  usually  the  weight  matrix,  of  labels  to  place  on  the  edges.   Like

VertexLabelPositions,  the  option  EdgeLabelPositions  can be  set  to  a  matrix

of the same size as the adjacency matrix whose entries are the words Above,

Below, ToLeft,  or  ToRight to  indicate where,  relative to the edge midpoint,

the edge labels should appear.  The option EdgeStyle can be used to apply a

style  to  the  edges,  such  as  coloration,  dashing,  or  boldfacing.   EdgeSepara-

tion  controls  the  space  between  arrows  in  a  double  edge.  For  graphs  that

have  self-loops,  the  options  LoopSize  and  LoopPositions  can  be  used.

LoopSize controls the size of the loops by setting the fraction of the overall

picture size to be used as the loop radius.  And LoopPositions, like VertexLa-
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belPositions, can be set to a  list of entries that can be Above, Below, etc., to

control  where  the  loop  appears  relative  to  the  vertex.   By  default,  the  loop

positions  will  be  above  the  vertices.  The  length  of  the  LoopPositions  list

should  be  the  same  as  the  number  of  vertices  with  self-loops.   Standard

options  DisplayFunction  and  AspectRatio,  just  as  in  Mathematica's  Plot

command, are also accepted.  DisplayFunction Identity suppresses printing,

which  is  handy  when  you want  to  produce  but  not  print  graphs  to  combine

later into one picture with the Show command (resetting DisplayFunction to

be  $DisplayFunction  as  a  Show option).   AspectRatio controls  the shape of

the picture, which is sometimes helpful in making a graph more aesthetically

appealing. 

EXAMPLE 1. (a) Figure 1.4 is the graph whose adjacency matrix is 

A  

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

This would be entered into Mathematica  as follows,  as a list of rows of  the

matrix.

adjmatrix 0, 1, 1, 1 ,

1, 0, 0, 1 , 1, 0, 0, 0 , 1, 1, 0, 0 ;

To draw this graph in Mathematica,  we first  plan out the coordinates of the

vertices  against  the  backdrop  of  an  unseen coordinate  system.  In  this  case,

to produce the square shape of the graph in Figure 1.4, we use the VertexPosi-

tions  option  to  place  the  four  vertices  at  0, 1 ,  1, 1 ,  0, 0 ,  and  1, 0

respectively.   For  variety we give the vertices labels of  v1  through v4  using

the  VertexLabels  option,  and  for  visibility  we  use  the  VertexLabelPositions

option to put the first two labels above the vertices and the second two below

the  vertices.   Because  the  graph  is  undirected  and  unweighted,  we  do  not

need the GraphType, EdgeLabels, or EdgeLabelPositions options.  This plan

leads to the DisplayGraph command below.

DisplayGraph adjmatrix, VertexPositions

0, 1 , 1, 1 , 0, 0 , 1, 0 ,

VertexLabels "v1", "v2", "v3", "v4" ,

VertexLabelPositions

Above, Above, Below, Below , AspectRatio 1 ;
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v1 v2

v3 v4

 Figure 1.4 – An undirected graph

You can compute that

A2  

3 1 0 1
1 2 1 1
0 1 1 1
1 1 1 2

and  it  is  easy  to  see  from  the  graph  that  for  each  pair  of  vertices  i, j ,

A 2 i, j  is the number of paths of length 2 from i to j. We will return to this

idea later.

(b) The weight matrix of the graph of Figure 1.1 is below:

 W

0 1 3 2 8 3
1 0 6 2 7 1
3 6 0 4 0 0
2 2 4 0 5 0
8 7 0 5 0 2
3 1 0 0 2 0

Recall that when an edge does not exist in the graph, we adopt the conven-

tion that the corresponding weight in the matrix is zero.  The total weight of

the  path  1,  2,  3,  4,  for  example,  is  1 6 4 11.  If  weights  are  viewed  as

costs, then to move from 1 to 4 it is cheaper to use edge 1, 4  than this path.

However it is not cheaper to move directly from 1 to 5 (weight 8) than it is to

use  the  indirect  path  1,  6,  5  (weight  3 2 5).  The  path  1,  2,  5,  1  is  an

example of a path that begins and ends at the same node, and will be called a

cycle (see the definition below).  

The following definitions should be self-explanatory.
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DEFINITION 4.  For m 1, a path of length m from vertex v to vertex

u  is  a  sequence  of  vertices  v v0, v1, v2, ..., vm u  such  that  each

successive pair vi, vi 1  is in the edge set E. A path of length 0 from v0

to  itself  is  the  singleton  v0.  If  there  is  a  path  from v  to  u,  we  call  v  an

ancestor  or  predecessor  of  u,  and  we  call  u  a  descendant  of  v.  If  the

graph is weighted by a weight function w, then the weight of the path is

i 0
m 1 w vi, vi 1

A path v0, v1, ..., vm  is simple if for all i j, vi v j. A path is a cycle
if  it  has  length  at  least  3  in  the  undirected  case,  and  2  in  the  directed

case, and v0 vm but no other pair of its vertices is equal.

EXAMPLE  2.   Referring  to  the  graph  of  Figure  1.4,  v1, v2, v4  is  a  simple

path, and v2, v4, v1, v2  is a cycle. The length of this cycle is 3, hence it does

qualify under the definition. The path v1, v2, v1  is not a cycle because of this

length  requirement.  Without  the  stipulation  that  m 3,  every  edge  of  an

undirected  graph  would  give  rise  to  a  cycle.  This  is  not  true  in  a  directed

graph such as the one in Figure 1.5. In this graph, 2, 3, 2 is a cycle, as is 1, 2,

3,  4,  5,  1.  The  total  weight  of  the  latter  path  is  2 1 3 4 3 13.   Pay

attention  again  to  the  syntax  of  the  DisplayGraph  command.   We  have

defined the weight matrix as W, placed the five vertices in a roughly pentago-

nal  shape  with  appropriate  coordinates  using  VertexPositions,  produced  a

directed  graph  with  GraphType,  and  used  the  entries  of  the  weight  matrix

itself  as  the  EdgeLabels.   In  addition,  we  use  EdgeLabelPositions  to  place

the edge labels conveniently.  

W 0, 2, 0, 0, 0 , 0, 0, 1, 0, 0 , 0, 1, 0, 3, 5 ,

0, 0, 0, 0, 4 , 3, 0, 0, 7, 0 ;

MatrixForm W

DisplayGraph W, VertexPositions

0, 1 , 2, 2 , 4, 1 , 3, 0 , 1, 0 ,

EdgeLabels W, GraphType Directed,

VertexLabelPositions

ToLeft, Above, ToRight, Below, Below ,

EdgeLabelPositions 0, Above, 0, 0, 0 , 0, 0,

Below, 0, 0 , 0, Above, 0, ToRight, ToLeft ,

0, 0, 0, 0, Above , ToLeft, 0, 0, Below, 0 ,

EdgeSeparation .012 ;
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0 2 0 0 0
0 0 1 0 0
0 1 0 3 5
0 0 0 0 4
3 0 0 7 0

1

2

3

45

2

1

1

35

4

3

7

 Figure 1.5 – A directed graph

Activity  3  –  Try  to  find  the  longest  path  from vertex  1  to  vertex  10  in

the graph of Figure 1.2.

The  proof  of  the  following  is  easy,  and  is  left  as  an  exercise  for  the

reader (see Exercise 2).

THEOREM 1.  If there is a path from vertex v to vertex w, then there is also

a  simple  path  from  v  to  w.  If  the  number  of  vertices  in  G  is  n,  then  this

simple path must have length less than or equal to n 1.  

The last of  the elementary ideas that  we wish to introduce is  the degree
of  a  vertex.  We  use  this  concept  only  in  studying  undirected  graphs;  in

particular  it  comes into  play when we look  at  properties  of  trees  in  Section

1.2. 
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DEFINITION  5.   Let  v  be  a  vertex  of  an  undirected  graph.  Then  the

degree  of  v,  denoted  d v ,  is  the  number  of  edges  v, w  to  which  v
belongs.

In Figure 1.4, for example, v1 has degree 3 and v2 has degree 2.

Consider  the  total  of  the  degrees  of  all  the  vertices  in  a  graph

G V , E .  Each  edge  v, w  contributes  1  to  d v  and  1  to  d w .  Thus,

adding the degrees will double count the edges, and the following relation is

clear:

(1)v V d v 2 number of edges in E

Connectivity

Next we study some ideas pertaining to the connectivity properties of graphs.

DEFINITION  6.  A  graph  is  connected  if  there  is  a  path  from  every

vertex to every other vertex.  A directed graph is called quasi-connected
if,  for  every pair  of  vertices u  and v,  there  is  a  vertex w such that  paths

(of length 0 or more) exist from w to u and from w to v. That is, u and v
have a common ancestor w (which might be one of u or v themselves).

EXAMPLE  3.   In  the  case  of  undirected  graphs,  the  above  definition

coincides well with our intuition about the meaning of the word "connected."

The  graphs  in  Figures  1.1  and  1.4  are  connected  graphs,  for  example,

because  every  vertex  can  be  reached  from  every  other  vertex.   But  for

directed  graphs,  the  definition  that  we  have  given,  usually  referred  to  as

strong connectivity,  may  be  stronger  than  it  would  appear  to  be  at  first

glance.  To see this consider  Figure 1.6,  in which an undirected graph and a

similar  directed  graph  are  displayed.  The  graph  of  Figure  1.6(a)  is  not

connected,  since there is  no  path from 2 to 5,  for  instance.  Both  of  the two

subgraphs with vertex sets 1, 2, 3  and 4, 5, 6, 7   are connected, however.

These two vertex sets will be called the connected components of the overall

graph.  The  directed  graph  in  Figure  1.6(b)  is  not  connected,  nor  are  the

aforementioned  subgraphs.  For  example,  there  is  no  path  from  vertex  2  to

vertex 1, and no path from 7 to 6.  But the vertex set 4, 5, 7 , together with

the  corresponding  edge  set,  does  form a  connected  graph,  since  paths  exist

from every vertex to every other vertex in this subset.  

Quasi-connectivity  is  a  weaker  condition  than connectivity.  It  is  easy to

check in Figure 1.6(b)  that 4, 5, 6, 7  forms a quasi-connected graph,  since

each pair of vertices has a common ancestor (namely vertex 6). 
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 Figure 1.6 – Two disconnected graphs

Next we investigate the relation between connectivity and the adjacency

matrix.

THEOREM  2.  Let  A  be  the  adjacency  matrix  of  a  graph  G  of  n  vertices.

Then Am i, j  is  the number of  paths of  length m  from vertex i  to vertex j.
Thus, G is (strongly) connected if and only if for every pair of vertices i, j ,

Ak i, j 1 for at least one k 1, 2, ..., n.

Proof.  The proof  of  the first  statement is  by induction on m.  When m 1,

the statement is true by the definition of  the adjacency matrix. Now assume

that for k 1, 2, . .., m, Ak i, j  is the number of paths from i to j of length

k. We have by the definition of matrix multiplication:

Am 1 i, j v V Am i, v A v, j v v, j is an edge Am i, v

The set of paths of length m 1 from i to j can be expressed as the disjoint

union,  over the set of vertices v  such that v, j E,  of  the set of  paths for

which v precedes j:

Bv v0, v1, ..., vm, vm 1 : v0 i, vm v, vm 1 j

The number of paths of length m 1 from i to j is therefore

v v, j is an edge n Bv

where  n Bv  is  the  size  of  Bv.  But  Bv  is  in  one-to-one  correspondence  with

the paths of length m from i  to v,  hence by induction n Bv Am i, v , from

which  the  first  statement  of  the  theorem  follows.   The  second  statement  is

true  because  G  is  connected  iff  there  is  a  path  of  some  length  k  between

every pair of vertices.  The longest possible length of such a path is n, in the
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case that in order to move from a vertex v back to itself, one must go through

all n vertices and finish at v.  

EXAMPLE 4.  The graph of Figure 1.6(a) has the adjacency matrix defined

below:

grapha 0, 1, 0, 0, 0, 0, 0 ,

1, 0, 1, 0, 0, 0, 0 , 0, 1, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 1, 0, 1 , 0, 0, 0, 1, 0, 0, 1 ,

0, 0, 0, 0, 0, 0, 1 , 0, 0, 0, 1, 1, 1, 0 ;

MatrixForm grapha

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 1 1 1 0

The second, third, and fourth powers of this adjacency matrix are computed

in Mathematica as:

MatrixForm MatrixPower grapha, 2 ,

MatrixForm MatrixPower grapha, 3 ,

MatrixForm MatrixPower grapha, 4

1 0 1 0 0 0 0
0 2 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 2 1 1 1
0 0 0 1 2 1 1
0 0 0 1 1 1 0
0 0 0 1 1 0 3

,

0 2 0 0 0 0 0
2 0 2 0 0 0 0
0 2 0 0 0 0 0
0 0 0 2 3 1 4
0 0 0 3 2 1 4
0 0 0 1 1 0 3
0 0 0 4 4 3 2

,

2 0 2 0 0 0 0
0 4 0 0 0 0 0
2 0 2 0 0 0 0
0 0 0 7 6 4 6
0 0 0 6 7 4 6
0 0 0 4 4 3 2
0 0 0 6 6 2 11
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Notice  that  the  structure  of  these  powers  remains  block  diagonal,  with  a

non-zero block corresponding to the first three vertices, another correspond-

ing  to  the  last  four  vertices,  and  zero  blocks  off  the  diagonal.  This  comes

from the fact that vertices 1, 2, and 3 do not communicate with vertices 4, 5,

6,  and  7.   Inspecting  the  second power,  for  example,  you see  that  there  are

two  paths  of  length  2  from vertex  4  to  itself  (namely  4,5,4  and  4,7,4),  and

there is just one path of length 2 from vertex 5 to 7 (namely 5,4,7).  The third

power tells us, for example, that there are three paths of length 3 from vertex

5  to  vertex  4  (try  to  list  them),  and  two  paths  of  length  3  from vertex  1  to

vertex  2.   Another  observation  that  we  can  make  from  the  fourth  power

matrix  is  that  there  are  numerous  paths  of  length  4  from  every  vertex  in

4, 5, 6, 7  to  every  other  vertex  in  that  set,  hence  that  subgraph  is  con-

nected.   And,  inspecting  the  1, 2, 3  blocks  of  the  third  and  fourth  power

matrices,  we  see  that  there  exist  paths  of  length  either  3  or  4  from  every

vertex  in  1, 2, 3  to  every  other  vertex  in  that  set,  hence  the  subgraph

including  vertices 1,  2,  3,  and the corresponding  edges  is connected.   Exer-

cise  8  asks  you  to  argue  from the  matrix  powers  that  the  graph  as  a  whole

cannot be connected. 

In the second part of the statement of Theorem 2, the path length k  was

allowed to depend on the vertices being connected. An even stronger sort of

connectivity  postulates  a  path  length  that  is  uniformly  good  for  all  pairs  of

vertices.

DEFINITION  7.  A  graph  is  regular  if  there  is  m 0  such  that

Am i, j 0 (i.e., there is a path of length m from i to j) for all pairs of

vertices i, j .

EXAMPLE  5.  The directed  graph in Figure  1.7 is clearly regular,  since by

inspection the reader can see that there is a path of length 2 from each vertex

to each other vertex. But the graph in Figure 1.8, in which edges are oriented

in a clockwise direction, is not regular, due to the cyclic nature of the edges.

The  closed  cell  above  the  figures  contains  the  definitions  of  the  adjacency

matrices for the two graphs.  You should try raising the adjacency matrix for

Figure  1.7  to the second power to see that all  entries are non-zero,  and you

should see what happens to the adjacency matrix for Figure 1.8 as you raise

it to higher and higher powers.  

One  is  tempted  to  guess  that  if  there  are  n  vertices,  then  to  check  for

regularity it suffices to check the powers of the adjacency matrix only up to

n.  To  see  that  this  is  not  quite  the  case,  examine  the  graph  of  Figure  1.9.

There  is  no  path  of  length  2  from vertex  1  to  vertex  2;  there  is  no  path  of

length 3 from vertex 1 to itself; but there is a path of length 4 between every

pair of vertices. Hence m 4 suffices, but no smaller m. (See Exercise 13.) 
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 Figure 1.7 – A regular graph           Figure 1.8 – A graph that is not regular
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Figure 1.9 – Paths of length 4 exist between each pair of vertices 

Activity 4 – Use Mathematica  to check whether the graph of Figure 1.1

is regular.

Regularity  is  a  property  that  will  be  important  to  the  study  of  limiting

distributions of Markov chains in Chapter 4. In that chapter as well, it will be

helpful to group vertices into subsets, such that all vertices can communicate

with all other vertices in the subset. We are led to the following definition.

DEFINITION 8.  A connected component G of a graph G  is a maximal

connected subgraph of G.

The  word  "maximal"  in  this  definition  means  that  there  is  no  strictly

larger connected subgraph containing G' .  In Figure 1.6(a),  for example, the

set  4, 5, 7  certainly forms a connected set,  but  since vertex 6 is connected

to these vertices, the subgraph is not maximal. It is clear that the undirected

graph  in  Figure  1.6(a)  can  be  partitioned  into  two  connected  components:

1, 2, 3  and  their  related  edges,  and  4, 5, 6, 7  and  their  edges.  Such  a

partition is not possible for the directed graph of Figure 1.6(b). There, the set
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of vertices 4, 5, 7  and their edges form the only connected component.

Next we give an algorithm to find the connected component containing a

given vertex of an undirected graph. The algorithm itself shows the existence

of  such  a  component,  and,  in  so  doing,  implies  that  undirected  graphs  may

be partitioned into connected components. The reason for this is that we can

begin with any vertex, find the connected component containing it using the

algorithm, proceed to another vertex that has not already been used, find its

connected  component,  and  so  on,  until  the  supply  of  vertices  is  exhausted.

The idea of the algorithm is to begin with the given vertex v, and include all

vertices connected by an edge to v into the current component of v. At each

step,  we  scan  all  edges  of  the  graph  that  have  an  endpoint  at  one  of  the

vertices in the current component, and all of the vertices on the other end of

these new edges. Any new vertices are added to the current component. If no

new  vertices  are  found,  then  the  entire  connected  component  has  been

located and the process ends. The reader is asked to prove that the algorithm

works in Exercise 15.

CONNECTED COMPONENTS ALGORITHM 
1. Initialize vertex set V0 v .

2. Let m 0.

3. Repeat a – b until Vm Vm 1: 

    a. Let m m 1

   b. Let

    Vm Vm 1 w V : there is an edge v, w for some v Vm 1

1 2 3

4 5 6

7 8

e2

e1

e2

e3

e8e1

e6

e7

e6

e5

e8

e3

e7

e4

e5

e4

Figure1.10 – A graph with two connected components

EXAMPLE  6.   Let  us  develop  a  Mathematica  command to  implement the

connected  components  algorithm,  and  execute  it  on  the  graph  shown  in
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Figure  1.10,  with  initial  vertex  1.   (In  the  closed  cell  above  the  figure,  the

Mathematica name g10 has been given to the adjacency matrix.)

It  is  an  important  fact  that  the  practitioner  of  operations  research  must

not only understand solution algorithms at a very deep level, but also be able

to  convert  them  to  actual  programs.   This  is  because  many  problem  situa-

tions require new solutions that existing software is not built to handle.  And

the  philosophy  of  this  book  is  that  the  process  of  forming  such  programs

brings  you to the deeper level of understanding required.   An added benefit

is to be confident that the algorithm will work in the cases that it is meant to

be  used  for,  which  only  happens  after  detailed  understanding  of  the  algo-

rithm and its implementation.

When  one  looks  carefully  at  the  algorithm,  one  notices  some space and

time inefficiencies that can be remedied in the implementation.  For example

the algorithm suggests to keep, for each value m takes on as the loop in step

3  is  executed,  a  set  of  vertices  Vm  currently  in  the  component.   We  do  not

really need all  of  these vertex sets,  which  have many members in common.

All we really need is the cumulative set of vertices that have been added to

the connected component so far, the most recent set of vertices found on the

previous  pass  through  the  loop,  and  the  new candidate  vertices  that  are  the

neighbors of the most recent set of vertices, some of which may not yet have

been  included  into  the  component,  and  so  should  be  added  in  the  current

pass.  That way, instead of having to reexamine neighbors of vertices added

in  past  steps,  we search  only  among the  most  recent  vertices,  whose  neigh-

bors  are  possible  new  members  of  the  component.   When  the  set  of  new

candidate vertices has no vertices that have not already been found, we know

we are done.  

The  development  of  a  working  program  requires  attention  to  many

things:  the  form of  the  input;  assumptions  about  the  input  under  which  the

program  should  be  guaranteed  to  function  properly;  what  is  to  be  output,

printed,  or  returned  by  the  program;  what  local  variables,  and  of  what

structure,  should be introduced to do the job; and whether it  will be helpful

to  build  supporting  programs  to  do  some  of  the  tasks  the  main  program

needs, so that the main program may be made more simple.  

For  our  connected  components  problem,  the  program  will  need  the

adjacency  matrix  of  an  undirected  graph,  which  we  assume  is  a  square,

symmetric matrix of 0's and 1's in the Mathematica form of a list of row lists.

The program will  also need the number  of  the vertex whose component we

are  to  find.   We  will  assume  that  the  vertices  are  numbered  successively

1, 2, 3, ..., n, and that the vertex number is within the range specified by the

size of the square adjacency matrix.  Our goal is to have the program return

the complete list of  vertex numbers that make up the connected component.

Because  we  would  like  to  see  something of  the  sequence  of  operations,  we

will  have  our  program print  out  the  current  vertex  set  and  the  set  of  newly

added  vertices  at  every  pass  through  the  loop.   Local  set  variables,  in  the

form of  Mathematica  lists,  will  be  needed  for  all  vertices in  the component

16 Chapter 1  Graph Theory and Network Analysis



so far, the most recently added vertices, and the new vertices to be added.  A

utility to return a list of all neighbors of a given vertex, given the adjacency

matrix  of  the  graph,  will  also  help.  Fortunately,  such  a  function  already

exists in the KnoxOR`Graphs` package:

FindNeighbors adjmatrix,vertex

We  will  initialize  the  component,  and  the  most  recently  added  set  of

vertices, to be the given vertex.  Then at each pass through the main loop, we

find  the  complete  set  of  neighbors  of  recent  vertices,  and  determine,  by

complementation, which have not yet been added.  This becomes the new set

of  vertices,  which  we  union  with  the  current  component  and  then  reset  the

current  set  of  vertices  to  be  the  new  set  in  preparation  for  the  next  pass

through  the  loop.   The  preceding  discussion  and  the  comments  within  the

program below should make the operation of our function clear.
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Components thegraph_, vertex_ :

Module component,

currentvertices, newvertices, neighbors ,

begin by adding in the starting vertex

component vertex ;

currentvertices vertex ; newvertices ;

Print component, " ", newvertices ;

While currentvertices ,

neighbors ;

union together the neighbor

sets of all current vertices

Do neighbors Union neighbors, FindNeighbors

thegraph, currentvertices i ,

i, 1, Length currentvertices ;

let newvertices be neighbors that

have not been added in yet

newvertices Complement

neighbors, component ;

add them in

component Union component, newvertices ;

display results of pass

Print component, " ", newvertices ;

reset lists for next pass

currentvertices newvertices;

newvertices ;

at loops end the entire component

has been found, now return it

component

Components g10, 1 ;

1

1, 2, 4 2, 4

1, 2, 4, 5, 7 5, 7

1, 2, 4, 5, 7, 8 8

1, 2, 4, 5, 7, 8
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As the output shows, for the graph of Figure 1.10, vertices 2 and 4 are found

first, then 5 and 7, and finally 8. A last unsuccessful search produces no new

vertices, so that the connected component containing vertex 1 has vertex set

1, 2, 4, 5, 7, 8  and edge set e1, ..., e7 .  Below we execute the command

starting from vertex 3, and find the connected component of 3 to be vertices

3, 6  and  edge  e8.   In  the  electronic  version  of  the  text  you  should  try

issuing  similar  commands  to  find  the  connected  component  starting  with

vertices 2, and then 6.  Try also finding the connected components of each of

vertices 1, 2, 3, and 4 in the graph of Figure 1.4.  (You may need to reenter

the definition of adjmatrix.) 

Components g10, 3 ;

3

3, 6 6

3, 6

Activity  5  –  Think  about  how  the  FindNeighbors  command  might  be

implemented.

EXAMPLE 7.   The  algorithm does  not  quite  work  in  the  directed  case,  as

shown by Figure 1.11. Beginning with vertex 1, we find vertices 2, 3, and 4.

On the next pass, we obtain vertices 5 and 6, then on the third pass, 7 and 8,

and finally we stop after seeing that vertices 7 and 8 have no new neighbors.

But  the  set  of  vertices  1, 2, 3, 4, 5, 6, 7, 8  does  not  form  a  connected

component  because,  for  instance,  vertex  7  cannot  reach  vertex  1.  The

algorithm does  return  some useful  information,  however:  namely, the set of

vertices reachable from vertex 1, i..e. the descendants of 1.  (See Exercise 9.)

This  set is  closed  in  the sense that  no  vertex outside the set can be reached

from a vertex in the set.  (See Exercise 16.)  
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Figure 1.11 – Connected components algorithm fails for directed graphs

Exercises 1.1

1.  (Mathematica)  For  the  graph  below,  write  the  adjacency  matrix  A,  com-

pute A3, and verify that for each i and j, A3 i, j  is the number of paths from

i to j of length 3 by listing those paths.

1

2 3

4

Exercise 1

2. Prove Theorem 1.

3. Show that the graph whose adjacency matrix is below has no cycles.

 

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0

4.  Show  that  there  is  no  four-vertex  undirected  graph  with  degrees

d v1 3, d v2 2, d v3 2, and d v4 2.

5.  (Mathematica)  Write  a  Mathematica  command  that  takes  the  adjacency

matrix of a graph and a vertex, and returns the degree of that vertex. Test it

on all the vertices of the graph of Figure 1.4. 
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6.  Let  A  be  the  adjacency  matrix  of  an  undirected  graph  G.  Show  that

A2 i, i d i .

7. Two graphs G1 V1, E1  and G2 V2, E2  are called isomorphic if there

is  a  one-to-one  onto  function  f : V1 V2  such  that  for  all  v, w V1  edge

v, w E1  if and only if edge f v , f w E2. Show that the two directed

graphs below cannot be isomorphic.

1 2

3

4 5

1

2

3 4

5

Exercise 7

8.  Argue, using the adjacency matrix only, that the graph in Figure 1.6(a) is

not connected.

9. (Mathematica) There is a function in the KnoxOR`Graphs` package called

FindChildren adjmatrix,parentlist

This  command  returns  a  list  of  all  children  of  vertices  in  the  given  list  of

parents,  where  adjmatrix  is  the  adjacency  matrix  of  a  directed  graph  and  a

vertex v is a child of a vertex u iff there is an edge u, v  in the graph.  Revise

the  Components  function  of  Section  1.1  using  FindChildren  to  produce  a

function  called  Descendants[adjmatrix,  vertex]  that  returns  the  set  of  all

vertices reachable by some path from the given vertex in the directed graph

characterized by the given adjacency matrix.  For each vertex in the graph of

Figure  1.11,  use  the Descendants  function  to find the set  of  all  descendants

of that vertex.

10.  Prove  that  if  the  vertex  set  of  a  directed  graph  can  be  partitioned  into

three  subsets  V1,  V2,  and  V3  such  that  edges  only  exist  from V1  into  V2,  or

from V2  into V3,  or  from V3  into V1,  then the  graph  is  not  regular.  Give an

example of such a graph with eight vertices.

11.  Decide  whether  the  following  graph  is  (a)  connected  or  (b)  quasi-con-

nected.
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ex12

0, 1, 1, 0, 0 , 0, 0, 1, 1, 0 , 1, 0, 0, 0, 0 ,

0, 0, 0, 0, 1 , 0, 1, 1, 1, 0 ;

DisplayGraph ex12, GraphType Directed,

VertexLabelPositions

ToLeft, Above, Below, Above, ToRight ,

EdgeSeparation .02, AspectRatio .7 ;

1

2

3

4

5

Exercise 11

12.  Show that  a  connected  directed  graph  is  quasi-connected.  Show that  an

undirected graph is quasi-connected if and only if it is connected.

13. (Mathematica) For the graph of Figure 1.9, verify that Am  is not entirely

non-zero for any m 4.

14. (Mathematica) Find all connected components of the graph below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Exercise 14

15.  Argue  that  for  undirected  graphs,  the  connected  components  algorithm

does find the connected component of the given initial vertex.
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16. Prove that for directed graphs, the connected components algorithm finds

the set of vertices that can be reached from a given initial vertex v. Prove that

this set is a closed set (see Example 7), and that if in addition every vertex u
in  the  set  can  reach  the  initial  vertex  v,  then  this  set  is  a  connected

component.

17.  For  an  undirected  graph  with  the  adjacency  matrix  below,  find  the

connected components.

 

0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0

18. (Mathematica) Write a Mathematica command that takes a weight matrix

of a graph, and a list of vertices forming a path in the graph, and returns the

weight of the path. 

19.   Adjacency  matrices  are  not  the  only  way  of  representing  graphs.   An

adjacency  list  representation  of  a  graph  is  a  list,  vertex-by-vertex,  of  the

vertices that are adjacent to that vertex.  For example, for the graph of Figure

1.4 one would have the adjacency list

v1 : v2, v3, v4

v2 : v1, v4

v3 : v1

For graphs with many vertices and not very many edges, this representation

can  result  in  a  substantial  savings  in  the  amount  of  information  recorded.

Write  adjacency  lists  for  the  graphs  of  (a)  Figure  1.3;  (b)  Figure  1.5;  (c)

Figure 1.10.  

20.  (Mathematica)  Devise  a  way  of  implementing  in  Mathematica  an

adjacency list representation of a graph.  (See Exercise 19.) Write a function

that converts an adjacency list to an adjacency matrix.  
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1.2 Spanning Trees

In  many  of  the  network  problems  that  we  will  consider,  the  networks  are

special  types  of  graphs  called  trees.  These  are  subgraphs  that  retain  the

connectivity  of  the  original  graph,  but  are  sparse  in  the  sense  of  having  as

few  edges  as  possible.  In  the  definition  below,  the  underlying graph  of  a

directed  graph  is  the  undirected  graph  with  the  same  vertex  set,  and  with

undirected  edges  v, w  for  every  directed  edge  v, w  in  the  directed  graph.

Loosely speaking, we erase the arrows.

DEFINITION 1.  An undirected graph is called a tree if it is connected

and has no cycles. A directed graph is a tree with root  (or  source) v1  if

its  underlying  graph  is  a  tree  and  if  v1  is  an  ancestor  of  every  vertex

v V .

We will  occasionally  use  the  word  "root"  in  the  sense  of  this  definition

even when the graph is not a tree.

EXAMPLE  1.  Figure  1.12  shows  an  undirected  tree.  The  fact  that  our

definition requires vertices to have a common ancestor implies that the graph

in  Figure  1.13(a)  is  not  a  directed  tree.   The  problem  is  the  edge  v5, v3 .

Figure 1.13(b)  illustrates a directed tree with root  v1,  in which the direction

of this edge has been reversed to v3, v5 .  

v1

v2

v3

v4

Figure 1.12 – An undirected tree
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v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

(a)                                                       (b)

Figure 1.13 – (a) Directed graph; not a tree; (b) Directed tree

Activity  1  –  Take  a  moment to  draw for  yourself  some other  examples

of directed and undirected trees.

We will usually be considering trees as sparse subgraphs of other larger

graphs,  but  since  we  desire  connectivity  of  all  vertices  in  the  larger  graph,

we are led to make the following definition.

DEFINITION 2.   A spanning  tree  of  a  graph G  is  a  subgraph  G of  G
that is a tree containing all vertices of G.

Undirected Spanning Trees

First,  consider  undirected  spanning  trees.  For  example  for  the  graph  of

Figure 1.4 in the previous section, the subgraph

G v1, v2, v3, v4 , v1, v3 , v1, v2 , v2, v4

is a spanning tree of the graph G. Recall also the graph of Figure 1.1, where

the  vertices  represent  communication stations,  and  the  weight  of  an  edge  is

the  cost  of  setting  up  direct  communication between  the  stations  connected

by the  edge.  The spanning  tree  formed by edges  1, 2 ,  1, 3 ,  1, 4 ,  1, 5 ,

and  1, 6  has  total  cost  17.  Another  spanning  tree  has  edges  6, 2 ,  2, 3 ,

3, 4 ,  4, 5 ,  and 1, 2  and also has  total  cost  17.  [See Figures  1.14(a)  and

(b).]
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(a)                                                                       (b)

Figure 1.14 – Two spanning trees of graph of Figure 1.1

The interesting questions are: (1) how do we find a spanning tree and (2)

how  do  we  find  a  spanning  tree  of  minimal  cost,  if  there  are  edge  weights

representing costs? The latter is addressed in the next section. First, we will

develop an algorithm to answer question (1). Theorem 1, to be stated shortly,

supplies  a  termination  condition  for  the  spanning  tree  algorithm  for  undi-

rected  graphs.  The  proof  of  Theorem  1  requires  three  lemmas  that  are  of

interest in themselves (see [18], Theorems 3.17, 3.18, 3.19 ).

LEMMA  1.   If  G  is  a  finite,  undirected  graph  whose  vertices  each  have

degree 2, then G has a cycle.

Proof.   We  give  the  idea  of  the  proof  and  leave  the  details  to  the  reader.

Begin  with  any  vertex  and  move  to  a  neighboring  vertex.  Since  this  new

vertex has degree  2, we may move along an edge that has not already been

used to another  vertex.  Continuing in this way, since the graph is finite, we

must eventually return to a vertex already encountered, thus forming a cycle.

LEMMA 2.  A tree has at least one vertex of degree 1.

Proof.   Since  a  tree  has  no  cycles,  this  is  an  immediate  consequence  of

Lemma 1.  

LEMMA  3.   If  G  is  connected  and  has  strictly  fewer  edges  than  vertices,

then G has a vertex of degree 1.

Proof.   If,  on the contrary, all  vertices have degree at least 2,  then we have

from formula (1) of Section 1.1,

 number of edges 1 2 v V d v 1 2 v V 2 number of vertices
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which is a contradiction of the hypothesis of the lemma. 

We  are  ready  to  prove  the  main  theorem  characterizing  trees  ([18],

Theorem 3.20).

THEOREM 1.  Suppose G is connected graph of n vertices. Then G is a tree

if and only if G has n 1 edges.

Proof.   It  helps  to  restate  the  theorem slightly.  The  assertion  is  that  a  con-

nected graph is a tree if and only if the number of vertices equals the number

of edges + 1.

We show the forward implication by induction on the number of edges m
of G.  Assume G  is a tree. When m 1, by connectivity, G  must have only

two vertices. (For undirected graphs, we forbid loops from a single vertex to

itself, so there must be more than one vertex.) Suppose now that the theorem

is true when m k, i.e., a tree of k  edges has k 1 vertices. Let G be a tree

of k 1 edges. By Lemma 2, G has a vertex v of degree 1. Delete v and the

edge  that  is  incident  to  it  from  G,  and  we  still  have  a  connected  graph

without cycles, i.e., a tree. The new tree has k  edges, hence by the inductive

hypothesis,  it  has k 1 vertices.  Thus,  since v  was the only vertex deleted,

G has k 2 vertices and the induction is complete.

We leave it to the reader (Exercise 7) to show the converse by a similar

argument based on Lemma 3.  

We  will  not  be  able  to  find  a  spanning  tree  if  the  given  graph  is  not

connected.  Such  a  graph  would  be  improper  input  into  the  algorithm

described below. The next result shows that for a finite graph, this is the only

kind of improper input.

THEOREM 2.  If G is a finite, connected graph, then G has a spanning tree.

Proof.  If G has no cycles, then G is already a tree. If there is a cycle, delete

any edge in that cycle and the graph will still be connected (see Figure 1.15).

Continue to delete edges in this way until there are no remaining cycles.  

Activity  2  –  If,  in  Theorem 2,  the  graph  G  is  a  directed  graph,  do  you

think the conclusion of the theorem is still true?  What sort of connectiv-

ity should the hypothesis of the theorem refer to?  
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Figure 1.15 – Deleting an edge from a cycle does not disconnect the graph
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insertinsert

Figure 1.16 – Inserting an edge between different components does not create a cycle

The algorithm for  finding  spanning  trees is  of  the "greedy"  variety; that

is,  we examine one edge of  the graph at a time and include it  into the edge

set of the tree if we can. We must therefore have a way of telling whether the

inclusion of an edge would produce a cycle. A useful device is to keep track

of  the  connected  component  containing  each  vertex.  If  the  vertices  of  the

edge  being  examined  are  in  different  components  (each  of  which  had  no

cycles),  then  there  will  still  be  no  cycles  after  the  edge  is  included.  Figure

1.16 shows this;  you are asked for  a proof  in Exercise 8.   If  the vertices on

the  edge  being  considered  are  already  in  the  same component,  then  adding

the  edge  would  create  a  cycle,  so  we  should  skip  the  edge.  Using  this

criterion  for  including  edges,  we  stop when we reach n 1 included edges.

By construction, our spanning tree candidate T is a graph with no cycles and

n 1 edges. By Theorem 1, it remains only to check that all of the vertices of

G are in a single connected component of T .

The algorithm has at its disposal the number of vertices n of a connected,

undirected  graph  G  and  the  edge  set  of  G,  labeled  E 1 , ..., E M .  The

vertices  have  been  labeled  1, ..., n,  and  we  will  let  C i  be  the  current

component  to  which  vertex  i  belongs.  The  letter  T  will  stand  for  the  set  of

edges currently in  the tree candidate,  and K  will  be  the number of  edges  in

the set T  (see [18], Algorithm 3.22 and ensuing discussion).
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UNDIRECTED SPANNING TREE ALGORITHM

1. Initialize: T , K 0, C i i for each i, current edge E 1 .

2.  If  K n 1,  stop;  else  repeat  3-4  for  the  current  edge  until

K n 1.

3. Examine the vertices i and j of the current edge. If 

   C i C j , do a-c. 

 a. Include the current edge into T .

 b. Add 1 to K.

 c.  If C i C j , change C j , and all component 

 numbers C k  matching C j ,  to C i ; else change C i , 

 and all component numbers C k  matching C i , to C j .

4. Consider the next edge.

Proof  that the algorithm yields a spanning tree. We will show that at the end

of  execution  of  the  algorithm, v T n,  where  v T  denotes  the  number  of

vertices in the spanning tree candidate, and we will show that the number L
of  connected  components  of  T  is  1.  We  do  this  by  finding  expressions

relating  n,  K,  L,  and  v T .  To  simplify  the  presentation,  we  treat  the  algo-

rithm as  if  component  numbers are  not  assigned until  a  vertex is examined.

Then  the  addition  of  an  edge  has  three  cases,  with  the  changes  to  v T , K,

and  L  shown  in  Figure  1.17.   In  all  cases  one  new  edge  is  added,  so  K
increases by 1.  If two new vertices that have not yet been included into T are

used,  then v T  increases  by  2;  if  the  added  edge  links  a  vertex in  T  with  a

vertex not in T, then v T  increases by 1; and if the added edge connects two

old vertices that happened to be in different components, then v T  does not

change.   You  should  check  the  L  column  for  yourself.   Let  n1,  n2,  and  n3,

respectively, be the numbers of times that edge addition was of type 1, 2, and

3 in the execution of the algorithm. Then

v T 2 n1 n2

K n1 n2 n3

L n1 n3

Certainly n v T , hence

n v T K 1 v T n3 n1 1 L 1 0

Since  L 0,  it  must  be  that  L 1.  Therefore  all  vertices  are  in  the  same

connected  component  at  the  end.  But  then  the  above  computation  implies

that  n v T .   Hence  the  spanning  tree  candidate  spans  all  vertices,  is

connected,  and  was  built  in  a  way  that  forbade  cycles.   It  is  therefore  a

spanning tree.  
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Case v T K L
1. new vertex new vertex 2 1 1

2. old vertex new vertex 1 1 0

3. old vertex old vertex 0 1 1

Figure 1.17 – Adding a new edge in the spanning tree algorithm

As we discussed in Section 1.1, it is advantageous both from the pedagog-

ical  standpoint  and  the  practical  standpoint  to  be  able  to  implement  an

algorithm like  this  one,  and  to  do  so  one  must  consider  assumptions,  input,

output,  structuring  of  data,  local  variables,  and  supporting  functions.   The

description  of  the  algorithm here  suggests  that  instead  of  characterizing  the

graph  as  an  adjacency  matrix,  we  could  instead  characterize  it  by  two

variables:  the  number  n  of  vertices  and  the  list  of  undirected  edges

u1, v1 , u2, v2 , ... , uk, vk .   We  assume  that  our  input  constitutes  a

connected,  undirected  graph,  and  that  the  vertex  numbers  referred  to  in  the

edge  list  are  within  the range 1, 2, ... , n.   If  we  would  like  to use  Display-

Graph  to  show  the  graph,  however,  we  are  forced  to  produce  a  utility

function  that  accepts  such  a  list  of  edges,  and  the  number  of  vertices,  and

returns the adjacency matrix of the graph.  I have already included a function

in the KnoxOR`Graphs` package that does this, as follows:

ConvertToAdjMatrix

edgelist,numberofvertices,opts

Options ConvertToAdjMatrix

GraphType Undirected, Weighted False

If  the option GraphType is left  at its default  value of  Undirected,  then each

edge  u, v in  the  list  will  be  assumed  to  be  an  undirected  edge,  which

produces  two  entries  in  the  adjacency  matrix  in  both  the  u, v and v, u  posi-

tions.  Otherwise if it is set to Directed only the u, v  entry is set.  I built the

function  so  that  if  each  entry  in  the  list  of  edges  has  a  third  component

signifying the weight of the edge, then the weight matrix is returned.  This is

the role of the option Weighted in the command; when set to True the input

is expected to be a list of triples and the output will be the weight matrix.  In

Exercise 10 you are asked to write a simpler version of ConvertToAdjMatrix

without the options.

Another  useful  supporting  function  would  have  the  responsibility  of

updating component numbers when a new edge u, v  is inserted.  The main

algorithm will need to keep track of these component numbers at each step,
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and therefore  we will  need as a local  variable a list of component numbers,

c1, c2, ... , cn ,  one  for  each  vertex.   I  have  written  another  function,

contained  in  KnoxOR`Graphs`,  to  do  this.   For  your  information,  the  com-

plete code for AdjustComponents is shown below.  You should try running it

on a few sample component lists and vertex numbers. Notice from the code

that  after  finding  the  number  of  vertices  n  and  making  a  copy  of  the  input

component list, the smaller and larger of the component numbers of the two

vertices  u  and  v  are  computed.   Then  a  Do  loop  is  used  to  examine  each

member of the component list,  changing all that equal the larger component

number to the smaller. 

AdjustComponents u,v,components

AdjustComponents u_, v_, components_ :

Module newcomponents, smallcomp, bigcomp, n ,

n Length components ;

newcomponents components;

smallcomp

Min components u , components v ;

bigcomp Max components u ,

components v ;

these are the connected component

numbers of u and v

now cruise through the list making

all elements with the larger

component number have the smaller

component number

Do If newcomponents i bigcomp,

newcomponents i smallcomp ,

i, 1, n ;

newcomponents

The  following  example  call  to  the  function  shows  that  when  each  of  six

vertices has  its  own component  number,  and edge 1, 3  is  to  be added,  the

component of vertex 3 is adjusted down to that of vertex 1.

AdjustComponents 1, 3, 1, 2, 3, 4, 5, 6

1, 2, 1, 4, 5, 6
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You  are  asked  to  produce  a  full  program  for  the  undirected  spannning

tree  problem in  Exercise  11.   But  the  KnoxOR`Graphs`  package  contains  a

function  called  SpanningTreeOneStep  that  performs  one  step  of  the  loop  in

the algorithm, which we can use sequentially to solve problems.  

SpanningTreeOneStep treelist,edgelist,

edgenumber,componentlist, opts

Options SpanningTreeOneStep

ShowTree True, Weighted True,

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,
EdgeLabelPositions Automatic,

EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The  full  version  of  SpanningTreeOneStep  takes  the  list  of  edges  cur-

rently in the tree, the complete list of edges in the graph, the number of the

edge in the graph edge list that is currently being considered for addition to

the tree,  and the current list of  components of the vertices.  It returns a pair

{newtreelist,  newcomponentlist},  which  are  the  revised  lists  of  tree  edges

and  vertex  components  after  the  current  edge  has  been  added  (if  possible).

SpanningTreeOneStep  has  options  as  shown  above,  which  are  just  the

options of  DisplayGraph together with two new ones: ShowTree can be left

at  True or  set  to False,  respectively, according to whether  you do or  do not

want to see the new tree.  The option Weighted is True by default to indicate

a weighted graph, in which the edgelist and treelist entries each have a third

component for the weight, or Weighted can be set to False in the case of this

section where  there are  no weights  on  the edges.  I  do not  want  to load you

down with the details of implementing options in Mathematica, and so in the

cell below we look at just the lines that are directly relevant to the algorithm

rather  than  the  complete  function.   If  you  are  curious,  you  can  use  a  text

processor  to  open  up  the  graphs.m  file  in  the  KnoxOR  subdirectory  of  the

Mathematica  ExtraPackages  directory  to  see  the  full  code.   But  read  the

stripped-down code below, paying attention to the comments, and relate it to

the algorithm.  
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Important parts of SpanningTreeOneStep

numvertices Length componentlist ;

newcomplist componentlist;

newtreelist treelist;

the new edge to be considered is v1,v2

v1 edgelist edgenumber 1 ;

v2 edgelist edgenumber 2 ;

its current component

numbers are comp1 and comp2

comp1 componentlist v1 ;

comp2 componentlist v2 ;

If comp1 comp2, add the new

edge and adjust component numbers

AppendTo newtreelist, edgelist edgenumber ;

newcomplist

AdjustComponents v1, v2, componentlist ;

prepare the revised tree for display

A ConvertToAdjMatrix newtreelist, numvertices ;

DisplayGraph A ;

return the new tree and component lists

newtreelist, newcomplist

To  solve  a  problem  using  SpanningTreeOneStep,  we  would  do  the

initializations of the algorithm, that is, define the edge list, set the tree list to

be empty, and set the component list to 1, 2, ... , n .   Then successively set

{treelist, componentlist} to be the output of SpanningTreeOneStep, stepping

along  the  index  of  the  edge  to  be  tested,  until  the  full  tree  is  built.   We

illustrate with the following example.

EXAMPLE 2.   Applying the algorithm to the graph of Figure 1.1, with the

edges  labeled  in  lexicographical  order,  results  in  the  following  sequence  of

operations. Here are the initializations:
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edgelist

1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 , 2, 3 ,

2, 4 , 2, 5 , 2, 6 , 3, 4 , 4, 5 , 5, 6 ;

treelist ;

componentlist 1, 2, 3, 4, 5, 6 ;

vposex2 0, 0 , 0, 1 ,

2, 0 , 1, .5 , 1, .5 , 2, 0 ;

vlabelposex2 Below, Above, ToRight,

Below, Below, ToLeft ;

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 1, componentlist,

Weighted False, VertexPositions vposex2,

VertexLabelPositions vlabelposex2,

AspectRatio .7

1

2

3

45

6

1, 2 , 1, 1, 3, 4, 5, 6

Figure 1.18 – Adding the first edge to a spanning tree

The first edge 1, 2  has been successfully added, and the component number

of vertex 2 was changed to 1.  Now we make a similar function call using the

revised tree and component lists and edge 2.
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treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 2, componentlist,

Weighted False, VertexPositions vposex2,

VertexLabelPositions vlabelposex2,

AspectRatio .7

1

2

3

45

6

1, 2 , 1, 3 , 1, 1, 1, 4, 5, 6

Figure 1.19 – Adding the second edge to a spanning tree

Edge  1, 3  has  been  added.   Note  that  vertices  1,  2,  and  3  all  belong  to

connected component 1, and vertices 4, 5, and 6 belong to their own compo-

nents.  The next edges in our list are 1, 4 , 1, 5 , and 1, 6 , and clearly they

can  each  be  added  without  producing  a  cycle.  Here  are  the  last  three  steps

with the graphs suppressed: 

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 3, componentlist,

Weighted False, ShowTree False

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 4, componentlist,

Weighted False, ShowTree False

treelist, componentlist SpanningTreeOneStep

treelist, edgelist, 5, componentlist,

Weighted False, ShowTree False

1, 2 , 1, 3 , 1, 4 , 1, 1, 1, 1, 5, 6

1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 1, 1, 1, 1, 6
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1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 ,

1, 1, 1, 1, 1, 1

The algorithm therefore finds the spanning tree of Figure 1.14(a). In the

electronic version of the text, the closed cell below contains code to produce

all  the  intermediate  graphs,  which  can  be  selected  and  animated.   You  will

observe  that  the  spanning  tree  that  is  returned  by  the  algorithm  is  highly

dependent on the order in which the edges of the graph appear in the edgel-

ist.   (See  Exercise  2.)  In  the  next  section  we  take  advantage  of  this  fact  to

produce  an  easy  adaptation  of  our  algorithm  to  the  problem  of  finding

minimal weight spanning trees. 

Directed Spanning Trees

The  condition  characterizing  existence  of  directed  spanning  trees  is  a  bit

different.  As  Figure  1.13(a)  shows,  connectivity  of  the  underlying  graph  is

not  strong  enough  to  guarantee  the  existence  of  a  directed  spanning  tree.

Strong  connectivity  is  sufficient,  but  not  the  weakest  possible  sufficient

condition, as Figure 1.13(b) shows. It turns out that quasi-connectivity is the

correct condition. If a directed graph has a spanning tree, then the root of the

tree  is  a  common  ancestor  of  every  pair  of  vertices,  and  so  the  graph  is

quasi-connected.   This  is  half  of  Theorem  3  below.  The  converse  will  be

proved  constructively  by  devising  an  algorithm  to  find  a  spanning  tree,

assuming that the graph is quasi-connected ([47], Theorem 5.5.3).

THEOREM 3.  A directed graph has a directed spanning tree if and only if

it is quasi-connected.  

We would like to construct an algorithm to produce a directed spanning

tree  of  a  given  directed  graph,  given  its  root.   We  should  first  pay  some

attention, however,  to the problem of locating the root of  a quasi-connected

graph.   This is  not  at all  an obvious  thing to do,  especially for  large graphs

such as the one in Figure 1.20.
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Figure 1.20 – Where is the root?

We will not give a program to find the root, which is likely to be a very

time-consuming  one.   However,  if  you  did  Exercise  9  of  Section  1.1,  you

saw  how  to  use  a  function  called  FindChildren[adjmatrix,  parentlist]  con-

tained  in  KnoxOR`Graphs`  to  produce  a  function  called

Descendants[adjmatrix,  vertex],  which  returns  the  set  of  all  descendants  of

the  given  vertex  in  the  directed  graph  characterized by the  given  adjacency

matrix.  This  Descendants  function  is  very  much  like  the  Components

function  of  the  last  section  in  the  sense  that  it  begins  with  the  vertex  and

step-by-step fans out  to child vertices of  those vertices most recently exam-

ined,  labeling  those  as  new  descendants.   The  code  for  my  version  of  this

function  is  in  the  closed  cell  below  this  paragraph.   If  you  have  a  guess  at

which vertex is the root, you can then apply Descendants to that vertex, and

if  the  set  of  descendants  is  the  entire  set  of  vertices  in  the  graph,  then  this

vertex  is  a  root.  (There  may be more than one root.)   So this  function  does

not quite do the complete job of finding the root, but it does provide a useful

check.

Descendants adjmatrix,vertex
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The  adjacency  matrix  for  the  graph  of  Figure  1.20  was  defined  in  the

closed cell above the figure,  and was given the name graph120.   I designed

that graph to have a root at vertex 14, and the function call below shows that

it is indeed a root because all vertices are descendants of vertex 14.  

Descendants graph120, 14

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

Activity  3  –  In  the  electronic  version  of  the  text,  try  to  find  out  what

other vertices are also roots of the graph of Figure 1.20.  

Next,  to  construct  a  directed  spanning  tree,  we  search  for  vertices,

beginning  at  the  root  and  fanning  out  to  children  of  the  root,  then  their

children,  etc.,  much like  the  connected  components  algorithm.  The  directed

spanning  tree  algorithm  requires  a  quasi-connected,  directed  graph  G  of  n
vertices  and  its  root  w.   The  set-valued  variables  KT  and  ET  indicate,

respectively, the current set of vertices in the tree and the current set of edges

in the tree. The variables NEW1 and NEW2, respectively, represent the most

recent  set  of  vertices  that  has  been  added  and  the  next  set  of  vertices to  be

added. At each pass through the loop in step 2, each vertex in the NEW1 set

is examined, and if its children have not been included into the vertex set of

the tree yet,  then those edges are included into the tree and the children are

included into the vertex set and also marked as newly added vertices for the

next pass.

DIRECTED SPANNING TREE ALGORITHM

1. Initialize KT w , ET , NEW1 w , NEW2 . 

2. Do a – b while NEW1 . 

a. For each v NEW1:

    For each edge v, u  such that u KT, include v, u  

    into ET and u into NEW2 and KT.

b. Let NEW1 NEW2, NEW2 .

3. Return ET.

The algorithm makes sure that at every stage there are no edges pointing

back into the current set of vertices, hence there are no cycles. The underly-

ing graph is  connected at every stage,  since all new vertices are added with

the  edge  connecting  them  to  their  parent,  who  is  already  connected  to  the

rest  of  the  graph.  Note  in  particular  that  there  is  always  a  path  in  the  tree

38 Chapter 1  Graph Theory and Network Analysis



from  the  root  to  every  new  vertex  that  is  added.  To  see  that  a  directed

spanning  tree  results  at  the  end  of  the  execution  of  the  algorithm,  suppose

instead that there is some vertex v G that is never included into KT. Since

G  is  quasi-connected,  there  is  a  path  w v0, v1, ..., vm v  in  G  from  the

root w to v. Let k be the smallest integer m such that vk  is not in KT. Such

a  k  exists  since  vm v KT,  and  k 0  since  w v0 KT.  Then

v0, ..., vk 1 KT  but  vk KT.  Then  vk 1  was  in  NEW1  for  exactly  one

execution of step 2. But in that case vk  would have been included into KT at

step 2a,  which is a contradiction.  Therefore,  under the assumption of quasi-

connectivity, the algorithm generates a directed spanning tree. We have also

established Theorem 3.

Activity 4 – If a directed graph is strongly connected, can the algorithm

above be applied starting at any vertex w?  Why, or why not?

EXAMPLE  3.  To  illustrate  the  application  of  the  spanning  tree  algorithm

for  directed  graphs,  consider  the  graph  of  Figure  1.21(a).   You  can  check

that  5  is  a  root  of  this  graph.   The algorithm first  includes  edges  5, 2  and

5, 4 ; then edges 2, 1  and 4, 3  while ignoring edge 2, 4 ; then it checks

and ignores edges 1, 3 , 1, 4 , 3, 1 , and 3, 4 . We see from this example

that to improve the efficiency of the algorithm, we might add a check on the

size  of  KT;  if  it  is  n,  then  stop  execution.   The  spanning  tree  we  obtain  is

shown in part (b) of the figure.  
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Figure 1.21 – Finding a directed spanning tree

Let  us  close  this  section  by  developing  a  Mathematica  function  for  the

directed spanning tree problem.  Then we will test it out on the more compli-

cated graph of Figure 1.20.  

Because  the  "fanning  out"  method,  called  by  the  computer  scientists

breadth-first search, is used, we will give our function the name BreadthFirst-

Tree.  The function will receive the adjacency matrix in the usual form, and

the  vertex  number  w  of  the  root  as  its  input  parameters.   Our  version  will

return the edge list of the directed tree.  Recall that the ConvertToAdjMatrix

function  can be used to change the edge list form of  the tree graph to adja-

cency matrix form, in order to prepare it for display if we like.  We assume

that the vertex number of the root is in the appropriate range determined by

the dimension of the adjacency matrix, and that the graph is quasi-connected

and the vertex is indeed a root.  As local variables we will keep KT, the list

of vertices in the tree so far,  ET, the list of  edges in the tree so far, and the

lists  NEW1  and  NEW2  of  most  recently  added  and  newly  added  vertices.

The algorithm shows us exactly how to initialize and update these lists.  As a

supporting function we can use FindChildren[adjmatrix, parentlist], with one

parent vertex from NEW1 at a time, to find all children of that vertex. Then

we  use  complementation  to  pick  out  those  children  not  already  in  KT,  in

order  to  add  them  into  KT,  add  the  edge  to  ET,  and  mark  them  as  newly

labeled.  This entails the creation of other local variables called children and

newchildren  to  hold  onto  the  lists  of  all  children  of  the  current  vertex,  and

those that are new. By the end of the loop, ET has the complete list of edges.

Here  is  the  function.   Inspect  the  code  carefully  to  be  sure  that  you  know

what each line does and how it relates to the algorithm. 
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BreadthFirstTree adjmatrix_, w_ :

Module numvertices, KT, ET,

NEW1, NEW2, children, newchildren ,

initializations

numvertices Length adjmatrix ;

KT w ; ET ; NEW1 w ; NEW2 ;

While NEW1 && Length KT numvertices ,

for each vertex in NEW1,

scan children for new vertices

Do children FindChildren

adjmatrix, NEW1 vertex ;

newchildren Complement children, KT ;

include the new children

into the tree and the NEW2 set

NEW2 Join NEW2, newchildren ;

KT Join KT, newchildren ;

put edges into ET

Do AppendTo ET,

NEW1 vertex , newchildren i ,

i, 1, Length newchildren ,

vertex, 1, Length NEW1 ;

set up for the next pass

NEW1 NEW2;

NEW2 ;

ET

EXAMPLE 4.  Here is the spanning tree of the graph of Figure 1.21(a).  Of

course the edges are exactly the ones in Figure 1.21(b). 

BreadthFirstTree graph121a, 5

5, 2 , 5, 4 , 2, 1 , 4, 3

Now we  apply  the  function  to  the  graph  of  Figure  1.20,  using  vertex  14  as

the root.  The tree is displayed in Figure 1.22 using the ConvertToAdjMatrix

function.   Notice  how  the  order  of  edges  in  the  edgelist  tells  the  order  in

which the edges were added in; starting from 14 we get 14, 9  and 14, 15 ,

then from vertex 9 we get 9, 4  and 9, 8 ,  etc.   Trace a few more of  these

edges on the tree shown in Figure 1.22 to see how the algorithm is fanning

out through the graph breadthwise.  
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edgelist BreadthFirstTree graph120, 14

14, 9 , 14, 15 , 9, 4 , 9, 8 ,
15, 10 , 15, 20 , 4, 3 , 8, 7 , 8, 13 ,
10, 5 , 20, 19 , 20, 25 , 3, 2 , 13, 12 ,

13, 18 , 19, 24 , 2, 1 , 18, 17 , 18, 23 ,
1, 6 , 17, 16 , 17, 22 , 6, 11 , 22, 21

vposits 2, 0 , 1.5, .5 ,

1, 1 , .5, 1.5 , 0, 2 ,

1.5, .5 , 1, 0 , .5, .5 ,

0, 1 , .5, 1.5 ,

1, 1 , .5, .5 , 0, 0 , .5, .5 , 1, 1 ,

.5, 1.5 , 0, 1 ,

.5, .5 , 1, 0 , 1.5, .5 ,

0, 2 , .5, 1.5 , 1, 1 ,

1.5, .5 , 2, 0 ;

amatrix ConvertToAdjMatrix edgelist,

25, GraphType Directed ;

DisplayGraph amatrix, GraphType Directed,

VertexPositions vposits ;
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Figure 1.22 – A directed spanning tree for the graph of Figure 1.20

Exercises 1.2

1.  Find  a  spanning  tree  of  the  graph  below  using  the  undirected  spanning

tree algorithm.  Work by hand on this problem rather than using Mathemat-
ica.  Assume that the order of the edges is: 

1, 2 , 2, 5 , 2, 3 , 4, 7 , 2, 6 , 1, 4 , 2, 4 , 3, 4 , 6, 7 , 5, 6 , 4, 5

1

2 3

4

56

7

Exercise 1

2. (Mathematica) Referring to Example 2 of this section, what spanning tree

does the SpanningTreeOneStep function find when the order of edges is:

(a)  5, 6 , 4, 5 , 3, 4 , 2, 6 , 2, 5 ,

2, 4 , 2, 3 , 1, 6 , 1, 5 , 1, 4 , 1, 3 , 1, 2
(b)  Determined by increasing order of cost. (See Figure 1.1)

Compute the total edge cost for each of the two spanning trees in (a) and (b).
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3.  Suppose that G V , E  is a connected graph and u, v E is an edge in

some cycle. Show that the graph G V , E u, v  is connected. (This fact

was used in the proof of Theorem 2.)

4. Prove that a connected, undirected graph G is a tree if and only if for each

edge u, v G, G u, v  is not connected.

5. (Mathematica) The graph below shows computer links between an official

vote-tallying center at vertex 1 and several precincts. For the sake of secrecy,

links can be made secure, but since this is an expensive process, it is desired

to  secure  the  minimum  possible  number  of  links  and  let  the  transmissions

occur only on those links. How should this be done?  (Use the SpanningTree-

OneStep function to display intermediate graphs and component lists.)

1

2

3

4

5

678

9

10

Exercise 5

6.  Prove  that  if  G  is  an  undirected  tree  with  more  than  one  vertex,  then  G
contains at least two vertices of degree 1. 

7.  Finish  the  proof  of  Theorem 1,  that  is,  if  G  is  a  connected  graph  with  n
vertices and n 1 edges, then G is a tree.

8.   Consider  two  connected  components  of  an  undirected  graph  G,  and

suppose  each has  no cycles.  Let  G  be  a  new graph whose  vertex set  is  the

union  of  the  vertex  sets  of  the  two  components  and  whose  edge  set  is  the

union of  the two edge sets,  together  with a single edge u, v ,  where u  is  in

one component and v is in the other. Show that G  has no cycles.

9.  Is  it  possible  to  construct  an  undirected  tree  whose  eight  vertices  have

degrees 1, 2, 3, 3, 1, 1, 3, and 2, respectively? Why, or why not?

44 Chapter 1  Graph Theory and Network Analysis



10.  (Mathematica)  Write  your  own  version  of  the  ConvertToAdj-

Matrix[edgelist, n] command without options,  which takes a list of edges of

an undirected graph and the number of vertices in the graph, and returns the

adjacency matrix.

11. (Mathematica) Using the work already done in creating the SpanningTree-

OneStep function, write a full, simplified version of the complete undirected

spanning  tree  algorithm,  without  the  options,  which  takes  the  list  of  edges

and  the  number  of  vertices  in  the  graph,  and  returns  the  list  of  edges  in  a

spanning tree.

12.  A  complete  undirected  graph  is  a  graph  such  that  edges  exist  between

every pair of vertices.  Find an upper bound for the number of spanning trees

a complete graph can have.

13. Find a directed spanning tree of the following graph if one exists. Is the

tree unique? Do this by hand and not in Mathematica. 

1 2

3

45

6

Exercise 13

14.  (Mathematica)  Vertices  8  and  18  are  also  roots  in  the  graph  of  Figure

1.20.  Check this using the Descendants function, and find directed spanning

trees using each of these roots.  

15. A forced-air heat distribution system in a building must get heat from the

central  furnace  at  vertex  1  in  the  figure  to  each of  the  rooms located at  the

other  vertices.   It  is  possible  to  mount  ductwork,  assumed  unidirectional,

along each of the edges shown on the graph.  Find a sparsest possible system

of ductwork to heat the building.  
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Exercise 15

16.  (Mathematica)   A  directed  graph  has  the  adjacency  matrix  below.  Use

the  BreadthFirstTree  function  to  find  a  directed  spanning  tree.   Determine

the root using the Descendants function.

A

0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

 

Exercise 16

 B

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Exercise 17
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17.  (Mathematica)   Repeat  Exercise  16  for  the  graph  whose  adjacency

matrix is above.  The root vertex is 7.

18. Prove or disprove. A directed graph is a tree if and only if it is connected

and has no directed cycles.

19. Prove or disprove. A directed graph is a tree if and only if it is quasi-con-

nected and has no directed cycles.

20.  Would  the  directed  spanning  tree  algorithm  also  find  an  undirected

spanning tree if the given graph was connected and undirected?  Explain.

1.3 Minimal Cost Networks

Undirected Graphs

We now show how to find  a minimal cost  spanning  tree,  as  defined below,

for a weighted, undirected graph such as that of Figure 1.1. Let G be such a

graph.

DEFINITION  1.  A  minimal spanning tree  for  G  is  a  spanning  tree

whose total weight is less than or equal to that of any other spanning tree.

The  algorithm  to  find  minimal  spanning  trees  is  a  variation  of  the

undirected  spanning  tree  algorithm  from  the  last  section  called

Kruskal ' s algorithm.   The  idea  is  that  before  executing  the  spanning  tree

algorithm, we sort the edges in order of increasing weight. Then, we greedily

pick  edges  of  small  weight,  without  creating  a  cycle.  The  input  to  the

algorithm  is:  the  number  n  of  vertices,  the  set  of  edges  E 1 , ..., E M ,

and the costs c E i , for i 1, ..., M .

KRUSKAL'S ALGORITHM FOR MINIMAL 

UNDIRECTED SPANNING TREES

1. Sort the edges in increasing order of cost, i.e., rename edges such 

     that

c E 1 c E 2 ... c E M
2. Execute the spanning tree algorithm to find a spanning tree T . 

3. Add c E i  for those edges E i T  to find the minimal cost.
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Proof  that  Kruskal's  algorithm  yields  a  minimal  undirected  spanning  tree.

Denote by T  the spanning tree found by Kruskal's algorithm. Since there are

only  finitely  many  spanning  trees,  there  must  exist  at  least  one  of  minimal

cost. Let T  be a minimal cost spanning tree with the following property: the

intersection of the edge set of T  with that of T  has at least as many elements

as  the  intersection  of  the  edge  set  of  T  with  any  other  minimal cost  span-

ning tree. That is, T  is a "best-fitting" minimal cost spanning tree for T . We

prove  the  optimality  of  T*  by  obtaining  a  contradiction  of  the  assumption

that T   T .  If the latter is true, then there is an edge e in T   T  such that

c e c e  for  all  edges  e  in  T T .  But  we  will  find  an  edge

e T T  whose cost is strictly less than the cost of e. This contradiction

suffices to prove the result.

By Theorem 1 of Section 1.2,  if  edge e  is included into T ,  a cycle must

form. Within this cycle, there must be an edge f e that did not belong to

T ,  else  T  would  have  had  a  cycle.  If  we  form  a  new  graph

T T f e ,  then  T  is  still  a  spanning  tree  and  the  total  tree  costs

C T  and C T  satisfy

C T C T c e c f 0

by the  optimality of  T .  But  if  equality  held  in  the above,  then T  would  be

optimal and would  share  one more edge with T  than T  does,  contradicting

our  choice  of  T .  Thus,  c e c f .  Again  by  Theorem  1,  if  edge  f  is

included into T , a cycle forms. Then, just as above, there is an edge e f
in  this  cycle  such  that  e T T .  We  must  have  c e c f ,  else

Kruskal's  algorithm  would  have  added  f  to  T  before  considering  e .  But

this means that

c e c f c e

which is the contradiction of the choice of e for which we sought.  

Activity 1 – Devise some examples of real problems in which the goal is

to find a minimal spanning tree.

We  can  again  solve  problems  step-by-step  using  the  SpanningTreeOne-

Step function.  Remember that if we leave the option Weighted at its default

value of True, then the command accepts edge lists and tree lists, which are

lists  of  triples,  the  third  element  of  which  is  the  weight  of  the  edge  deter-

mined by the first two elements.  In the initialization phase, we would define

the edge list, sort the edges, set the tree list to be empty, and set the compo-

nent  list  to  1, 2, ... , n .   Then  as  before,  successively  set  {treelist,  compo-

nentlist}  to  be  the  output  of  SpanningTreeOneStep,  incrementing  the  index

of the edge to be tested, until there are n 1 edges.  
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You  can  either  enter  the  edges  manually  in  increasing  order  of  cost,  or

use the following utility in the KnoxOR`Graphs` package.

Needs "KnoxOR`Graphs`"

SortEdges edgelist

SortEdges  takes  the  list  of  triples  and  returns  a  list  of  the  same  structure,

with entries sorted in increasing order of the third component.  

EXAMPLE  1.  Let  us  apply  Kruskal's  algorithm  to  the  communications

network of Figure 1.1, redisplayed below for your convenience.  
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Figure 1.1 (reprise)

We start with the edges labeled in lexicographical order as in the last section,

then apply SortEdges, and continue.  
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unsortededgelist

1, 2, 1 , 1, 3, 3 , 1, 4, 2 , 1, 5, 8 ,

1, 6, 3 , 2, 3, 6 , 2, 4, 2 , 2, 5, 7 ,

2, 6, 1 , 3, 4, 4 , 4, 5, 5 , 5, 6, 2 ;

edgelist SortEdges unsortededgelist

treelist ;

componentlist 1, 2, 3, 4, 5, 6 ;

vposits 0, 0 , 0, 1 ,

2, 0 , 1, .5 , 1, .5 , 2, 0 ;

vlabelposits Below, Above, ToRight,

Below, Below, ToLeft ;

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 2, 4, 2 ,
5, 6, 2 , 1, 3, 3 , 1, 6, 3 , 3, 4, 4 ,

4, 5, 5 , 2, 3, 6 , 2, 5, 7 , 1, 5, 8

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 1,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 1, 1, 3, 4, 5, 6

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 2,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 1, 3, 4, 5, 1
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treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 3,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 1, 1, 3, 1, 5, 1

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 4,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 1, 1, 3, 1, 5, 1

treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 5,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

ShowTree False

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 5, 6, 2 ,
1, 1, 3, 1, 1, 1
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treelist, componentlist

SpanningTreeOneStep treelist, edgelist, 6,

componentlist, VertexPositions vposits,

VertexLabelPositions vlabelposits,

EdgeLabelPositions elabelpos,

AspectRatio .7

1

2

3

45

6

1

3

2

11

3

22

1

2

1, 2, 1 , 2, 6, 1 , 1, 4, 2 , 5, 6, 2 , 1, 3, 3 ,

1, 1, 1, 1, 1, 1

Figure 1.23 – A minimal undirected spanning tree

In order, we add edges 1, 2 , 2, 6 , and 1, 4 , then skip edge 2, 4 , which

would form a cycle.  Edges 5, 6  and 1, 3  complete the tree.  The total cost

of this minimal spanning tree is 1 1 2 2 3 9.  

There  is  a  command  in  the  KnoxOR`Graphs`  package  called  Kruskal.

The details follow

Kruskal edgelist,n,opts
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Options Kruskal

ShowTree True, Weighted True,
GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,

DisplayFunction Display $Display, #1 & ,
AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

Kruskal  performs the full algorithm described above for minimal undirected

spanning  trees,  given  the  weighted  edge  list  and  the  number  of  vertices.   It

accepts  the  ShowTree  and  Weighted  options  as  in  SpanningTreeOneStep,

and the options of DisplayGraph.  Apart from the complications involved in

implementing the options, Kruskal is a straightforward program that does the

initializations with which we are familiar, sorts the edge list, and repeatedly

examines  edges,  adding  them to  the  tree  and  adjusting  component  numbers

when the edge does not form a cycle. We illustrate its use in the next exam-

ple. 

Activity  2  –  Open  the  closed  cell  below  this  in  the  electronic  text  to

study the code for the Kruskal command.  

EXAMPLE  2.  A  manufacturing  plant  is  installing  a  computer  network  in

the  facility so  that  employees can enter  quality control  data directly at  their

stations.   The  costs  of  connecting  various  neighboring  stations  are  given  in

the graph below.  
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Figure 1.24 – Finding an optimal computer network

We must produce the initial list of weighted edges, in any order, to use as the

first  argument  in  Kruskal.   We  use  lexicograhic  ordering  to  define  edges24

below.  The second argument in Kruskal is the number of vertices, which is

18. (In the closed cell that generated the graph in Figure 1.24, the VertexPosi-

tions  option  has  been  set  to  a  list  called  vertpos,  the  VertexLabelPositions

option  is  vertlabelpos,  the  EdgeLabels  are  in  a  matrix  called  graph24,  and

the  EdgeLabelPositions  option  has  been  set  to  elabelpos.   These  graph

options will be passed to Kruskal below.) 
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edges24 1, 2, 5 , 1, 3, 4 ,

1, 4, 5 , 2, 3, 2 , 2, 6, 3 , 3, 4, 3 ,

3, 5, 3 , 3, 6, 2 , 4, 5, 2 , 5, 6, 4 ,

5, 9, 4 , 6, 7, 6 , 6, 8, 5 , 6, 9, 5 ,

7, 8, 5 , 7, 11, 8 , 8, 9, 3 , 8, 11, 3 ,

8, 12, 3 , 9, 10, 4 , 10, 12, 5 ,

10, 13, 6 , 10, 14, 7 , 10, 15, 8 ,

11, 12, 4 , 12, 13, 6 , 13, 14, 7 ,

14, 15, 4 , 15, 16, 3 , 15, 17, 1 ,

16, 17, 2 , 16, 18, 2 , 17, 18, 4 ;

Kruskal edges24, 18, VertexPositions vertpos,

VertexLabelPositions vertlabelpos,

EdgeLabels graph24, EdgeLabelPositions

elabelpos, AspectRatio .7 ;

Edges in minimal spanning tree:

15, 17 , 2, 3 , 3, 6 , 4, 5 , 16, 17 , 16, 18 ,

3, 4 , 8, 9 , 8, 11 , 8, 12 , 1, 3 , 5, 9 ,

9, 10 , 14, 15 , 7, 8 , 10, 13 , 10, 14

Total weight of spanning tree: 57
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Figure 1.25 – Minimal spanning tree for computer network

The Kruskal function finds the minimal spanning tree shown in Figure 1.25.

If you inspect the list of edges, you see that Kruskal first picks the only edge

of  cost  1,  namely  15, 17 ,  then  puts  in  all  of  the  cost  2  edges,

2, 3 , 3, 6 , 4, 5 , 16, 17 , and 16, 18 ,  then  moves  on  to  whichever  cost

3  edges  it  can  include  without  creating  a  cycle,  then  passes  to  the  cost  4
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edges, etc.  Exercise 3 asks you to compare the cost of this minimal tree, 57,

to those of two other spanning trees.  In situations where the cost is actually

in units of thousands of dollars or greater, the savings achieved by designing

a network using a minimal spanning tree can be substantial.  

Directed Graphs

A second type of minimal cost network problem involves weighted directed

graphs.  Suppose that vertex 1 in Figure 1.26 represents a production center,

and  the  directed  edges  are  possible  routes  to  locations  2,  3,  etc.  that  are  to

receive items from the production center, and then act as distributors to other

locations to which they are connected.  The weights, as usual, are transporta-

tion  costs.  All  vertices  except  the  root  vertex  1  must  be  serviced,  but  it  is

superfluous for a location to be serviced by more than one previous distribu-

tion  location.  Hence  the  problem  is  to  find  a  directed  tree  rooted  at  1  that

supplies every station and minimizes the transportation cost to every station.
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Figure 1.26 – A directed distribution system

DEFINITION 2.  Let  G  be a quasi-connected,  weighted,  directed graph

of  n  vertices  rooted  at  v1.  A  minimal directed spanning tree T  is  a

directed  tree  of  n  vertices  rooted  at  v1  such  that  for  all  vertices  vk,

k 2, ..., n, the weight of the path in T  from v1 to vk  is smaller than or

equal to the weight of any other path in G from v1 to vk.

Observe  that  if  T  is  a  directed  spanning  tree  rooted  at  v1,  then  for  any

vertex v in G there is a unique path in T , denoted by P v , from v1  to v. We

can clearly characterize such a tree by its paths to each vertex. If we denote

the cost of a path from v1 to v by C P v , then we can restate the problem in
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the following form. Find a directed spanning tree T  rooted at v1  with paths

P v , such that for each v v2, ..., vn ,

(1)C P v  = inf C P v : P v is a path in G from v1 to v

An  algorithm  will  be  given  in  which  we  begin  with  an  arbitrary  directed

spanning  tree,  and  then  improve  it  step-by-step  until  optimality  is  reached.

To  see  the  idea  behind  this  successive  improvement  strategy,  we  need  the

following  theorem.  It  gives  an  example  of  an  equation  called  a

dynamic programming  equation.  The  algorithm  based  on  the  theorem

illustrates policy improvement for dynamic programming problems. The idea

behind  the  DP  equation  is  that  the  optimal  cost  to  a  position  should  be  the

smallest possible sum of the optimal cost to a predecessor position, plus the

one-step cost from the predecessor to the current position.  We will see much

more of this idea in Chapter 6. 

THEOREM  1.  A  directed  spanning  tree  T  rooted  at  v1  is  minimal  if  and

only  if  for  all  vertices  v v1  the  paths  P v  in  the  tree  from the  root  to  v
satisfy

(2)C P v inf
u,v E

C P u c u, v

where c u, v  denotes the cost of edge u, v .  (As usual, E  is the edge set of

the graph G.)

Proof.   Let  T  be  a  minimal  tree,  and  suppose  that  there  is  an  edge  u, v
such that

(3)C P v C P u c u, v

But  then  the  path  P u ,v  from  the  root  v1  to  v  has  smaller  total  cost  than

P v , contradicting the optimality of T . Thus,

(4)C P v C P u c u, v

for all edges u, v . Equality occurs for those edges u, v  in T . This proves

equation (2).

Conversely,  suppose  equation  (2)  holds  for  a  directed  spanning  tree  T ,

but suppose by contradiction that T  is not optimal. Then there is a path, say,

P v : v1 w1, w2, ..., wm v
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such  that  C P v C P v .  There  is  a  smallest  integer  k  such  that

C P wk C P wk ,  since  the  set  of  all  such  k  is  a  non-empty  bounded

set of positive integers. Then,

C P wk C P wk

C P wk 1 c wk 1, wk

C P wk 1 c wk 1, wk

which contradicts equation (2). Therefore, the tree T  is optimal.  

Equation  (2)  suggests  an  algorithm  to  find  minimal  cost  directed  span-

ning trees. Begin with an arbitrary directed spanning tree, say T , rooted at v1.

Breadth-first  search  will  locate  such  a  tree  if  one  exists.   If  for  all  edges
u, v G

(5)C P v C P u c u, v

then by Theorem 1 the tree T  is already optimal. Otherwise, there is at least

one edge such that the slack  of  the edge is  positive,  where  the slack S u, v
of  the  edge  is  the  difference  between  the  path  cost  to  v  and  the  sum of  the

path cost to u and the cost of edge u, v , i.e.,

(6)S u, v C P v C P u c u, v 0

Since  the  edge  set  is  finite,  there  is  an  edge  u, v  of  maximum slack.  This

edge is not already in the edge set of the tree T  because the slack of all edges

in  T  is  clearly  0  (since  the  path  to  v  is  just  the  path  to  u  with  edge  u, v
adjoined).   So, adjoin the edge u, v  to T ,  while deleting the edge u0, v  in

T  that had pointed to v (see Figure 1.27). We prove shortly that this results in

a  strict  improvement  of  cost.  This  is  important  because  it  implies  that  the

policy  improvement  cannot  cycle,  hence  the  finiteness  of  the  graph  forces

convergence  to  an  optimal  tree  T .  Repeat  the  process  of  edge  substitution

until equation (5) is true (equivalently S u, v 0) for all edges u, v .
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Figure 1.27 – Edge substitution in the minimal directed spanning tree algorithm

Activity  3  –  When  edge  substitution  occurs  as  shown  in  Figure  1.27,

which  vertices  can  and  which  cannot  have  their  path  costs  changed?

Bear  in  mind that  there  may be  more  to  the  graph  than  the  small  piece

shown.

The input to the following algorithm is (1) the vertex set {v1, . . . , vn} of

G, where v1  is the root; (2) the edge sets of G and the initial tree T , denoted

by EG and ET, respectively; and (3) the costs c u, v  of  all edges in G.  The

quantities P v  and C P v  are as described above.

MINIMAL DIRECTED SPANNING TREE ALGORITHM

1.  Repeat  steps  a–d  until  the  maximum  slack  in  the  current  tree  is

less than or equal to 0. 

a. For all vertices v v1, find the path P v  in T  and calculate 

    C P v . 

b. Find an edge u, v EG ET of maximum slack M . 

c. If M 0, then do step d.

d. Find the edge u0, v ET, and let  

     ET ET u0, v u, v .

Proof  that algorithm yields a minimal directed spanning tree. Recall that we

begin with a quasi-connected graph,  so that an initial directed spanning tree

can be found. We show that the loop a–d can only be executed finitely many

times.

When edge u0, v  is replaced by edge u, v  in step d, the only path costs

that  change  are  the  ones  whose  terminal  vertices  are  descendants  of  v
(including  v  itself).  Let  w  be  one  such  vertex.  Denote  by  Pnew w  the  new

path to w,  as usual let P w  denote the old path to w,  and denote by P v, w
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the path from v to w, which does not change during the substitution of u, v
for u0, v . Then,

 

C Pnew w C P u c u, v C P v, w
C P v C P v, w
C P w

by the fact that edge u, v  has positive slack. Thus, descendants of v receive

strictly smaller costs as a result of the change in edges, and all other vertices

maintain the  same path  cost.  But  there  are  only  finitely  many possible  path

costs  to  each  vertex.  This  implies  that  loop  a–d  of  the  algorithm  is  only

executed finitely many times. Since the only means of exiting the loop is by

achieving the condition M 0, we have at the end of execution S u, v 0

for all edges u, v . By Theorem 1, this implies that the final tree is minimal.

Since  the  computations  involved  in  carrying  out  the  minimal  directed

spanning  tree  algorithm  are  simple,  but  very  tedious,  I  have  included  a

function  in  KnoxOR`Graphs`  that  performs  one  step  of  the  process  and

graphs the new tree.  

DirectedSpanningTreeOneStep

theGraph,theTree,root,newedge,opts

Options DirectedSpanningTreeOneStep

ShowTree True, GraphType Undirected,
VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The  arguments  of  DirectedSpanningTreeOneStep  are  the  adjacency  matrix

of the full directed graph, the adjacency matrix of the current spanning tree,

the  number  of  the  vertex  that  is  the  root,  and  the  edge  u, v  that  is  to  be

inserted  to  form  the  next  tree.   It  returns  the  next  tree  in  adjacency  matrix

form, and if the option ShowTree is left at its default value of True, the tree

will  be  also  be  displayed  with  unused  edges  shown  dashed,  and  new  slack
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values  computed  and  shown  next  to  the  unused  edges.   The  command

accepts the options of DisplayGraph to control the design.  To go from step

to step in the policy improvement algorithm, we need to inspect the graph of

the previous tree to find an edge with the highest positive slack, if any, and

let that edge be the fourth argument in the next call to DirectedSpanningTree-

OneStep.  

Since it is also tedious to set up the first graph and compute and display

the  slack  values  upon  which  the  first  edge  substitution  decision  is  made,

there is a similar command, DirectedSpanningTreeFirstStep shown below, to

display the first directed spanning tree.  It takes the adjacency matrices of the

complete graph and initial directed  spanning  tree as  its  first  two arguments,

the  root  of  the  tree  as  the  third  argument,  and  it  has  the  same  options  as

DirectedSpanningTreeOneStep.   You  will  get  a  display  of  the  initial  tree,

with  edges  that  have  been  omitted  from  the  full  graph  shown  dashed  and

annotated by their slack values. For both of these functions, each vertex will

be also be annotated with the total path cost to that vertex from the root. 

DirectedSpanningTreeFirstStep

theGraph,initTree,root,opts

We illustrate with the next example.

EXAMPLE  3.  Let  us  use  the  policy  improvement  algorithm  to  find  an

optimal  distribution  network  for  the  graph  of  Figure  1.26.  Begin  with  the

tree  in  Figure  1.28,  generated  by  the  breadth-first  search  spanning  tree

algorithm.  The dashed edges  are  those not  in  ET and the solid  edges  are  in

ET.   For  example,  the  slack  of  the  omitted  edge  2, 3  is  1,  because  the

current  path to 3 has length 4,  and the cost of the current path to 2 plus the

edge cost of edge 2, 3  is 2 1 3, hence the difference is positive 1.  You

should check all of the other slack values yourself.  The adjacency matrix of

the full graph was given the name adjmatrix24 in the closed cell that gener-

ated  Figure  1.26,  and  the  VertexPositions,  VertexLabelPositions,  and

EdgeLabelPositions  options  were  given  the  values  vertpos,  vlabelpos,  and

elabelpos,  which  you  see  in  the  options  to  our  DirectedSpanningTree

functions.

1.3 Minimal Cost Networks 61



initialTree 0, 2, 4, 3, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 2, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 5, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 4, 3, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 2, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 6 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

DirectedSpanningTreeFirstStep adjmatrix24,

initialTree, 1, VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;
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Figure 1.28 – Initial spanning tree for graph of Figure 1.26

In the first step, we include edge 8, 10  and discard edge 7, 10  because

among  the  unused  edges,  8, 10  has  the  largest  positive  slack  of  4.   In

preparation  for  the  next  step,  we  let  currTree  receive  the  value  returned  by

DirectedSpanningTreeOneStep, that is, the new tree adjacency matrix.  

62 Chapter 1 Graph Theory and Network Analysis



currTree DirectedSpanningTreeOneStep

adjmatrix24, initialTree, 1,

8, 10 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;
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3 5

Figure 1.29 – Second spanning tree for graph of Figure 1.26

Next,  since the largest positive slack on an unused edge is 3 on edge 8, 9 ,

we discard edge 6, 9  in favor of 8, 9 . The new tree is in Figure 1.30. 
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currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 8, 9 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;

1 0
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Figure 1.30 – Third spanning tree for graph of Figure 1.26

Two more steps of the same sort suffice: first add edge 4, 6  then add 2, 3 .

The  final  tree  is  in  Figure  1.32.   Observe  that  all  slacks  are  now  negative,

which  by  Theorem 1  implies  that  the  tree  is  optimal.   Shortest  paths  in  the

original  network  are  found  by  following  the  tree  edges,  and  the  figure  also

reports the lengths of those paths.  
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currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 4, 6 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;
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Figure 1.31 – Fourth spanning tree for graph of Figure 1.26
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currTree

DirectedSpanningTreeOneStep adjmatrix24,

currTree, 1, 2, 3 , VertexPositions vertpos,

VertexLabelPositions vlabelpos,

EdgeLabelPositions elabelpos,

AspectRatio .8 ;
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Figure 1.32 – Final spanning tree for graph of Figure 1.26

The whole process may be automated, of course, but by doing so you do

not  get  the  educational  benefit  of  choosing  the  edge  substitutions  yourself.
Nevertheless  I  have  also  placed  in  the  KnoxOR`Graphs`  package  the  com-

mand  DirectedSpanningTree,  whose  full  documentation  appears  after  the

query  below.   It  takes  the  same  arguments  as  DirectedSpanningTreeFirst-

Step.   I  encourage you not  to use it  to do problems, but  to read the code in

the package to see how it was put together.  You may also use it as a check

on your work, or to experiment easily with what happens when the algorithm

starts with different initial spanning trees. 
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?DirectedSpanningTree

DirectedSpanningTree theGraph,initialTree,

theRoot,opts takes a given initial spanning

tree of a given directed, quasi connected graph,

both in adjacency matrix form, and the vertex

number of the root of the tree. It performs the

full minimal directed spanning tree algorithm,

displaying all intermediate graphs unless the

option ShowTree is set to False, and returns the

minimal spanning tree in adjacency matrix form. The

display options of DisplayGraph may be passed in.

Activity  4  –  What  is  the  implication of  having  an  edge  with  slack 0  in

the final minimal directed spanning tree?  

Exercises 1.3

1.  Use Kruskal's  algorithm to find a minimal cost  spanning tree for  a graph

whose vertices are labeled {1, 2,..., 8} and whose edges have the costs below:

    

edge cost edge cost

1, 2 2 3, 7 4

1, 3 2 4, 5 5

1, 4 1 4, 6 3

2, 3 2 5, 6 6

3, 4 3 6, 7 1

3, 6 2 7, 8 2

               

– 2 – 4 – – – – –
2 – 6 3 5 8 – – –
– 6 – – – 1 – – –
4 3 – – 4 – 3 – –
– 5 – 4 – 3 2 1 4
– 8 1 – 3 – – – 6
– – – 3 2 – – 2 –
– – – – 1 – 2 – 5
– – – – 4 6 – 5 –

 Exercise 1                                                    Exercise 2               

2. Cables are to connect several components of a sound system. The vertices

in  the  graph  below  represent  the  components,  and  the  edges  are  possible

connections. The matrix above gives the lengths of cable required to connect

each  pair  of  components.  Find  the  system  of  connections  that  requires  the

least total amount of cable.
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Exercise 3

3.  In  Example  2  compute  the  cost  of  the  spanning  trees  formed  by  (a)

breadth-first  search; (b) ordering edges lexicographically.  By how much do

these costs differ from the total cost of the minimal spanning tree?

4.  (Mathematica)  Suppose  that  the distances between fifteen cities are as  in

the  table  below,  An  airline  wishes  to  institute  service  among  these  cities.

Assuming that flight cost is directly proportional to distance, find an optimal

routing system that provides service to all cities.

 

City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 24 20 22 15 60 20 24 31 34 36 27 28 29 34
2 32 45 12 21 14 50 41 34 40 18 20 25 37
3 14 20 35 80 46 35 28 49 38 57 35 41
4 18 20 26 40 35 72 26 47 22 36 46
5 31 19 30 46 38 35 27 21 50 43
6 20 40 34 58 25 32 18 33 60
7 35 31 27 36 22 47 61 35
8 25 17 32 43 71 54 43
9 25 30 32 40 45 21
10 15 26 29 33 36
11 27 29 31 40
12 24 16 19
13 31 26
14 23

5.  Show that  if  a  weighted,  undirected graph  G  is  connected and no  two of

its edges have the same cost, then there is a unique minimal spanning tree.

6.  Explain  why  every  vertex  has  component  number  1  at  the  end  of  execu-

tion of Kruskal's algorithm.
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7.  Prove  or  disprove.  Let  T  be  a  minimal  spanning  tree  of  an  undirected

graph G and fix a vertex v0. Then for each vertex u v0, the cost of the path

in T  from v0 to u is minimal among all paths in G from v0 to u.

8.  (Mathematica)  An  amusement  park  wishes  to  run  a  tram  line  among

several of its rides. The rides are nodes in the graph below, and the weights

of  the  edges  are  distances  between  the  nodes.  Design  a  connecting  system

such that the least possible length of track will be used. 
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Exercise 8

9.  (Mathematica)  An alternative algorithm for  finding a minimal undirected

spanning tree of a graph of n vertices is called Prim' s algorithm. Begin with

a single vertex. At any stage, check edges not in the spanning tree that have

one vertex in the current incomplete tree (and one not in it). Add the edge of

smallest cost of  this kind, and add the new vertex of that edge to the vertex

set.  Continue  until  the  candidate  has  n 1  edges.  Write  a  command  in

Mathematica  to implement Prim's algorithm, and use your command to find

a minimal spanning tree in the graph of Figure 1.1.

10. Prove that Prim's algorithm of Exercise 9 yields a minimal spanning tree

if  the  graph  is  connected.   (Hint:  Prove  by  induction  that  at  each  step  the

subgraph created by Prim's algorithm is connected and has no cycles, hence

it  is  a  tree,  and  moreover  the Prim tree is  contained in some minimal span-

ning tree.)

11.  (Mathematica) Information is to flow from a source v0  to each of seven

other locations labeled v1,..., v7 in the diagram below. Find a least costly way
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of doing this if the edge weights represent the costs of direct communication

between nodes.

v0

v1

v2

v3

v4

v5

v6

v7

1

4

2

1

5

2

3

3

1

2

3

2

1

Exercise 11

12.  (Mathematica)  The  matrix  below  gives  the  weights  of  directed  edges

connecting certain pairs of vertices in a directed graph. List shortest possible

paths from vertex 1 to each other vertex in the network.

– 4 3 4 2 – – – – –
– – – – – 3 – – – –
– – – – – 6 2 2 – –
– – – – – – – 1 – –
– – – – – – – 5 2 –
– – – – – – – – – 4
– – – – – – – – – 2
– – – – – – – – – 3
– – – – – – – – – 4
– – – – – – – – – –

13.  The vertices  in  the  graph  below are  grain  elevators,  some of  which  can

be connected by chutes to neighboring elevators,  for the purpose of shifting

grain from one location to another. The edges are directed because the chutes

are inclined, to allow passage of grain by gravity in only one direction. Find

a chute system that allows each elevator to be reached from the main eleva-

tor  at  vertex  1  with  the  shortest  possible  path.  Is  the  solution  unique?   Do

this problem by hand, rather than with Mathematica.

70 Chapter 1 Graph Theory and Network Analysis



1

2

3

4

5

6

4

4

6

7

2

3

2

5

4

Exercise 13

14.  (Mathematica)  An  alternative  algorithm  for  finding  the  shortest  path

from  the  root  v0  to  each  vertex  v  in  a  directed  graph,  called  Dijkstra' s
algorithm,  is  as  follows.  Initialize  the  cost  C v  of  a  path  to  vertex  v  to  be

c v0, v  if  there is such an edge, and +  otherwise.  Initialize a "special" set

of vertices S to be {v0}, and initialize the predecessor of v to be P v v0 for

all  v v0.  Then  do  the  following  loop  n 1  times,  i.e.,  until  S  contains  all

vertices:

1. Select a vertex w S such that C w  is minimized. 

2. Put w into S.

3. Revise the costs C v  for v S (to reflect any cost reduction) by

C v min C v , C w c w, v
    if there is an edge w, v .

4.  For  each  v S,  if  the  minimum in  step  3  is  C w c w, v  (i.e.,

cost was reduced), then label the predecessor of v as P v w.

Then,  to  find  the  minimal  path  to  each  v,  trace  the  path  from  v0  to  v  by

backtracking through predecessors: P v , P P v , ..., v0.  Write a Mathemat-
ica  command to implement Dijkstra's algorithm.  (Hint:  To break down this

rather  difficult  program  into  manageable  pieces,  consider  writing  some

supporting  functions  to  do  smaller  tasks  that  the  main  Dijkstra  program

needs,  such  as  revising  the  costs  and  predecessors  in  steps  3  and  4,  and

producing the path to each vertex given the predecessor list, etc.)

15.  Prove that if a quasi-connected, directed graph with root v0  and positive

costs is input to Dijkstra's algorithm (see Exercise 14), then for each v v0,

a  shortest  path  from  v0  to  v  is  returned.   (Hint:  Show  inductively  on  the

number of vertices added to S that the path found by Dijkstra to each vertex

in S is the shortest possible.
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16.  Use  Dijkstra's  algorithm  (see  Exercise  14)  to  list  shortest  paths  to  all

vertices  v1,...,v7  in  the  graph  of  Exercise  11.   Do  this  by  hand,  rather  than

with Mathematica. 

17. (Mathematica) A reservoir at vertex 1 in the diagram below is to supply

water to several pumping stations. The edge weights are costs of laying pipe

from one station to another. How should the pipe be laid so that all stations

are served, but cost is minimized? Use (a) the policy improvement algorithm

and (b) Dijkstra's algorithm (see Exercise 14). 
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Exercise 17

1.4 Critical Path Algorithm

We now turn to the maximum weight path problem that was discussed in the

introduction in the context of the completion time of a multiple stage project.

Recall  that  in  graphs  such  as  Figure  1.2,  displayed  again  below  for  your

convenience,  we  think  of  edges  as  tasks.  Vertices  are  present  primarily  to

link  edges,  showing  when  one  task  must  be  preceded  by  another.  Edge

weights are task completion times. The problem is to find sequences of tasks

that are the most time-consuming. 
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Figure 1.2 – Project completion

To  avoid  certain  problems  involving  nonexistence  of  a  solution,  and  to

specialize to directed graphs of the form of Figure 1.2, we define the follow-

ing special type of directed graph.

DEFINITION  1.   A  directed network  with  root  (or  source)  r  and

terminus (or sink) t is a quasi-connected, directed graph with no directed

cycles such that r  is  an ancestor of each vertex and t  is a descendant of

each vertex.

To say that a directed network has no directed  cycles is not the same as

to say that it is a directed tree in the earlier sense. As Figure 1.2 shows, the

underlying graph is permitted to have undirected  cycles. But if, as in Figure

1.33,  we permit directed cycles, then paths of arbitrarily large cost could be

created and logically difficulties would result.  Note that task 2, 3  precedes

task  3, 4 ,  which  precedes  task  4, 2 .  By  using  the  cycle  2, 3, 4, 2  arbi-

trarily  often,  paths  of  arbitrarily  large  cost  from  vertex  1  to  vertex  5  can

result, but even more troubling is that one can never do task 2, 3  because it

requires  4, 2  and  hence  3, 4  to  be  done,  but  3, 4  cannot  be  done  until

2, 3  is done. Physically, we do not wish the completion of several tasks to

depend  on  one  another  in  a  cyclic  way,  else  the  project  could  not  be  com-

pleted at all.
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Figure 1.33 – Cyclic task dependence

In  the  rest  of  this  section,  G  is  a  directed  network  with  root  r v1,

terminus  t vn,  and  other  vertices  v2, ..., vn 1.  The  cost  of  an  edge  is

denoted by c u, v . The path P v  from the root r to vertex v and the total cost

C P v  of  the  path  are  as  defined  in  the  last  section.   E G  and  E T  will

denote the edge sets of the full graph and a spanning tree, respectively.

DEFINITION 2.  A critical path of G is a path P t  from the root r to

the  terminus  t  that  has  the  longest  possible  total  path  cost  among  all

paths from r to t.

Note that in the case where an edge cost represents time to completion of

a task, such a path P t  gives a sequence of tasks of maximal total comple-

tion  time.  Therefore,  if  any  of  the  tasks  in  P t  are  delayed,  the  entire

project will be delayed.  It is possible to have more than one critical path in a

directed network, as discussed below. 

To  find  critical  paths,  we  will  use  an  algorithm  similar  to  the  minimal

directed  tree  algorithm  of  Section  1.3.  The  quasi-connectivity  of  the  graph

implies as before that a directed spanning tree exists. The algorithm will find

a maximal directed tree just  as the earlier algorithm found a minimal tree. It

is  fairly  clear  what  we mean by  "maximal directed  tree";  in  Definition  2  of

Section 1.3, simply replace the words "smaller than" by "greater than." Then

the unique path from r to t  in the maximal directed tree is a critical path. If,

however, there is another maximal tree, then there may be a different critical

path, and hence we are obliged to investigate the problem of non-uniqueness.

First,  we  have  a  counterpart  to  the  dynamic  programming  equation  of

Section 1.3.

THEOREM 1.  A directed spanning tree T  with paths P v  is maximal if

and only if for all vertices v r,
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(1)
C P v sup

u,v EG
C P u c u, v   

Activity  1  –  Try  to  construct  a  proof  of  this  theorem similar  to  that  of

Theorem  1  of  the  last  section  for  minimal directed  spanning  trees.  The

idea, once again, is that for the tree to be maximal, the cost of the path to

v  must be the largest possible sum of the maximal cost to a predecessor

vertex u, plus the cost from u to v.

The  policy  improvement  algorithm  is  also  similar  to  the  one  for  the

minimal tree problem. The only change is that an edge of minimal (negative)

slack  is  sought  for  the  purpose  of  substitution.  After  the  maximal  tree  is

found,  we  need  only  trace  the  path  from  the  root  to  the  terminus.  The

algorithm  assumes  that  an  initial  directed  spanning  tree  T  has  been  found.

The notation is as usual, and recall that the slack of edge u, v  is defined as

before,  namely, the difference between the cost  of  the current  path to v  and

the sum of the current path cost to u and the cost of edge u, v :

(2)S u, v C P v C P u c u, v

CRITICAL PATH ALGORITHM

1.  Repeat  steps  a–d  until  the  minimum  slack  in  the  current  tree  is

greater than or equal to 0. 

a. For all vertices v r, find the path P v  in T  and calculate 

   C P v . 

b. Find an edge u, v EG ET of minimum slack M . 

c. If M 0, then do step d. 

d. Substitute u, v  for the edge u0, v  currently pointing to v in 

    T . 

2. Find and return the path from r to t.

Activity  2  –  Explain  why the  critical  path  algorithm looks  for  edges  of

minimal negative slack to use in edge substitution.

For  the  problem  of  finding  the  time  of  completion  of  a  project  repre-

sented by a directed network, it is useful to know the final slack values:

S u, v C P v C P u c u, v

for the edges not in the maximal tree. This is because S u, v  is the difference

between  the  critical  time to  v  and  the  critical  time to  u  plus  the  completion
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time of  task u, v .  Task u, v  may then be delayed by this  amount without

delaying the project.

In  the  minimization  problem,  uniqueness  of  the  optimal  directed  span-

ning tree is not very important. To find one best network is enough. But here

we are really interested in finding all delay-causing paths, so that the issue of

uniqueness deserves closer study. The key to an understanding of non-unique-

ness  lies  in  the  unused  slack  zero  edges  in  the  final  tree,  as  the  following

theorem shows.

THEOREM 2.  (a) If P t  is a critical path, then there is a maximal directed

tree containing it.

(b)  Suppose  T  is  a maximal directed tree.  Let  E0  be the set of  edges u, v
not in T  such that S u, v 0.  Then, given any maximal directed tree T ,

there exists a subset E1 of E0 such that

T T E1 u0, v T : u, v E1

In  other  words,  all  maximal  trees,  and  therefore  all  critical  paths,  may  be

found  by  beginning  with  one  maximal  tree  and  performing  all  possible

combined substitutions of slack zero edges for edges in the current maximal

tree.

Proof. (a) Let P t  be a maximal path from r to t  that traverses the vertices

u0 r, u1, ..., um t.  We claim first  that the subpath P ui  is  maximal for

each i 1, ..., m.  Assuming the contrary,  there is i 1, m 1  such that

P ui  is  not  maximal.  Therefore,  there  is  a  path  P ui  such  that

C P ui C P u j .  Then the  path P t  formed by following P  from r
to ui, then following P  from ui  to t, has higher cost than P t , a contradic-

tion  of  the  choice  of  P .  Hence,  P  must  be  maximal to  each  vertex  on  its

path.

It is easy to see from the breadth-first search algorithm (see the Directed

Spanning  Tree  Algorithm  in  Section  1.2)  that  if  we  first  initialize  KT  and
NEW1 to the set  of  vertices in  the path P t  and initialize ET to the set of

edges in P t , then a spanning tree containing P t  will result. That is, there

is  a  spanning  tree  T  containing  this  path.  We  claim  furthermore  that  the

Critical  Path Algorithm applied to the initial tree T  must preserve all  of  the

edges in the path P t , resulting in a maximal spanning tree containing P t ,

as desired. To show this, we need only show that at any stage of execution of

loop  a–d  such  that  P t  is  still  within  the  current  tree,  P t  will  remain

within the tree after  the choice of  a  new edge.  Suppose  the current  tree has

paths P v ,  and consider an edge w, ui  pointing to a vertex ui  in the path

P t . We have
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S w, ui C P ui C P w c w, ui

C P ui C P w c w, ui

0

since P ui  is  a  maximal path to ui.  Since only edges  of  negative  slack are

selected for substitution, w, ui  will not be substituted for ui 1, ui  in step d

of  the  algorithm.  This  proves  that  P t  will  be  contained  in  the  final  tree

returned by the Critical Path Algorithm,  which finishes the proof of part (a).

(b) Let a maximal directed spanning tree T  with paths P v  be given.

To prove part (b),  it suffices to show that for an arbitrary edge u, v  not in

T ,

1. If S u, v 0, then u, v  cannot be contained in any maximal tree; and

2. If S u, v 0, then the spanning tree created by substituting u, v  for

the edge u0, v  currently in T  is maximal.

Thus,  the  only  possible  maximal  directed  spanning  trees  are  formed  by

substitutions of zero slack edges for corresponding edges in T .

To prove assertion 1, suppose on the contrary that there is a maximal tree

T  with paths P w , to which u, v  belongs. Since both T  and T  have

maximal paths to u and to v, and since S u, v 0, we can write:

 

C P v C P u c u, v
C P u c u, v
C P v

which contradicts optimality of T ; thus assertion 1 is established.

The proof of assertion 2 is left to the reader as Exercise 5.  

In summary, part (a) of the theorem says that our search for all maximal

paths may be confined to a search for all maximal trees. Part (b) implies that

we may find all maximal trees simply by starting with one, say T , generated

by the Critical Path Algorithm, and exhausting all substitutions of slack zero

edges not in T  for edges that point to the same vertex in T . Note, inciden-

tally, that Theorem 2 yields a necessary and sufficient condition for unique-

ness of a maximal path, namely, the condition that the slack S u, v 0 for

all edges u, v  not in T .

It  may  have  already  occurred  to  you  that  the  same  Mathematica  tools

that  we  used  in  the  last  section  for  minimal  directed  spanning  trees  can  be

used here too.  DirectedSpanningTreeFirstStep shows initial slack values for

a  given initial  tree.  In  DirectedSpanningTreeOneStep  it  is  our choice which

edge  to  substitute  in;  so  instead  of  choosing  the  one  with  the  largest

(positive)  slack,  for  the  maximum  problem  we  choose  the  one  with  the

smallest  (negative)  slack.   Again  there  is  a  tool  in  KnoxOR`Graphs`  that

executes the whole algorithm, as described in the documentation below, but I
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suggest  that  you  run  through  the  step-by-step  procedure  to  solve  problems,

for the most educational benefit.

? MaximalDirectedSpanningTree

MaximalDirectedSpanningTree theGraph,initialTree,

theRoot,opts takes a given initial spanning

tree of a given directed, quasi connected graph,

both in adjacency matrix form, and the vertex

number of the root of the tree. It performs the

full maximal directed spanning tree algorithm,

displaying all intermediate graphs unless the

option ShowTree is set to False, and returns the

maximal spanning tree in adjacency matrix form. The

display options of DisplayGraph may be passed in.

EXAMPLE 1.  The table below shows the tasks necessary to proceed from

the  raw  ingredients  of  a  turkey  dinner,  with  stuffing,  mashed  potatoes,  and

gravy,  to the finished product.  (Invaluable technical advice for this example

was provided  by Mrs.  Lois  L.  Hastings.)  Our  goal  is  to  find the most time-

consuming sequence of tasks.

 

Task Predecessor Time min.
A. Defrost turkey none 480
B. Break bread for stuffing none 15
C. Peel potatoes none 15
D. Remove and boil innards A 60
E. Make stuffing B, D 20
F. Stuff turkey E 10
G. Boil potatoes C 40
H . Bake turkey F 240
I. Mash potatoes G 10
J . Make gravy H 15
K. Remove stuffing from turkey H 5
L. Slice turkey K 15
M . Serve potatoes I 1
N . Serve turkey L 1
P. Serve stuffing K 1
Q. Put gravy on potatoes J , M 1

Some experimental  artwork  is  usually  necessary  to  obtain  a  convenient

graphical  representation  of  the  dependencies  among  tasks.  A  good  place  to

begin is to draw a root, out of which point edges corresponding to tasks that

have  no  predecessors.  For  us,  these  are  A,  B,  and  C.  Examine tasks  one  by

one, drawing an edge that points away from the vertex to which its predeces-

sor points.  For instance,  in the graph below, D  follows A,  and G  follows C.

For  an  edge  like  E,  which  has  two  predecessors  D  and  B,  the  predecessors

must both be drawn so as to point into the vertex away from which E points.
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With some care, we obtain the graph in Figure 1.34.  The Mathematica name

of  the  overall  graph  is  turkey,  and  for  the  display  options  we  have  used

vertpos34  for  VertexPositions,  vlabpos34  for  VertexLabelPositions,  and

turkeytasklabelpositions  for  the  EdgeLabelPositions,  as  you  may  see  by

opening the closed cell below this paragraph.
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Q

L

P

N

Figure 1.34 – Project graph for making a turkey dinner

We select an initial directed spanning tree, compute the path costs using

the  completion  times  in  the  table,  and  we  compute  the  slack  values  for  the

unused edges. These are shown in Figure 1.35.  The edge of minimum slack

is D = 2, 3 , which we substitute for edge B = 1, 3  in the spanning tree to

produce the new tree in Figure 1.36.

Two similar edge substitutions, first N = 12, 13  for Q = 10, 13 , then J
= 9, 10  for  M = 8, 10 ,  produce  the next  tree in Figure 1.37 and the final

tree in Figure 1.38. Since all slacks are non-negative and there are no unused

edges of slack zero, this is the unique maximal tree. The critical sequence of

tasks is therefore A, D, E, F, H, K, L, N. Most of these involve direct opera-

tions on the turkey, which is no surprise to anyone who has practical experi-

ence with this problem. Additional information we can gather from the final

tree, for example, is that the sequence of operations C, G, I, M involving the

potatoes  can  be  delayed  for  as  long  as  759  minutes  without  delaying  the

meal. Also, it requires 831 minutes from the time when the defrosting starts

until the time when the meal is ready.  
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initturkeytree

0, 480, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 240, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

DirectedSpanningTreeFirstStep turkey,

initturkeytree, 1, AspectRatio .5,

VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions turkeytasklabelpositions ;

1 0

2 480

3 15

4 15

5 35

6 55

7 45

8 65

9 285

10 66

11 290

12 305

13 67
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15

20

40

10

10

240

1

5

1

15

1 0

2 480

3 15

4 15

5 35

6 55

7 45

8 65

9 285

10 66

11 290

12 305

13 67

525

234

224

239

Figure 1.35 – Turkey dinner, step 1
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currturkeytree DirectedSpanningTreeOneStep

turkey, initturkeytree, 1, 2, 3 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 67

480

15

60

20

40

10

10

240

1

5

1

15

1 0

2 480

3 540

4 15

5 560

6 55

7 570

8 65

9 810

10 66

11 815

12 830

13 67

525

759

749

764

Figure 1.36 – Turkey dinner, step 2

currturkeytree DirectedSpanningTreeOneStep

turkey, currturkeytree, 1, 12, 13 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;
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Figure 1.37 – Turkey dinner, step 3

currturkeytree DirectedSpanningTreeOneStep

turkey, currturkeytree, 1, 9, 10 ,

AspectRatio .5, VertexPositions vertpos34,

VertexLabelPositions vlabpos34,

EdgeLabelPositions

turkeytasklabelpositions ;

1 0
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Figure 1.38 – Turkey dinner, step 4 and last
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Activity 3 – Make up your own project example, and try to produce the

project graph.

A C

F

B D

Figure 1.39 – Inserting a dummy edge into a project graph

REMARK 1. In forming the original graph, a special situation can arise that

bears mentioning. If  task A  must precede each of  tasks C  and D,  but task B
precedes D only, then in order to represent these constraints, a dummy edge

F  may be inserted, as shown in Figure 1.39.   We need to then take steps to

be  sure  that  the  dummy  edge,  which  is  not  really  a  part  of  the  original

project,  is not included in any maximal directed spanning tree.  One way to

ensure  this  is  by  observing  that  the  slack  of  an  edge  u, v  is  found  by

subtracting  c u, v C P u  from  C P v ,  so  that  if  the  cost  c u, v  of  a

dummy  edge  is  taken  to  be  a  large  magnitude  negative  number,  larger  in

magnitude  than  any  path  cost  C P u  could  be,  then  a  negative  number  is

subtracted  from  C P v ,  so  that  a  positive  slack  must  be  attached  to  the

dummy edge.  Thus, it will never be swapped in.  

REMARK 2. Tasks may also be represented on vertices instead of edges, in

which case the technical difficulties mentioned in Remark 1 do not arise.  A

solution  algorithm  can  be  developed,  but  we  do  not  discuss  it  here.   The

project with the dependencies in Figure 1.39 above, with A preceding both C
and D, and B preceding D, would be represented with tasks on vertices as in

Figure 1.40.
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A

B

C

D

Figure 1.40 – Project graph with tasks on vertices

EXAMPLE 2.  Several years ago there was a major renovation of the small

library in my office building.   The library was on two levels, and the major

work was the replacement of the rickety spiral stairway leading to the second

level  by  a  large  new  stairway  and  front  desk  unit,  and  the  construction  of

built-in  study carrells  on both  levels.  Some wood trim work was also done,

the carpet was replaced, and the walls were painted.  To do all this however,

the  library  had  to  be  emptied  and  old  fixtures  torn  out.   The  17  tasks  into

which  the  whole  project  breaks  down  are  listed  below,  as  well  as  time

estimates, in days, of how long the tasks take.  You should carefully go over

the  list  of  predecessor  tasks  to  see  that  they  make  logical  sense.   For

instance, workers cannot tear up the old carpet until the old shelving fixtures

are  moved  out,  the  new  carpet  should  not  be  laid  until  the  staining  and

painting is done,  etc.  Let us use the critical path method to find how many

days the project will take, and make note of possible delay-causing tasks. 

 

Task Time Predecessor
A. box books 8 none
B. move books 2 A
C. move old fixtures 1 B
D. tear up old carpet 3 C
E. remove spiral staircase 2 C
F. do upstairs carpentry 15 C
G. build new staircase 20 D, E
H . build new front desk 5 G
I. build new downstairs carrells 8 D, E
J . build new upstairs carrells 8 F
K. paint and stain downstairs 3 H , I
L. paint and stain upstairs 3 G, J
M . lay downstairs carpet 5 K
N . lay upstairs carpet 5 L
O. move old fixtures back 1 M , N
P. move books back 2 O
Q. unbox books 8 P

Figure  1.41  displays  the  graph  of  the  project.   Several  points  are  worth

noting. Since task L depends on both G and J, but task H depends only on G,

we have had to insert a dummy edge as in Remark 1 connecting vertex 8 to
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vertex  9.   A  second  dummy  edge,  used  this  time  to  avoid  multiple  edges

between  a  pair  of  vertices,  connects  vertices  6  and  5,  since task G  depends

on both  of  D  and  E,  which  both  emanate from the  same vertex.   This  indi-

cates that in the original task breakdown we could have simplified matters by

combining  tasks  D  and  E  into  one  task  of  duration  3  days.   The  dummy

edges have been given weight of 200, a good choice given the magnitudes

of the edge costs in the table.  The name of the graph and the option values

controlling  the  graph  display  are  as  shown  in  the  command.   These  are

defined in the closed cell above the DisplayGraph command.

DisplayGraph librarygraph, GraphType Directed,

AspectRatio .5, VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabels libraryelab,

EdgeLabelPositions libraryelabpos ;
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Figure 1.41 – Project graph for library renovation

This  time  let  us  use  the  MaximalDirectedSpanningTree  command  to  com-

plete  the  computation.   An  initial  directed  spanning  tree  generated  by

breadth-first search uses edges A, B, C, D, E, F, I, G, J, K, L, M, O, P, and Q.

The  adjacency  matrix  of  that  tree  is  defined  in  the  closed  cell  immediately

below as librarytree.  
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DirectedSpanningTreeFirstStep librarygraph,

librarytree, 1, AspectRatio .5,

VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabelPositions libraryelabpos ;

MaximalDirectedSpanningTree librarygraph,

librarytree, 1, AspectRatio .5,

VertexPositions libraryvpos,

VertexLabelPositions libraryvlabpos,

EdgeLabelPositions libraryelabpos ;
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Figure 1.42 – Initial and final spanning trees for library renovation

As  Figure  1.42  illustrates,  only  one  edge  substitution,  namely

H 8, 10  in place of I 5, 10 , was necessary to finish the problem.  All
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slacks  are  strictly  positive,  and  so  we  have  found  the  unique  maximal

spanning tree and critical path

A, B, C, D, G, H , K, M , O, P, Q.  

 

Any task on  this  path will,  if  delayed, cause a delay in the completion time

of the project. With no delays, the length of the critical path from 1 to 16 is

58 days, which is how long the project will take. The dummy edges are not

in  the  final  spannning  tree.   In  view  of  the  positive  slack  value  of  edge

5, 10 , task I,  the building of the downstairs carrells, may be delayed by as

much as 17 days without delaying the whole project.  

Activity  4  –  Are  there  any other  tasks  in  the  project  of  Example 2  that

can be delayed, and if so, by how much?  

Exercises 1.4

1.  Call  a  directed  graph  double  quasi-connected  if  each pair  of  vertices  has

not  only  a  common  ancestor,  but  also  a  common  descendant.  Show  that  a

double quasi-connected graph has both a root and a terminus.

2. (Mathematica) Find all maximal trees and maximal paths for the graph of

Figure 1.2.

3.  Find  all  critical  paths  for  the  graph  of  Exercise  12  of  Section  1.3  whose

adjacency matrix is as below.  Do this by hand, rather than with Mathemat-
ica.

– 4 3 4 2 – – – – –
– – – – – 3 – – – –
– – – – – 6 2 2 – –
– – – – – – – 1 – –
– – – – – – – 5 2 –
– – – – – – – – – 4
– – – – – – – – – 2
– – – – – – – – – 3
– – – – – – – – – 4
– – – – – – – – – –

4.   (Mathematica)  A job  requires  ten  stages  of  work.  The completion times

for each are in the table below. Also listed in the table is the information of

which  stages  cannot  begin  until  other  stages  are  complete,  e.g.,  stage  D
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requires  both  stages  A  and  B  to  be  finished  before  it  can  begin.   Find  all

critical sequences of job stages. 

 

Task
Immediate
predecessor

Completion
time hr.

A. none 2
B. none 6
C. none 3
D. A, B 4
E. C 5
F. D 1
G. D 1
H . E, F 4
I. G 3
J . H 5

5.  Finish  the  proof  of  Theorem  2  by  showing  assertion  2:  If  u, v  is  an

omitted edge and S u, v 0, then the spanning tree created by substituting

u, v  for the edge u0, v  currently in T  is maximal.

6. A large computer program is to be tested and debugged in modules, some

of  which  require  other  modules  to  be  completely  tested  before  testing  on

them  can  proceed.  The  table  below  shows  the  dependencies,  and  the  times

required to finish the testing and debugging of each module. How long does

it  take  until  the  entire  group  of  modules  is  debugged?   Do  this  by  hand,

rather than with Mathematica.  

Module Time days
Immediate
predecessor

A 1 none
B 2 none
C 2 A
D 3 B
E 1 B
F 2 C, D

7.  Intuitively, it is clear what we mean when we say that a graph is a "line of

vertices" (see below). Give a set-theoretic definition of a line of vertices, and

show that  if  a  directed network  is  not  a  line of  vertices,  then its  underlying

graph must have an undirected cycle.
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1

2

3

4

Exercise 7

8.   (Mathematica)   An  office  wants  to  install  an  information  system.   The

main  tasks  are  below,  with  time  estimates  in  days  and  task  dependencies

indicated.   Find  the  amount  of  time required  to  get  the  system up  and  run-

ning,  and  find  the  set  of  tasks  which  could  delay  the  project  if  they  were

delayed. 

 

Task Time days Predecessor
A. Run wiring 1 none
B. Research hardware 2 none
C. Research software 2 none
D. Purchase hardware 4 B
E. Purchase software 2 C
F. Install hardware 1 D, A
G. Install software 1 E, F
H . Install network facilities 1 F
I. Set up database 4 G
J . Train employees 5 H

9.  (Mathematica) An advertising agency has contracted to prepare a commer-

cial.  The main tasks, time estimates, and task dependencies are shown in the

table below.  How many days will it take to produce this commercial? 

 

Task Time days Predecessor
A. Write script 3 none
B. Consult with client 1 A
C. Revise script 2 B
D. Hire actors 3 A
E. Produce special effects 6 C
F. Film studio scenes 2 C, D
G. Film outdoor scenes 3 F
H . Second consult with client 1 E, G
I. Do voiceover work 1 H
J . Final editing 4 I

10. For the project in Exercise 4, form a project graph with tasks on vertices.
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11.  A variation  on  the critical  path problem is the task scheduling problem.

In this problem, unlike the critical path problem, explicit attention is paid to

how  many  workers  are  available  to  do  tasks,  and  the  goal  is  to  assign  and

schedule  tasks  among  workers  so  that  predecessor  conditions  are  satisfied

and  the  project  is  finished  as  quickly  as  possible.   Even  though  a  project

graph  such  as  those  in  this  section  might indicate  that  a  task  is  ready to  be

done,  there  may not  be a  free  worker  to  do it,  so that  it  might have to wait

longer  than  the  critical  path  algorithm expects.   Suppose  that  there  are  just

two workers  available  to  do  the  project  with tasks listed below.   Develop  a

work  schedule  for  the workers  that  gets  the project  done  in as  little time as

possible.  

Task A B C D E F G H I
Time 2 3 2 5 1 4 2 3 3

Predecessor none none none A B D D F G

(Hint:  A  useful  device  for  the  scheduling  problem  is  a  bar  graph  that  con-

tains  one  horizontal  row  for  each  worker.   To  schedule  tasks  consists  of

placing  bars,  one  per  task,  of  width  equal  to  the  time required  for  the  task,

end-to-end  in  the  worker  rows,  obeying  predecessor  constraints.   For

instance,  in  the picture  below, there are three workers  1–3 and 6 tasks A–F

taking  4,  2,  6,  3,  1,  and  2  minutes respectively.   The only  requirements are

that task D must be done after task A, and task E must be done after task C.

The  work  schedule  shows  worker  1  doing  task  A,  then  beginning  task  F

immediately on completion.  Worker 2 does task B, then waits until task A is

finished, and then does task D.  Worker 3 does tasks C and E in succession.

Is this the most efficient schedule?)

0 1 2 3 4 5 6 7

A

B

C

D

E

F1

2

3

Exercise 11
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1.5 Maximal Flow Problems

Problem Description

We  now consider  a  different  maximum weight  problem for  directed  graphs

in  which  edges  have  flow capacities,  and  we  wish  to  use  part  or  all  of  the

available capacity on edges. Specifically, we wish to put a weighting on the

graph such that:

1.  Each edge has  non-negative  weight  less  than or  equal  to the capacity

for that edge.

2.  For  each  vertex  except  the  source  and  the  sink,  the  total  weight  of

edges directed into the vertex equals the total weight of edges directed out of

the vertex. 

3.  The  total  weight  of  edges  directed  out  of  the  source  is  the  largest

among all weightings satisfying conditions 1 and 2.
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Figure 1.43 – A flow graph

One may think  of  a  vertex  as  an  intersection,  an  edge  as  a  street,  and  a

capacity  as  the  maximum possible  number  of  vehicles  that  can  pass  on  the

particular  edge  per  unit  time.  The  problem  is  to  find  traffic  flows  per  unit

time on each street so that the rate at which vehicles enter each intersection

equals  the rate  at  which  they depart  (an  equilibrium, or  conservation condi-

tion  expressed  by  condition  2),  the  capacities  for  the  streets  are  not

exceeded,  and  the  total  outflow from the  source  of  the  traffic  is  as  large  as

possible.

Like the critical path problem, the maximal flow problem will be solved

by  a  policy  improvement  strategy.  We  begin  with  an  initial  feasible  flow,
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and  modify  it  step-by-step  until  a  termination  condition  comes  into  effect

(which  we  must  prove  characterizes  a  maximal  flow).  This  approach  is

called  the  Ford–Fulkerson  maximal  flow  algorithm,  and  it  is  contained  in

several sources, but here we follow the presentation of Swamy and Thulasira-

man [57].

To  define  the  problem  more  carefully,  let  G V , E  be  a  directed

network  of  n  vertices.  We  suppose  that  the  vertices  are  denoted

v1, v2, ..., vn 1, vn.  There  is  a  source  vertex  v1  and  a  sink  vertex  vn,  where

the words  "source"  and "sink" have the same meaning as  in Definition 1 of

Section 1.4. Vertices 1 and 8, respectively, in Figure 1.43 are the source and

sink for that network. Let c be a function from the set of edges to the non-neg-

ative  real  numbers;  c v, w  is  the  capacity  of  edge  v, w .  A  flow  is  a

function f : E  such that

(1) 
a 0 f e c e for all edges e E
b j f vi, v j j f v j, vi for i 2, ..., n 1

where the sums in the second equation are taken over those vertices v j  such

that  an  edge  of  the stated form does  exist  in  E.   These properties  are  direct

translations  of  constraints  1  and  2  mentioned above:  the  first  equation  says

that the flow on every edge cannot exceed the capacity of that edge, and the

second  equation  states  that  the  total  flow  out  of  vertex  vi  equals  the  total

flow into vi, for all intermediate vertices vi.

Activity 1 – Why can there be no edges pointing into the source vertex,

nor can there be any edges pointing out of the sink?

The value of flow f  is the total flow out of the source vertex, i.e.,

(2)V f j f v1, v j   

Shortly,  we  will  show  that  the  conservation  condition  (1b)  implies  that  the

value of a flow also equals the total inflow to the sink. A maximal flow f  is

such that for all other flows f

(3)V f V f

The  improvement  of  a  given  flow  involves  locating  a  path  from  the

source  to  the  sink  such  that  the  flow  along  each  edge  in  the  path  can  be

increased  by  a  fixed  positive  amount.  The  improvement  procedure  stops

when there does not exist such an "augmenting path."  Our main theoretical

result  is  Theorem  1  below,  which  says  that  when  the  stopping  condition
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becomes true,  the maximal flow has  been  reached.  To prove  this  result,  we

must introduce the idea of a cut in a graph.

DEFINITION  1.   Let  G V , E  be  a  graph,  let  V0  be  a  subset  of

vertices  of  G,  and  denote  by  V0
c  the  complement  of  V0  in  V .  The  cut

corresponding  to  V0,  denoted  by  K K V0 ,  is  the  set  of  all  edges  that

have one vertex in V0 and one in V0
c. A cut K V0  in a network separates

the source and sink if the source is in V0 and the sink is in V0
c.

EXAMPLE  1.  In  the  graph  of  Figure  1.43,  let  V0 1, 2, 5, 6 .  Then

V0
c 3, 4, 7, 8 ,  and  the  cut  K V0  corresponding  to  this  set  of  vertices

consists of the edges: 1, 3 , (1,4),  (2,3),  (3,5),  (4,5),  (5,7),  (6,8),  and (7,6).

Note  that  this  cut  separates  the  source  and  sink.  The  edges  of  the  cut  are

displayed in Figure 1.44.  

1

2

3

4

5

6

7

8

Figure 1.44 – A cut for the graph of Figure 1.43

DEFINITION 2.  The capacity c K  of a cut K K V0  is

c K c e

where  the  sum is  taken only  over  those  edges  whose  initial  vertex is  in

V0  and  whose  terminal  vertex  is  in  V0
c.  A  cut  K  separating  the  source

and sink is a minimum cut if

c K c K

for all cuts K that separate source and sink.

1.5 Maximal Flow Problems 93



For example, if K K V0  is the cut in Example 1, then the capacity of

K  is 3 + 4 + 2 + 5 + 8 = 22, using edges 1, 3 , (1,4), (2,3), (5,7), and (6,8).
Notice that we do not include edges pointing from V0

c into V0.

Activity 2  – If V0 1, 2  in the graph of Figure 1.43, find the capacity

of the cut K K V0 .

One further piece of notation: if f  is a flow, and V1  and V2  are subsets

of vertices, we denote by

f V1, V2 f vi, v j  vi V1, v j V2

the total flow along edges pointing from V1  into V2.  For example, if we put

the  flow  indicated  in  Figure  1.45  on  the  graph  of  Figure  1.43,  with

V0 1, 2, 5, 6  then  f V0, V0
c 1 1 0 2 3 7  and

f V0
c, V0 1 1 1 3  (edges  3, 5 , 4, 5 , and 7, 6 ).  Note  that  the

value  of  the  flow  is  4,  which  is  the  same  as  the  difference  f V0, V0
c –

f V0
c, V0 . This is generally true, as shown by the first lemma in the follow-

ing subsection.

1
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1

1
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0

2

2

3

1

1

Figure 1.45 – A flow on the graph of Figure 1.43

Main Results and Algorithm

LEMMA 1.  Let f  be any flow on a graph G V , E  and let V0 be a set of

vertices containing the source vertex v1 but not the sink vn. Then

(4)V f f V0, V0
c f V0

c, V0
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Consequently,

(5)V f c K

where K is any cut seperating the source and the sink.

Proof.  Note that since nothing flows into the source, the difference between

the flow out of V0 and the flow into V0 is

(6) 

v V0 w V f v, w v V0 w V f w, v

w V f v1, w v V0 v1 w V f v, w

v V0 v1 w V f w, v
V f 0 V f

by  the  conservation  condition  in  (1).  For  the  edges  v, w  such  that  w  is  in

V0,  f v, w  appears  in  both  terms in  the  difference  on  the  left  hand  side  of

(6), hence it subtracts away. Thus, (6) may be rewritten as

V f v V0 w V0
c f v, w v V0 w V0

c f w, v
f V0, V0

c f V0
c, V0

The first assertion is proved.

     Since flows are non-negative, we have

V f f V0, V0
c

v V0 w V0
c f v, w

v V0 w V0
c c v, w c K

which establishes the second assertion.  

REMARK.   Applying  Lemma  1  to  the  cut  K V0  whose  vertex  set  is

V0 V vn , we see that since V0
c vn ,

 

V f f V0, V0
c f V0

c, V0

w V0
f w, vn 0

total flow into sink

because no edges are directed out of the sink. In other words, as anticipated

earlier,  the  value  of  a  flow  is  not  only  equal  to  the  total  flow  out  of  the

source, but is also equal to the total flow into the sink.

Next we have a lemma that is a stepping stone to the characterization of

a maximal flow.
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LEMMA 2.   If a flow f  and a cut K K V0  separating the source and the

sink can be found such that

 V f c K

then f  is a maximum flow and K is a minimum cut.  

You are asked for a proof in Exercise 3. (Hint: Use the second assertion

of Lemma 1, i.e., the value of any flow is dominated by the capacity of any

cut.)

Below is a precise definition of  the idea of  a flow augmenting path that

was mentioned earlier. First, it should be explained that we are now thinking

of  undirected  paths  P : v1, v2, v3, ..., vn  from  the  source  to  the  sink  in  the

underlying graph. An edge in such a path is called forward if it is oriented in

the same direction as in the original directed graph, and reverse otherwise.

DEFINITION  3.   A  simple  path  P  is  called  an  augmenting path  for  a

flow f  if for all edges e in the path

(i) f e c e  if e is a forward edge

(ii) f e 0 if e is a reverse edge

v1 a
b

c

d

vn

4,2 3,1

2,1 5,2 3,1

v1 a
b

c

d

vn

4,3 3,2

2,0 5,3 3,2

Figure 1.46 – Left: initial graph; right: augmented graph

For example, consider the (undirected) path v1, a, b, c, d, vn, in Figure

1.46, which is a small segment of some larger graph. The edge labels are the

(capacity,  flow)  pairs.  It  is  possible  to  increase  the  flows  on  the  forward

edges v1, a , a, b , c, d , and d, vn  by one unit, and to decrease the flow

on  the  reverse  edge  c, b  by  one  unit,  while  satisfying  the  capacity  con-

straint  and  not  changing  net  outflow  from  any  intermediate  vertices.  This

flow  increase  was  arrived  at  by  taking  the  smaller  of  the  minimum "slack"

(i.e.,  capacity minus flow) among all forward edges, and the minimum flow

along all reverse edges.
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Activity 3 – Find an augmenting path for the flow in Figure 1.45.

We can now prove the main theorem.

THEOREM 1.  A flow is maximal if and only if it has no augmenting path.

Proof.   To  show  the  forward  part  of  the  equivalence,  we  will  show  its

contrapositive:  if  there  is  an  augmenting  path  for  the  flow f ,  then  f  is  not

maximal.

Let P be an augmenting path for the flow f . Define

(7)1 min c e f e e is a forward edge in P

(8)2 min f e e is a reverse edge in P

(9)min 1, 2

and define a new function f  on the edge set of the graph by

(10) f e
f e if e is a forward edge of P
f e if e is a reverse edge of P
f e otherwise

We claim that f  is a feasible flow, and that f  has strictly greater value than

f , and consequently f  is not maximal.

We  leave  it  to  the  reader  to  check  that  for  all  edges,  the  capacity  and

nonnegativity  constraints  (1a)  are  satisfied by f ,  (see  Exercise 6).  The first

edge  in  path  P  must  point  out  of  the  source  v1,  hence  it  is  a  forward  edge.

The flow along that edge has been increased by 0, by the definition of an

augmenting path and the construction of f , so that f  is a strict improvement

of f . So the only part of the claim left to show is that f  satisfies the conserva-

tion condition (1b) at interior vertices. Those interior vertices that are not on

the  augmenting  path  P  satisfy  the  conservation  condition  because  no  flows

on edges incident to them have changed. The path is also to be simple, thus

there are four possible orientations of edges incident to a vertex u on the path

P,  as  shown  in  Figure  1.47.  In  case  (a),  both  total  inflow  to  u  and  total

outflow  from  u  increase  by  ,  and  therefore  the  balance  is  maintained.  In

case (b), there is no change to total outflow at all and the net change to total

inflow is zero, since flow along one edge is increased by , while flow along

the other is  decreased by .  The reader can easily check the conservation of

flow condition for cases (c) and (d). Therefore we have found a feasible flow
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that  is  better  than  f ,  as  desired.  The  forward  half  of  the  equivalence  is

shown.

u u

(a)                                                   (b)

u u

(c)                                                     (d)

Figure 1.47 – Four orientations of directed edges at a vertex

To  show  the  reverse  implication,  let  f  be  a  flow  for  which  there  is  no

augmenting path. Let V0  be the set of vertices to which the source v1  has an

augmenting path. Then v1 is in V0, but by assumption the sink vn is not in V0.

Consider the cut K V0 , which separates source and sink. If e v, w  is an

edge  in  this  cut  for  which  v V0  and  w V0
c,  then  it  must  be  true  that

f e c e .  To  see  this,  observe  that  since  v V0,  there  is  an  augmenting

path  from v1  to  v,  and  if  f e c e ,  then  edge  e  could  be  adjoined  to  this

augmenting path to create an augmenting path to w. This cannot be, since w
is not in V0. Furthermore, if e w, v  is an edge in the cut for which v V0

and w V0
c, then it must be true that f e 0. Otherwise, there would be an

augmenting path from v1  to v, which can be extended along the reverse edge

e to an augmenting path to w, contrary to the assumption that w V0
c.

The argument of the last paragraph shows that

 

f V0, V0
c

v V0 w V0
c f v, w

v V0 w V0
c c v, w

c K

Also,

f V0
c, V0 v V0 w V0

c f w, v 0

Consequently, by Lemma 1,

V f f V0, V0
c f V0

c, V0 c K
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which implies, in view of Lemma 2, that f  is a maximum flow.  

The  proof  of  the  last  theorem  shows  exactly  how  to  improve  a  given

flow,  if  an  augmenting  path  can  be  found.  Compute  the  increment   by

formulas  (7)–(9).   Note  that   is  the  smallest  number  among  the  slacks

c e f e  of  forward  edges  and  the  flows  f e  on  reverse  edges  of  the

augmenting path.  Then add this  increment to all  forward edges  on the path,

and  subtract  it  from  all  reverse  edges.  One  may  repeat  this  augmentation

process until an augmenting path can no longer be found, at which point we

know that the current flow is optimal. The main problem, therefore, is to find

an augmenting path from the source to the sink in a flow. 

An  augmenting  path  for  a  given  flow  can  be  found  using  a  vertex

labeling  algorithm,  which  labels  vertices  with  three  pieces  of  information.

First,  the  source  is  given  a  label.  Other  vertices  receive  labels  successively

from some vertex that is already labeled.  In the vertex v about to be labeled,

we record:

1. The preceding vertex u from which v receives its label.

2. A forward (+) designation if u, v  is a forward edge, and otherwise a

reverse designation (–).

3. The slack S v  of v, that is, if u is the vertex from which it receives its

label,

(11) S v
min S u , c u, v f u, v if u, v is a forward edge

min S u , f u, v if u, v is a reverse edge

Also, a vertex v can only receive a label from a vertex u if the slack defined

by  (11)  is  strictly  positive.  For  example,  in  Figure  1.48,  the  label  on  u
indicates  that  it  received  its  label  from  a  vertex  named  6,  along  a  forward

edge pointing from vertex 6 to u, and the slack of u is 4. The flow capacities

and current flow values of the two edges are displayed. Now vertex v, which

is  presently  unlabeled,  has  slack  equal  to  min 4, 3 1 2,  and  can

therefore  receive  the  label  u, , 2 .  The  edge  u, w  is  a  reverse  edge.  The

slack that would be given to w if it could be labeled from u is min 4, 0 0.

According  to  the  labeling  rule  cited  above,  vertex  w  cannot  receive  a  label

from u.
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u v

w

3,1

4,0

6, ,4

slack 2

slack 0

Figure 1.48 – Vertex labeling

The labeling algorithm to find an augmenting path for a flow f  proceeds

roughly as follows. Label the source (0, –, ). Fan outward in an attempt to

label  vertices,  using  a  breadth-first  search  plan  that  scans  unlabeled  neigh-

bors  of  labeled  vertices,  in  the  order  in  which  the  labeled  vertices  received

their  labels.   Stop  when  the  sink  vn  is  labeled.  If  indeed  the  sink  can  be

labeled,  then the definition of  slack,  formula (11),  clearly implies that  there

is a chain of  vertices leading from the source to the sink, such that the sink

has the smallest slack among the vertices in the chain.  Moreover,  if   is  the

slack, then c u, v f u, v  for  all  forward edges on this path,  i.e.,  there

are   units  of  unused  flow  capacity  on  every  forward  edge  of  the  path.

Hence,  units of flow may be added to each forward edge without violating

the capacity constraint. Also, f u, v  for all reverse edges on the path, so

that   units  of  flow  may  be  subtracted  from  each  reverse  edge  without

causing  negative  flow.  The  reason  for  the  requirement  that  slack  must  be

strictly greater than zero for a labeling to occur should now be clear.

Therefore,  if  the  sink  can  be  labeled,  we  can  trace  the  augmenting path

back from the sink to the source,  and use it in the way already described to

improve the current flow. We leave it to the reader to show (see Exercise 7)

that if  it  is  not  possible to label the sink using this scheme, then there is no

augmenting path, and hence, by Theorem 1, the current flow is optimal. This

discussion is the heart of the proof that the following algorithm will locate a

maximal flow. We omit the details.
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MAXIMAL FLOW ALGORITHM 
1. Initialize flow f e 0 for all edges e.

2. Repeat steps 3–6 until the sink vn cannot be labeled.

{Steps 3–5 are the labeling algorithm.}

3. Erase all previous labels.

4. Label the source v1 as (0, –, ).

5. Do a breadth-first search for vertices to label, until the 

    sink is labeled, or no further labeling can be         

    done.

{Find the augmenting path, and augment the flow.}

6. If the sink has been labeled, then:

      a. Let  be the slack of the sink. 

     b. Let P be the path of labeled vertices from v1 to vn. 

      c. Set the new flow f  equal to the flow f  defined by 

         (10).

There are two commands in the KnoxOR`Graphs` package that can help

you carry out the algorithm one step at a time.  To set up the problem, form a

matrix like an adjacency matrix that contains the flow capacities, and another

matrix of flows on edges, initialized to zero.  On each step, first search for an

augmenting  path.   The  function  FindAugmentingPath  returns  the  list

{augmenting path,  epsilon},  where  the path is  a  list  of  vertex numbers,  and

epsilon is the amount of flow by which edges on the path can be augmented.

There is one boolean option, ShowLabels, which if left at its initial value of

True  displays  a  table  of  vertex  labels  found  by  the  labeling  algorithm

described above.  

FindAugmentingPath

capacities,flows,source,sink,opts

Options FindAugmentingPath

ShowLabels True

The second function  takes the capacity matrix,  the current  flow matrix,  and

the augmenting path and epsilon values that are returned by FindAugmenting-

Path, and returns the matrix of the augmented flow, which can then be used

in  the  next  augmentation  step.   The  user  can  then  use  DisplayGraph  to  see

the results of the augmentation.
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AddFlow capacities,

flows,augmentingpath,epsilon

Examples

EXAMPLE 2.  To illustrate the application of the Maximal Flow Algorithm,

consider  the  directed  network  whose  capacities  are  depicted  in  Figure

1.49(a).  This  might  represent  the  floor  plan  of  a  manufacturing  plant  in

which  pieces  of  heavy equipment  are  to  be  assembled.  The nodes  are  work

stations,  and  the  capacities  are  numbers  of  pieces  of  equipment  that  can  be

moved  from  one  station  to  another  per  half  hour.  Vertex  1  is  the  initial

location  of  the  parts,  and  vertex  6  is  the  shipping  area.   (In  the  closed  cell

below  that  generated  the  graph,  the  capacity  matrix  is  defined  as

capacities49,  and  the  graph  option  values  are  vpos49,  vlabelpos49,  and

elabelpos49 as seen below in the other DisplayGraph commands.)
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5

6
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2

6

2

3

4

4

Figure 1.49(a) – A flow capacity graph

Activity 4 – We will use the algorithm and the Mathematica tools below

to  find  the  optimal  flow  on  this  graph,  but  it  is  rather  easy  on  such  a

small graph to find it intuitively by hand.  Try this.

Let  the  initial  flow  be  0  along  all  edges,  as  defined  in  the  flows49

variable  below.  We  first  label  vertex  1  as  (0,  –,  ).  We  are  able  to  label

vertices  2  and  3  from  the  source,  since  the  source  has  infinite  slack.  The

slack  along  edge  (1,  2)  is  the  same  as  the  unused  capacity  in  that  edge,

namely  4.  Similarly,  the  slack  along  edge  (1,  3)  is  5.  The  information  is

displayed  in  the  table  below  the  input  cell.   From  vertex  2  we  can  label

vertex 4, from vertex 3 we can label 5, and from vertex 4 the sink vertex can
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be labeled. The slack of  the sink is 2, and hence a flow of two units can be

added to each edge of the path 1, 2, 4, 6.  The new flow is in Figure 1.49(b). 

flows49 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

augpath, epsilon FindAugmentingPath

capacities49, flows49, 1, 6

flows49 AddFlow capacities49,

flows49, augpath, epsilon ;

DisplayGraph capacities49, GraphType Directed,

AspectRatio .7, VertexPositions vpos49,

VertexLabelPositions vlabelpos49,

EdgeLabels flows49,

EdgeLabelPositions elabelpos49 ;

vertex label

1 0

2 1 4

3 1 5

4 2 2

5 3 2

6 4 2

1, 2, 4, 6 , 2

1

2

3

4

5

6

2

0

0

2

0

0

0

2

0

Figure 1.49(b) – First augmentation

The next breadth-first scan labels vertices 2 and 3 from the source. Note

that since the flow on edge (1, 2) is now 2, the slack induced on vertex 2 is

now 4 2 2. This time, vertex 4 cannot be labeled from vertex 2, since the

slack is

min S 2 , c 2, 4 f 2, 4 0,
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but  vertex  4  can  be  labeled  from  vertex  3.  The  sink  is  then  labeled  from

vertex  4,  and  since  there  are  only  2  unused  units  of  flow  capacity  on  edge

4, 6 , the slack of the sink is 2.  The augmenting path is 1, 3, 4, 6 . Through-

out these steps, all edges used for labeling are forward edges.

augpath, epsilon

FindAugmentingPath capacities49, flows49, 1, 6

flows49 AddFlow capacities49,

flows49, augpath, epsilon ;

DisplayGraph capacities49, GraphType Directed,

AspectRatio .7, VertexPositions vpos49,

VertexLabelPositions vlabelpos49,

EdgeLabels flows49,

EdgeLabelPositions elabelpos49 ;

vertex label

1 0

2 1 2

3 1 5

4 3 5

5 3 2

6 4 2

1, 3, 4, 6 , 2

1

2

3

4

5

6

2

2

0

2

2

0

0

4

0

Figure 1.49(c) – Second augmentation

The rest  of  the computation is  displayed in Figures 1.49(d)–(f).   If  you

open the closed cell you will see that we use the ShowLabels->False option

to  suppress  the  tables  of  vertex  labels,  but  you  should  check  the  labelings

yourself.   After  the  last  augmentation,  the  sink  vertex  6  cannot  be  labeled

from either of its predecessors 4 or 5 because there is no unused capacity in

either of the edges involved. We therefore know that the current flow among
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assembly  stations  is  maximal.  The  maximum  output  per  half  hour  is  eight

pieces.  

1, 3, 5, 6 , 2

1

2

3

4

5

6

2

4

0

2

2

2

0

4

2

Figure 1.49(d) – Third augmentation

1, 3, 4, 5, 6 , 1

1

2

3

4

5

6

2

5

0
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3

2

1

4

3

Figure 1.49(e) – Fourth augmentation
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1, 2, 3, 4, 5, 6 , 1

1

2

3

4

5

6

3

5

1

2

4

2

2

4

4

Figure 1.49(f) – Fifth augmentation

There  is  a  command  in  KnoxOR`Graphs`  that  carries  out  the  complete

Maximal  Flow  Algorithm,  as  listed  below.   Its  arguments  are  the  capacity

matrix and the vertex numbers of the source and sink, and the final matrix of

flows  is  returned.   It  accepts  the  ShowLabels  option  to  display  the  vertex

labels found in each step by the breadth-first search process, and it has a new

option  of  its  own ShowSteps,  initialized to  True,  which  shows  intermediate

steps.  If ShowSteps is set to False, then MaximalFlow goes immediately to

the final flow matrix.  It also accepts the display options of DisplayGraph.

MaximalFlow capacities,source,sink,opts

Options MaximalFlow

ShowSteps True, ShowLabels True,
GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

The heart  of  the algorithm is  below,  which essentially automates the proce-

dure  we  went  through  in  the  last  example.   After  initializing  the  matrix  of
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flows  to  the  0  matrix,  while  there  is  still  an  augmenting  path  to  be  found

(indicated by the fact  that the boolean variable done  has the value False),  if

the ShowSteps value ssteps is True, then the current flow graph is displayed.

An augmenting path and amount of flow called newflow are found by calling

on FindAugmentingPath.  If steps are to be shown, then the augmenting path

and new flow are printed.  Then if the augmenting path was empty, we mark

the variable done  as True, else we add the new flow to produce the updated

flow matrix.

done False;

While Not done ,

If ssteps, DisplayGraph capacities,

EdgeLabels flows, dispopts ;

augpath, newflow FindAugmentingPath

capacities, flows, source,

sink, ShowLabels slabels ;

If ssteps, Print "Augmenting path: ",

augpath, " New flow: ", newflow ;

If augpath , done True,

flows AddFlow capacities,

flows, augpath, newflow ;

EXAMPLE 3.  Consider the simple traffic flow system in Figure 1.50(a), in

which edge 4, 3  may be thought of  as a side street leading to another side

street  3, 6 ,  leading  to  the  entrance  to  an  expressway  at  node  6.  Streets

1, 4 ,  4, 5 ,  and  5, 6  are  wider  streets  capable  of  supporting  more traffic

per  unit  time.  We  execute  the  maximal  flow  algorithm  again,  this  time

calling on the MaximalFlow function.  
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capacity50 0, 4, 0, 7, 0, 0 , 0, 0, 4, 0, 0, 0 ,

0, 0, 0, 0, 0, 2 , 0, 0, 2, 0, 8, 0 ,

0, 0, 0, 0, 0, 8 , 0, 0, 0, 0, 0, 0 ;

vpos50 0, 0 , 1, 0 , 1.5, 1 ,

1.5, 1 , 2, 0 , 3, 0 ;

vlabelpos50 ToLeft, Above, Above,

Below, Above, ToRight ;

elabelpos50 0, Above, 0, Below, 0, 0 ,

0, 0, ToLeft, 0, 0, 0 , 0, 0, 0, 0, 0, Above ,

0, 0, ToLeft, 0, ToRight, 0 ,

0, 0, 0, 0, 0, Below , 0, 0, 0, 0, 0, 0 ;

DisplayGraph capacity50, GraphType Directed,

AspectRatio .7, VertexPositions vpos50,

VertexLabelPositions vlabelpos50,

EdgeLabels capacity50,

EdgeLabelPositions elabelpos50 ;

1
2

3

4

5
64

7

4 2

2

8

8

Figure 1.50(a) – A traffic flow system

In the first stage, the augmenting path 1, 2, 3, 6 is found, and the augment-

ing  flow  is  2  units.   Then  we  can  augment  the  flow  by  7  units  along  path

1, 4, 5, 6.  In the last step, vertex 2 can be labeled from 1, and vertex 3 can

be labeled from 2, but the remaining vertices cannot be labeled, no augment-

ing path is found, and the algorithm ends with a maximal flow of 9 units.  
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MaximalFlow capacity50, 1, 6,

GraphType Directed, AspectRatio .7,

VertexPositions vpos50,

VertexLabelPositions vlabelpos50,

EdgeLabelPositions elabelpos50

1 2

3

4

5 60

0

0 0

0

0

0

vertex label

1 0

2 1 4

3 2 4

4 1 7

5 4 7

6 3 2

Augmenting path: 1, 2, 3, 6 New flow: 2

1 2

3

4

5 62

0

2 2

0

0

0

vertex label

1 0

2 1 2

3 2 2

4 1 7

5 4 7

6 5 7

Augmenting path: 1, 4, 5, 6 New flow: 7
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1 2

3

4

5 62

7

2 2

0

7

7

vertex label

1 0

2 1 2

3 2 2

4 0

5 0

6 0

Augmenting path: New flow: 0

1 2

3

4

5 62

7

2 2

0

7

7

0, 2, 0, 7, 0, 0 , 0, 0, 2, 0, 0, 0 ,

0, 0, 0, 0, 0, 2 , 0, 0, 0, 0, 7, 0 ,
0, 0, 0, 0, 0, 7 , 0, 0, 0, 0, 0, 0

Figure 1.50(b) – Finding the maximal traffic flow

Exercises 1.5

 1.  (a)  Consider  the  directed  network  below,  whose  edge  capacities  are

indicated.  For  each  of  the  vertex  sets  1, 2 ,  1, 2, 3 ,  and  1, 4 ,  list  the

edges in the cut corresponding to the set and compute the capacity of the cut.

(b) Assume it is the case that the vertex set {1, 2} determines a minimum

cut.  Use  your  intuition  to  find  a  maximum  flow  without  executing  the

algorithm (Hint: see Lemma 2).
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3

2 2

1

2

3

4

5

6 7
6

11

2

3

3

52

1

Exercise 1                                                     Exercise 2

2.  For  the  graph  with  flows  as  indicated,  and  V0  1, 3, 5 ,  check  the

veracity of the first assertion of Lemma 1.

3. Prove Lemma 2. 

4.  For the capacity graph of Figure 1.43, find the capacity of the cut corre-

sponding to the vertex set 1, 4, 7 .  Is this cut a minimum cut?

5.  Paths  (a)  and  (b)  are  each  paths  in  some  larger  network.  In  each  case,

decide  whether  the  path  is  an  augmenting  path,  and  if  so,  use  the  method

suggested by (7)–(10) to augment the path.

v1 a

b

c vn
4,1

2,2 3,2

3,0
v1 a

b

c vn
5,2

4,2 3,0

3,1

(a)                                                        (b)

Exercise 5

6. Check the constraint (a) of (1) for the augmented flow f , defined by (10).

7.  Show  that  if,  in  the  maximal  flow  algorithm,  the  breadth–first  search

cannot label the sink, then there is no augmenting path from source to sink.

(Hint: Suppose that one did exist. Consider the first vertex without a label on

this path.)

8.  Find  the  optimal  vehicular  flow  for  the  traffic  network  with  capacities

below.  Do this problem by hand,  rather than in Mathematica.
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Exercise 8

9. Let the intermediate nodes on the graph of Exercise 1 represent switching

locations at a busy train station located at node 5, to which trains are arriving

from  node  1.  The  edge  capacities  represent  the  number  of  parallel  train

tracks  connecting  switching  locations.  Use  the  maximal  flow  algorithm  to

decide  the  most  efficient  way  of  routing  incoming trains.   Do  this  problem

by hand, rather than in Mathematica.

10.  (Mathematica)  The  graph  of  Exercise  15  of  Section  1.2  modeling  a

forced-air  heat  distribution  system  is  displayed  again  below,  with  one

additional edge.  This time we suppose the fully connected system exists and

due  to  pipe  diameter  differences,  there  are  individual  maximum  airflow

capacities  on  edges  as  shown  in  the  graph.  Find  the  maximal  flow  on  the

network from the furnace at vertex 1 to the vent at vertex 9.  

1

2
3

4
5

6

7

8
9

10 11 12

2
3

1

4
3

2
1

3
2

3

1

5 3
2

2

3
2

4 5
6

Exercise 10
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11. (Mathematica) The diagram below represents the lubrication system of a

machine;  the  lubricant  flows  from a  source  area at  node  1,  through  compo-

nents 2–6, which require lubrication, and collects at node 7. Edge capacities

are  maximum  allowable  flow  rates  from  one  position  to  another.  Find  the

feasible flow that maximizes the total flow of lubricant through the machine.

1

2

3

4

5

6

7

10

9 2 3

2

4

5

4

4

3

Exercise 11

12.  Devise  a  graph  in  which  at  some step  the  maximal flow algorithm will

reduce the flow along a reverse edge.

13.   (Mathematica) Implement your own version of the AddFlow command

described in this section.

14.  In the problem of Example 3, suppose that in breadth-first search, vertex

4 is labeled first, before vertex 2, so that vertex 3 will be labeled by vertex 4

rather than vertex 2.  Carry out the maximal flow algorithm by hand and note

where a reverse edge arises in the algorithm. 

1.6 Maximum Matching Problems

Definitions and Problem Description

We now look at  the optimal assignment problem,  which is  a  special  case of

the class of problems known as maximum matching problems. In the introduc-

tion,  we  saw  an  example  that  foreshadowed  the  discussion  in  this  section.

Referring again to Figure 1.3, we have a group of nodes on the left represent-

ing workers, and another group of nodes on the right representing tasks. The

weight of an edge connecting a worker to a task represents the worker's 
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effectiveness  at  that  task.  We  are  looking  for  a  way  of  matching  workers

uniquely  with  tasks  in  order  to  maximize  the  total  effectiveness  of  all

workers.

Throughout  this  section  we  consider  only  undirected  graphs.  We  again

give a presentation close to that of Swamy and Thulasiraman ([57], Chapters

8 and 15). The basic definitions pertinent to the problem are as follows.

DEFINITION  1.   (a)  A  graph  G V , E  is  called  bipartite  if  there

exist  disjoint  subsets  V1  and  V2  of  V  such  that  each  edge  has  one  end-

point in V1  and the other in V2. We refer to V1  and V2  as the sides of the

graph.

(b)  A matching  M  in  a  bipartite  graph  G V , E  is  a  collection of

edges in E, no two of which share a common vertex.

(c)  A  vertex  in  a  matching  M  is  called  saturated  by  M  if  it  is  an

endpoint of an edge in the matching.

(d)  A  matching  M  in  a  bipartite  graph  with  sides  V1  and  V2  is

complete if all vertices in V1 are saturated.

Needs "KnoxOR`Graphs`" ;

1

2

3

4

5

6

7

8
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2
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4

5

6

7

8
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2

3

4

5

6

7

8

 (a)                               (b)                                (c)     

Figure 1.51 – (a) partial matching; (b) not a matching; (c) complete matching

In  Figure  1.51(a),  M 1, 7 , 2, 6 , 3, 5  is  a  matching,  in  which

vertices  1,  2,  and  3  of  side  V1 1, 2, 3, 4  are  saturated.  The  set  of  edges

1, 5 , 2, 5  in Figure 1.51(b) is not a matching since the two edges share

vertex  5.  The  set  M 1, 7 , 2, 6 , 3, 5 , 4, 8  in  Figure  1.51(c)  is  a

complete matching.

We  specialize  the  general  problem  of  finding  complete,  maximum

weight matchings in graphs in the following ways. We assume:

(a)  The  graph  G  is  a  weighted,  undirected  bipartite  graph  with  sides  V1

and V2.
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(b) Both V1 and V2 have n vertices.

(c) Edges e v, w  exist between each vertex v V1 and w V2.

Together,  these  assumptions  imply the  existence  of  n  complete  matchings.

(See  Exercise  1).  Our  goal  is  to  find  one  among  these  many  matchings  of

maximum total  weight.  From the  point  of  view  of  applications,  (c)  is  not  a

very  restrictive  assumption,  since  a  worker  may  be  given  an  effectiveness

measure  of  zero  at  a  task  for  which  he  is  unsuitable.  We  will  denote  the

vertices  of  V1  by  v1,  v2,  ...,  vn  and  those  of  V2  by  w1,  w2,  ...,  wn.  We  also

write  Wij  for  the  weight  of  the  edge  connecting  vi  and  w j.  These  weights

form an n n weight matrix W Wij .

DEFINITION 2.   A complete matching M  is  maximal  if,  for  all  other

complete matchings M,

vi,w j M Wij vi ,w j M Wij

Activity  1  –  Must  there  be  a  unique  solution  to  the  maximal  matching

problem?  What if the weights of all edges are different?

There  is  a  tool  in  the  KnoxOR`Graphs`  package  that  easily  sketches

bipartite graphs given the weight matrix of the graph, which is a Mathemat-
ica  matrix in the form of a list of row lists, that has a row for each left-side

vertex and a column for each right-side vertex.  The command DisplayBipar-

titeGraph given below has the weight matrix as its only argument, and takes

options  ShowWeights   True  to  show  the  edge  weights,  Labeling,  which

can be set to a list of vertex labels in the matching algorithm to be described

below,  and  Matching,  which  can  be  set  to  a  list  of  edges  in  a  matching.

Those  edges  will  be  shown  solid,  and  edges  not  in  the  matching  will  be

shown  dashed.   Other  options  are  those  of  DisplayGraph,  except  that  the

EdgeLabels option is overridden. For your convenience, the VertexPositions

option  and  VertexLabelPositions  options  have  been  initialized  so  as  to

produce  a  good-looking  bipartite  graph,  although  you  may  change  them  if

you wish.

DisplayBipartiteGraph weightmatrix,opts
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Options DisplayBipartiteGraph

ShowWeights False,
Labeling Automatic, Matching None,
DisplayFunction Display $Display, #1 & ,

GraphType Undirected, VertexLabels Automatic,
VertexPositions Automatic,

VertexLabelPositions Automatic,
EdgeLabels Automatic,

EdgeLabelPositions Automatic,
EdgeStyle Thickness 0.005 , EdgeSeparation 0.01,
DisplayFunction Display $Display, #1 & ,

AspectRatio 1,
LoopPositions Automatic, LoopSize 0.05

In the graph with the weight matrix below, it is easy to check by enumer-

ating all matchings that M 1, 4 , 2, 6 , 3, 5  is maximal.  This match-

ing is shown in Figure 1.52.  

W
10 4 6
1 3 8
2 7 0

wmatrix52 10, 4, 6 , 1, 3, 8 , 2, 7, 0 ;

vlabel52 "1", "2", "3", "4", "5", "6" ;

DisplayBipartiteGraph wmatrix52,

VertexLabels vlabel52, AspectRatio .7,

Matching 1, 4 , 2, 6 , 3, 5 ;

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1.52 – A maximal matching

We  will  develop  an  algorithm  that  successively  improves  an  initial

matching  until  a  maximal  matching  is  found.  This  algorithm  proceeds  in
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phases.  In  each  phase,  we  construct  a  (proper)  subgraph  of  the  original

graph. In each step within a phase, there is a matching in the subgraph. If, at

any  step,  the  matching  is  complete,  then  because  of  the  way  in  which  the

subgraph  will  be chosen,  the matching is  maximal. Otherwise,  we locate an

augmentingpath and use it to create a new matching with one more edge. If

an  augmenting  path  cannot  be  found  and  we  are  not  yet  done,  then  a  new

phase  is  entered.  A  new  subgraph  is  generated  that  contains  the  previous

matching,  and  an augmenting path may exist  within the new subgraph.  The

definition of an augmenting path is as follows.

DEFINITION 3.  An augmenting path for a matching M  is a path with

no repeated edges that connects two vertices not saturated by M  in such

a way that edges in E M  alternate with edges in M .

EXAMPLE 1.  In the graph of Figure 1.53(a),  the solid lines are edges of a

matching M  and the broken lines are edges not in M . The path v3, w3, v2, w2

is an augmenting path. Notice that if we delete from M  the edge v2, w3  on

the augmenting path, and adjoin to M  the edges v3, w3  and v2, w2  on the

augmenting path, we obtain a matching M  that has one more edge than M .  

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

v1

v2

v3

v4

w1

w2

w3

w4

(a)                                             (b)  

Figure 1.53 – (a) Matching M ; (b) augmented matching M

Activity  2  –  Try  to  justify  that  augmentation  must  always  increase  the

number  of  edges  in  the  current  matching  by  exactly  1.   Then  compare

your justification to the one in the proof of Theorem 1 below.
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Matching Algorithm 

We now show that the last observation of Example 1 is true in general, i.e.,

the  exclusive  union  of  a  matching  with  an  augmenting  path  improves  the

matching.

THEOREM 1.  Let P be an augmenting path for a matching M , and define

M M P P M

Then M  is a matching with one more edge than M .

Proof.  The  path  P  begins  and  ends  in  an  unsaturated  vertex,  hence  it  must

begin and end with an edge not  in the matching M .  Edges  that are "out" of

M  alternate  in  the  path  with  edges  that  are  "in"  M ,  hence  P  has  an  odd

number m 2 k 1 of edges as follows:

 

w0, w1 w1, w2 w2, w3 wm 1, wm

e1 e2 e3 em

out in out out

Since P  has no repeated edges, we see easily that the vertices wi  in the path

are  all  distinct,  and  among them,  w0  and  wm  are  the  only  vertices  not  satu-

rated by the matching M . 

Note that

P M e1, e3, ..., em

and

M P M e2, e4, ..., em 1

and these two sets of edges are disjoint. Using |  | to represent the cardinality

of a set, we have

M P M M P P M M P
k 1 M k
M 1
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It  remains  to  show  that  M  is  a  matching.  We  leave  this  to  the  reader  as

Exercise 5.  

EXAMPLE 2.  The location of  an augmenting path can be done by a quick

scan of  the graph for small problems. Consider the graph of Figure 1.54,  in

which the solid edges are those in a matching M  and the broken edges are in

the graph,  but are not used by M.  Begin at an unsaturated vertex on the left

side, and follow an unused edge to a vertex on the right side. Then follow a

used edge to a vertex on the first side, then an unused edge, etc. Stop as soon

as  an  unsaturated  vertex  on  the  second  side  is  found.  For  instance,  starting

with vertex 4 on the left side, we trace the path 4, 8, 3, 9. Addition of edges

4, 8  and 3, 9  and deletion of edge 3, 8  augments the matching.   
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Figure 1.54 – Path 4, 8, 3, 9 is an augmenting path

Activity 3 – Try to find other augmenting paths in Figure 1.54. 

The transition to a new phase of the main matching algorithm requires us

to introduce the notion of vertex labeling for a bipartite graph.

DEFINITION  4.  A  real-valued  function  L  on  the  vertex  set  V  of  a

bipartite graph G with weight matrix W  is a feasible labeling of V  if, for

all edges vi, w j ,

 L vi L w j Wij  (*)

The  subgraph  G L  of  G  whose  edge  set  consists  of  all  edges  such  that

equality occurs in (*) is the equality subgraph of G generated by L.

1.6 Maximum Matching Problems 119



EXAMPLE  3.  The  following  defines  a  feasible  vertex  labeling;  in  fact,  it

will be the starting point of the matching algorithm:

(1) 
L vi maxk 1,...,n Wik i 1, 2, ..., n
L w j 0 j 1, 2, ..., n

Since

 L vi L w j maxk 1,...,n Wi k Wij

for all  i  and j,  (1)  satisfies the defining condition in the definition.  Because

L w j 0 for all j, the equality subgraph consists of those edges e vi, w j
such that

Wij maxk 1,...,n Wi k

At least one such edge exists for each vertex vi  in side V1.  For example, let

the weight matrix of a bipartite graph be as below.  Recall that the rows refer

to the left-side vertices v1, v2, and v3, and the columns refer to the right-side

vertices w1, w2, and w3.

W  = 
3 2 3
1 6 4
4 5 3

The maximum weights in the three rows are 3, 6, and 5, respectively. In row

1,  the maximum is taken on jointly at w1,  and w3,  whereas the maximum is

unique  in  the  other  two  rows.  Therefore  the  equality  subgraph  has  edges

v1, w1 , v1, w3 , v2, w2 , and v3, w2 .  

Activity  4  –  Find,  and  sketch,  the  equality  subgraph  of  the  bipartite

graph with the weight matrix below, using labeling strategy (1).

W
4 5 4 3
2 0 3 3
7 3 6 4
2 4 4 1

EXAMPLE 4.   Given  a labeling Lm,  we can create a  new labeling Lm 1  in

the following way. Let S  be a given subset of vertices in V1  and let T  be the

set  of  all  vertices  in  V2  that  are  adjacent  to  any  vertex  in  S  in  the  equality

subgraph G Lm . Define

(2)minvi S, w j T Lm vi Lm wj Wij
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No edge vi, w j  referred to above can be in G Lm , since w j T , hence the

quantity in braces must be strictly positive for each such edge. It follows that

 is strictly positive.  Define Lm 1 by

(3)

Lm 1 vi
Lm vi if vi S

Lm vi otherwise
           

Lm 1 w j
Lm w j if w j T

Lm w j otherwise

The reader is asked in Exercise 10 to check the following four claims about

the new labeling Lm 1:

(4)

If vi S and w j T , then Lm 1 vi Lm 1 w j Wij; 

consequently the feasibility condition is satisfied, and edge vi, w j  

belongs to G Lm 1 .

(5)

If vi S and w j T , then the feasibility condition is satisfied. 

Also, there exists an edge of this type that is in G Lm 1  but not 

G Lm .

(6)If vi S and wj T , then the feasibility condition is satisfied.

(7)
If vi S and w j T , then the feasibility condition is satisfied. 

Also, if such an edge is in G Lm , then it is also in G Lm 1 .

In  all  cases,  Lm 1  is  seen  to  satisfy  the  feasibility  condition  (*),  and  conse-

quently it is a feasible vertex labeling.  

Our algorithm will  move from one phase to the next  by changing label-

ings  in  this  way.  When  a  search  for  an  augmenting  path  is  unsuccessful,

there  will  be  a  set  S  of  left-side  vertices  as  in  Example  4  that  we  have

encountered  while  searching  for  the  path.   Then  the  set  T  of  all  right-side

vertices adjacent to vertices in S can be found. In the partial graph in Figure

1.55,  our  augmenting  path  search  may  have  started  at  v1,  and  gone  to  w1,

then  v2, w2,  and  ended  at  v3.  In  this  case,  and  if  there  are  no  other  edges

coming  out  of  v1, v2, or v3  that  are  not  shown,  then  S v1, v2, v3  and

T w1, w2 .  The next  phase of  the algorithm begins by resetting the graph

to  be  the  equality  subgraph  of  the  new  labeling  determined  by  S  and  T ,  in

which the amount  is subtracted from the labels in S and added to the labels

in T .  We then try to find an augmenting path in the new graph. Observations

(4)  and  (5)  above  give  us  hope  because  the  edges  used  in  the  unsuccessful

augmenting path are still in the new equality subgraph, and there must be at
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least one new edge as well from a vertex in S  to a vertex not in T .  There is

not  a  guarantee  of  a  new augmenting  path  in  the  next  phase,  however,  and

notice  that  we  could  actually  lose  edges  pointing  into  T  in  the  case  of  (6)

when changing labeling.  The reason that we cannot be sure of an augment-

ing path is  that  it  is  possible  that  the new edge points  to  a right-side  vertex

that was already matched with a left-side vertex, from which the augmenting

path search could stall. But we also do not lose ground, because edges in the

current  matching  that  were  not  on  the  attempted  augmenting  path  have

left-side  vertices  that  are  not  in  S  and  right-side  vertices  that  are  not  in  T
(else  like  w2  and  v3  in  the  diagram  the  companion  left-side  vertex  would

have been a part of the augmenting path in S).  By observation (7), the edge

connecting them will still be in the new equality subgraph.  If no augmenting

path is found under the new labeling, we must relabel and search again.

v1

v2

v3

w1

w2

v1

v2

v3

w1

w2

Figure 1.55 – Forming the sets S and T in the matching algorithm

Exercise  11  leads  you  through  an  argument  that  eventually  the  label

changing  algorithm must  produce  an  equality  subgraph  that  has  a  complete

matching.  The  following  theorem  shows  that  once  we  have  produced  a

complete  matching  in  the  equality  subgraph  of  a  feasible  vertex  labeling,

then the computation may cease.

THEOREM  2.  Suppose  that  M  is  a  complete  matching  in  the  equality

subgraph  G L  of  a  feasible  vertex  labeling  L.  Then  M  is  a  maximal

matching.

Proof.  Recall that for arbitrary edges e vi, w j  in the original graph,

L vi L w j Wij

and  for  edges  vi, w j  in  the  equality  subgraph,  particularly  those  in  the

matching M ,

L vi L w j Wij
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In  a  complete  matching,  all  vertices  are  saturated.  Thus,  if  M  is  any  other

complete matching in G,

(8)e M Wij i 1
n L vi j 1

n L w j e M Wij

This proves that M  has at least as much weight as M ,  and since M  was an

arbitrary complete matching, M  is optimal.  

Below  is  a  statement  of  the  matching  algorithm for  the  optimal  assign-

ment problem.

MAXIMAL MATCHING ALGORITHM 

1.  Initialize  M ,  labeling  L  as  in  formula  (1),  and  G  equality

subgraph of L.

2. Repeat steps 3–8 until the size M  of the matching is n.

3. Repeat steps 4 and 5 until an augmenting path cannot be 

      found.

4. Search for an augmenting path in G.

5. If the path P is found, then replace M  by 

    M P P M .

6. Let S be the set of vertices on the left found on the 

      unsuccessful augmenting path, and let T be the set of all 

      their right-side neighbors in G.

7. Redefine labeling L by formula (3).

8. Let G be the equality subgraph of the new L.

We  will  be  using  a  few  new  commands  and  data  structures  in  order  to

carry  out  the  matching  algorithm  in  Mathematica.   The  basic  input  to  the

algorithm  is  the  weight  matrix  of  the  bipartite  graph  described  earlier.   A

vertex labeling will be stored as a list of numbers, one for each vertex.  For

the  weight  matrix  of  Example  3,  the  initial  labeling  would  be

3, 6, 5, 0, 0, 0 .   The  DisplayBipartiteGraph  command  can  be  used  to

display the graph,  and the option Labeling can be set to the list  of  labels in

order to display the labeling.  We must represent matchings and augmenting

paths,  which  we  choose  to  do  as  lists  of  edges.   The  matching  that  pairs

vertex 1 to 6, 2 to 5, and 3 to 4 would be stored as 1, 6 , 2, 5 , 3, 4 , for

example.  All edges will be written with vertices referred to by number, not

name, and with the left-side vertices first  and the right-side vertices second.

The following tools are available in KnoxOR`Graphs`: 

AugmentMatching matching,augmentingpath

1.6 Maximum Matching Problems 123



AugmentMatching returns a new matching as in Theorem 1, which uses the

given  augmenting  path  and  the  given  matching.  (Both  are  lists  of  edges  as

described above.)

EqualitySubgraph weightmatrix,labeling

EqualitySubgraph produces the weight matrix of the equality subgraph as in

Definition  4  of  the  given  labeling,  for  the  given  weight  matrix  of  the  full

bipartite graph. 

ReviseLabeling weightmatrix,labeling,S,T

ReviseLabeling returns  the pair  { ,  newlabeling},  where  newlabeling is  the

list  of  vertex  labels  defined  by  formula  (3),  given  the  weight  matrix  of  the

original bipartite graph, the current labeling, and the sets S and T of vertices

described  in  the  algorithm  associated  with  the  unsuccessful  search  for  an

augmenting path.  

So  after  entering  the  weight  matrix  of  the  original  bipartite  graph,  an

empty  initial  matching,  and  the  initial  labeling,  we  can  use  the  output  of

EqualitySubgraph  as  input  to  DisplayBipartiteGraph  to  look  at  the  graph  to

find an augmenting path.  Then AugmentMatching can be called on to get a

new matching, which can then in turn be given as an option to DisplayBipar-

titeGraph to set up the search for a new augmenting path.  When it happens

that an augmenting path cannot be found, the ReviseLabeling command can

be called upon to give the new labeling, which can then be passed to Equality-

Subgraph, and the process of finding an augmenting path can continue, until

a complete matching is found at some phase in an equality subgraph.

Activity  5  –  Use  the  EqualitySubgraph  and  DisplayBipartiteGraph

commands to show the first  equality subgraph for  the graph of  Activity

4, and if there is a maximal matching, use the Matching option to show it

as well.

Examples

The matching algorithm is illustrated and clarified by the next examples.

EXAMPLE 5.  A department chairman is to assign four faculty members to

four  courses  on  the  basis  of  data  obtained  from  student  evaluations  con-

ducted in the past. The students were asked to rate the professors on a scale

of 1–10, with 10 representing the highest rating. The average scores received
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by each professor in each course are recorded in the matrix below, in which

rows correspond  to faculty members and columns to courses.  The chairman

is to find a matching between professors and courses that achieves maximal

total evaluation rating. 

9 8 2 9
4 6 4 5
2 3 3 3
4 5 3 5

We  see  that  the  maximum in  row  1  is  9,  taken  on  at  columns  1  and  4

(that is, vertices 5 and 8 on the right side, the maximum in row 2 is 6, taken

on  only  in  column  2  (vertex  6),  etc.   So  we  obtain  the  initial  labeling

L1 9, 6, 3, 5, 0, 0, 0, 0  with the equality subgraph  shown in Figure 1.56.

(Notice  that  here  we  choose  to  override  the  default  VertexLabelPositions

because  with  the  vertex  labeling  shown  the  label  positions  are  better  off

above the vertices to avoid being cut off.)

wmatrix56 9, 8, 2, 9 ,

4, 6, 4, 5 , 2, 3, 3, 3 , 4, 5, 3, 5 ;

L1 9, 6, 3, 5, 0, 0, 0, 0 ;

initwt EqualitySubgraph wmatrix56, L1 ;

initmatch ;

vlabelpos56 Above, Above, Above,

Above, Above, Above, Above, Above ;

DisplayBipartiteGraph initwt, AspectRatio .7,

VertexLabelPositions vlabelpos56,

Labeling L1, Matching initmatch ;

1 9

2 6

3 3

4 5

5 0

6 0

7 0

8 0

1 9

2 6

3 3

4 5

5 0

6 0

7 0

8 0

Figure 1.56 – Initial equality subgraph

Begin  with  the  empty  matching  in  the  graph  of  Figure  1.56  and  the

unsaturated vertex 1. We find the augmenting path 1, 5 immediately, and add
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it  to  the  matching.  If  we  now  choose  the  unsaturated  vertex  3,  we  find  the

augmenting path 3, 6 immediately, and add it to the previous matching. The

resulting  graph  is  in  Figure  1.57,  where  as  usual  the  edges  in  the  matching

are solid, and the edges not in the matching are broken.

matching2 AugmentMatching initmatch, 1, 5

matching3 AugmentMatching matching2, 3, 6

DisplayBipartiteGraph initwt,

AspectRatio .7, Matching matching3 ;

1, 5

1, 5 , 3, 6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1.57 – Graph after two augmentations

To  renew  a  search  for  an  augmenting  path,  we  pick  the  unsaturated

vertex  2  on  the  left  side.  Its  only  neighbor  is  6,  which  is  saturated  by  the

current  matching. The partner of  6 is 3,  and from 3 we find the unsaturated

vertex  7.   The  augmenting  path  is  therefore  2, 6, 3, 7,  or  in  Mathematica
format,  2, 6 , 3, 6 , 3, 7 .   Augmentation  leads  us  to  delete  edge  3, 6

from the matching, and add edges 2, 6  and 3, 7 . We now have the match-

ing in Figure 1.58.  
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augpath 2, 6 , 3, 6 , 3, 7 ;

matching4 AugmentMatching matching3, augpath

DisplayBipartiteGraph initwt,

AspectRatio .7, Matching matching4 ;

1, 5 , 2, 6 , 3, 7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1.58 – Graph after three augmentations

In only one more step, we can match vertex 4 to 8, producing the maxi-

mal  matching  1, 5 , 2, 6 , 3, 7 , 4, 8 .  In  this  example,  we  were  so

fortunate as to have enough edges in the first equality subgraph that a change

of subgraph was unnecessary, and we did not yet have to use the ReviseLabel-

ing  command.   Looking  at  the  rows  of  the  original  weight  matrix,  we  see

that  we  were  able  to  match  up  left-side  vertices  with  one  of  their  most

"favorite"  right-side  vertices,  without  having  to  sacrifice  any  weight.   The

purpose of using the initial labeling that we did is to check if that is possible,

for  in  the  first  equality  subgraph,  only  edges  from vertices  to  their  favorite

mates are included.  If a complete matching exists there, it must be optimal.

EXAMPLE 6. In this example, a change of labeling will be required to find

an  augmenting  path.  A  track  coach  must  decide  which  of  six  runners  to

assign to which of six events. Knowing the skills of his runners, he estimates

how  many  tenths  of  a  second  better  than  the  competition  is  each  possible

runner  on  each  possible  event.  These  estimates  are  in  the  weight  matrix

below.  Rows represent runners, and columns represent events. The problem

is  to  assign  runners  to  maximize  the  total  time  difference  between  the

runners of his team and those of the competition.
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W

5 5 2 0 0 1
4 5 6 2 3 0
1 2 3 3 3 1
2 2 4 2 1 1
0 3 4 2 3 2
4 0 0 1 2 4

The  initial  labeling  is  easily  checked  to  be

L1 5, 6, 3, 4, 4, 4, 0, 0, 0, 0, 0, 0 .   The  equality  subgraph,  i.e.,  those

edges for  which the sum of the labels of  the endpoints  equals the weight of

the  edge,  is  in  Figure  1.59.   We  jump  ahead  a  little  in  the  algorithm  and

suppose  that  we  have  augmented  an  initial  empty  matching  with  edges

1, 7 , 2, 9 , 3, 10 , and 6, 12 . 

wmatrix59 5, 5, 2, 0, 0, 1 , 4, 5, 6, 2, 3, 0 ,

1, 2, 3, 3, 3, 1 , 2, 2, 4, 2, 1, 1 ,

0, 3, 4, 2, 3, 2 , 4, 0, 0, 1, 2, 4 ;

L1 5, 6, 3, 4, 4, 4, 0, 0, 0, 0, 0, 0 ;

initwt59 EqualitySubgraph wmatrix59, L1 ;

initmatch59 1, 7 , 2, 9 , 3, 10 , 6, 12 ;

vpos59

0, 5 , 0, 4 , 0, 3 , 0, 2 , 0, 1 , 0, 0 ,

2, 5 , 2, 4 , 2, 3 , 2, 2 , 2, 1 , 2, 0 ;

vlabelpos59 Above, Above, Above,

Above, Above, Above, Above, Above,

Above, Above, Above, Above ;

DisplayBipartiteGraph initwt59,

VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L1, Matching initmatch59,

AspectRatio .7 ;
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1 5

2 6

3 3

4 4

5 4

6 4

7 0

8 0

9 0

10 0

11 0

12 0

1 5

2 6

3 3

4 4

5 4

6 4

7 0

8 0

9 0

10 0

11 0

12 0

Figure 1.59 – No further augmenting path exists in this equality subgraph

At  this  point,  following  the  algorithm  we  set  S 4 ,  which  is  one  of

only two unsaturated vertices on the left  side.  But 4 only has one neighbor,

namely 9, and the vertex 2 to which 9 is connected in the matching produces

no other candidates. So, with S 2, 4 and T 9  we pass out of loop 3–5

of  the  algorithm  with  an  incomplete  match,  and  we  move  to  step  6,  the

change in labeling and subgraph.  

S 2, 4 ; T 9 ;

delta, L2 ReviseLabeling wmatrix59, L1, S, T

newwt59 EqualitySubgraph wmatrix59, L2 ;

DisplayBipartiteGraph

newwt59, VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L2, Matching initmatch59,

AspectRatio .7 ;

1, 5, 5, 3, 3, 4, 4, 0, 0, 1, 0, 0, 0
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1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.60 – Result of first relabeling

Notice that the number  of formula (2) is 1, which has been subtracted from

the labels of  vertices 2  and 4,  and added to vertex 9.   This  was found by

considering  rows  2  and  4  of  the  matrix,  and  columns  other  than  column  3

(for  vertex  9).   The  smallest difference  between  total  vertex  label  and  edge

weight is 1, taken on in row 2 and column 2 (for vertex 8).  Notice that the

relabeling adds an edge 2, 8  that was not present before.  Edges 5, 9  and

3, 9  were  lost.   But  examination  of  the  new  graph  shows  an  augmenting

path 4, 9, 2, 8.  We now augment the matching and look at the new graph.

newmatch59 AugmentMatching

initmatch59, 4, 9 , 2, 9 , 2, 8

DisplayBipartiteGraph newwt59,

VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L2, Matching newmatch59,

AspectRatio .7 ;

1, 7 , 2, 8 , 3, 10 , 4, 9 , 6, 12
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1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 4

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.61 – New matching; relabeling must follow

Now the  only  unmatched left  vertex  is  5,  but  we reach an  impasse because

there is  no edge at  all  incident  to  vertex 5.   So we must relabel again,  with

S 5  and T .

S 5 ; T ;

delta, L3 ReviseLabeling wmatrix59, L2, S, T

newwt59 EqualitySubgraph wmatrix59, L3 ;

DisplayBipartiteGraph

newwt59, VertexPositions vpos59,

VertexLabelPositions vlabelpos59,

Labeling L3, Matching newmatch59,

AspectRatio .7 ;

1, 5, 5, 3, 3, 3, 4, 0, 0, 1, 0, 0, 0

1 5

2 5

3 3

4 3

5 3

6 4

7 0

8 0

9 1

10 0

11 0

12 0

1 5

2 5

3 3

4 3

5 3

6 4

7 0

8 0

9 1

10 0

11 0

12 0

Figure 1.62 – A complete matching exists in this equality subgraph

Again   comes  out  to  be  1;  and  since  the  minimum  difference  between

vertex label total and edge weight in row 5 occurred in all of  columns 2, 3,
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and 5, the equality subgraph gains new edges 5, 8 , 5, 9 , and 5, 11 .  This

permits  us  to  augment  with  edge  5, 11 ,  for  a  final  matching  of

1, 7 , 2, 8 , 3, 10 , 4, 9 , 5, 11 , 6, 12 .   The  purpose  of  the  relabeling

and  the  meaning  of   is  now  becoming  clear:  relabeling  is  a  sacrifice  of

sorts.  It is an admission that we will not be able to assign favorite right-side

vertices to all left-side vertices.  Some left-side vertex must be paired with a

right  vertex that  is  not  a  favorite.   Relabeling as we have done finds a next

best  collection  of  potential  assignments,  and  in  fact   measures  how  much

we have given up.  Referring to the rows of the original weight matrix, two

relabelings  with  1  have  given  us  a  situation  where  vertex  2  is  paired

with 8 (an edge weight of one less than 2's favorite weight), and vertex 5 is

paired  with  11  (an  edge  weight  of  one  less  than  5's  favorite  weight).   All

other  left  vertices  are  matched with  right  vertices  that  maximize the  weight

among  all  edges  incident  to  them.    The  tale  of  the  algorithm is  now  com-

plete.  

Exercises 1.6

1.  Argue  using  combinatorics  and  mathematical  induction  that,  under

assumptions (a)–(c) listed at the start of the section, there are n  total possi-

ble complete matchings.

2. Verify that the matching in Figure 1.52 is maximal by computing the total

weight of each possible matching.

3. Find an augmenting path for the matching below, and use it to produce a

new matching with more edges.

1
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Exercise 3                                                     Exercise 4

4. Repeat Exercise 3 for the matching above.

5. Finish the proof of Theorem 1, i.e., show that M  is a matching.

6. (Mathematica) Write your own versions of the Mathematica functions: (a)

AugmentMatching; (b) ReviseLabeling; (c) EqualitySubgraph.
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7.   Let  G V , E  be  a  bipartite  graph  with  sides  V1  and  V2,  each  of  n
vertices.  Show  that  if  there  is  a  complete  matching  of  V1  to  V2,  then  for

every subset S of V1,

S A S

where A S  is the set of all vertices in V2  adjacent to some vertex in S. (This

is one half of a double implication called Hall's Theorem.)

8.   (Mathematica)   Consider  the  weight  matrix,  displayed  below,  of  a

bipartite graph.

(a)  Compute  the  feasible  labeling  L1  of  formula  (1),  and  sketch  the

equality subgraph of L1.

(b)  If  S 1, 3  compute  the  feasible  labeling  L2  defined  by  (3),  and

sketch its equality subgraph.

 

3 5 1 0 0 2
6 4 3 2 5 4
1 4 2 2 1 2
1 2 3 3 3 1
2 1 3 2 4 2
3 2 5 4 6 6

                                     

4 1 0 2 3
1 3 3 2 1
4 5 5 2 1
0 0 3 2 0
2 1 2 6 6

Exercise 8                                                              Exercise 9    

9.   Repeat  Exercise  8,  with  the  weight  matrix  above  and  S 2, 3, 4 .  This

time, do the problem by hand, rather than in Mathematica. 

10. Verify claims (4)–(7) about the change of labeling.

11.  Show  that  the  label  changing  algorithm  must  produce  an  equality  sub-

graph that has a complete matching, by arguing as follows:

(a) Upon changing labeling, since by claim (5) there is a new edge from

S to Tc, show that there will either be an augmenting path in the new equal-

ity subgraph, or else the set S must become strictly larger. 

(b) In the worst case, a labeling will be reached where S is the whole left

side.   Then  show  that  further  relabelings  can  lose  no  edges  and  must  gain

edges.  Therefore conclude that a complete matching must be reached. 

12.  A dishonest  politician has four candidates for four patronage jobs.  Each

candidate  has  agreed  to  bribe  the  politician  to  obtain  each  job,  by  amounts

shown in the matrix below (units of thousands of dollars). Find two different

ways  of  assigning  the  candidates  to  jobs,  each  of  which  maximizes  the

politician's total profit.  Do this problem by hand, and not in Mathematica.
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              job                                                 states

 candidate    

2 2 1 0
3 3 2 2
1 0 1 4
2 2 3 1

                branches  

3 2 3 1 1
4 1 2 3 2
1 2 5 1 1
1 4 4 3 0
3 2 1 4 2

 

Exercise 12                                               Exercise 13        

13.  (Mathematica)  A  company  is  planning  to  locate  five  branches  in  five

states.  After  studying various  factors  related to  the local  economies and  tax

laws of the states, the company has managed to quantify how beneficial each

branch  would  be  if  located  in  each  state.  These  ratings  are  in  the  matrix

above.  How  should  the  company  allocate  the  branches  among  the  states,

with no more than one per state, so as to maximize the overall benefit?

14. (Mathematica) Find a maximal matching for the graph of Exercise 8.

15. (Mathematica) Find a maximal matching for the graph of Exercise 9.

16. (Mathematica) A sales manager must assign each of eight salespeople to

one  of  eight  different  regions.   He  has  asked  the  salespeople  to  rate  their

choice  of  regions  in  order,  with  8  representing  their  most  preferred  choice

and 1 representing their least preferred.  The results are shown in the matrix

below,  with  rows  corresponding  to  salespeople  and  columns  to  regions.

How should  the  sales  manager  assign  the  salespeople  to  maximize the  total

rating?

                 regions

salespeople 

7 8 4 5 3 6 2 1
6 8 7 5 4 2 3 1
5 4 8 7 6 3 1 2
3 6 4 8 5 7 2 1
1 5 6 7 4 8 3 2
4 3 2 1 7 8 6 5
2 3 4 1 6 5 7 8
1 5 3 4 2 8 6 7
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1.7 Other Problems of Graph Theory

We  are  nearing  the  end  of  our  study  of  algorithmic  graph  theory,  and  it

might now be helpful to summarize the main ideas. The chapter began with

an  investigation  of  issues  related  to  connectivity  of  directed  and  undirected

graphs.  We  saw how  to  find  connected  components  of  a  graph  and  how to

use the adjacency matrix to count the number of paths of a given length. We

then devised algorithms for finding spanning trees, i.e., connected subgraphs

with the fewest  possible  connections.  Then we gave costs to the edges,  and

proceeded  in  Section 1.3  to  find  spanning  trees of  minimal cost.  Such trees

indicate  the  most  efficient  way  to  maintain  communications  among  several

stations. The algorithm in the undirected case was a simple extension of the

algorithm  constructed  in  the  previous  section  for  trees  without  cost.  A

different  algorithm,  based  on  the  idea  of  dynamic programming,  was  given

for  minimal directed  spanning  trees.  This  algorithm was  adapted  in  Section

1.4  to  find  paths  of  maximum weight  in  a  directed  network.  The  idea  was

that such a path constitutes the most time-consuming sequence of operations

in a large job whose prerequisite structure was described by the graph.

In  the maximal flow problem, we were to find non-negative  weights  on

the edges of a directed network, smaller than or equal to corresponding edge

capacities,  which  maximize  the  total  weight  of  edges  pointing  out  of  the

source.  As  in  the  directed  minimal  cost  tree  problem,  the  strategy  was  to

begin with an arbitrary feasible solution,  and improve it step-by-step until  a

condition  indicating optimality became true.  This  improvement required  the

location of  an augmenting path.  The augmenting path idea also arose in the

matching problem of Section 1.6, in which we were to match vertices on two

sides  of  a  bipartite  graph  to maximize the total  weight  of  edges  used in the

matching.   An  extra  complication  arose  when  it  was  no  longer  possible  to

find  an  augmenting  path  but  the  matching was  not  yet  complete.   A  vertex

labeling method was used to produce a new graph in which augmentation of

the matching could occur.

Much of  the  material in  Sections  1.1–1.4  was based on  the presentation

of Dierker and Voxman [19], with additional information on quasi-connectiv-

ity taken from Mott,  Kandel,  and  Baker [46].  As mentioned before,  Swamy

and Thulasiraman [57] was the main source for  the material in Sections 1.5

and  1.6.  For  further  information,  the  reader  may  consult  many  books  on

discrete  mathematics and graph  theory.   Of  particular  help may be Gibbons

[26] and Minieka [44].

We have not attempted to analyze the efficiency of the algorithms given

here.   The  texts  on  algorithmic  graph  theory  mentioned above  [26,  44,  and

57] examine this issue. Efficiency can depend strongly on the proper choice

of data structures used in the program implementation.  The reader is encour-

aged  to  refer  to  a  good  data  structures  and  algorithm analysis  book such as
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Aho, Hopcraft, and Ullman [1] for information on this subject.

Due to space limitations, we have reluctantly chosen to omit full discus-

sion  of  several  very  well-known  operations  research  problems  related  to

graphs.  It  is  hoped  that  if  these  are  described  briefly  here,  then the  reader's

appetite  will  be  whetted  for  independent  study.   The  descriptions  and

references  below  can  serve  as  the  jumping-off  point  for  an  expository

writing assignment as well.  

Graph Coloring Problem

One of  the  most  famous of  graph  theoretic  problems involves  the  partition-

ing  of  the  vertices  into  sets  called  "colors,"  or,  less  formally,  the  "graph

coloring problem." Consider an intersection of streets such as that of Figure

1.63(a).   The  street  connecting  points  A and C is  a  one-way street,  and  the

street  connecting  B  and  D  is  a  two-way  street.  Some  turns  can  be  made

simultaneously  without  causing  accidents,  and  thus  such  turns  can  all  be

permitted to occur on a single phase (color)  of a traffic light.  For example,

the right turn denoted by AD from A to the right lane of D can occur at the

same  time  as  turn  BC  from  B  to  the  right  lane  of  C.  Other  turns  must  be

prevented when this color is lit, and allowed to occur only when some other

color is lit. A car cannot, for instance, be permitted to make the left turn BC

at the same time another car is passing through the intersection from A to C,

which we denote by "turn" AC.  The problem is to find a way of  assigning

turns to colors, utilizing as few colors as possible, such that no collisions can

occur.  If  we  view  the  turns  as  vertices  of  a  graph  and  connect  those  that

cannot be allowed to proceed at the same time, as in Figure 1.63(b), then we

are  searching  for  a  minimal  coloring  of  vertices  such  that  adjacent  vertices

have different colors. 

A B

CD

AB

AC

AD

BC

BD

DC

DB

(a)                                                            (b)
Figure 1.63 – Graph coloring and street intersections
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Activity  1  –  Explain  how  the  following  situation  can  be  modeled  as  a

graph coloring problem.  Five hazardous materials are to be transported

by  train  to  a  distant  underground  repository.   Legal  safety  regulations

require  that  material  1  cannot  be  transported  in  the  same  car  with

materials 3 and 4, material 2 cannot be in the same car with materials 4

or  5,  and  material  3  cannot  ride  with  material  1  or  5.   What  is  the

minimum number of cars needed to transport all the materials?

Several  elementary  results  are  easy  to  see.   For  example,  a  complete

graph on n vertices requires n colors, since every vertex is adjacent to every

other, hence no pair can share the same color.  A less obvious result is that if

the  graph  has  no  cycles with  odd length,  then two colors  suffice.   To show

this,  we  can  use  a  variation  of  the  breadth-first  search  technique.   (See

Figure  1.64.)  Start  at  a  vertex  and  give  it  a  color,  say  blue.   Fan  out  to  its

children  and  color  them  red.   Next,  fan  out  to  the  children  of  these  recent

vertices and color them blue, if they are not already colored.  If any of these

new  children  was  adjacent  to  the  original  blue  starting  vertex,  then  there

would be a cycle from the start to the child, to the grandchild to the start, but

this  cycle  would  have  length  3,  which  is  forbidden.   We  can  continue  the

process of fanning out to children, coloring them red if their parents are blue,

and blue if their parents are red, and it is easy to give a convincing argument

that  a  blue  vertex  can  never  be  adjacent  to  a  blue  vertex,  or  a  red  to  a  red,

else there would be an odd length cycle, in contradiction to assumption.  It is

not hard to write a Mathematica  function to implement this algorithm.  (Try

it.)  

Blue

Red

Red

Blue

Blue

Blue

Figure 1.64 – Coloring with two colors

You  should  not  be  too  disappointed  if  you  cannot  develop  a  complete

solution  to  the  graph  coloring  problem  in  one  afternoon.  Many  researchers

have spent many decades on the coloring problem. One of the great mathemat-

ical  results  of  the  twentieth  century  was  the  exhaustive,  computer-intensive

verification that no more than four colors will be necessary if the graph is a
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planar  graph,  which  means,  roughly  speaking,  if  vertices  are  able  to  be

arranged  so  that  all  edges  can  be  drawn  without  crossing  each  other.   For

further  information  on  graph  coloring,  see  Aho,  Hopcraft  and  Ullman  [1],

Gibbons [26], Busacker and Saaty [11], or any other good graph theory text.

Shortest Paths Problem

Figure 1.65 reproduces the computer network of Figure 1.24 in Section 1.3.

At that point in our study, we were interested in minimal total cost networks,

and  we  did  not  particularly  care  whether  a  minimal  spanning  tree  gave  a

shortest possible path from one vertex to another.  But in many problems we

are  interested  in  finding  shortest  paths;  for  instance,  if  messages  are  to  be

broadcast  from  vertex  1  throughout  the  network,  we  would  need  a  way  of

finding shortest paths from 1 to each other vertex. 
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Figure 1.65  – Finding shortest paths

An efficient algorithm, due to Dijkstra,  does exist for  this shortest paths

problem.  The idea is that one keeps a set A of vertices at each step to which

shortest paths have been found,  and in the next step add to A  the vertex not

already in A  that would result in the shortest path from 1. We keep track of

the  predecessors  of  each  vertex  in  the  path  from 1  as  we  go  along.   In  the

diagram above,  we would  initialize A 1 .   The set  of  vertices adjacent  to

A is  now 2, 3, 4 ,  and  the  closest  vertex to 1  is  vertex 3 at  a  distance of  4

units.   Thus,  we  add  it  in  to  get  A 1, 3 ,  and  note  that  vertex  3  has  a

permanent  predecessor  of  vertex  1.   Now  vertex  1  is  adjacent  to  vertices  2

and 4, and path costs from 1 for these vertices would each be 5.  Also, vertex

3 is adjacent to 2, 4, 5, and 6.  Since it costs 4 units already to get to vertex

3, if we choose to add in vertex 2 from 3, the path cost from 1 to 2 is 6, and
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the possible path costs from 1 through 3 to the other vertices 4, 5, and 6 are

7, 7, and 6, respectively.  Among these path costs, the direct edge from either

1 to 2 or from 1 to 4 would be the least costly choice.  So add vertex 2 to A
with predecessor 1.  Vertex 4 would be added next, also with predecessor 1.

The vertex adjacent  to one of  the vertices in A 1, 2, 3, 4  that creates the

next  shortest  path  is  vertex  6,  with  predecessor  3  and  path  cost  6.   After

adding  6  to  the  set  A,  the  shortest  paths  that  we  have  found  so  far  are:

1, 2 , 1, 3 , 1, 4 , 1, 3, 6 .   Continue  in  this  way  until  all  vertices  are

included in A.  

Activity  2  –  What  are  the  next  three  vertices  added  to  the  set  A  in  the

example above?

Most texts on Discrete Mathematics and Graph Theory have discussions

of the shortest path problem.  In particular, you will find a nice discussion in

the book by Dossey, Otto, Spence, and Vanden Eynden [20]. 

Traveling Salesman Problem

Another  problem  of  prominence  in  operations  research  has  the  provocative

name of  the "traveling salesman" problem. Mathematically, the statement of

the  problem  is  very  simple.  Given  a  weighted  graph,  either  directed  or

undirected, find a cycle of smallest total weight that passes through all of the

vertices. To see the reason for the name, consider again the graph of Figure

1.1 reproduced here as Figure 1.66.  Suppose now that the vertices are cities

to be visited by a salesman, and the weights are distances between cities. The

traveling  salesman  must  visit  all  of  the  cities  at  least  once,  beginning  and

ending  at  some  home  base,  while  minimizing  the  total  distance  traveled.

Several  different  approaches  to  the  problem  can  be  found  in  Minieka  [44]

and Gibbons [26], and a formulation as an integer program (see Chapter 3) is

given in Winston [61].  We will be content to comment on the computational

difficulty  of  the  problem,  and  to  talk  about  some heuristic  approaches,  that

is,  methods  that  common  sense  indicates  should  give  good  solutions  but

which are not guaranteed to yield optimal solutions.  

1.7 Other Problems of Graph Theory 139



1

2

3

45

6

1

3

28

3

1 6

27

1

3

6

42

2

4

5

8

7

5

2

3

1

2

 Figure 1.66 – The traveling salesman problem

First  observe  that  each  cycle  that  passes  through  all  vertices  of  a  graph

exactly  once  is  in  1–1  correspondence  with  a  permutation  of  the  vertices.

The  cycle  1, 2, 3, 4, 5, 6, 1  in  Figure  1.66  corresponds  to  the  permutation

1, 2, 3, 4, 5, 6  of the first six integers.  It seems that there could be as many

as 6!, or in general for a graph of n vertices n , different cycles to check.  An

exhaustive  algorithm  would  have  to  systematically  examine  each,  add  the

total cost of the edges in the cycle, and update the best cycle and best cost if

necessary.  There are roughly n 1 additions to be made, and a comparison,

for  each cycle to  be  examined,  hence  there are  n n  operations  to  be done.

In the case of, say, n 30 cities, even an extremely fast computer that could

do  a  billion  operations  per  second,  at  3600  seconds  per  hour,  24  hours  per

day, and 365 days per year, would take the following number of years to do

the job:

N 30 30 109 3600 24 365

2.52333 1017

By changing the 30 above to 40 or 50,  you can see easily the problem with

exhaustive checking.  

Actually the  situation is  not  quite  that  bad.   First,  some potential  cycles

can be terminated early because not all edges may be available in the graph.

The  path  1, 3, 5, 6, 2, 4, 1  is  not  legal  in  the  graph  of  Figure  1.66  because

edge 3, 5  does not exist.  Second, we may choose to start and end our cycle

at  an  arbitrary,  but  fixed,  vertex  such  as  vertex  1.   The  cycle

1, 2, 3, 4, 5, 6, 1  has  the  same  cost  and  traverses  the  vertices  in  the  same

order as the cycle 2, 3, 4, 5, 6, 1, 2, so it is not necessary to examine both of

these  cycles.   In  that  case,  the  cycles  that  we  need  to  examine  fix  the  first
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member of the permutation, and just permute the last n 1 vertices.  So there

are  a  mere n 1  different  vertices  instead  of  n .   Moreover,  a  cycle  like

1, 2, 3, 4, 5, 6, 1  is  the  same  as  the  cycle  in  the  reverse  order

1, 6, 5, 4, 3, 2, 1.   So  we  may  cut  the  number  of  cycles  in  half.   But  you

must agree that even using these devices and dividing the number above by

30 2 60 does not change the essential explosive nature of the problem. 

Activity 3 – For the graph of Figure 1.66, how many cycles at most can

there be?  List the cycles that begin 1, 2, ... and compute their path costs.

In  doing  Activity  3,  you  may  have  devised  a  systematic  approach  to

itemizing  cycles  somewhat  along  the  following  lines.   Form  a  tree  with

vertex 1 at the top, and child vertices 2, 3, etc. under it corresponding to the

possible second vertices that can be visited from vertex 1 as the cycle begins.

Under  each of  these  children,  place  the  possible  third  vertices on  the cycle,

etc.,  until  the  depth  of  the  tree  is  equal  to  the  number  of  vertices,  and  then

adjoin  vertex  1  at  the  bottom as  the  last  vertex  in  the  cycle.   A  part  of  the

corresponding  tree  for  Figure  1.66  is  in  Figure  1.67.   We  show  only  the

cycles  that  begin  with  1, 2.   Some  paths  get  stuck  because  an  edge  to  an

unvisited  vertex  no  longer  exists  in  the  graph.  For  all  paths  that  reach  the

bottom of the tree, the edge costs along the path can be added to find the cost

of  the  cycle.   In  the  part  of  the  tree  shown  here,  only  two  of  the  six  paths

shown form complete cycles.

1

2
3 4 5 6

3 4 5 6

4 3 5 4 6 5

5 6 3 4

6 3

1 1

Figure 1.67 – Enumerating all cycles on a tree

One  heuristic  method  that  has  been  effective  is  the  nearest-neighbor
heuristic.  Suppose for simplicity that we have a complete graph, with edges

existing  between every pair  of  vertices,  such as  the small four-vertex  graph

in  Figure  1.68.   We  construct  a  cycle  by  starting  from a  given  vertex,  and
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following the strategy that whatever vertex we are currently at, we next visit

the vertex that is closest (in terms of smallest edge cost) to the current vertex

among those that have not been visited yet.  So from vertex 1 in this graph,

we visit 3 next because its edge cost of 4 is smaller than the edge costs 8 and

6 to vertices 2 and 4, respectively.  From 3 we visit 2 next, and then 4.  The

total  cost  of  the  cycle  1, 3, 2, 4, 1  is  4 6 3 6 19.   Try  to  use  the

exhaustive tree method to verify that this is the smallest possible cost.  

1 2

3 4

8

4 6

8

6 34 6

9

6 3

9

Figure 1.68 – Nearest -neighbor heuristic

Activity  4  –  Another  well-known  heuristic  method  for  the  traveling

salesman  problem  is  the  sorted  edges  heuristic.   Much  as  in  Kruskal's

algorithm, you first sort the edges in increasing order of cost.  Then you

attempt to build a cycle by selecting edges in the list in order, as long as

they  neither  finish  a  cycle  that  does  not  go  through  all  of  the  vertices,

nor  give  any  vertex  degree  3,  which  cannot  be  in  a  cycle.   Try  this

approach  on  the  graph  of  Figure  1.68  and  show that  you  find  the same

cycle  as  the  nearest-neighbor  heuristic  found.   Does  the  approach  work

on the graph of Figure 1.67?

Our purpose has been to show the mutually beneficial interplay between

theory and practical results in graph theory, as well as to solve a few special

operations  research  problems  related  to  networks.  Any  algorithm  must  be

proved to do the job that it is meant to do, and some interesting mathematics

arises  in  doing  so,  as  in  Kruskal's  algorithm  and  the  results  characterizing

optimality  in  the  maximal  flow  and  maximal  matching  problems.  We  will

see often the interrelation of  mathematics and algorithm development as we

move  on  to  study  linear  programming,  stochastic  processes,  and  dynamic

programming in the remaining chapters.
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2 

Linear Programming

Introduction

Mathematical  programming   is  the  area  of  mathematics  that  is  concerned

with  optimizing  an  objective  function  of  several  variables  subject  to  con-

straints on those variables.  We have already encountered such a problem in

Chapter  1.   Consider  again  the  minimal  cost  spanning  tree  problem  as

illustrated  by  Figure  1.1.   A  subgraph  of  the  original  communications

network can be represented by a matrix A xi j i, j 1, ..., n  in which xi j 1 if

edge  vi, v j  is  in  the  subgraph  and  xi j 0  otherwise.   In  finding  a  tree  of

minimal cost,  we are really solving the problem:  minimize the total cost of

all  edges  in  the  subgraph  subject  to  the  condition  that  there  is  exactly  one

path in the subgraph from each vertex to each other vertex.  Since Ak i, j   is

the number of paths of length  k   from vi  to v j, we see that we can write the

problem as: 

             minimize: g x11, x12, . . . , xn, n 1 , xn n
i j

c i, j xi j 

                 subject to:  
k 1

n 1

Ak i, j 1 for  i j ,     xi j 0  or  1  

where n is the number of vertices and c i, j  is the cost of edge vi, v j .

The  objective  function  g  is  linear  in  the  variables  xi j,  but  the  first

constraint  is  highly  non-linear,  and  the  second  constraint  forbids  the  vari-

ables  from  taking  on  arbitrary  real  values  in  some  interval.   Both  of  these

conditions  make  the  problem  difficult.   Fortunately,  we  developed  other

techniques for the spanning tree problem.

The  problems  that  we  will  study  in  this  chapter  are  more  tractable,

though they are still non-trivial and have wide applications.  The underlying

idea of the problem is to optimally allocate limited resources.  The objective

function  will  be  linear,  the  constraints  will  be  linear,  and  the  variables  will

usually take values in subsets of the non-negative half of the real line.  Such

problems  belong  to  the  area  of  mathematical  programming  called  linear
programming.

The  following  example  is  a  good  illustration.   A  winery  makes  three

kinds of  wine: red,  white, and rosé.   A gallon of  red wine yields a profit  of

$1.25  and requires 2 bushels of type I grapes,  0 bushels of type II grapes,  2
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lbs. of sugar, and 2 labor hours to produce.  The corresponding numbers for

white wine are $1.50 , 0 bushels, 2 bushels, 1 lb., and 1 labor hour, and those

for rosé wine are $2, 1 bushel, 1 bushel, 1.5 lbs., and 2 labor hours.  If in a

week, the winery has available 200 bushels of type I grapes, 150 bushels of

type II grapes, 90 lbs. of sugar, and 250 labor hours, then how much of each

wine should be made to maximize total profit?

We  define  x1,  x2,  and  x3,  respectively,  to  be  the  numbers  of  gallons  of

red, white, and rosé wine to be made in this week.  The total weekly profit is

then  1.25 x1 1.50 x2 2.00 x3,  in  units  of  dollars.   Each  variable  xi  is

clearly greater than or equal to 0.  We may use no more than 200 bushels of

type  I  grapes.   We  will  require  2 x1bushels  of  these  for  red  wine,  0 x2  for

white  wine,  and  1 x3  bushels  for  rosé.   Thus,  we  obtain  the  first  constraint

below.   The other  three  constraints  reflect  the  limitations on type II  grapes,

sugar,  and labor  hours  in  that  order.   We formulate the linear programming

(LP) problem as follows:

maximize: f x1, x2, x3 1.25 x1 1.50 x2 2.00 x3

                   subject to: 

2 x1 x3 200

2 x2 x3 150

2 x1 x2 1.5 x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

This  problem  is  said  to  be  in  standard  maximum  form;  that  is,  it  can  be

written in matrix notation as: 

                               maximize:  f c x

                                     

                        subject to: A x b

                                    x 0

where  b  is  at  least  0  in  every  component.   Here  c  is  the  row  vector  of

coefficients of the objective function, x  is the column vector of variables, A
is  the  matrix  of  constraint  coefficients,  and  b  is  the  column  vector  of  con-

stants  on  the  right  sides  of  the  inequalities.   Specifically,  for  the  winery

problem:
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c ' 1.25, 1.50, 2.00 x
x1

x2

x3

A
2 0 1
0 2 1
2 1 1.5
2 1 2

b

200
150
90

250

In  Section  1,  we  consider  the  graphical  solution  of  LP problems in  two

variables.   We  use  the  geometric  intuition  developed  there  to  derive  in

Section  2  some  of  the  general  theory  that  leads  to  an  approach  to  higher

dimensional problems.  Section 3 introduces the so-called simplex algorithm
to  solve  the  standard  maximum  problem  described  above.   We  use  the

important  notion  of  duality  between  problems  to  extend  the  approach  to

standard minimum problems in Section 4.  Our study of linear programming

continues in Chapter 3; in particular, we will see how to solve problems that

are in neither standard maximum nor standard minimum form.

Activity  1  –  What  aspect  of  the  vectors  and  matrix  above  changes  if  a

new  formulation  of  the  white  wine  requires  only  1.5  bushels  of  type  II

grapes?  If there are 110 lbs. of sugar available? If the profit on red wine

is $1.10 per gallon?

2.1  Two-Variable Problems

We begin our study of linear programming by looking at problems involving

two  variables  in  an  informal  way,  noting  as  we  proceed  several  features  of

the problem that generalize to higher dimensions.  Consider the problem:

(1)maximize:   f x1, x2 x1 2 x2

(2)

subject to:   x2 2

x1 x2 3

2 x1 x2 5

x1, x2 0

The function f in (1) to be optimized is called the objective function, the

inequalities in (2) are called constraints, and the simultaneous solution set of

the  constraints  is  called the  feasible  region  of  the  problem.   Figure  2.1  is  a

sketch  of  the  three  boundary  lines  associated  with  the  three  inequalities,

which we produced in a special way using Mathematica.   The Mathematica
package  called  KnoxOR`LinearProgramming`  that  we  will  be  using  heavily

2.1 Two-Variable Problems 145



in  this  chapter  automatically  loads  the  standard  Mathematica  package

Graphics`ImplicitPlot`, which contains the useful command

ImplicitPlot[listofequations, plotdomain1,plotdomain2]

ImplicitPlot  can  plot  the  graphs  of  one  or  more  equations  in  two  variables.

The  first  argument  is  the  list  of  equations,  and  the  other  arguments  are  the

plot  domains  for  the  two  variables.  ImplicitPlot  also  accepts  the  usual  kind

of plot options to control the appearance of the graph.  Here is how it works

on our three linear equations. 

Needs "KnoxOR`LinearProgramming "̀

ImplicitPlot

x2 2, x1 x2 3, 2 x1 x2 5 , x1, 0, 3 ,

x2, 0, 3 , AspectRatio 1, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.1 – Constraint boundary lines

Since the inequalities are all of  form, the solution sets all lie to the south-

west of the lines.  The commands below solve for the intersection points that

are corners of the polygonal solution region.  These corners are: the y-inter-

cept  of  the  first  constraint  line,  the  intersection  of  the  first  two  constraints,

the intersection of the second and third constraints, and the x-intercept of the

third constraint. 
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Solve x1 0, x2 2 , x1, x2
Solve x2 2, x1 x2 3 , x1, x2
Solve x1 x2 3, 2 x1 x2 5 , x1, x2
Solve 2 x1 x2 5, x2 0 , x1, x2

x1 0, x2 2

x1 1, x2 2

x1 2, x2 1

x1
5
2
, x2 0

 KnoxOR`LinearProgramming`  has  a  command  for  plotting  feasible

regions of two-variable LP problems.  The syntax is as follows:

PlotFeasibleRegion constraints,

xdomain,ydomain,corners,objective

Options PlotFeasibleRegion

DisplayFunction Display $Display, #1 & ,

ObjectiveLines Automatic, ShowTable True,
ShadingStyle GrayLevel 0.7 ,

ObjectiveLineStyle RGBColor 0, 0, 0 ,
AspectRatio Automatic, Axes Automatic,

AxesLabel None, AxesOrigin Automatic,
AxesStyle Automatic, Background Automatic,
ColorOutput Automatic, DefaultColor Automatic,

Epilog , Frame False, FrameLabel None,
FrameStyle Automatic, FrameTicks Automatic,

GridLines None, PlotLabel None,
PlotPoints 39, PlotRange Automatic,
PlotRegion Automatic, PlotStyle Automatic,

Prolog , RotateLabel True,
Ticks Automatic, DefaultFont $DefaultFont,

DisplayFunction $DisplayFunction,
FormatType $FormatType,

TextStyle $TextStyle, ImageSize Automatic
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PlotFeasibleRegion  takes  the  list  of  equality  constraints,  plot  domains  on

both  the  horizontal  and  vertical  axis  variables,  the  list  of  corners  of  the

feasible  region,  and  the  name  of  the  objective  function,  and  it  returns  the

graph of the feasible region.  The corners should be listed in either clockwise

or  counterclockwise  order,  starting  with  any  corner.   Besides  inheriting  the

options  of  ImplicitPlot,  PlotFeasibleRegion  has  a  few  options  of  its  own.

ShowTable is a boolean option that,  if  set to true, displays a table of values

of  the  objective  function  at  the  corners  of  the  feasible  region.   Objective-

Lines may be set to a list of constant values (see the next paragraph) for the

plotting  of  c-level  sets.   And  ShadingStyle  and  ObjectiveLineStyle  can  be

used  to  apply  a  fill  style  to  the  feasible  region  and  a  style  to  the  objective

lines, respectively. 

f x_, y_ : x 2 y;

PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 ,

x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 2 , 2, 1 , 2.5, 0 ,

f, ObjectiveLines 3, 4, 5, 6 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable True, TextStyle

FontFamily "Times", FontSize 8 ;

x y objective
0 0 0
0 2 4
1 2 5
2 1 4
2.5 0 2.5

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.2 – The feasible region and c-level sets

148 Chapter 2 Linear Programming



The  set  of  points  x1, x2  at  which  the  objective  function  f  takes  on  a

constant  value  c  is  called  the  c-level  set  of  f.   The  maximum  LP  problem

essentially  is  to  find  the  largest  c  such  that  the  c-level  set  intersects  the

feasible region, and to find the point (or points) of intersection.  Then c is the

optimal value,  and  the  point  of  intersection  is  the  point  at  which  f  achieves

its optimum. Figure 2.2 shows several level sets for c values of 3, 4, 5, and 6

proceeding  from  southwest  to  northeast.   The  sets  in  this  case  are  lines  of

slope  1 2,  because  the  equation  for  a  general  level  set  in  this  example  is

x1 2 x2 c x2 1 2 x1 c 2.   As  c  increases,  the  lines  move

upward until finally the  c 5  line intersects the feasible region at the corner

point  1, 2 .   For  all   c  >  5,   the  c-level  set  does  not  intersect  the  feasible

region.  This means that the maximum value of f is 5, taken on at x1 1, and

x2 2.  In the electronic version of the text, you can execute the cell below

this paragraph, and then select and animate the graphics to watch the c-level

sets move as c increases. 

f x_, y_ : x 2 y;

Table PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 , x1, 0, 3 ,

x2, 0, 3 , 0, 0 , 0, 2 , 1, 2 , 2, 1 ,

2.5, 0 , f, ObjectiveLines c ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable False,

TextStyle FontFamily "Times",

FontSize 12 , c, 3, 5, .1 ;

Activity  2  –  Use  the  Mathematica  tools  described  above  to  plot  the

feasible region of the problem below, to find the corner points and their

objective function values, and to plot c-level sets for values 4, 6, 8, and

10. 

maximize: f x, y 4 x 2 y
subject to: x y 3

   2 x y 4

        x, y 0

Suppose  the  objective  function  had  been  f x1, x2 x1 x2.   Then  the

c-level  sets  are  lines  parallel  to  one  of  the  constraint  boundaries,  namely

x1 x2 3.   The  largest  c  for  which  the  c-level  set  intersects  the  feasible

region is  c 3, and the intersection is the line segment connecting 1, 2  and

2, 1 , as shown in Figure 2.3.  The optimal value of this new objective is 3,
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taken  on  at  all  points  on  the  segment  between  the  corner  points  1, 2  and

2, 1 .

g x_, y_ : x y;

PlotFeasibleRegion

x2 2, x1 x2 3, 2 x1 x2 5 ,

x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 2 , 2, 1 , 2.5, 0 , g,

ObjectiveLines 2, 3, 4 , ObjectiveLineStyle

RGBColor 1, 0, 0 , TextStyle

FontFamily "Times", FontSize 8 ;

x y objective
0 0 0
0 2 2
1 2 3
2 1 3
2.5 0 2.5

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.3 – Level sets parallel to a constraint boundary

In  both  of  the  examples  above,  the  feasible  region  was  a  bounded

polygon.   Care  must  be  exercised  when  the  constraints  yield  an  unbounded

region.  Examine the constraints

2 x1 x2 3

x1 x2 2

x1, x2 0
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which  generate  the  unbounded  feasible  region  in  Figure  2.4.   The  feasible

corner  points  are  at  0, 3 , 1, 1 ,  and  2, 0 .  (Check  these.)   Consider  three

problems relative to this feasible region:

1. minimize:  f1 x1, x2 3 x1 2 x2

2. minimize:  f2 x1, x2 x1 x2     

3. maximize:  f3 x1, x2 x1 3 x2  

For  objective  f1,  we  search  for  the smallest value of  c  such that  the c-level

set intersects the feasible region.  By graphing level sets as above, it is easy

to see that the smallest such c  is 5, taken on at the corner point (1, 1), since

for  all  smaller c,  the c-level  set  does not  intersect the feasible region.   (No-

tice in the command that we have had to pretend that the points 0, 5 , 5, 5 ,

and  5, 0  were  corners  in  order  to  get  Mathematica  to  gray  out  the  whole

polygon.)

f1 x_, y_ : 3 x 2 y;

PlotFeasibleRegion

2 x1 x2 3, x1 x2 2 , x1, 0, 5 , x2, 0, 5 ,

1, 1 , 0, 3 , 0, 5 , 5, 5 , 5, 0 , 2, 0 ,

f1, ObjectiveLines 5, 6, 7 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

ShowTable False, AspectRatio 1, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

Figure 2.4 – An unbounded feasible region, with a minimum value

We conclude that  there may be  a solution  to an LP problem even if  the

feasible region is unbounded.  However, consider objective function f2.  The
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c-level  sets  shown  in  Figure  2.5(a)  correspond  to  smaller  c  values  as  they

move to the northwest. If we hold x1 at 0 and send x2  to infinity, we observe

that  we  can  achieve  arbitrarily  small  values  of  the  objective  within  the

feasible region.  This problem has no optimal solution.  Similarly, in Figure

2.5(b)  for  the  maximum  problem,  the  c-level  sets  correspond  to  larger  c
values as they move to the northeast, and so the objective function f3  has no

maximum value.   The  latter  two  problems  are  called  unbounded  problems.
Note that it is not the feasible region alone that makes a problem unbounded.

The key feature is whether or not the objective function is unbounded on the

feasible region.

0.5 1 1.5 2 2.5 3

1

2

3

4

5

0.5 1 1.5 2 2.5 3

1

2

3

4

5

(a)                                                                  (b) 

Figure 2.5 – (a) An unbounded minimum problem; (b) an unbounded maximum problem

Another difficulty that can arise involves constraints that are inconsistent

with one another.  For instance, if the constraints are

x1 x2 1

4 x1 2 x2 8

x1, x2 0

then  the  solution  sets  of  the  individual  inequalities  do  not  overlap.  The

feasible region is empty, so that no matter what the objective function is, the

problem can have no solution.  Such a problem is called infeasible.

Activity  3  –  Sketch  a  graph  to  check  the  infeasibility  of  the  problem

above.   Why,  algebraically, are the first  and second constraints  together

incompatible with the third constraint? 
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Our  experience  with  the  examples  above  leads  to  a  methodology  for

approaching two-variable LP problems.

1. Sketch the feasible region.  If it is empty, then the problem is infeasi-

ble and has no solution.

2.  If  the  feasible  region  is  unbounded,  look  carefully  at  the  objective

function to see if it too is unbounded in the feasible region.  If the objective

is unbounded  below for  a minimization problem, or  unbounded  above for  a

maximization problem, then there is no solution.

 3.  Otherwise,  there  is  at  least  one  optimal  solution,  taken  on  at  some

corner  point  of  the  feasible  region.   One  may  inspect  the  c-level  sets,  or

simply  compute  the  coordinates  and  functional  values  of  all  corner  points,

and pick out the largest or smallest.

4.  If  two  corner  points  both  achieve  the  optimal  value  of  the  objective,

then so do all points on the line segment connecting them.

In  order  for  the  reader  to  gain  some intuition  into  the  general  theory  of

solutions  to  be  presented  in  the  next  section,  we  would  like  to  make a  few

more  geometric  and  algebraic  observations.   These  will  be  the  basis  for  an

algorithm that is successful in solving higher-dimensional problems.

5. The feasible region of a two–variable LP problem is an intersection of

half-planes, and is therefore either empty or convex.  By the latter, we mean

that  given  any  two  points  in  the  region,  the  line  segment  connecting  the

points lies entirely in the feasible region. 

6. The corner points do not lie on any line segment connecting two other

feasible points.  Corners are called extreme points.

7.  Any  feasible  point  may  be  expressed  as  a  convex  combination  of

extreme points.  A vector x is a convex combination of vectors  x1, x2, ... , xn
if there exist coefficients t1, t2 , ... , tn in 0, 1  such that

 i 1
n ti 1    and   x i 1

n ti xi

This property of  feasible points  is  more subtle  and difficult  to see, so let us

illustrate  how  to  find  such  coefficients  for  the  point  1, 1  in  the  feasible

region  of  Figure  2.2.   The  extreme points  are  0, 2 ,  1, 2 ,  2, 1 ,  5 2, 0 ,

and 0, 0 .  We look for numbers t1, t2, t3, t4, and  t5 in [0, 1] whose sum is 1,

such that:

 
1

1
t1

0

2
t2

1

2
t3

2

1
t4

5 2

0
t5

0

0
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Thus, we must solve the system: 

 

1 t2 2 t3 5
2

t4
1 2 t1 2 t2 t3
1 t1 t2 t3 t4 t5

There  is  a  Mathematica  command in  the  KnoxOR`LinearProgramming`

package called Dictionary, whose syntax is below.

Dictionary constraints,

basiclist,nonbasiclist

Dictionary  takes  as  its  first  argument  the  list  of  constraint  equations,  as  its

second argument a list  of  variables to be solved for simultaneously in those

equations,  and  as its  third  argument the list  of  remaining variables.   Dictio-

nary returns an aligned display in which the designated variables are solved

for in terms of the others.  Returning to our system, there are five unknowns

and only three equations, so we look for an equivalent system in which three

variables,  say  the  first  three,  are  represented  in  terms of  the  other  two.  The

general solution, found by Mathematica, is

Dictionary 1 t2 2 t3 5 2 t4,

1 2 t1 2 t2 t3,

1 t1 t2 t3 t4 t5 ,

t1, t2, t3 , t4, t5

t1 1 1
2 t4 3 t5

t2 1 3
2 t4 4 t5

t3 1 2 t4 2 t5

We  see  that  there  are  infinitely  many  choices  of  coefficients  using  which

1, 1  can  be  expressed  as  a  convex  combination,  subject  to  the  restriction

that  all  ti  are  between  0  and  1.  Choosing   t4 1 4 and  t5 1 4,  for

instance,  gives  values  t1 1 8, t2 3 8, t3 0  for  the  remaining

coefficients.

8.   Referring  to constraints  (2),  there exist  variables s1,  s2,  s3   0  such

that
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x2 s1 2

x1 x2 s2 3

2 x1 x2 s3 5

These  new  variables  are  called  slack  variables  because  they  "take  up  the

slack" in the original constraint inequalities.  Had there been an inequality of

the  form  d x1  + e x2   b,  there  would  exist  a  surplus  variable  s   0   such

that  d x1  + e x2  s  = b.   The introduction of slack (or surplus)  variables to

transform the  constraints  to  equality form gives  this  problem five variables.

After  stating  a  more  precise  definition  of  convexity  in  the  next  section,  we

will  see  that  the  convexity  of  the  feasible  region  is  preserved  under  this

enlargement of dimension.

9. At each extreme point (at least) two of the variables  x1, x2, s1, s2, s3

are  0  and  (at  most)  three  are  non-zero.   Note  that  two  is  the  number  of

original variables in the problem, and three is the number of constraints.  For

instance,  for  the  constraints  above,  when slack variables  s1  and s2  are  zero,

we obtain the values 1,  2,  and 1,  respectively, for the other variables x1, x2,

and s3, as we see by forcing s1 and s2 to equal zero in the following output of

the Dictionary command:

Dictionary

x2 s1 2, x1 x2 s2 3, 2 x1 x2 s3 5,

s1 0, s2 0 , x1, x2, s3 , s1, s2

x1 1 0 s1 0 s2
x2 2 0 s1 0 s2
s3 1 0 s1 0 s2

We  see  that  the  designation  of  zero  values  for  s1  and  s2  puts  us  at  the

extreme  point  x1, x2 1, 2 .  Similarly,  we  can  generate  the  following

complete  table  of  extreme  points  and  variable  values  for  the  constraints  in

Remark 8:

 

Extreme point x1 x2 s1 s2 s3

0, 0 0 0 2 3 5

0, 2 0 2 0 1 3

1, 2 1 2 0 0 1

2, 1 2 1 1 0 0

5
2

, 0 5
2

0 2 1
2

0
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More  than  two  variables  can  be  zero;  e.g.,  if  all  three  constraint  lines  had

intersected  at  the  same  point,  then  the  slack  variables  for  each  constraint

would  have been zero.   (Try making up a problem that  exhibits  this behav-

ior.) 

It  is  the  task  of  the  next  section  to  prove  these  observations  for  LP

problems of arbitrary dimension.

Exercises 2.1

1.  A  town  post  office  has  $800,000  available  for  the  purchase  of  delivery

vehicles.  There are two models, a Jeep style and a van style, under consider-

ation.  Each Jeep costs $8000 and each van costs $10,000.  Estimated annual

maintenance costs per vehicle are $800 and $600, respectively, for jeeps and

vans.  The town will allocate $80,000 annually for maintenance.  If the jeep

achieves  25  miles per  gallon  of  gasoline  and  the  van  achieves  20  miles per

gallon,  how  many  of  each  type  of  vehicle  should  the  town  buy  in  order  to

maximize the total among all vehicles of miles per gallon of gasoline?  Can

the problem of maximizing average gas mileage per vehicle be treated by the

methods of this chapter?

2.  Solve the LP problem:

 minimize:  g x1 x2

 

 subject to:

2 x1 3 x2 6

4 x1 3 x2 12

6 x1 x2 6

x1, x2 0

3.  Find the complete solution set of the problem:

 maximize: f 4000 x1 4000 x2

 

subject to:

x1 2 x2 5

x1 x2 3

2 x1 x2 5

x1, x2 0

4.  In a psychology experiment on conditioning, an experimenter places mice

and rats into two types of conditioning boxes,  I and II.  Each mouse spends

20 minutes per  day and each rat  spends 40 minutes per  day in box I.   Each

mouse spends 40 minutes per day and each rat spends 20 minutes per day in

box II.   Suppose  box I  is  available to the experimenter for  640 minutes per

day  and  box  II  is  available  for  800  minutes  per  day.   How  many  rats  and
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mice should be used to maximize the total number of animals in the experi-

ment in a day?

5.  Find the solution set of the problem:

minimize: 2 x1 x2

 

                subject to:

x2
1
2

x1 1

x1 2 x2 4

2 x1 x2 6

x1, x2 0

6.   A hospital patient is  required to have at least 90 units of drug I and 120

units of drug II.  The drugs are both contained in two substances S1  and S2.

Suppose that a gram of S1  contains 6 units  of drug I and 4 units  of drug II,

and  a  gram of  S2  contains  3  units  of  drug  I  and  3  units  of  drug  II.   But  in

addition,  each  gram of  S1  contains  2  units  of  a  mildly  toxic  drug  and  each

gram of S2 contains 1 unit of this other undesirable drug.  How much of each

substance  should  be  given  to  the  patient  to  achieve  the  medication  require-

ments  with  minimal dosage  of  the  toxin?   How much of  the  toxin  does  the

patient receive with this optimal mixture?

7.  Find the optimal solution, if it exists, of the problem:

 maximize: f x1 x2

  

       subject to:

x1 2 x2 3

x1 x2 1

x2 x1 1

x1 3 x2 1

x1, x2 0

8.   (a)   Given  the  feasible  region  below,  find  the  associated  set  of  con-

straints.

(b)   For  what  set  of  non-negative  coefficients  c1  and  c2  will   (1,  2)  be  the

maximum point of the objective function  f c1 x1 c2 x2 ? 

(c)  For what set of non-negative coefficients will the points (1, 2) and (2, 0)

both be maximum points?
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Exercise 8                                                 Exercise 10

9.  For the feasible region of Exercise 8, express (a) the point (3/2, 1) and (b)

the point (1, 1) as a convex combination of extreme points.

10.  Repeat Exercise 8 (a) and (b) for the feasible region sketched above.

11.  Repeat Exercise 9 for the feasible region of Exercise 10.

12.   Introduce  slack  variables  into  the  following  constraints,  and  give  the

values of all variables at each vertex of the feasible region.

x1 x2 2

2 x1 x2 10

x1 x2 8

x1, x2 0

13.   Suppose  that  the  objective  function  to  be  maximized  is  the  piecewise

linear function:

f
2 x1 x2 if x1 1 2

x1 x2 1 2 otherwise

Sketch  the  c-level  sets  carefully  in  order  to  maximize  f over  the  feasible

region of Exercise 8.

14.   Consider  the  feasible  region  of  Exercise  8  and  the  objective  function

f 3 x1 2 x2.  Beginning at a point x1, x2  in the feasible region, in what

direction  does  f  increase  most  rapidly?   If  we  begin  at  (0,  0)  and  move

through  the  interior  of  the  feasible  region  in  the  direction  of  most  rapid

increase of f , at what point on the boundary do we land?
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2.2 Geometry of Linear Programming

We now go about the task of deriving the key theoretical results about linear

programming  problems,  which  will  lead  in  the  next  section  to  a  solution

algorithm. 

Since slack variables may be appended to the objective function as long

as  they  are  given  zero  coefficients,  it  is  clear  that  the  standard  maximum

linear  programming problem may be  written  with  its  constraints  in  equality

form as follows: 

 maximize: f c x

 subject to: A x b, x 0

Here  c c j  is  an  n 1  column  vector  of  objective  function  coefficients,

x x j  is an n 1 column vector of variables, A ai j  is an m n matrix

of  constraint  coefficients,  and  b b j  is  an  m 1  column  vector  of  con-

stants.  We use the notation M  for the transpose of a matrix M .  The prob-

lem  listed  at  the  beginning  of  Section  2.1,  for  instance,  may  be  written  in

equality form as:

maximize: f 1 2 0 0 0

x1

x2

x3

x4

x5

subject to:  
0 1 1 0 0
1 1 0 1 0
2 1 0 0 1

x1

x2

x3

x4

x5

2
3
5

,    x 0

For  the  sake  of  brevity,  we  prefer  the  matrix  form  of  (1)  and  (2)  as  the

description  of  the  maximum  problem,  but  for  the  reader's  reference,  the

long-hand version is below.

maximize: f c1 x1 c2 x2 cn xn

subject to: a11 x1 a12 x2 a1 n xn b1

a21 x1 a22 x2 a2 n xn b2

am 1 x1 am 2 x2 am n xn bm
xi 0 for all i 1, … , n
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In this section,  we will refer only to the maximum problem.  We will study

the minimum problem later.

DEFINITION  1.   (a)    A  hyperplane  in  n  is  the  set  of  points

x x1, x2, …, xn  satisfying a linear equation of the form:

a1 x1 a2 x2 an xn b

(b)  The line segment  connecting points x1  and x2  in n  is the set of all

points x of the form: 

                       

x x1 1 x2 ,  0, 1  .

(c)   A subset  S  of  n  is convex if, given any two points x1and x2 in S,

the line segment connecting x1 and x2 is contained in S. 

1,0,0

0,1,0

0,0,1

1 2,0,1 2

x1

x2

x3

Figure 2.6 – The plane x1 x2 x3 1

EXAMPLE 1.  The reader is probably familiar with hyperplanes (or simply,

planes)  in  3.   The  plane  associated  with  the  equation  x1 x2 x3 1

forms  a  triangular  region  when  restricted  to  the  first  octant,  as  shown  in

Figure  2.6.   It  is  clear  from  the  picture  that  the  line  segment  connecting

points (0, 1, 0) and (1/2, 0, 1/2)  is entirely in the plane, which leads us to a

guess  that  planes  are  convex.   This  guess  is  substantiated  in  Theorem  1

below.  The points on this segment are of the form:

x 0, 1, 0 1 1 2, 0, 1 2  ,  0, 1

When 0, we have  x 1 2, 0, 1 2 ; and when 1, x 0, 1, 0 .  As

 grows  from 0  to  1,  we may think of  a  path being traced out  beginning  at
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1 2, 0, 1 2  and  ending  at  0, 1, 0 .   When  1 4,  for  example,  the

coordinates of the point on the segment are:

1 4 0, 1, 0 3 4 1 2, 0, 1 2 3 8, 1 4, 3 8

Conversely, given a point on the segment it is easy to solve algebraically for

the corresponding  by equating components; for the point 1 4, 1 2, 1 4 ,

we have 

1 4 0 1 1 2

1 2 1 1 0

1 4 0 1 1 2

     

and  consequently  1 2.   If  a  given  point  is  not  on  the  segment,  then  it

will  not  be  possible  to  solve  for   such  that  all  corresponding  components

are equal.  See Activity 1 below.

Note finally that  this restricted hyperplane is exactly the set of points  in
3  obtained by insertion of a non-negative slack variable x3  into an inequal-

ity  constraint  x1 x2 1  in  which  both  x1  and  x2  are  non-negative.  The

introduction  of  a  slack  variable  has  imbedded  a  two-dimensional  feasible

region into three dimensions.  

Activity 1 – Check whether the point 1 4, 1 4, 1 4  is on the segment

connecting 1 2, 0, 1 2  and 0, 1, 0 . 

Next  we  state  the  result  on  convexity  of  the  feasible  region  that  was

mentioned earlier.

THEOREM  1.   If  the  feasible  region  of  a  standard  LP  problem written  in

equality form (2) is not empty, then it is convex.

Proof.   We claim first  that  a  hyperplane  is  convex.   Let   y   and   z   be two

points on a hyperplane with equation a1 x1 a2 x2 an xn b , which,

in  vector  notation,  is  a x b.   Consider  the  point   y 1 z,

0, 1   on the line segment connecting y  and z.   By the linearity of dot

product,

 
a y 1 z a y 1 a z

b 1 b b

Hence  y 1 z  is also on the hyperplane, which proves the claim. 

Let  S1, S2,…, Sk  be convex sets whose intersection S  is non-empty.  We

ask  the  reader  to  show  that  S  is  convex  in  Exercise  3.   Also,  the  feasible

region is the intersection of m hyperplanes of the form:
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 ai 1 x1 ai 2 x2 ai n xn bi  i 1, …, m 

with  the  set   x n : xi 0 for i 1, . . . , n ,  which  is  clearly  convex.

By the exercise cited  above, the feasible region is convex (if non-empty).  

DEFINITION  2.    A  vector  x  in  a  convex  set  S  is  called  an  extreme
point  of  S  if  it  cannot  be  expressed  as  a  convex  combination

t y 1 t z, t 0, 1  of any other pair of vectors y, z S.

Following are two important facts about extreme points.

THEOREM 2.   (a)   Suppose  that  S  is  a  closed,  bounded  convex  set  in  n

with  a  finite  number  of  extreme points  x1, x2, …, xk .   Then  any  x S  can

be written as a convex combination of extreme points:

(5)x i 1
k

i xi, i 1
k

i 1

(b)  The feasible region of an LP problem written in standard equality form,

if non-empty, is a convex set with a finite number of extreme points.  

x1

x2

x3x4

x5

x

y

Figure 2.7 – Writing a point as the convex combination of extreme points

The  full  proof  of  Theorem  2  would  take  us  somewhat  farther  into  the

subject of convex analysis than we wish to go, but  the following  discussion

forms the intuitive basis for a proof.  Regarding (a), consider a convex set in
2  with  five  extreme points  x1,  x2,  x3,  x4,  and   x5  as  shown  in  Figure  2.7.

Let  x  be  in  the  set,  not  itself  an  extreme  point.   Because  the  set  is  closed,

bounded,  and convex,  the ray connecting x1  to x  will  intersect a side of  the

set  at  some  point,  say  y,  between  x3  and  x4.   Then  we  have,  for  some

t, s 0, 1  ,
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x t x1 1 t y
y s x3 1 s x4

x t x1 1 t s x3 1 t 1 s x4

It  is easy to check that the sum of the coefficents of x1, x3, and x4  above is

one,  thus  we  have  expressed  x  as  a  convex  combination  of  these  extreme

points.  In  the  case  where  the  dimension  is  higher  than  two,  the  idea  is

roughly the same.  We successively project  x  down onto lower dimensional

boundaries of the feasible region, until eventually we find a point lying on a

segment  between  two  extreme  points.   The  reader  may consult  Rockafellar

[50]  for  details.   Referring  to  part  (b),  the  convexity  of  the  feasible  region

has  already  been  noted.   The  finite  cardinality  of  the  set  of  extreme  points

can  be  proved  by  identifying  extreme  points  with  particular  solutions  x  of

the  system  A x b  in  which  n m   components  of  x   are  set  to  0  (see

Theorem 3 below).  Since the system has m equations in n unknowns, such a

choice of  n m   zero components determines the remaining components of

x  uniquely.   There  are  only  a  finite  number  of  ways  of  choosing   n m
components  from  among  n  components,  hence  there  can  only  be  a  finite

number of extreme points.                                

Activity  2  –  Write  the  point  1 2, 1 4 ,  which  is  in  the  interior  of  the

square  whose  corners  are  0, 0 ,  0, 1 ,  1, 1 ,  and  1, 0 ,  as  a  convex

combination  of  the  corners.   Draw  a  picture  similar  to  Figure  2.7,

showing the projection idea.

The  discussion  in  the  last  paragraph  leads  to  the  following  definition.

First, recall from linear algebra that vectors z1, z2, . . . , zk   are called linearly
independent if it cannot be the case that

i 1
k ti zi 0

unless all coefficients ti are zero.

DEFINITION 3.   A basic  feasible solution   of  the LP problem (1)–(2)

is a vector y, satisfying the constraints, such that (at least)  n m  of its

components  are  zero,  and  in  addition  the  system   A x b   can  be

rewritten  equivalently  so  that  the  columns  of  A  corresponding  to  the

remaining non-zero  components  of  y  are  linearly independent.   A basic

feasible  solution  y  is  called  non-degenerate  if  exactly  n m   of  its

components are zero, otherwise it is degenerate.

EXAMPLE 2.  To illustrate the definition, consider again the problem of the

beginning of the section, written in equality form:
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maximize: f 1 2 0 0 0

x1

x2

x3

x4

x5

subject to: 

0 1 1 0 0

1 1 0 1 0

2 1 0 0 1

x1

x2

x3

x4

x5

2

3

5

,   x 0

The  vector  y 0 0 2 3 5  is  a  basic  feasible  solution.   To  see  this,  note

that  n 5  is the number of variables,  m 3  is the number of constraints,

and thus n m 2 .  By setting two components, namely x1  and x2, equal to

zero, the constraint equations easily yield  x3 2 , x4 3, and  x5 5, hence

y is feasible.  Also, the columns corresponding to the non-zero variables x3,

x4,  and x5  are  just  unit  coordinate  vectors  in   3,  and  are therefore  linearly

independent.  Suppose that we now subtract row 1 from row 2, and subtract

row  1  from  row  3  in  the  constraint  equations.   The  following  equivalent

system of constraints results:

0 1 1 0 0

1 0 1 1 0

2 0 1 0 1

x1

x2

x3

x4

x5

2

1

3

Set x1  and x3  equal to zero, and it is easy to see that the remaining compo-

nents  x2,  x4,  and  x5  are  2,  1,  and  3,  respectively.   Moreover,  the  columns

corresponding  to  these  non-zero  components  are  again  unit  coordinate

vectors, so that  y = 0 2 0 1 3   is a basic feasible solution of the problem.

The  following  theorem  provides  the  crucial  connection  between  the

geometry  of  linear  programming  problems  and  the  algebraic  solution  of

systems of  linear equations,  which is the heart  of  the algorithm to solve the

problem.  The proof we give here follows along the lines of ([38], Theorem

2.8).

THEOREM 3.  Assume that the feasible region S of the LP problem (1)–(2)

is non-empty, and that there exist m  columns of A  that are linearly indepen-
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dent.   Then  every  extreme  point  of  S  is  a  basic  feasible  solution.   Con-

versely, every basic feasible solution of (1)–(2) is an extreme point of S.

Proof.   First,  let  x x1, x2, … , xn  be  an  extreme  point  of  S.   If  all  n
components of x  are zero, then x  is a basic feasible solution by the assump-

tion that A  has at least m  independent  columns.  Otherwise,  we may relabel

the  coordinates  so  that  x x1, x2, … , xr , 0, 0, … , 0 ,  where  1 r n
and  xi 0  for   i 1, … , r.    Denote  the  columns  of  A  under  the  new

labeling system by A j,  j 1, … , n.  Because of the form of x, one can see

for example that 

a11 x1 a12 x2 a13 x3 a1 r xr b1

and similarly for the other rows of b.  In vector form, the constraint equation

(2) can therefore be written:

(6)
j 1

r
x j A j b

We  would  like  to  show  that  the  m-component  column  vectors

A1, … , Ar  are  linearly  independent.   Suppose  on  the  contrary  that  there

exist constants t1, t2, … , tr that are not all equal to zero such that 

(7)
j 1

r
t j A j 0

Since x1, … , xr  are strictly positive, there exists a small positive number  

such that both x j t j  and x j t j  are positive for all j 1, … , r.  Multi-

plying  equation  (7)  by  ,  then  respectively  adding  and  subtracting  it  from

equation (6) yields the two equations:

(8)
j 1

r
x j t j A j b

j 1

r
x j t j A j b

Thus, the following two vectors  

       y x1 t1, … , x r tr, 0, 0, ... , 0   

z x1 t1, … , x r tr, 0, 0, ... , 0

are  feasible,  and  x 1 2 y 1 2 z.   This  is  a  contradiction  of  the

assumption  that  x  is  an  extreme point.   Therefore,  columns  A1, …, Ar  are

linearly independent vectors (of length m ).

A standard theorem from linear algebra states that there can be no more

than m  independent vectors in m.   Therefore  r m,  so that x   has at least

n m zero components, and the columns of A corresponding to the non-zero
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components  of  x   are  independent.   This  means  that  x  is  a  basic  feasible

solution, and the first half of the theorem is established. 

To  show  the  second  statement,  let  x  be  a  basic  feasible  solution.   If

x 0, 0, ... , 0 ,  then  it  is  impossible  for  x  to  be  written  as

x t y 1 t z for two other feasible vectors  y, z 0.  That is, 0 is an

extreme point.  If x is not the zero vector, then x can be written: 

(9)x x1, … , xr, 0, 0, ... , 0

with  xi 0 for   i 1, … , r  by  suitably  relabeling the  variables.   We know

that  1 r m, and that the columns A1,…, Ar of A must be linearly indepen-

dent, by the definition of basic feasible solution.

Assume that x is not an extreme point.  Then there exists vectors y and z

in S such that y z and 

x t y 1 t z  for some  t 0, 1  

Since y, z 0  and x  has  the form (9),  y  and z  must also be zero after  their

rth components.  Because y and z are feasible, 

j 1

r
y j A j b  ,   

j 1

r
z j A j b    

j 1

r
y j z j A j 0     

This  contradicts  the  linear  independence  of  the  columns  A1,…,  Ar,  and

completes the proof.  

The importance of extreme points, and therefore basic feasible solutions,

is that the optimal value of the objective function of a linear program can be

found at one of them, if there is a solution at all.  The simplex algorithm, to

be  discussed  in  the  next  section,  will  step  from  one  basic  feasible  solution

(corner  point)  to  another  in  such  a  way  that  the  objective  function  is

improved.  Thanks to Theorem 3, the procedure is a routine algebraic matter

of  manipulating  systems  of  linear  equations;  and  because  of  the  next  theo-

rem,  we  will  eventually  find  the  optimal  value  at  one  of  the  basic  feasible

solutions.

THEOREM  4.   Assume  that  the  feasible  region  S  is  non-empty  and

bounded.  Then the maximum value of f  is taken on at an extreme point.  If

the maximum value occurs at several points y1, y2, …, yk , then it also occurs

at all convex combinations of these points.

Proof.  The feasible region

S x Rn : A x b, x 0
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is  clearly closed,  so  that  we may appeal  to  a  well-known result  of  analysis,

which  says  that  the  maximum  of  a  continuous  function  on  a  closed  and

bounded  non-empty  set  is  attained  at  some  point,  say   x0 S.   If  x0  is  an

extreme point,  then the first  assertion of the theorem is proved.   If x0  is not

an  extreme  point,  then  by  Theorem  2  it  can  be  written  as  a  convex

combination

x0 i 1
k

i xi

where  the  xi  are  the  extreme  points,  necessarily  finite  in  number,  of  the

feasible  region.   Suppose  that  the  maximal  objective  value  among  the

extreme  points  is  taken  on  at  x .   Then,  since  x0  was  the  optimal  point,

f x0 f x .  But also, 

f x0 c x0 c i 1
k

i xi

i 1
k

i c xi

i 1
k

i f xi

i 1
k

i f x

i 1
k

i f x f x

 Thus, f x0 f x , and the extreme point x  is also an optimal point.

Now suppose  that  y1,  .  .  .  ,  yk  are  points  whose  objective  value is  opti-

mal.  Consider  the  functional  value  of  a  convex  combination  of  the  yi.   We

have, since f  is linear, 

f i 1
k ti yi i 1

k ti f yi i 1
k ti f f

where f  is the common functional value of the yi.   This proves the second

part of the theorem.  

  We will not attempt to do a comprehensive theoretical study of the case

where S  is unbounded, but the algorithm itself will indicate when there is no

optimal value.  If the optimal value is attainable, the algorithm will yield an

extreme  point  optimal  solution.   Except  for  the  existence  problem,  the

assumption  of  boundedness  is  not  really  needed  in  Theorem  4.   Several

results  can  be  seen  almost  immediately  in  the  unbounded,  as  well  as  the

bounded case:

1.   The  second  statement  of  Theorem  4  remains  true  when  S  is

unbounded.
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2.   If  there is  a unique optimal point,  it  must occur  at  an extreme point.

For, let x be the point in question.  If x is not an extreme point, then it can be

written x t y 1 t z   for  some non-identical  feasible points y, z  and a

number t 0, 1 .  By linearity of the objective function,

 f x t f y 1 t f z

Either f x , f y , and f z  are all the same, which cannot be since x was the

unique optimum point, or exactly one of f y  or f z   exceeds f x .  In both

cases, we have a contradiction; thus x is an extreme point.

3.   The  maximum  of  the  objective  function  can  never  occur  in  the

interior of the feasible region.  As usual, let f c x , and suppose that x  is

in the interior of the feasible region.  Then there is  0 small enough that

the point  y x c  is still in the feasible region.  Then y  has functional

value

f y c y c x c c f x c 2 f x

This  says  that  we  can  increase  the  value  of  the  objective  by  moving  away

from x  in the direction c ; hence x  cannot be optimal.

4.   If  x  is  a  locally  optimal  solution,  then  it  is  also  a  globally  optimal

solution.   This  result  will  tell  us  when  to  terminate  the  simplex  algorithm.

You are asked for a proof of this fact in Exercise 9.     

Activity  3  –  Trace  through  the  proof  of  Theorem  4,  and  check  the

veracity of claim 1 above. 

Exercises 2.2

1.   Consider a bounded standard maximum problem in two variables whose

feasible region is of the form:

a11 x1 a12 x2 b1

am 1 x1 am 2 x2 bm
x1, x2 0

where  the  constants  bi  are  non-negative.   Give  a  geometric argument  that  a

feasible  point  can  be  written  as  the  convex  combination  of  at  most  three

corner points.
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2.  (a)   In  Example  1,  show  that  the  line  segment  connecting  1 2, 0, 1 2

and 1 2, 1 2, 0  is entirely in the triangular region.

   (b)  Is the point 1 2, 1 8, 3 8  on this segment?

   (c)   Under what conditions on x2  and x3  is  the point 1 2, x2, x3  on this

segment?

3.  (a)   By using the definition of  convexity only,  and not  Theorem 1,  show

that the set of points x1, x2, x3  such that:

x1 x2 x3 1

2 x1 x2 2 x3 5

x1, x2, x3 0

        

is convex.

   (b)   Show that  the intersection of  a  finite  number  of  convex  sets,  if  non-

empty, is convex.

4.  If f  is the objective of any feasible, bounded linear program with a given

system  of  constraints,  show  that  the  optimal  value  of  f  is  taken  on  at  the

same point as the optimal value of  c f , where c is a positive constant.

5.   A  function  f : n   is  called  convex  if  for  any  x, y n  and

t 0, 1 ,

 

                     f t x 1 t y t f x 1 t f y

Show that a non-constant  convex function defined on a bounded convex set

cannot take on its maximum value in the interior of the convex set.

6.   Construct  a  counterexample  to  Theorem  2  part  (a)  if  the  set  S  is  not

bounded.
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7.  Show that 4 3, 10 3, 0, 0  is a basic feasible solution of the system:

2 x1 x2 x3 6

x1 2 x2 x4 8

 xi 0 for all i

8.   Express  the  constraints  below  in  equality  form  by  inserting  slack  vari-

ables, then find two basic feasible solutions and argue that they do satisfy the

definition of basic feasible solution.

x1 x2 x3 2

x1 x2 4

x1 x3 6

x1, x2, x3 0

9.  Prove that if a feasible solution to a maximum problem in equality form is

locally  optimal,  then  it  is  optimal.   (A  solution  is  locally  optimal   if  its

objective value exceeds those of all feasible points in some neighborhood of

this solution.)

2.3  Simplex  Algorithm for the  Standard Maximum

Problem

The Simplex Algorithm

In  this  section,  we  use  the  theoretical  results  of  Section  2  to  develop  an

algorithm to find the optimal solution to s standard maximum problem, if the

solution  exists.  Recall  that  a  linear  programming  problem  is  in  standard
maximum (inequality) form if it can be written: 
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maximize: f c x

subject to: A x b, x 0

where b  is  a  column vector,  all  of  whose  entries  are  non-negative.   If  there

are m constraints, then b has m entries, and A has m rows.   We have already

seen  two  examples  of  such  problems,  namely  the  winery  problem  of  the

introduction and Example 2 of Section 2.2.  

Because 0 itself clearly satisfies the constraint system (2), the problem is

feasible.   Depending  on  the  entries  of  A,  the  feasible  region  may  be

unbounded.   You  are  asked  to  show  in  Exercise  6  that  if  at  least  one  con-

straint,  say the ith,  is  such that all  of  its coefficients   ai 1,  ai 2,  .  .  .  ,  ai n   are

strictly  positive,  then  the  region  is  bounded.   The  algorithm  will  have  the

ability to detect unboundedness of the objective function, and to find optimal

solutions  when  they  exist,  even  in  problems  with  unbounded  feasible

regions.   We  illustrate  later  the  difficulty  of  degenerate  basic  feasible

solutions.

To illustrate the algorithm, consider again the winery problem:

maximize: f 5
4

x1
3
2

x2 2 x3

subject to:       

2 x1 x3 200

2 x2 x3 150

2 x1 x2
3
2

x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

Slack variables x4, x5, x6, and x7  may be introduced into the constraints (4)

to write the problem in equality form.  Let us think of f  as a variable as well,

and  write  an  equivalent  version  of  the  problem  as  a  system  of  linear

equations:

 

2 x1 x3 x4 200

2 x2 x3 x5 150

2 x1 x2
3
2

x3 x6 90

2 x1 x2 2 x3 x7 250

5
4

x1
3
2

x2 2 x3 f

Remember  the  Mathematica  command  Dictionary  that  was  introduced  in

Section 2.1.  We can use it to express the enlarged equality constraint system
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(5) in a way that is convenient for the algorithm, first by solving for the slack

variables and f  in terms of the other variables.

Needs "KnoxOR`LinearProgramming "̀ ;

constraints 2 x1 x3 x4 200,

2 x2 x3 x5 150, 2 x1 x2
3

2
x3 x6 90,

2 x1 x2 2 x3 x7 250,
5

4
x1

3

2
x2 2 x3 f ;

Dictionary constraints, x4, x5, x6, x7, f ,

x1, x2, x3

x4 200 2 x1 0 x2 1 x3
x5 150 0 x1 2 x2 1 x3

x6 90 2 x1 1 x2 3
2 x3

x7 250 2 x1 1 x2 2 x3

f 0 5
4 x1 3

2 x2 2 x3

The  first  four  equations  express  x4, x5, x6,  and  x7  as  linear  functions  of  x1,

x2, and x3. We say that the former are the basic variables for this system and

the  latter  are  the  non-basic  variables.   At  this  point,  the  system  still  has

infinitely many solutions.   But  suppose we set the three non-basic  variables

equal to zero.  Then the collection of values

(6)x1 0,  x2 0, x3 0,  x4 200, x5 150, x6 90, x7 250

is a basic feasible solution, therefore an extreme point of the feasible region,

by  Theorem 3  of  Section  2.2.   To  see  this,  notice  that  the  constraint  equa-

tions in system (5) can be written in matrix form as A x b, where:

(7)A

2 0 1 1 0 0 0
0 2 1 0 1 0 0

2 1 3
2

0 0 1 0
2 1 2 0 0 0 1

   ,  x

x1

x2

x3

x4

x5

x6

x7

 ,  b

200
150
90
250

In  the  notation  of  Section  2,  m 4  and  n 7.   We  have  set  n m 3

variables  x1,  x2,  x3  equal  to  zero,  and  the  columns  corresponding  to  the

remaining  variables  x4,  x5,  x6,  and  x7  are  unit  coordinate  vectors  in   4,
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hence  they  are  linearly  independent.   Thus,  the  list  (6)  represents  a  basic

feasible solution, and a corner point of the feasible region.

So  far,  we  have  merely  identified  one  extreme  point.   Looking  back  to

(5),  we see that the current value of f  is zero, since x1, x2, and x3  are equal

to zero.  Because each of these three variables has a positive coefficient, we

can increase the value of f  by making one of them positive.  We would like

to substitute a non-basic variable,  say x2,  as a newly entering basic variable

to replace one of the old basic variables in such a way that the resulting point

is still feasible.  To do this, we will pick one of the first four equations in (5),

solve  for  x2,  then  substitute  for  x2  in  all  of  the  other  equations.   To  decide

which of the four to pick, we ask: by how much can x2  be increased so that

the entire solution is still feasible, i.e., all variables remain non-negative?  In

the  first  equation,  x2  does  not  appear.   In  the  second,  if x2 150 2 75,

then  x5   remains  non-negative.   Similarly,  in  the  third  equation,  if  x2 90,

then x6  remains non-negative; and in the fourth equation, if  x2 250,  then

x7  remains non-negative.   The second equation is therefore the most restric-

tive,  or  binding  equation.   In  it,  we  solve  for  x2  using  the  Dictionary  com-

mand,  which  amounts  to  replacing  the  departing  basic  variable  x5  by  the

new entering basic variable x2, to get 

Dictionary constraints,

x4, x2, x6, x7, f , x1, x3, x5

x4 200 2 x1 1 x3 0 x5

x2 75 0 x1 1
2 x3 1

2 x5

x6 15 2 x1 1 x3 1
2 x5

x7 175 2 x1 3
2 x3 1

2 x5

f 225
2

5
4 x1 5

4 x3 3
4 x5

Notice that the way in which we managed this operation is by manipulating

the order of appearance of x2  in the basic list in the second argument, so that

x2  becomes the basic variable in the second equation.  The order of appear-

ance of variables in the non-basic list controls the columns that the non-basic

variables  appear  in.   Once  again,  setting the  non-basic  variables  x1,  x3,  and

x5  to zero gives a basic feasible solution as listed below, and the value of f
has increased to 225/2.

(8)x1 0, x2 75, x3 0, x4 200, x5 0, x6 15, x7 175

We  ask  the  reader  to  show in  Exercise  2  that  (8)  is  indeed  a  basic  feasible

solution.  Throughout  the  procedure,  the  solution  x1, x2, . . . , x7  that  we

generate will continue to have the proper number of zeros, and the columns

of the coefficient matrix corresponding to the basic variables will continue to
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be  independent,  hence  the  definition  of  basic  feasible  solution  will  be

satisfied by the solution.  Henceforth, we give this fact no special mention.  

The  value  of  f  may still  be  increased  by increasing  either  x1  or  x3,  but

not  x5,  since  its  coefficient  in  the  bottom  (i.e.,  the  objective)  row  of  the

current  system is  negative.   Introduce  x3  as  the  entering  basic  variable.   In

order  to  maintain  non-negativity  of  the  old  basic  variables,  four  conditions

must  be  satisfied:  x3 200  from  the  first  equation,  x3 75 1 2 150

from the  second,  x3 15  from the  third,  and  x3 175 3 2 350 3 from

the  fourth  equation.   The  third  equation  is  the  binding  one,  so  that  the

departing basic variable is x6. We solve for x3  in the third equation to obtain

the following new system: 

Dictionary constraints,

x4, x2, x3, x7, f , x1, x5, x6

x4 185 0 x1 1
2 x5 1 x6

x2 135
2 1 x1 3

4 x5 1
2 x6

x3 15 2 x1 1
2 x5 1 x6

x7 305
2 1 x1 1

4 x5 3
2 x6

f 525
4

5
4 x1 1

8 x5 5
4 x6

(9)x1 0,  x2 135 2, x3 15, x4 185, x5 0, x6 0, x7 305 2

The objective function now has the value f 525 4.

In the objective equation of  the current system, the objective function f
is  expressed  as  a  linear  function  of  the  non-basic  variables,  all  of  whose

coefficients  are  negative.   Therefore,  f  cannot  be  improved  by  increasing

any of these variables, and the current solution (9) is locally optimal, hence it

is  also  globally  optimal.   In  terms of  the  original  winery  problem,  we  have

shown  that  a  maximum  profit  of   525 4 131.25   dollars  is  obtained  by

making  red,  white,  and  rosé  wine  in  amounts  of  0,  135/2,  and  15  gallons,

respectively.   The  slack  variable  x4 185  indicates  the  number  of  unused

bushels of type I grapes, and the slack variable x7 305 2 gives the number

of  unused  labor  hours.   Since  x5 x6 0,  all  type  II  grapes  and  sugar  are

used.

Activity 1  – Use the Dictionary command to select a different sequence

of  entering  basic  variables,  and  see  if  you  arrive  at  the  same  optimal

solution.
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To  summarize,  the  algorithm  to  solve  standard  maximum LP  problems

with inequality constraints is as follows.

SIMPLEX  ALGORITHM  FOR  STANDARD  MAXIMUM

PROBLEMS

1. a.{Set up initial system} By introducing slack variables, write 

         the constraints in equality form.

    b. Solve for the slack variables, and adjoin the objective 

        function.

2. While there are still variables with positive coefficients in the 

      objective function row of the system of equations, do step 3.

3. a. Choose an entering basic variable with a positive coefficient 

      on the objective function row.  

    b. Choose a departing basic variable by finding the row, among  

      those in which the entering basic variable selected in (a) has a 

      negative coefficient, which has the smallest ratio of the 

      constant term divided by the absolute value of that coefficient.  

      If two rows share the smallest such ratio, pick either one;

       {The basic variable currently solved for in this row will 

       depart}

    c. Solve for the new list of basic variables in the constraints and 

         objective equation.

4.  {The optimal solution has been reached.}  Return values of 0 

      for the non-basic variables in the final system of equations, 

      and return the appropriate constant terms in the system for the 

      values of the basic variables, and of f .

The  rule  for  selection  of  the  departing  basic  variable  in  step  3b  is  new

and  needs  some  discussion.   Suppose,  without  loss  of  generality,  that  at  a

certain  step  of  the  algorithm,  we  have  basic  variables  x1,…,  xm  written  as

functions  of  non-basic  variables  xm 1,  …,  xn  as  below,  and  we  wish  to

introduce xm 1 as a basic variable.

x1 c1 a1, m 1 xm 1 a1, m 2 xm 2 a1, n xn

x2 c2 a2, m 1 xm 1 a2, m 2 xm 2 a2, n xn

.

.

.

xm cm am, m 1 xm 1 am, m 2 xm 2 am, n xn

We locate the binding constraint by solving the system of inequalities:

2.3 Simplex Algorithm for the Standard Maximum Problem 175



(10)

c1 a1, m 1 xm 1 0

c2 a2, m 1 xm 1 0

.

.

.

cm am, m 1 xm 1 0

If  ai, m 1 0, then there is no restriction on how large xm 1  can be, and the

ith row can be passed by.  Otherwise, the restriction imposed by the ith row is

xm 1 ci ai, m 1 ,  and  the  binding  constraint  is  the  row  with  the  minimal

such ratio.

Activity  2  –  Is  there  any restriction  on  the  choice  of  the  entering  basic

variable?  Can you conceive of a good strategy for choosing it?

In  the  exercises,  you  are  led  through  a  proof  that,  in  the  absence  of

degeneracies, the simplex algorithm returns either an optimal solution, or the

information that the problem is unbounded (see Exercises 14–16).

Special Behavior

The simplex algorithm as stated above is  not  a finished product,  because of

the  problems  of  unboundedness  and  degeneracy,  which  we  examine  in  the

examples  below.   We  would  also  like  to  show  how  the  existence  of  more

than  one  optimal  solution  can  be  read  from  the  final  simplex  system.   For

expositional  ease,  we  use  two-variable  problems  as  examples,  but  the

principles are the same for larger problems. 

EXAMPLE 1.  Consider the problem

 maximize : f x1 x2

subject to : 

x1 x2 1

x2 2

x1, x2 0

The  sketch  of  the  feasible  region,  which  is  unbounded,  is  shown  in  Figure

2.8. 
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constraints28 x1 x2 1, x2 2 ;

f1 x_, y_ : x y;

PlotFeasibleRegion

constraints28, x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 1 , 1, 2 , 3, 2 , 3, 0 ,

f1, ShowTable False, TextStyle

FontFamily "Times", FontSize 8 ;

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 2.8 – An unbounded problem

Begin the execution of the algorithm by introducing slack variables x3 and x4

as basic variables:

equalityconstraints

x1 x2 x3 1, x2 x4 2, f x1 x2 ;

Dictionary equalityconstraints,

x3, x4, f , x1, x2

x3 1 1 x1 1 x2
x4 2 0 x1 1 x2
f 0 1 x1 1 x2

The  current  solution  is  x1 0,  x2 0,  x3 1,  x4 2,  f 0.   Choose  x1  as

the  entering  basic  variable.   Since  x1  has  a  positive  coefficient  in  the  first

constraint  equation,  and  does  not  appear  in  the  second  equation,  it  may  be

increased  without  bound,  while  all  problem  variables  remain  non-negative

and  satisfy  the  other  constraints.   Since  the  objective  function  increases

without bound as x1 does, we see that the problem is unbounded.  Physically,

it is clear from Figure 2.8 that to increase x1  while holding x2  at zero means
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to  move  to  the  right  along  the  x1-axis,  all  the  while  staying  in  the  feasible

region.  As you do so, the objective f x1 x2 becomes arbitrarily large. 

The  implication of  the last  example is  that  to  check  for  unboundedness,
the  simplex  algorithm  should  add  a  check  at  the  beginning  of  step  2  for
non-basic variable columns in which all constraint coefficients are non-nega-
tive and the objective function coefficient is positive.  If such a column exists,
the problem is unbounded. (Exercise 14 asks for a general proof of this fact.)

Another  important  observation  is  that  the  algorithm encounters  no  problem

when the feasible region is unbounded  but the objective function is not. (See

the example in the discussion of the tableau method in the next subsection.)  

EXAMPLE  2.   When  multiple  solutions  are  present,  the  final  system  of
equations indicates this fact.   Suppose we wish to maximize f 4 x1 2 x2

subject to the constraints

x1 x2 2

2 x1 x2 3

x1, x2 0

The  feasible  region  is  sketched  in  Figure  2.9,  and  we  note  that  the  c-level

sets  of  the  objective  funciton  are  parallel  to  the  segment  connecting  1, 1

and 3 2, 0 .  Thus, the maximum of f  should be taken on at all points along

this segment.

constraints29 x1 x2 2, 2 x1 x2 3 ;

f2 x_, y_ : 4 x 2 y;

PlotFeasibleRegion

constraints29, x1, 0, 3 , x2, 0, 3 ,

0, 0 , 0, 2 , 1, 1 , 3 2, 0 , f2,

ShowTable False, ObjectiveLines 3, 4, 5, 6 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;
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Figure 2.9 – A problem with multiple solutions

With slack variables x3 and x4 inserted, the initial simplex system is 

equalityconstraints2

x1 x2 x3 2, 2 x1 x2 x4 3, f 4 x1 2 x2 ;

Dictionary equalityconstraints2,

x3, x4, f , x1, x2

x3 2 1 x1 1 x2
x4 3 2 x1 1 x2
f 0 4 x1 2 x2

Hence, x1 0,  x2 0,  x3 2,  x4 3,  and  f 0.  It  is  always  useful  to

remember  that  a  simplex  system  like  the  one  above  represents  a  basic

feasible  solution  (when  non-basic  variables  are  set  to  zero),  and  in  turn  a

basic feasible solution is an extreme point of the feasible region.  The current

system  represents  the  origin,  which  is  a  corner  of  the  feasible  region  in

Figure 2.9.  When x1 is introduced to replace x4 as a basic variable, we obtain

Dictionary equalityconstraints2,

x3, x1, f , x2, x4

x3 1
2

1
2 x2 1

2 x4

x1 3
2

1
2 x2 1

2 x4

f 6 0 x2 2 x4

For  this  new  system,  x1 3 2,  x2 0,  x3 1 2,  x4 0,  and  f 6.  The

extreme  point  represented  by  this  system  is  the  corner  3 2, 0  of  the

feasible region.  Since all coefficients on the bottom row are now non-posi-
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tive,  the  solution  3 2, 0  is  optimal.   But  also,  x2  has  coefficient  0  in  the

objective  row.   This  means  that  x2  can  be  increased  without  altering  the

value  of  f .   A check of  the  ratios  of  constant  terms to coefficients  of  x2  in

the constraint equations reveals that x2  can be increased as far as 1 (with x3

as  departing  basic  variable)  without  violating  feasibility.   At  this  point,  x1

becomes 1, x3 becomes 0, and x4 remains 0; hence we obtain x1, x2 1, 1

as another optimal solution, as expected.   

Dictionary equalityconstraints2,

x2, x1, f , x3, x4

x2 1 2 x3 1 x4
x1 1 1 x3 1 x4
f 6 0 x3 2 x4

The  last  example  points  out  that  when  a  non-basic  variable  has  a
coefficient  of   0   in  the  objective row of  the final simplex system, that  vari-
able  may  be  made  basic,  and  another  variable  non-basic,  thereby  yielding
an alternative optimal solution.

EXAMPLE 3.  The final special behavior to illustrate is degeneracy of basic

feasible  solutions.   We  will  see  that  this  occurs  when  more  than  two  con-

straints  intersect  at  a  single  extreme  point.   From  a  computational  point  of

view,  this  is  the  stickiest  sort  of  problem  to  handle  because  the  number  of

steps  required  to  reach  the  solution  may  increase  greatly,  and  in  the  most

extreme case, an infinite loop can be entered in the algorithm.  Consider the

standard LP problem

 maximize: f x1 3 x2

subject to:

x1 2 x2 3

2 x1 x2 3

x1 x2 2

x1, x2 0

whose  feasible  region  is  depicted  in  Figure  2.10.   Here,  all  three  constraint

boundaries intersect at the point 1, 1 .  
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constraints210

x1 2 x2 3, 2 x1 x2 3, x1 x2 2 ;

f3 x_, y_ : x 3 y;

PlotFeasibleRegion constraints210, x1, 0, 2 ,

x2, 0, 2 , 0, 0 , 0, 3 2 , 1, 1 , 3 2, 0 ,

f3, ShowTable False,

ObjectiveLines 3.5, 4, 4.5, 5 ,

ObjectiveLineStyle RGBColor 1, 0, 0 ,

AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;
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Figure 2.10 – A degenerate problem

equalityconstraints3 x1 2 x2 x3 3,

2 x1 x2 x4 3, x1 x2 x5 2, f x1 3 x2 ;

Dictionary equalityconstraints3,

x3, x4, x5, f , x1, x2

x3 3 1 x1 2 x2
x4 3 2 x1 1 x2
x5 2 1 x1 1 x2
f 0 1 x1 3 x2

Graphically, it is easy to see that we could reach the optimal point in one

step by introducing x2  into the basic variable list, but suppose we choose to

let  x1  be  the  entering  basic  variable  instead.   The  minimum ratio  criterion

indicates that x4 should depart, and we obtain:
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Dictionary equalityconstraints3,

x3, x1, x5, f , x2, x4

x3 3
2

3
2 x2 1

2 x4

x1 3
2

1
2 x2 1

2 x4

x5 1
2

1
2 x2 1

2 x4

f 3
2

5
2 x2 1

2 x4

This  dictionary  system  represents  the  basic  feasible  solution  x1 3 2,

x2 0,  x3 3 2,  x4 0,  x5 1 2,  and  f 3 2.    Next,  x2  should  become

basic,  but  we  have  a  tie  between  ratios  in  the  first  and  third  rows  of  the

constraint system.  Activity 3 below this example asks you to check that if x3

is  chosen  as  the  departing  basic  variable  in  row  1,  only  one  further  step  is

necessary.   Let  us  see  what  happens  if  we  choose  x5  as  the  departing  basic

variable instead.

Dictionary equalityconstraints3,

x3, x1, x2, f , x4, x5

x3 0 1 x4 3 x5
x1 1 1 x4 1 x5
x2 1 1 x4 2 x5
f 4 2 x4 5 x5

We  are  now  at  the  point  of  degeneracy  where  all  the  boundary  lines  inter-

sect:  x1 1,  x2 1,  x3 0,  x4 0,  x5 0,  f 4.  In  this  system,  the  slack

variable x3  is  basic,  yet  it  has  the value 0 because the first  constraint  in the

original  problem is  an equality at  x1, x2 1, 1 .   This  collection forms a

degenerate  solution,  since more than n m 5 3 2 variables equal  zero.

In  the  next  step,  x4  must  enter,  and  x3  departs  the  list  of  basic  variables

because 0/1 is the smallest coefficient ratio.
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Dictionary equalityconstraints3,

x4, x1, x2, f , x3, x5

x4 0 1 x3 3 x5
x1 1 1 x3 2 x5
x2 1 1 x3 1 x5
f 4 2 x3 1 x5

The basic feasible solution is now x1 1, x2 1, x3 0, x4 0, x5 0, and

f 4.  There are several things worth noting about this system.  The feasible

solution  is  still  degenerate,  since  the  basic  variable  x4 0.  Geometrically,

this  system represents  the  same corner  1, 1  of  the  feasible  region,  and  the

value of  the objective  has  not  increased.   In  theory (and in fact  such exam-

ples have been constructed), it is conceivable that a sequence of entering and

departing basic variables might be chosen so that the physical point remains

the  same  indefinitely;  only  the  roles  of  basic  and  non-basic  variables  are

interchanged.  Fortunately,  this  is  rather  rare,  and  in  this  problem  x5  now

enters, x1 departs, and the final system is given by

Dictionary equalityconstraints3,

x4, x5, x2, f , x1, x3

x4 3
2

3
2 x1 1

2 x3

x5 1
2

1
2 x1 1

2 x3

x2 3
2

1
2 x1 1

2 x3

f 9
2

1
2 x1 3

2 x3

The optimal solution is x1 0, x2 3 2, x3 0, x4 3 2, x5 1 2, and the

maximum value of the objective function is f 9 2.  

Activity  3  –  Use  the  Dictionary  command  to  check  that  you  avoid  the

degeneracy  completely by letting x2  be  the  first  entering basic variable;

and also to check that if you take the approach of the example up to the

second step, but then let x3  instead of x5  be the departing basic variable

when x2 enters, you need only one more step.

It  turns  out  that  the  difficulty  illustrated  in  the  last  example  can  be

avoided  by  a  more  judicious  choice  of  entering  and  departing  basic  vari-

ables,  though we would rather  not  discuss  the problem in any greater detail
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in  this  introduction  to  the  subject.   For  more  information,  the  reader  can

study Papadimitriou and Steiglitz [47], or Gass [24].

Tableau Method

The  method  used  in  the  examples  above  is  called  the  dictionary  method,

because all variables and equations are explicitly listed at every step.  There

is  another  way  of  executing  the  simplex  algorithm that  is  equivalent  to  the

dictionary method.    Only the coefficients of the equations are really neces-

sary  as  long  as  we  identify  at  each  step  which  variables  are  basic.   The

alternative  tableau  method  takes  advantage  of  this  observation  by  perform-

ing  a  procedure  very  similar  to  matrix  Gaussian  elimination.   Gaussian

elimination  chooses  a  sequence  of  matrix  elements  about  which  to  "pivot"

(meaning  to  zero  all  entries  beneath  the  pivot  row  in  the  pivot  column  by

row operations), namely the diagonal elements, so as to transform the matrix

to upper triangular form.  The simplex algorithm does almost the same thing,

except that it chooses its sequence of pivot elements according to the rules of

step  3  of  the  simplex  algorithm  for  selecting  entering  and  departing  basic

variables. 

To  illustrate,  consider  a  problem with  the  same constraints  as  the  prob-

lem  of  Example  1,  but  with  an  objective  function  that  turns  out  to  be

bounded on the feasible region of Figure 2.8.  The problem statement and its

equality form are shown below:

(11)

maximize: f 2 x1 x2                            

subject to : 

x1 x2 1

x2 2

x1, x2 0

                   

x1 x2 x3 1

x2 x4 2

2 x1 x2 f

(Note:  Some  authors,  and  some  computer  programs,  display  the  objective

function on the top row of the system.) Write the augmented matrix for this

system,  labeling  each  constraint  row  with  the  basic  variable  that  it  repre-

sents.   This  matrix  is  called  the  initial  tableau,  and  is  shown  in  Figure

2.11(a), to the right of the initial dictionary system to which it is equivalent. 
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x3 1 x1 x2

x4 2 x2

f 2 x1 x2

       

x1 x2 x3 x4

x3 1 1 1 0 1

x4 0 1 0 1 2

2 1 0 0 f 0

Figure 2.11(a) – Initial dictionary system and simplex tableau

x2 1 x1 x3

x4 1 x1 x3

f 1 x1 x3

      

x1 x2 x3 x4

x2 1 1 1 0 1

x4 1 0 1 1 1

1 0 1 0 f 1

Figure 2.11(b) – Second dictionary system and simplex tableau

Choose a new basic variable by choosing a column such that the coeffi-

cient in the objective row is positive.  Thus, we must choose the x2  column.

Determine  the  departing  basic  variable  by  finding  the  minimal  ratio  of  the

constant right-hand side to the x2  coefficient.  In Figure 2.11(a), we see that

the  top  row,  i.e.,  the  x3  row,  is  the  one  to  select.   Designate  the  new basic

variable for  the first  row to be x2.   Note  that  in the tableau we look for  the

row with a positive entry in the x2 column such that the aforementioned ratio

is  minimal.   Use  the  pivot  element  just  selected,  here  it  is  in  row  1  and

column 2, to "pivot away" to zero all other entries in its column, i.e., to make

them zero.  The suitable row operations are:  

(12)
row 2 := row 2 – row 1 

row 3 := row 3 – row 1 

We  obtain  the  new  tableau  in  Figure  2.11(b),  which  is  equivalent  to  the

system of  equations  resulting from the dictionary method on  the left  of  this

tableau.   In  general,  the  tableau  algorithm stops  when  there  are  no  positive

entries  in  the  bottom  row,  which  is  the  case  in  Figure  2.11(b).   The  maxi-

mum  value  of  1  is  the  number  subtracted  from  f  in  the  lower  right-hand

corner,  the values  of  the non-basic  variables are  zero,  and the values of  the

basic variables are the constants on the right-hand side of the tableau, as you

can see from the final dictionary system. (Note  that the latter is  only true if

the pivot elements are made equal to one by multiplication of the pivot row

by a suitable constant.)
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Activity 4  – Justify carefully why, in the tableau version of the simplex

algorithm,  you  select  as  the  entering  basic  variable  a  column that  has  a

positive  entry  in  the  objective  row;  why  the  departing  basic  variable  is

found in the row, among those with a positive entry in the pivot column,

such that  the right  side to entry ratio is smallest; and why the values of

the  basic  variables  are  found  in  the  constant  column  of  the  tableau,  as

long  as  the  pivot  entry  is  1.   Given  a  tableau,  how  can  you  tell  what

variable  is  considered  basic  in  each  row,  and  what  variables  are

non-basic?

There  is  a  Mathematica  command in  the  KnoxOR`LinearProgramming`

package  that  saves  you  the  trouble  of  doing  row  operations  yourself,  but

only requires you to select the entering and departing basic variables, based

on the current tableau.  It is called SimplexOneStep:

SimplexOneStep tableau,varlist,

entering,departing,basiclist

Its  first  argument  is  the  current  simplex  tableau  in  the  usual  Mathematica
form  for  a  matrix,  and  its  other  arguments  involve  the  variable  names.

"Varlist" is a list of all the variables in column order, "entering" is the name

of the entering basic variable, "departing" is the name of the departing basic

variable,  and  "basiclist"  is  the  list  of  basic  variable  names in  the  row order

they  have  in  the  tableau.   SimplexOneStep  pivots  in  the  column  of  the

entering basic variable and the row of the departing basic variable, shows the

new tableau,  then returns  the  pair  {newtableau,  newbasiclist}  for  use  in the

next step.  

Here,  for  example,  is  how the  command works  on  the  initial  tableau  of

Figure  2.11(a).   We give the tableau and the variable  list  names and values

first,  then  we  ask  SimplexOneStep  to  let  x2  replace  x3  in  the  basic  list.   It

gives  the  printout  of  the  tableau  in  Figure  2.11(b),  with  basic  variables

labeled on the left.   Notice here that  the bottom right  corner  will  always be

of  the  form c,  and  you  should  interpret  the  entry  as  f c,  where  c  is  the

current value of the objective function.  
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tableau11 1, 1, 1, 0, 1 ,

0, 1, 0, 1, 2 , 2, 1, 0, 0, 0 ;

varlist x1, x2, x3, x4 ;

SimplexOneStep tableau11,

varlist, x2, x3, x3, x4

x1 x2 x3 x4
x2 1 1 1 0 1

x4 1 0 1 1 1

obj 1 0 1 0 1

1, 1, 1, 0, 1 , 1, 0, 1, 1, 1 ,
1, 0, 1, 0, 1 , x2, x4

We  further  illustrate  the  tableau  form  of  the  simplex  algorithm  in  the

next example.

EXAMPLE  4.   A  coal  mining  company  owns  two  neighboring  mines,

whose  coal  outputs  differ  somewhat  in  quality  and  accessibility.   Men  and

equipment  can  be  shifted  back  and  forth  easily  between  the  two  mines.

Suppose  that  each  day  there  are  12  available  mining  hours.   Each  mine

produces high, middle, and low quality coal.  Because of storage restrictions,

the company may mine no more than 60 tons,  90 tons,  and 80 tons,  respec-

tively, of high, middle, and low quality coal in a day.  An hour spent digging

in mine I produces 2 tons, 4 tons, and 6 tons, respectively, of the three kinds

of coal; similarly, an hour in mine II yields  3, 1, and 5 tons of the three coal

types.   Profits  per  ton  are  $500,  $400,  and  $300  for  high,  middle,  and  low

quality coal,  respectively.   How many hours  should  be  spent  in  each of  the

two mines in order to maximize total profit per day?

First  we  need  to  identify  the  problem  variables,  then  construct  the

objective  function,  and  then  translate  the  constraints.   The  optimization

problem implicit in the question suggests that the variables are

 x1 = number of hours spent in mine I

 x2 = number of hours spent in mine II

What is the daily profit if these amounts of time are spent in the two mines?

By the problem statement, mine I produces tonnages of

                             2 x1   (high)             4 x1   (middle)             6 x1    (low)

and mine II will yield 

                             3 x2   (high)              x2   (middle)             5 x2    (low)
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tons  of  the  three  varieties  of  coal.   For  the  high  quality  coal  we  obtain  a

profit of  $500 2 x1 3 x2  , and we can calculate the profit for the other two

types of coal similarly.  The total profit for all three types is

(13)f 4400 x1 3400 x2

There is a constraint on the total number of  hours,  and there are three other

constraints on total tonnage of the three types of coal that can be mined.  It is

easy to check that these translate as

(14)

x1 x2 12

2 x1 3 x2 60

4 x1 x2 90

6 x1 5 x2 80

and as usual, both x1 and x2 are non-negative.  The objective function in (13)

and the constraints  in  (14)  specify the LP problem of interest  to the mining

company.  To construct the initial simplex tableau, we insert slack variables

x3, x4, x5, and x6 into the constraints:

(15)

x1 x2 x3 12

2 x1 3 x2 x4 60

4 x1 x2 x5 90

6 x1 5 x2 x6 80

4400 x1 3400 x2 f 0

The initial tableau below follows immediately: 

tableau4

1, 1, 1, 0, 0, 0, 12 , 2, 3, 0, 1, 0, 0, 60 ,

4, 1, 0, 0, 1, 0, 90 , 6, 5, 0, 0, 0, 1, 80 ,

4400, 3400, 0, 0, 0, 0, 0 ;

TableForm tableau4, TableHeadings

None, "x1", "x2", "x3", "x4", "x5", "x6", " "

x1 x2 x3 x4 x5 x6
1 1 1 0 0 0 12
2 3 0 1 0 0 60
4 1 0 0 1 0 90
6 5 0 0 0 1 80
4400 3400 0 0 0 0 0
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In  the  first  step,  x2  can  be  chosen  as  the  entering  basic  variable,  and  the

minimum ratio criterion implies that it should replace x3 in the first row. 

varlist x1, x2, x3, x4, x5, x6 ;

tableau4, basiclist SimplexOneStep

tableau4, varlist, x2, x3, x3, x4, x5, x6 ;

x1 x2 x3 x4 x5 x6
x2 1 1 1 0 0 0 12

x4 1 0 3 1 0 0 24

x5 3 0 1 0 1 0 78

x6 1 0 5 0 0 1 20

obj 1000 0 3400 0 0 0 40800

And in the second and last step, x1 replaces x2 in the basic list.

tableau4, basiclist SimplexOneStep

tableau4, varlist, x1, x2, basiclist ;

x1 x2 x3 x4 x5 x6
x1 1 1 1 0 0 0 12

x4 0 1 2 1 0 0 36

x5 0 3 4 0 1 0 42

x6 0 1 6 0 0 1 8

obj 0 1000 4400 0 0 0 52800

We observe from the final tableau that the optimal values of x1 and x2 are 12

and  0,  respectively,  i.e.,  all  time should  be  spent  in  mine I.   The maximum

profit  for  this  activity  is  $52,800  per  day.   Since  the  slack  variables  x4,  x5,

and x6  are strictly positive in the optimal solution, it follows that the storage

constraints are not binding.  

In what remains of this chapter,  and in the next chapter, we will use the

dictionary  approach  when  clarity  and  ease  of  understanding  are  paramount,

and  the  more  concise  tableau  approach  when  efficiency  of  presentation  is

more  important.   You  should  become  accustomed  to  them  both.

Exercises 2.3

1.  A  small  software  production  company  wants  to  maximize  the  benefit  of

the time and money spent by its staff in working on development projects. It

produces software that is roughly classified as one of three types, increasing

in  value  and  also  difficulty  from one  type  to  the  next.   Type  1  projects  are
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half as valuable as type 2 projects, which are in turn half as valuable as type

3  projects.  Each  type  1  project  requires  two programmers,  and  40  hours  of

planning  and  documentation  over  the  span  of  a  month;  each  type  2  project

requires  five  programmers  and  60  hours  of  time,  and  each  type  3  project

requires eight programmers and 90 hours of time.  How should the company

allocate  its  resources  for  a  month's  work  if  it  has  30  programmers  and  300

hours of time? Can non-integer solutions make sense in this problem; and if

so, how? 

2.  Verify that the list in formula (8) constitutes a basic feasible solution for

the winery problem (3)–(4).

3.   Solve  the  following  standard  maximum  problem  by  the  simplex  algo-

rithm:

maximize: f 2 x1 x2 x3 4 x4

subject to:

x1 x2 3

x3 x4 6

x1 2 x2 x3 2 x4 10

xi 0 for all i 

4.  An enterprising farmer wants to devote some of his land to the raising of

hogs,  chickens,  and ostriches.   He will use no more than 1000 square yards

for  this  purpose.   After  deducting  the  cost  of  feed,  he  decides  that  he  can

profit by $500 per hog, $50 per chicken, and $1000 per ostrich. Each ostrich,

however,  requires  at  least  100  square  yards,  each  hog  20  square  yards,  and

each  chicken  5  square  yards  of  his  property.  Also,  he  wishes  to  spend  no

more than 500 hours during the season tending to the animals, and each hog

requires  10  hours,  each  ostrich  20  hours,  and  each  chicken  5  hours  of  his

time. What combination of hogs, chickens, and ostriches should he choose to

raise, and what is the maximum profit he can achieve? 

5.  Solve the problem below.  Show that the feasible region is unbounded.

 maximize: f 2 x1 x2 x3

 

subject to:  

x1 x2 x3 2

x1 x2 x3 2

x1, x2, x3 0

6.  Show that if there exists at least one constraint in the standard maximum

problem, say the ith,  such that ai j  is  strictly greater than zero for  all  j,  then

the problem is bounded.
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7.   A  construction  contractor  builds  single-family  dwellings  and  apartment

buildings.  The contractor can make $5000 profit on each house and $50,000

on  each  apartment.   It  takes  400  hours  to  build  a  house  and  1000  hours  to

build  an  apartment.   Each  house  requires  1600  cubic  feet  of  concrete,  and

each  apartment  requires  3000  cubic  feet  of  concrete  to  lay  the  foundation.

Bricks  are  the  only  other  limiting  resource;   houses  require  20,000  square

feet  and  apartments  require  100,000  square  feet  of  brickface.   A  total  of

10,000  hours,  60,000  cubic  feet  of  concrete,  and  1,000,000  square  feet  of

brick  are  available.   Find  the  numbers  of  single-family  dwellings  and

apartments that should be made to maximize the contractor's profit. 

8.   Show  that  the  following  linear  program  is  unbounded,  using  the  dictio-

nary implementation of the simplex algorithm.

 maximize:  f x1 x2 x3

 

 subject to:   

x1 x2 x3 4

2 x1 x2 x3 6

x1, x2, x3 0

 

9.  Redo the winery problem (3)–(4) using the tableau implementation of the

simplex  algorithm.   Note  the  connection  between  the  tableau  you  obtain  at

each step, and the corresponding system of equations in Section 3.

10.  Solve Exercise 1 using the tableau method.

11.  (a)   What  would you look for  in a simplex tableau in order  to conclude

that a problem is unbounded?  

    (b)   What  would  you  look  for  in  a  simplex  tableau  in  order  to  detect  a

degeneracy?

   (c)   What  characteristic  of  a  final  simplex  tableau  indicates  multiple

solutions?

12.   You may have thought  of trying the method of Lagrange multipliers to

find optimal solutions, since, after the introduction of slack variables into the

standard maximum  problem, the problem has the form:

maximize: f x

subject to: g1 x 0

gm x 0

 

 x 0

Try this on the problem below.
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 maximize: f x1 x2 x3

 

 subject to:  

x1 x3 10

x1 x2 5

2 x2 x3 8

x1, x2, x3 0

(The trouble here lies in the fact that the slack variables do not appear in the

objective function. Even when the problem is in the standard equality form,

this method is inefficient at best. For more information, see Dantzig [16].)

13.  Consider the problem:

 maximize: f x1 x2

                          

 subject to:

2 x1 x2 6

x1 2 x2 4

x1, x2 0

             

      (a)  Sketch the feasible region, find the coordinates of the corner points,

and find the optimal value.

      (b)  Repeat (a) if the right-hand side constants are changed to  6 h1  and

4 h2,  respectively.  Under what conditions on h1  and h2  are x1  and x2  still

basic in the optimal solution?

      (c)  Perform the simplex algorithm on the problem in part (b), noting the

connection between the conditions on h1 and h2 derived there, and the choice

of entering basic variables.

Exercises  (14)–(16)   step  the  reader  through  a  proof  of  the  simplex

algorithm.   In  these  problems,  we  suppose  that  we  begin  with  a  standard

maximum problem (1)–(2)  whose constraints have been turned into equality

constraints by the introduction of  slack variables.   Refer to the statement of

the simplex algorithm.  We amend step 2 in the following way: include into

the  entrance  condition  for  loop  3  a  check  for  a  non-basic  variable  column

with all non-negative coefficients.  If this condition causes loop termination,

then in place of step 4, return a message that the problem is unbounded.

14.   Show that  if  there  is  a  non-basic  variable  all  of  whose  coefficients  are

non-negative at some stage of execution, then the problem is unbounded, as

the message described above claims.

15.   Show  inductively  that  at  each  pass  through  the  loop,  the  next  system

represents  a  basic  feasible  solution.   Show  in  addition  that  if  there  are  no

degeneracies, the value of the objective increases strictly.
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16.   Prove  that  if  no  degeneracies  are  encountered  at  any  stage,  then  the

algorithm  terminates  in  finitely  many  steps  with  with  an  unboundedness

message or an optimal solution.

2.4  Duality and the Standard Minimum Problem

In  the  last  section,  we  used  the  simplex  algorithm  to  solve  the  standard

maximum problem:   max:  f c x   subject  to:  A x b,  x 0.   We  could

adapt  the  procedure  directly  to  minimum problems,  but  in  this  section,  we

take  a  different  approach  in  order  to  introduce  the  important  notion  of

duality in linear programming.  The class of minimum problems to be solved

is illustrated by the following model problem.

EXAMPLE 1.   A publishing  company owns  two printing  facilities,  F1  and

F2, each of which prints a different publication.  Facility F1  uses 20 units of

paper and 5 units of ink per copy, and F2 uses 15 units of paper and 10 units

of ink per copy.  In a certain period, F1  must produce at least 10,000 copies

of  its  publication  in  order  to  stay in  business,  and  F2  must  produce  at  least

20,000 copies.   Also,  on the average,  F1  requires  0.2 units of electricity per

unit  of  paper  in  order  to  execute  its  printing  and  F2  requires  0.4  units  of

electricity  per  unit  of  paper.   In  order  to  receive  a  reduced  rate  from  the

power  company,  the  publisher  wants  to  use  at  least  400,000  total  units  of

electricity in its two facilities during the time period in question.  It costs $1

per  unit  of  paper  and  $.50  per  unit  of  ink  to  pay  for  and  deliver  the  raw

materials to F1, and $2 per unit of paper and $1 per unit of ink to supply F2.

How  many  units  of  each  raw  material  should  the  firm  purchase  for  each

facility in order  to minimize the total supply cost while satisfying the stated

constraints?
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The variables are y1  = # units of paper to F1  (in thousands), y2  = # units

of ink to F1, y3  = # units of paper to F2, and y4  = #  units of ink to F2.  The

constraint  that  F1  must produce  at  least  10,000  copies  says that  F1  needs  at

least 20(10,000)  = 200,000 units  of paper and 1/4 units of ink for each unit

of  paper.   Similarly, F2  needs  at  least  15(20,000)  = 300,000   units  of  paper

and 2/3 units of ink per unit of paper.  That is,

y1 200
y2 1 4 y1

y3 300
y4 2 3 y3

In addition, the total electricity required must exceed 400,000, which yields

0.2 y1 0.4 y3 400

The  costs  listed  in  the  last  paragraph  indicate  that  the  following  objective

function is to be minimized:

minimize:  g y1 1 2 y2 2 y3 y4

By moving terms involving the variables to the left side of the inequali-

ties in (1), we may write the problem expressed by (1)–(3) in matrix form as

minimize: g b y

subject to: A y c,   y 0 

where

b

1

1 2

2

1

y

y1

y2

y3

y4

        A

1 0 0 0

1 4 1 0 0

0 0 1 0

0 0 2 3 1

0.2 0 0.4 0

    

c

200

0

300

0

400

We will show how to solve a problem of the form (4)–(5)  by converting it to

a corresponding standard maximum problem.   
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DEFINITION 1.  (a)  A problem of the form  (4)–(5) for which b 0 is

said to be a standard minimum problem.

(b)  The dual problem of (4)–(5) is the standard maximum problem:

maximize: f c x

subject to: A x b,  x 0 

So  to  go  from  the  minimum  problem  to  its  dual  standard  maximum

problem,  the  matrix  of  constraint  coefficients  is  transposed,  the  inequalities

are reversed, and the roles of the vectors b and c are interchanged.  Duality is

a pairwise idea; the minumum problem of (4)–(5) and the maximum problem

of  part  (b)  of  Definition  1  are  duals  of  each other.   We  will  show how the

solution  of  the  standard  maximum  problem  by  the  simplex  method  gives

immediately the solution to its dual standard minimum problem.  At the end

of  the  section,  we  give  an  economic  explanation  of  why  the  two  problems

are connected in this way.

For example, the following two problems are duals of each other.

(6)

maximize f 3 x1 x2 x3      

subject to:  

x2 2 x3 5

x1 3 x2 x3 3

x1, x2, x3 0

    

minimize g 5 y1 3 y2

 subject to: 

y2 3

y1 3 y2 1

2 y1 y2 1

y1, y2 0

Activity 1 – Form the dual maximum problem of the problem expressed

by (1)–(3).

THEOREM 1  (Weak  Duality).  If  x  is  feasible  for  the  standard  maximum

problem, and y is feasible for its dual standard minimum problem, then 

(7)b y c x

Suppose  that  feasible  solutions  x  and  y  as  above  can  be  found  such  that

equality  holds  in  (7).   Then  x  is  an  optimal  solution  of  the  maximum
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problem,  y  is  optimal  for  its  dual  minimum  problem,  and  the  maximum

value of f  equals the minimum value of g.

Proof.  By feasibility of y,

 c A y y A 

Thus,

b y c x b y y A x

y b y A x

y b A x 0

The first line uses the fact that  x 0 , and the last inequality follows from

the feasibility of x.  We therefore have (7).

Now suppose that x  and y  are as described in the second statement of

the theorem.  Given any feasible x  for the maximum problem, (7) implies:

c x b y c x

hence x  is optimal for the maximum problem.  Similarly, given any feasible

y for the minimum problem,

b y c x b . y   

hence y  is optimal for the minimum problem.  Also,

max f c x b y min g

which completes the proof.   

The next lemma helps to prove the strong duality theorem later, and also

enables  us  to  see  something  of  the  origin  of  the  form  of  the  minimum

problem.

LEMMA  1.   At  any  stage  of  execution  of  the  simplex  algorithm  for  the

standard  maximum  problem,  there  exist  numbers  y1, y2, ... , ym such  that

the objective function row has the form:

(8)
f

k 1

m
yk bk c1

k 1

m
yk ak 1 x1 cn

k 1

m
yk ak n xn

y1 xn 1 ym xn m
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where  x1,  ...  ,  xn  are  the  original  problem variables,  and  xn 1,  ...  ,  xn m  are

slack variables.  In addition, if the slack variable xn k  is basic for the simplex

system,  then  its  coefficient  yk 0;  and  if  the  problem variable  xi  is  basic,

then its coefficient ci yk ak i 0.

Proof.  We give only an informal argument.  It is convenient to think of the

simplex algorithm in its tableau implementation, in order to see exactly what

happens to the objective row.  Choosing an equation in which to solve for a

variable,  then  substituting  into  the  remaining  equations  in  the  system  (i.e.,

the  dictionary  method)  is  equivalent  to  subtracting  a  certain  multiple of  the

pivot  row  from each  row  other  than  itself.   (Exercise  16  asks  the  reader  to

show this  for  the  first  step  of  the  simplex algorithm.)   The starting point  is

the  initial  tableau,  depicted  below.   It  is  easy to see inductively that,  at  any

step of  the  algorithm,  the net  effect  of  the  row operations  up  to that  step is

that  each  row  of  the  current  tableau  is  obtained  by  subtracting  from  the

corresponding row in the initial tableau some net multiple y1  times row 1 of

the  initial  tableau,  subtracting  y2  times  row  2,  etc.,  and  lastly  subtracting  a

multiple ym of row m of the initial tableau.  

 

x1 x2 xn xn 1 xn 2 xn m

a11 a12 a1 n 1 0 0 b1

a21 a22 a2 n 0 1 0 b2

am 1 am 2 am n 0 0 1 bm

c1 c2 cn 0 0 0 f 0

Consider the initial tableau.  Since xn 1 appears only in the first row with

coefficient 1,  the coefficient of xn 1   in the new objective row at a later step

of  the algorithm is  just  y1,  where  y1  is  as  described in the last  paragraph.

More generally, for  k 1, . . . , m,  the coefficient of xn k  is the negative of

the net multiple yk  of row k  that has been subtracted from the objective row.

For  i 1, . . ., n, the coefficient of xi in the objective row after these subtrac-

tions must be

ci k 1
m yk ak i

as desired.  The term 
k 1

m
yk bk  is the total of all subtractions from f .  The last

statement  of  the  lemma  follows  immediately  from  the  fact  that  basic  vari-

ables  are  guaranteed by  the  algorithm to  have  coefficient  zero in the objec-

tive  row  at  every  step,  because  in  order  to  have  been  made  basic,  their

columns must have been converted to unit coordinate vectors with a zero in

the last entry.  
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This  lemma supplies  a  great  deal  of  insight  about  how  the  form  of  the

dual  minimum problem is  obtained.   The  intuition  is  given  by  equation  (8)

and  the  following  observation.   We  look  for  a  minimum  problem  whose

feasibility condition means optimality for the maximum problem, and whose

minimum value equals the maximum value of f .   Recall that termination of

the  algorithm  occurs  when  all  xi  have  non-positive  coefficients  in  the

objective row.  In view of  (8), this requires that

ci k 1
m yk ak i 0    for i 1, …, n,     

 and      yk 0   for k 1, …, m

This  is  precisely  the  feasibility  condition  (5)  for  the  minimum  problem.

Also, as we have seen a number of times, the fact that the basic variables do

not appear in the objective row implies that the constant yk bk  is the value

of  the  objective  function.   This  helps  to  motivate the  choice  of  coefficients

for the minimum problem. 

Activity 2 – For the maximum problem in (6), use the tableau method to

perform one pivoting step by hand.   Keep careful track of the multiples

yk  of the pivot row that are subtracted from the other rows, and see how

the  objective  row  depends  on  those  multiples,  to  gain  a  more  concrete

understanding of Lemma 1.

The following theorem shows how the optimal solution of the minimum

problem  may  be  extracted  from  the  final  simplex  system  of  the  maximum

problem.  The theorem also gives information about the existence of optimal

solutions to the two dual problems.

THEOREM 2 (Strong Duality).  (a)  If the standard minimum problem has

a  feasible  solution,  then  both  the  standard  minimum  and  its  dual  standard

maximum problem have optimal solutions, and min g = max f .  

(b)  Assume that the minimum problem (4)–(5)  has a feasible solution.  For

k 1, . . ., m, let yk   be the negative of the coefficient of slack variable xn k
in  the  objective  row  of  the  final  simplex  system  for  the  dual  maximum

problem.  Then the vector y yk  is optimal for the minimum problem.

Proof.   (a)   Since the  minimum problem is  feasible,  the weak  duality  theo-

rem implies that, for any vector y  that is feasible for the minimum problem,

b y  is an upper bound for the optimal value of f .  By the assumption that

b 0,  the origin is feasible for the standard maximum problem.  Therefore,

we see that  the maximum problem is  both feasible and bounded.   Thus,  the

simplex  algorithm  will  produce  an  optimal  extreme  point  solution  to  the

maximum  problem.   The  fact  that  the  minimum  problem  has  an  optimal

solution will follow from part (b), and as a by-product we will show that for
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the two optimal solutions x  and y ,  b y c x .  From this, it follows

that  min g = max f .

(b)   Let  yk  ,  k 1, …, m   be  as  in  the  statement  of  the  theorem,  and

consider the objective row of the final simplex system for the dual maximum

problem.  By Lemma 1, for j 1, …, n,   the coefficient c j  of the jth  coordi-

nate x j of the optimal extreme point x  is

(9)c j c j
i 1

m
yi ai j j 1, …, n

Since this is the final system, all  c j   must be non-positive.   In matrix nota-

tion, (9)  can be written as:

 c c A y 0 c A y  

Also,  the yi  themselves must be non-negative,  by the algorithm termination

condition,  hence  y  is  feasible  for  the  minimum problem.   Moreover,  since

all basic variables have zero coefficients in the objective row, and non-basic

variables are 0, (8) implies that

0 f k 1
m yk bk f x b y g y

By  the  weak  duality  theorem,  x  and  y  are  optimal  for  their  respective

problems.  

In  Exercises  5–8,  some general  results  about  unboundedness,  infeasibil-

ity, and multiple solutions are given.

EXAMPLE 2.   Let  us  solve  the  problem stated in Example 1 of  supplying

the two printing facilities at minimum cost.   The technique is to dualize the

minimum problem, execute the simplex algorithm on the resulting maximum

problem, and then read the solution from the final system.  

The minimum problem is:

(10)minimize: g y1
1
2

y2 2 y3 y4   

subject to:

y1 200

1
4

y1 y2 0

y3 300

2
3

y3 y4 0

1
5

y1
2
5

y3 400

y1, y2, y3, y4 0
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We  obtain  the  dual  problem  by  transposing  the  coefficient  matrix  of  the

constraint system, and interchanging roles of the constraint constants and the

objective function coefficients:

(11)maximize: f 200 x1 300 x3 400 x5

subject to:

x1
1
4

x2
1
5

x5 1

x2 1 2

x3
2
3

x4
2
5

x5 2

x4 1

x1, x2, x3, x4, x5 0

Notice that the number of variables in the dual maximum problem equals the

number of constraints  in the original  (or  primal) minimum problem.  Simi-

larly, the number of constraints in the maximum problem equals the number

of variables in the minimum problem.  

Introduce slack variables  x6,  x7,  x8,  x9   into the constraints of problem

(11) to obtain the initial simplex tableau:

x1 x2 x3 x4 x5 x6 x7 x8 x9 constant

x6 1 1
4

0 0 1
5

1 0 0 0 1

x7 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

200 0 300 0 400 0 0 0 0 f 0

Needs "KnoxOR`LinearProgramming "̀ ;

We  enter  it  into  Mathematica,  and  then  call  on  the  SimplexOneStep  com-

mand  to  carry  out  the  computation.  The  entering  basic  variables  x1,  x2,  x3,

x4, x5  were introduced in that order to obtain the final tableau for the maxi-

mum problem below.  You may run the commands in the electronic version

of the text to see the intermediate tableaux.
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inittableau 1, 1 4, 0, 0, 1 5, 1, 0, 0, 0, 1 ,

0, 1, 0, 0, 0, 0, 1, 0, 0, 1 2 ,

0, 0, 1, 2 3, 2 5, 0, 0, 1, 0, 2 ,

0, 0, 0, 1, 0, 0, 0, 0, 1, 1 ,

200, 0, 300, 0, 400, 0, 0, 0, 0, 0 ;

vlist x1, x2, x3, x4, x5, x6, x7, x8, x9 ;

basicvarlist x6, x7, x8, x9 ;

newtableau, newbasiclist SimplexOneStep

inittableau, vlist, x1, x6, basicvarlist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 1
4

0 0 1
5

1 0 0 0 1

x7 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 50 300 0 360 200 0 0 0 200

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x2, x7, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x8 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 0 300 0 360 200 50 0 0 225

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x3, x8, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 0 0 1 2
3

2
5

0 0 1 0 2

x9 0 0 0 1 0 0 0 0 1 1

obj 0 0 0 200 240 200 50 300 0 825
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newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x4, x9, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0 0 0 1
5

1 1
4

0 0 9
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 0 0 1 0 2
5

0 0 1 2
3

8
3

x4 0 0 0 1 0 0 0 0 1 1

obj 0 0 0 0 240 200 50 300 200 1025

newtableau, newbasiclist SimplexOneStep

newtableau, vlist, x5, x1, newbasiclist ;

x1 x2 x3 x4 x5 x6 x7 x8 x9

x5 5 0 0 0 1 5 5
4

0 0 45
8

x2 0 1 0 0 0 0 1 0 0 1
2

x3 2 0 1 0 0 2 1
2

1 2
3

5
12

x4 0 0 0 1 0 0 0 0 1 1

obj 1200 0 0 0 0 1400 350 300 200 2375

According  to  the strong  duality  theorem, the  minimum cost  agrees  with  the

maximum  of  f ,  which  is  2,375,000.   The  slack  coefficients  in  the  bottom

row give the optimal solution:

 y1 1,400,000     y2 350,000    y3 300,000    y4 200,000 

The  economic  interpretation  is  that  facility  F1  operates  well  over  its  mini-

mum  capacity,  printing  1,400,000/20  =  70,000  copies  and  using  (as  one

would expect) only enough ink to cover this.   Facility F2  works at its mini-

mum capacity of 300,000/15  =  20,000 copies, using the minimal amount of

ink and paper for the printing.  

Activity  3  –  Try  a  different  sequence  of  entering  basic  variables  in  the

last  example.   For  instance,  if  you use  the  heuristic  of  always  selecting

the  highest  magnitude entry  in  the  objective  row to determine the pivot

column, can you shorten the computation?

A  general  class  of  standard  minimum problems  called  mixing  problems
can be described as follows.  Let there be m substances,   each composed of

some  combination  of  n  elementary  ingredients.    We  would  like  to  find  a

mixture of the substances that achieves minimal requirements on the ingredi-
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ents at a minimal cost.  One example of this situation is in problems of diet,

for which there are m possible foods to include in the diet, and each food is

made up of some combination of n possible nutrients.  

Denote by a j i  the number of units of ingredient i per unit of substance j.
Suppose  that  it  is  required  to  have  at  least  ci  units  of  ingredient  i  in  the

mixture.   The cost  per  unit  of  substance j  is  b j.   Then,  denoting   by y j  the

number  of  units  of  substance  j  in  the  mixture,  b j y j  is  the  cost  of  the  total

amount  of  substance j  and   a j i y j  is  the  total  amount  of  ingredient  i  that  is

contributed  by  substance  j.   The  problem  of  minimizing  the  cost  of  the

mixture  subject  to  the  minimal  requirements  of  each  ingredient  takes  the

form:

(12)minimize:   b1 y1 bm ym

subject to:

a11 y1 a21 y2 am 1 ym c1

a1 n y1 a2 n y2 am n ym cn
all yi 0

EXAMPLE  3.   A  cat  food  manufacturer  wishes  to  design  a  meat  product

composed  of  tuna,  liver,  and  kidney  such  that  minimum  total  amounts  of

protein  and  carbohydrates,  3  ounces  and  6  ounces  respectively,  are  present.

In  addition,  the  cost  of  the  mixture  should  be  minimized.   Suppose  that  an

ounce  of  tuna  has  0.5  ounces  of  carbohydrates,  0.2  ounces  of  protein,  and

costs 2 cents.  An ounce of liver has 0.4 ounces of carbohydrates, 0.3 ounces

of  protein,  and  costs  1.5  cents,  and  an  ounce  of  kindey  has  0.3  ounces  of

carbohydrates,  0.2  ounces  of  protein,  and  costs  1  cent.   To  formulate  the

problem of finding an optimal mixture, introduce variables y1,  y2, and  y3 to

represent,  respectively,  the  number  of  ounces  of  tuna,  liver,  and  kidney  in

the  mixture.   By  the  information  on  costs  given  above,  the  objective  is

clearly:

(13) minimize: g 2 y1 1.5 y2 y3 

The total amount of  protein must be at least 3 ounces,  and the total amount

of  carbohydrate  must  be  at  least  6  ounces.   The  given  compositions  of  the

three meats yield the constraints:

(14)

 0.2 y1 0.3 y2 0.2 y3 3     (protein)

           0.5 y1 0 .4 y2 0.3 y3 6     (carbohydrate)

y1, y2, y3 0                         

The  dual  maximum  problem  to  the  minimum  problem  expressed  by

(13)–(14) is:
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(15)

maximize:  f 3 x1 6 x2

subject to: 

0.2 x1 0.5 x2 2

0.3 x1 0.4 x2 1.5

0.2 x1 0.3 x2 1

x1, x2 0

After  inserting  slack  variables  x3,  x4,  and  x5as  usual,  the  initial  simplex

tableau  below  results.   One  pivot  operation,  the  introduction  of  x2  into  the

basic  list  replacing  x5,  gives  the  final  simplex  tableau  for  the  maximum

problem.  

tableau3

.2, .5, 1, 0, 0, 2 , .3, .4, 0, 1, 0, 1.5 ,

.2, .3, 0, 0, 1, 1 , 3, 6, 0, 0, 0, 0 ;

MatrixForm tableau3

0.2 0.5 1 0 0 2
0.3 0.4 0 1 0 1.5
0.2 0.3 0 0 1 1
3 6 0 0 0 0

SimplexOneStep tableau3,

x1, x2, x3, x4, x5 , x2, x5, x3, x4, x5 ;

x1 x2 x3 x4 x5
x3 0.133333 0. 1 0 1.66667 0.333333

x4 0.0333333 0. 0 1 1.33333 0.166667

x2 0.666667 1. 0 0 3.33333 3.33333

obj 1. 0. 0 0 20. 20.

The negatives  of  the coefficients  of  the slack variables  in the objective  row

are  the  optimal  values  for  the  original  minimum  problem,  i.e.,

y1 0,  y2 0,  y3 20,  and the minimum cost  is  the same as the maximum

of  f ,  namely  20.   The  conclusion  is  that  the  mixture  should  be  entirely  of

kidney in order to minimize cost.  

Let us close the section by exploring the intuitive connection between a

maximum  problem  and  its  dual  minimum  problem.   Consider  the  winery

problem  discussed  in  the  introduction.   There  are  four  available  resources:

type I grapes, type II grapes, sugar, and labor hours, which are used to make

three  products:  red,  white,  and  rosé  wine.   The  general  setup  is  depicted  in
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the  table  below,  in  which  we  have  chosen  to  leave  the  coefficients  general

rather than insert the numerical values given for them in the introduction.

Bounds on

Red White Rosé Resources Resources

Units of a11 a12 a13 b1 Type I grapes

resource per a21 a22 a23 b2 Type II grapes

unit of wine a31 a32 a33 b3 Sugar

a41 a42 a43 b4 Hours

Profit per

unit of wine c1 c2 c3

Consider the problem faced by an individual who wishes to purchase all

of  the  winery's  resources.   A  decision  must  be  reached  by  this  buyer  about

the following four offering prices:

 

y1 price per unit of type I grapes

y2 price per unit of type II grapes

y3 price per unit of sugar

y4 price per unit of hours

The buyer wishes to minimize the total purchase price.  Since the winery has

respectively  b1,  b2,  b3,  and  b4  units  of  these  resources  on  hand,  the  total

price to the buyer will be

(16)g b1 y1 b2 y2 b3 y3 b4 y4

which  is  the  objective  function  of  the  dual  minimum  problem.   Also,  the

buyer  must  offer  prices  at  least  as  large  as  the  profit  that  the  winery  could

derive from using the resources to make and sell wine.  For instance, in the

case  of  red  wine,  if  the  winery  used  a11type  I  grapes,  a21type  II  grapes,

a31units of sugar, and a41labor hours, the winery could make one unit of red

wine  for  a  profit  of  c1.   The  buyer's  total  offer  for  this  much  of  the  four

resources must exceed c1, i.e.,

(17)a11 y1 a21 y2 a31 y3 a41 y4 c1

This  is  the  first  constraint  of  the  dual  standard  minimum  problem,  and

similar analyses of  profits  for white wine and rosé wine yield the other two

constraints  of  the  minimum  problem.   The  dual  variables  yi,  which  are

values  per  unit  of  the  resources,  are  often  called  the  shadow  prices  of  the

resources.
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In a similar manner we can intuitively relate a given standard minimum

problem  to  its  dual  maximum  problem.   Let  us  work  in  the  context  of

Example 3 on cat food.  The problem information is summarized in the table

below,  and  again  we  leave  the  coefficients  general  in  order  that  the  reader

may more easily recognize the dual problem. 

 
Amounts

Tuna LiverKidney Required Nutrients

Amount nutrient per a11 a21 a31 c1 Protein

unit of ingredient a12 a22 a32 c2 Carbohydrate

Cost per unit of ingredient b1 b2 b3

 Consider  now  an  individual  who  is  willing  to  sell  all  of  the  nutrients

directly to the cat food manufacturer.  This supplier would choose prices:

x1  =  price per unit of protein

x2  =  price per unit of carbohydrate

in order to maximize his total revenue from the sale.  Since the manufacturer

must purchase c1 units of protein and c2 units of carbohydrate, this revenue is

f c1 x1 c2 x2 

which  is  the  objective  function  of  the  dual  standard  maximum  problem.

Moreover,  the  prices  offered  by  the  supplier  must  be  competitive  with  the

price paid by the cat food manufacturer for  enough units  of  tuna,  liver,  and

kidney to satisfy the requirements.  For example, a unit of tuna, at a cost of

b1, supplies a11 units of protein and a12 units of carbohydrate.  Therefore the

sale  price  offered  by  our  supplier  for  this  combination of  nutrients  must  be

less than b1, i.e.,

a11 x1 a12 x2 b1

We  recognize  this  as  the  first  constraint  of  the  dual  standard  maximum

problem.   Similar  analyses  performed  on  the  liver  and  kidney  ingredients

produce the other two maximum constraints. 
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Exercises 2.4

1.   (Mathematica)  A  sheep  farmer  will  blend  three  types  of  feed  for  his

sheep,  costing $1 per  pound,  $2 per pound,  and $3 per pound,  respectively.

Feed  1  consists  of  50%  fat  and  50%  protein,  feed  2  is  25%  fat  and  75%

protein, and feed 3 is 40% fat and 60% protein.  Sheep are to receive at least

2 lbs. of fat per week and 3 lbs. of protein.  Minimize the weekly cost of feed

per sheep.

2. (Mathematica) Solve the standard minimum problem:

minimize: g y1 y2

subject to:

y1 y2 2

4 y1 y2 8

y1 4 y2 8

y1, y2 0

3.  Verify that constraints (1)–(2) are equivalent to (5).

4.  (Mathematica) A woman operating her own business is trying to plan her

weekly  sales  activity  schedule  to  produce  the  most  valuable  sales  results  in

the least possible time. She can make personal visits, do phone calls, or work

on mass mailings. She estimates that each hour spent on personal visits nets

her $50, each hour on phone calls earns $40, and each hour on mass mailings

earns $20. To limit her transportation and phone costs, and to reach a wider

audience,  she  will  spend  at  least  twice  as  much  time  on  the  phone  as  she

spends  making  personal  visits,  and  at  least  twice  as  much time doing  mass

mailings  as  she  spends  making  phone  calls.  If  her  goal  is  to  make  at  least

$1000  per  week,  how  should  she  allocate  her  time  so  as  to  spend  as  few

hours as possible?

5.  Suppose that in the final simplex system for a dual maximum problem of

a given minimum problem, there is a degenerate basic slack variable x j.   In

the  equation  to  which  x j  belongs  is  some  non-basic  variable  xk  with  a

positive  coefficient;  and  furthermore  in  the  objective  row,  xk  has  a  strictly

negative coefficient ck.  Show that if xk  is made basic, the resulting vector y

of negatives of slack coefficients also achieves the minimum of the objective

function  of  the  minimum  problem.   Need  y  be  feasible  for  the  minimum

problem?

6.  Suppose that in the final simplex system for a dual maximum problem of

a given minimum problem, there is a non-basic variable in the objective row

with coefficient zero.  Recall that this indicates the presence of an alternative

2.4 Duality and the Standard Minimum Problem 207



optimal  solution  for  the  maximum  problem.   Show  that  if  this  variable  is

made  basic,  the  same solution  to  the  minimum problem results.   (Together,

Exercises 5 and 6 point out the duality between degeneracy in one problem,

and non-uniqueness in the other.)

7.   Prove  that  if  a  standard  maximum problem  is  unbounded,  then  its  dual

standard minimum problem is infeasible.

8.   Prove  that  if  a  standard  minimum problem  is  unbounded,  then  its  dual

standard maximum problem is infeasible.

9.  Solve the standard minimum problem below.

minimize: g 2 y1 y2 3 y3

                  

subject to:

y1 y2 y3 10

y1 y2 6 y3 15

y1, y2, y3 0

10.   Give  an  economic interpretation  of  the  dual  maximum problem for  the

problem of Exercise 1.

11.   Give  an  economic  interpretation  of  the  dual  minimum problem for  the

problem of Exercise 7 of Section 2.3.

12.  Let  A x b  be the system of equality constraints for a standard maxi-

mum  problem,  after  the  introduction  of  slack  variables.   There  are  n  vari-

ables  and  m  constraints.   A  basic  solution  is  a  vector  x  that  satisfies  the

equality  constraints,  and  has  n m  of  its  components  equal  to  0,  but  is  not

required  to  satisfy  the non-negativity  constraint.   For  each basic solution of

the  maximum problem,  there  is  a  complementary  basic  solution  (again,  not

necessarily feasible) for  its dual minimum problem, obtained by reading the

negatives of the slack coefficients in the objective row of the corresponding

maximum  simplex  system.   To  see  what  basic  solutions  represent  in  two

dimensions, consider the problem:

maximize: f x1 5 x2

subject to:

2 x1 x2 4

x1 2 x2 6

x1, x2 0

(a)   Write  the  dual  problem, and  sketch the  feasible  regions  for  both  prob-

lems.  In each case find the coordinates of all corner points, whether feasible

or infeasible.
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(b)   Write  a  simplex  system for  each  basic  solution  of  the  maximum prob-

lem, and find the point on each graph to which the system corresponds.

13.   Use  duality  and  two-dimensional  geometry  to  solve  the  following

problem without recourse to the simplex algorithm:

minimize: y1 3 y2 4 y3

subject to:

y1 y3 2

y1 y2 1

y1, y2, y3 0

14.   We  studied  duality  only  in  the  context  of  standard  maximum  and

minimum  problems.   The  concept  can  be  extended  to  arbitrary  problems

using the following correspondences:

 

Max problem Min problem

Objective coefficient ci Constraint constant ci

Constraint constant bi Objective coefficient bi

Variable xi 0 Constraint i of form

Constraint j of form Variable y j 0

Constraint j of form Variable y j unrestricted

Variable x j unrestricted Constraint i of form

Constraint coefficient A Constraint coefficient A

Notice that the first four correspondences are known to us already from our

study  of  standard  problems,  and  the  last  three  show  how  to  dualize  in

non-standard problems.

   (a)   Use  the  correspondences  given  in  the  table  above  to  find  the  dual

problem of the problem:

minimize: g 2 y1 y2 y3

                  

subject to:

y1 5 y3 10

2 y1 4 y2 7

y1, y3 0

   (b)  Assuming that it is still true that dual problems share the same optimal

objective value, find the minimum value of g for the problem in part (a).  

15.  Referring to Exercise 14,

   (a)  Write the general form of the dual of the problem:
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minimize: g b y

subject to: A y c

 y 0 

   (b)  Write the general form of the dual of the problem:

maximize: f c x

subject to: A x b

x 0

   (c) For each of the problems in (a) and (b), show that the dual of the dual

problem  is  the  original  (i.e.,  primal)  problem.   This  illustrates  again  the

paired nature of dual problems.

16.  Our proof of the Strong Duality Theorem, as well as the presentation of

the tableau method in Section 3, depended on the fact that the dictionary and

tableau methods were equivalent.  More specifically, solving for an entering

basic  variable  in  a  constraint  equation,  and  then  substituting  the  resulting

expression  into  all  other  equations,  is  equivalent  to  pivoting  about  the

element  in  the  row  of  the  departing  basic  variable  and  the  column  of  the

entering  basic  variable  in  the  related  simplex  tableau.   Consider  a  general

standard  maximum problem in  equality  form,  and  show for  the first  step of

the algorithm that this is indeed the case.
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3 
Further Topics in Linear Programming

Introduction

There is a great deal more to linear programming than we have discussed in

Chapter  2.   In  particular,  we  have  only  developed  a  method  for  solving  a

limited range of problems.  The standard maximum problem takes the form:

max:  f c x

subject to:    A x b , x 0 

where the vector b of constant right-hand sides was assumed to be non-nega-

tive.   We  would  like  to  investigate  problems  in  which  constraint  constants

are allowed to be negative, and constraints may be of the form  "="  or  " "

in  the  initial  problem.   (We  could  also  generalize  to  problems in  which  the

variables are allowed to be negative, but for the sake of simplicity we do not

thoroughly  discuss  this  problem  in  this  book  apart  from  a  brief  remark

below.)  Similarly, we would like to be able to solve minimization problems

that  are  not  in  standard  form,  hence  not  able  to  be  dualized  to  standard

maximum problems.

As  an  example  of  an  interesting  application  leading  to  a  non-standard

problem,  consider  the  following.   An  individual  has  a  fixed  amount  of

money to divide among several possible investment objects.  For each dollar

invested in each object, the investor can estimate the number of dollars at the

end of  the investment period.   Due to the fact  that  some investment objects

are  riskier  than  others  and  the  investor  may be  averse  to  risk,  certain  other

constraints  may be  put  on  the  allocation of  wealth.    To  fix  some numbers,

suppose  that  the  investor  has  $20,000  to  invest  in  either  stocks,  municipal

bonds, or a savings account.  The expected rate of return on stocks is 8% per

year,  the  rate  on  bonds  is  7%,  and  the  savings  account  interest  is   5%.

Because the investor is averse to risk, he wishes to invest no more in stocks

than  in  bonds,  and  no  more  than  four  times  as  much  in  bonds  as  in  the

savings account.  In addition, he wants to keep at least $5000 in savings for

emergencies.  Let x1, x2, and x3, respectively, denote the numbers of dollars

invested  in  stocks,  bonds,  and  savings.   Then  it  is  easy  to  see  that  the  LP

problem to be solved is:
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max:   f  =  1.08x1  +  1.07x2  +  1.05x3

subject to:       

x1 x2 x3 20000

x1 x2 0

x2 4 x3 0

x3 5000

x1, x2, x3 0

which  is  a  non-standard  problem.   Non-standard  problems  are  covered  in

Section 1.  

Another  direction  of  generalization  involves  the  domain  of  values  that

can be taken on by the problem variables.  We have heretofore assumed that

the variables xi  could take on all real values permitted by the constraints, but

in  applications  where  a  variable  represents  the  number  of  some  indivisible

item that are to be processed, only integer values are legal.  Integer program-
ming is a large subarea of operations research in its own right, and we cannot

hope to do it justice here, but we will study an algorithm called the transpor-
tation  algorithm  for  the  special  integer  programming  problem  described

roughly  as  follows.   There  are  several  locations,  called  sources,  which  are

able  to  supply  needed  items  to  several  other  locations,  called  destinations,

which require the items in some known quantities.  The number of items on

hand  at  each  source  is  known,  as  are  the  costs  per  item  to  supply  each

destination from each source.  The problem is to find a supply schedule that

determines  how  many items are  to  be  dispatched  from each  source  to  each

destination,  in  order  to  minimize  total  shipment  cost  while  satisfying

demand.  We show how to solve this transportation problem in Section 2.

The third extension to be discussed was foreshadowed in Exercise 13 of

Section 2.3.  Suppose that the operations research analyst has been presented

with a linear programming problem, and has  computed the solution,  but the

originator  of  the  problem returns  to  say that  some of  the coefficients  of  the

problem  were  mistaken.   Or,  perhaps  the  problem  originator  would  like  to

see how the optimal solution changes if a higher profit per item is made for

one  or  more of  the  quantities  that  have  given  rise  to  the  problem variables.

Yet  another  change  to  the  problem might  result  if  new levels  of  resources,

not  originally  included  in  the  right-hand  side  constraints,  unexpectedly

appear.  An entirely new problem constraint might even enter the picture.  In

all  of  these  cases,  some  change  has  been  made  to  the  original  problem

coefficients,  and  one  is  interested  in  the  new  optimal  solution.   Will  it  be

necessary to solve the problem from the beginning with the new data?   The

answer  is:  not  necessarily.   We  will  see  in  Section  3  how  to  analyze  the

sensitivity of the optimal solution to changes in problem parameters, without

repeating  the  entire  computation.   Some  new  computing  will  be  necessary,

but it is less time consuming than to solve the problem again from scratch. 
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3.1 Non-Standard Problems

Thus far,  we have seen how to solve a problem of standard maximum form

by the  simplex algorithm,  and  we  have  seen  how to  solve  a  standard  mini-

mum  problem  by  solving  the  dual  maximum  problem  and  applying  the

Strong Duality Theorem.  In this section, we discuss a technique for non-stan-

dard LP problems.  The approach requires two phases of computation.  The

first phase involves reformulating the original objective function and perform-

ing the simplex algorithm on the new problem.  Its goal is to produce a basic

feasible solution.  The second phase uses the final system of the first phase,

together with the original objective function, to produce an optimal solution

by the ordinary simplex method.  

The  following  theorem,  whose  proof  is  requested  in  Exercise  5,  allows

us to treat maximum problems only.

THEOREM 1.    Suppose that  g y b y   is  the objective function for  a

minimum  problem  with  some  non-empty  feasible  region  F.   Define

f x g x b x .   The  problem  of  maximizing   f  over  F  has  an

optimal  solution  x*  if  and  only  if  x*  is  also  optimal  for  the  problem  of

minimizing g, and in addition,

min g  =  –(max  f)   

Therefore, given a minimum problem, we may solve instead the problem

of maximizing the negative of the objective over the same feasible region.  It

should  be  pointed  out  that  there  are  other  ways  of  solving  minimum prob-

lems  directly,  and  it  may  not  be  computationally  most  efficient  to  translate

all  minimum  problems  into  maximum  problems  in  this  way.   But  this

proposition  does  allow  us  to  focus  our  attention  only  on  solving  non-stan-

dard  maximum problems,  and  therefore  it  has  the  advantage  of  simplifying

the exposition.

EXAMPLE 1.   Consider the two-variable problem:

(1)

max : f 4 x1 x2

subject to:    

x1 x2 1

x1 x2 2

2 x1 x2 8

x1, x2 0

This  is  not  of  standard  form,  because  of  the presence of  a  negative number

on the right side of the first constraint, and inequalities in the  direction in

the  first  two  constraints.   The  feasible  region  is  depicted  in  Figure  3.1.
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Notice that the origin is not  feasible.   This is  in contrast to the situation for

standard maximum problems, in which the origin is always feasible.  Recall

also  that  in  the  simplex algorithm,  the  initial  system represented  the  origin,

which  was  feasible,  and  at  each  succeeding  step  another  basic  feasible

solution  was  produced.   The  main  difficulty  with  non-standard  linear  pro-

grams is the need to produce an initial simplex system that represents a basic

feasible  solution.   Once  that  is  done,  the  simplex  algorithm  can  finish  the

problem.   

Needs "KnoxOR`LinearProgramming "̀ ;

constraints

x1 x2 1, x1 x2 2, 2 x1 x2 8 ;

corners 0, 2 , 0, 8 , 3, 2 , 3 2, 1 2 ;

f x_, y_ : 4 x y;

PlotFeasibleRegion constraints,

x1, 0, 4 , x2, 0, 8 , corners, f,

ShowTable False, AspectRatio .8, TextStyle

FontFamily "Times", FontSize 8 ;

1 2 3 4

2

4

6

8

Figure 3.1 – Feasible region of a non-standard problem

Activity 1 – Verify that the feasible region for Example 1 is as in Figure

3.1.  Find algebraically the coordinates of the feasible corner points, and

make sure they are consistent with the picture.

The first step of our Phase 1 algorithm is to remove negative signs on the

constant  constraint  bounds  by  multiplying  through  by 1,  if  necessary.

Referring to the problem of Example 1, the first constraint in (1) becomes:
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x1 x2 1

Now  introduce  slack  variables  into  all  " "  constraints.   At  the  same  time,

introduce  surplus  variables  into  all  " "  constraints;  e.g.,  in  the  second

constraint  of  (1),  there  exists  a  non-negative  surplus  variable  x4  such  that

x1 x2 x4 2.   We should  note  here  that  if  a constraint  is  already written

in  "="  form,  then  no  slack  or  surplus  variables  are  necessary,  and  the  con-

straint  may  simply  be  left  untouched.   Thus,  the  first  step  of  Phase  1  pro-

duces the following system of equality constraints for Example 1:

(2)

x1 x2 x3 1

x1 x2 x4 2

2 x1 x2 x5 8

xi 0 for all i

REMARK.   We  have  generalized  the  standard  maximum  problem  by

allowing  negative  entries  in  the  vector  b,   allowing  " "  constraints,  and

allowing  "="  constraints.   There  is  one  other  direction  that  we  could  take,

namely to permit negative values of  the variables xi.   We show briefly how

to  convert  such  a  problem into  the  current  form.   If  a  certain  variable  xi  is

bounded from below by some number L 0, then 

xi L xi L 0

We  see  that  if  we  change  variables  in  the  constraints  and  the  objective

function  by  xi x i L,  then  the  new  variable   xi  is  constrained  to  be

non-negative.  If no such lower bound L is present, then xi  may be split into

two non-negative variables xi  and xi  by 

(3)xi xi xi

where 

(4)xi
xi if xi 0

0 otherwise
    and   xi

0 if xi 0

xi otherwise

This  introduces  one  extra  variable  into  the  system for  every  such  xi  that  is

unbounded  below,  and  increases  the  complexity  of  the  computation.   We

will not discuss this issue further here; for more information, the reader may

see Hillier and Lieberman [31] or Gribik and Kortanek [27].  
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Activity  2  –  Verify  that  xi  does  decompose  as  in  formula  (3).   What

happens  to  a  constraint  such  as  the  third  one  in  (1)  if  x2 0  but  x1  is

unconstrained?  

The second step in Phase 1 is to solve a different maximization problem.

To be specific, insert a new artificial variable ai  into each equality constraint

of  the current  system, and define a new objective function to be the sum of

the negatives of the ai's.  In the problem of Example 1, we produce the new

problem:

(5)

max : g a1 a2 a3

subject to: 

x1 x2 x3 a1 1

x1 x2 x4 a2 2

2 x1 x2 x5 a3 8

xi, ai 0 for all i

The reason for doing this is given in the following theorem.

THEOREM 2.  Let A be an m n0   matrix with n0 m, let c be a vector of

n0 entries, let b be a vector of m non-negative components, let I be the m m
identity matrix, and denote by 1 the vector all of whose m entries are equal to

1.  Consider the following two LP problems:

LP1 maxx : c x
subject to : A x b

x 0

   

LP2 maxx, a : 0 x 1 a

subject to : A x I a b

x, a 0

We have the following.

(a)   Problem  (LP2)  is  both  feasible  and  bounded,  hence  the  simplex

algorithm produces an optimal solution  (x*, a*).

(b)  The optimum value of  (LP2)  is strictly less than zero if and only if

(LP1) is infeasible.

(c)  If the optimum value of (LP2) is zero, taken on at a*  =  0, then x* is

a  basic  feasible  solution  of  (LP1).   Also,  the  final  simplex  system  of  con-

straints for (LP2), with a  =  0, is equivalent to the initial constraints A x b

for (LP1).
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Proof.    (a)   Since  we  have  assumed  that  b 0,  the  vector  x, a 0, b

satisfies the feasibility conditions for (LP2).  Also, since a 0,  the objective

function of (LP2) is bounded above by 0.  Together these observations prove

part (a).

(b)  Suppose the optimum value of  (LP2)  is strictly less than zero.  We

wish  to  show  that  (LP1)  is  infeasible.   If,  on  the  contrary,  there  exists  a

feasible vector x for (LP1), then x 0 and

(6)A x I 0 A x b

so that x, 0  is feasible for (LP2).  But this is a contradiction, because x, 0

has  objective  value  0  and  the  maximum for  (LP2)  was  assumed  to  be  less

than zero.  You are asked to show the converse in Exercise 8.

(c)  By (6), applied at the optimal solution x , 0  of (LP2), x  is feasible

for (LP1).  We also are required to show that x  is basic, i.e., x  has at least

n0 m zero components and the columns of the coefficient matrix correspond-

ing to  the  remaining components  are  linearly independent.   Now (LP2)  is  a

problem  with  n0 m  variables.   At  each  stage  of  execution  of  the  simplex

algorithm  on  (LP2),  m  of  these  variables  are  basic  and  at  least

n0 m m n0  variables equal 0.  In particular, in the final simplex system,

all of the m ai  terms have the value zero, there are m  basic variables in the

system,  and  at  least  n0 m  of  the  remaining  xi  terms  are  zero.   Those  xi
terms that are non-zero are basic for the final system, hence the correspond-

ing columns of the final coefficient matrix A  are linearly independent.  The

final system for (LP2) may be written in the form:

(7)A1 x A2 a b

where  A1  is  an  m n0  matrix  and  A2  is  an  m m  matrix.    Furthermore,

since  this  system  was  obtained  from  the  initial  system  by  elementary  row

operations, the solution spaces of the two are exactly the same.  In particular,

the subset of the solution space of (7)  consisting of all x, a  such that a 0

is the same as the subset of the feasible region of (LP2) for which a 0.  But

that  is  just  the  feasible  region  of  (LP1),  therefore  the  system  A1 x b  is

equivalent to the system A x b,  which proves the second statement of part

(c).  

EXAMPLE 1  (cont.). Returning to the linear program of Example 1, notice

that objective function and constraints are in the form of (LP1) as a result of

our initial manipulations; here m 3,  n0 n m 5, and 
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A
1 1 1 0 0
1 1 0 1 0
2 1 0 0 1

,    b
1
2
8

,     c

4
1
0
0
0

The introduction of the three artificial variables in (5) defines a new problem

of the type (LP2),  with n0 m 8 variables: x1, ..., x5   and a1, a2, a3.   The

next step of Phase 1 is to perform the simplex algorithm on the new problem,

starting  with  the  artificial  variables  as  basic.   Notice  that  the  initial  vector

x, a 0, b  is feasible for (LP2).  Part (a) of the theorem says that we will

get an optimal solution.  Part (b) of the theorem says that if it is not the case

that  all  ai's  are  zero  in  that  optimal  solution,  then  the  original  problem was

infeasible,  and  so  we  should  stop.   If  indeed  all  of  the  ai's  are  zero  in  the

final system of the new problem, then delete all  references to the ai's  in the

constraint  equations  of  that  final  system and the resulting system is  equiva-

lent  to  the  constraints  for  the  original  problem.   Moreover,  it  represents  a

basic  feasible  solution  for  (LP1).    From  there,  we  may  proceed  with  the

simplex algorithm and the original objective from (1).

Activity 3 – Look at the constraint system (2) again.  The main difficulty

with  non-standard  problems  seems  to  be  to  obtain  an  initial  basic

feasible solution.  Why are the aritificial variables necessary, that is, why

not just let the slack and surplus variables be the initial basic variables?

Let us perform the operations described above on the problem of Exam-

ple  1.   We  start  with  system (5),  and  we  can  use  the  Dictionary  command

again to do the tedious algebra.  Observe that there is one slight variation in

(5)  on  the  usual  simplex  format.   Currently,  the  objective  is  written  as  a

function  of  the  basic  variables  a1,  a2,  and  a3.   The  objective  should  be

expressed  in  terms  of  the  non-basic  variables.   Dictionary  has  no  trouble

alleviating  this  difficulty  for  us  by  simply  substituting  for  these  variables

using the constraint equations:

phase1system

x1 x2 x3 a1 1, x1 x2 x4 a2 2,

2 x1 x2 x5 a3 8, g a1 a2 a3 ;

Dictionary phase1system, a1, a2, a3, g ,

x1, x2, x3, x4, x5
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a1 1 1 x1 1 x2 1 x3 0 x4 0 x5
a2 2 1 x1 1 x2 0 x3 1 x4 0 x5
a3 8 2 x1 1 x2 0 x3 0 x4 1 x5
g 11 4 x1 1 x2 1 x3 1 x4 1 x5

Continuing in the usual way, with entering basic variables x2 replacing a2, x5

replacing  a3,  and  x3  replacing  a1,  gives  the  final  simplex  system  for  the

altered problem, listed below.  (You can delete the semicolons to display the

output of the intermediate steps in the electronic version of the text.)

Dictionary phase1system,

a1, x2, a3, g , x1, x3, x4, x5, a2 ;

Dictionary phase1system, a1, x2, x5, g ,

x1, x3, x4, a2, a3 ;

Dictionary phase1system, x3, x2, x5, g ,

x1, x4, a1, a2, a3

x3 3 2 x1 1 x4 1 a1 1 a2 0 a3
x2 2 1 x1 1 x4 0 a1 1 a2 0 a3
x5 6 1 x1 1 x4 0 a1 1 a2 1 a3
g 0 0 x1 0 x4 1 a1 1 a2 1 a3

Since the current  values of  the x  variables  are  x1 0, x2 2, x3 3, x4 0,

and x5 6, we are now at the feasible corner point 0, 2  in Figure 3.1, and

all ai's  are zero.   Drop the ai's   from the constraint equations and return the

original objective to the bottom row.  Again, we see that the expression for f
contains a basic variable x2, but Dictionary eliminates it for us.

phase2system 2 x1 x3 x4 3,

x1 x2 x4 2, x1 x4 x5 6, f 4 x1 x2 ;

Dictionary phase2system, x3, x2, x5, f , x1, x4

x3 3 2 x1 1 x4
x2 2 1 x1 1 x4
x5 6 1 x1 1 x4
f 2 3 x1 1 x4

Phase 1 is complete.

Phase  2  simply performs  the  simplex algorithm on  this  new system.  If

we introduce x1  to  replace x3,  then x4  to  replace  x5,  we obtain  in two steps

the following final system.
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Dictionary phase2system,

x1, x2, x5, f , x3, x4 ;

Dictionary phase2system, x1, x2, x4, f , x3, x5

x1 3 1
3 x3 1

3 x5

x2 2 2
3 x3 1

3 x5

x4 3 1
3 x3 2

3 x5

f 14 2
3 x3 5

3 x5

The maximum value of f is 14, taken on at the corner point 3, 2 .  

Let  us  now summarize the steps of  the Phase 1 algorithm for  maximum

problems  with  general  linear  constraints  and  non-negative  variables.   We

assume that the input problem has already been identified as non-standard.

PHASE  1  SIMPLEX  ALGORITHM  FOR  NON-STANDARD

MAXIMUM PROBLEMS

1. {Prepare the initial system for the new problem.}

  (a)  Multiply constraints in which the constant is negative by  1.

  (b)  Introduce slack variables into " " constraints and surplus 

    variables into " " constraints to convert to standard equality 

    form.

2.  Construct the problem of maximizing the sum of the negatives 

  of artificial variables, where one such variable is inserted into 

  each constraint equation.

3.  Substitute for the artificial variables in the objective row of the 

  new problem.

             {The initial system for the new problem is now ready.}

 4.  Use the simplex algorithm to solve the new problem.

5.  If the optimal value of the new problem is less than zero, the 

  original problem is infeasible, so stop.

Otherwise, do steps 6–7

{Set up the tableau for Phase 2}

6.  Delete the artificial variables from the constraint equations and 

  restore the original objective to the bottom row.

7.  By substitution, if necessary, eliminate basic variables from the 

  objective row.

{The system is now ready for Phase 2, the ordinary 

simplex algorithm.}
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After  execution  of  the  Phase  1  algorithm,  the  optimal  solution  to  the

problem  can  be  computed  as  in  the  standard  maximum case.   By  the  way,

you may have already noticed that  in  practice you can save a few variables

by  using  slack  (but  not  surplus)  variables  as  basic  variables  in  their  con-

straint  equations,  and  not  including  artificial  variables  for  those  equations.

This is justifiable; the only reason we advised at the outset to insert artificial

variables  into  each  constraint  row  was  to  simplify the  proof  of  Theorem 2.

We try this approach in the next example.  

EXAMPLE  2.   Let  us  now  illustrate  how  the  Phase  1–Phase  2  approach

proceeds in the tableau implementation of the method.  The idea is the same

as  in  the  standard  maximum  problem,  i.e.,  only  coefficients  are  preserved,

the  constraint  constants  are  isolated  on  the  right  side  of  the  equations,  and

the rows are labeled with the variable that is currently basic in the equation.  

We  work  in  the  context  of  the  investment  problem  discussed  in  the

introduction.   For  ease  of  reference  it  is  reproduced  below.   Recall  that  x1,

x2,  and  x3  represent  the  investment  amounts  in  stocks,  bonds,  and  the

savings account, respectively.  

max:   f  =  1.08x1  +  1.07x2  +  1.05x3

subject to:       

x1 x2 x3 20000

x1 x2 0

x2 4 x3 0

x3 5000

 x1, x2, x3 0

There are no negative right-hand sides to remove.  Slack variables x4 and

x5, respectively, are to be inserted into the second and third constraints, and

a  surplus  variable  x6  is  needed  in  the  fourth  constraint.   Insert  artificial

variables   a1  and  a2  into  the  first  and  fourth  constraints,  and  the  following

system of equations and initial tableau results.

 

x1 x2 x3 a1 20000

x1 x2 x4 0

x2 4 x3 x5 0

x3 x6 a2 5000

a1 a2 g
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phase1tableau 1, 1, 1, 0, 0, 0, 1, 0, 20000 ,

1, 1, 0, 1, 0, 0, 0, 0, 0 ,

0, 1, 4, 0, 1, 0, 0, 0, 0 ,

0, 0, 1, 0, 0, 1, 0, 1, 5000 ,

0, 0, 0, 0, 0, 0, 1, 1, 0 ;

MatrixForm phase1tableau

1 1 1 0 0 0 1 0 20000
1 1 0 1 0 0 0 0 0
0 1 4 0 1 0 0 0 0
0 0 1 0 0 1 0 1 5000
0 0 0 0 0 0 1 1 0

Note that the basic variables a1, a2   have non-zero coefficients in the bottom

row.   These  may  be  removed  by  pivoting  about  the  1's  in  the  artificial

variable  columns  (by  letting  the  ai  replace  themselves  in  the  SimplexOne-

Step command), the result of which is the tableau that follows.

varlist x1, x2, x3, x4, x5, x6, a1, a2 ;

newtableau, newbasiclist

SimplexOneStep phase1tableau,

varlist, a1, a1, a1, x4, x5, a2 ;

newtableau, newbasiclist SimplexOneStep

newtableau, varlist, a2, a2, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 1 0 0 0 1 0 20000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 4 0 1 0 0 0 0

a2 0 0 1 0 0 1 0 1 5000

obj 1 1 1 0 0 0 0 1 20000

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 1 0 0 0 1 0 20000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 4 0 1 0 0 0 0

a2 0 0 1 0 0 1 0 1 5000

obj 1 1 2 0 0 1 0 0 25000

Introduce x3  to replace a2  in the basic list, then x2  to replace a1, and the

tableaux below result.  
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newtableau, newbasiclist SimplexOneStep

newtableau, varlist, x3, a2, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
a1 1 1 0 0 0 1 1 1 15000

x4 1 1 0 1 0 0 0 0 0

x5 0 1 0 0 1 4 0 4 20000

x3 0 0 1 0 0 1 0 1 5000

obj 1 1 0 0 0 1 0 2 15000

newtableau, newbasiclist SimplexOneStep

newtableau, varlist, x2, a1, newbasiclist ;

x1 x2 x3 x4 x5 x6 a1 a2
x2 1 1 0 0 0 1 1 1 15000

x4 2 0 0 1 0 1 1 1 15000

x5 1 0 0 0 1 5 1 5 5000

x3 0 0 1 0 0 1 0 1 5000

obj 0 0 0 0 0 0 1 1 0

This  is  the  final  tableau  of  Phase  1.   Note  that  the  artificial  variables  are

non-basic, and the basic variables have positive, feasible values.  (Check that

the current solution satisfies the original problem constraints.) 

Delete the artificial variable columns from this final Phase 1 tableau, and

restore the original objective function  f   to the bottom row.  This gives the

initial  tableau  for  Phase  2.   Since  x2  and  x3  are  basic,  we  must  first  pivot

away  the  coefficients  in  the  bottom  row.   After  this  is  done,  the  tableau

below results, and Phase 2, the simplex algorithm, is ready to be carried out.  

phase2tableau 1, 1, 0, 0, 0, 1, 15000 ,

2, 0, 0, 1, 0, 1, 15000 , 1, 0, 0, 0,

1, 5, 5000 , 0, 0, 1, 0, 0, 1, 5000 ,

1.08, 1.07, 1.05, 0, 0, 0, 0 ;

MatrixForm phase2tableau

varlist2 x1, x2, x3, x4, x5, x6 ;

newtableau, newbasiclist

SimplexOneStep phase2tableau,

varlist2, x2, x2, x2, x4, x5, x3 ;

newtableau, newbasiclist SimplexOneStep

newtableau, varlist2, x3, x3, newbasiclist ;
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1 1 0 0 0 1 15000
2 0 0 1 0 1 15000
1 0 0 0 1 5 5000

0 0 1 0 0 1 5000
1.08 1.07 1.05 0 0 0 0

x1 x2 x3 x4 x5 x6
x2 1 1 0 0 0 1 15000

x4 2 0 0 1 0 1 15000

x5 1 0 0 0 1 5 5000

x3 0 0 1 0 0 1 5000

obj 0.01 0. 1.05 0 0 1.07 16050.

x1 x2 x3 x4 x5 x6
x2 1 1 0 0 0 1 15000

x4 2 0 0 1 0 1 15000

x5 1 0 0 0 1 5 5000

x3 0 0 1 0 0 1 5000

obj 0.01 0. 0. 0 0 0.02 21300.

A  basic  feasible  solution  with x1 0,  x2 15000,  and  x3 5000  has  been

reached.   We  next  let  x1  enter  the  basic  list,  replacing  x4  by  the  minimum

ratio rule:

newtableau, newbasiclist SimplexOneStep

newtableau, varlist2, x1, x4, newbasiclist ;

x1 x2 x3 x4 x5 x6

x2 0 1 0 1
2

0 1
2

7500

x1 1 0 0 1
2

0 1
2

7500

x5 0 0 0 1
2

1 9
2

12500

x3 0 0 1 0 0 1 5000

obj 0. 0. 0. 0.005 0 0.025 21375.

This  is  the  last  tableau,  because  all  objective  row  entries  are  non-positive.

Therefore,  the amounts x1 7500, x2 7500, and x3 5000 are the optimal

investments in stocks, bonds, and savings.  
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Exercises 3.1

 1.  (Mathematica) Solve the non-standard problem:

max:  f x1 x2

subject to:    

x2 1

x1 x2 2

x1 x2 6

x1, x2 0

2.   (Mathematica)  What  happens  in  Phase  1  of  the  investment  problem  of

Example 2 if the first entering basic variable is chosen to be x1 instead of x3?

Do you get the same basic feasible solution at the start of Phase 2?

3.  (Mathematica) Find the optimal solution of:

max f x1 x2 x3

subject to:   

x1 3

x2 x3 6

x1 x2 x3 5

x1, x2, x3 0

4.  (Mathematica) A bakery employs a skilled pastry chef, who should work

at least 6 hours per day.  An oven suitable for the use of the chef is available

8 hours per day.  Three types of pastry are to be made;  each batch requires

labor time (in hours) by the chef and time in the oven as below:

        Pastry type

     

1 2 3

— — —

Chef time : 1 1 2

Oven time : 2 1 2

Suppose that the profit per batch is $10 for type 1, $5 for type 2, and $10 for

type  3  pastry.   How  many  batches  of  each  pastry  type  should  be  made  to

maximize profit?

5.  Prove Theorem 1.
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6.  (Mathematica) Find the minimum value of  2 x1 x2 subject to

2 x1 x2 4

x1 x2 5

x1, x2 0

7.   Solve  the  following  non-standard  problem  without  recourse  to  the

simplex algorithm.

maximize:  f 2 x1 3 x2

subject to:  

x1 x2 1

2 x1 x2 6

x1 2 x2 1

x1, x2 0

8.   Show the  converse  of  Theorem 2(b);  i.e.,  show that  if  problem (LP1)  is

infeasible, then the optimum value of problem (LP2) is strictly less than zero.

9.  (Mathematica) Express the following problem in non-standard form with

all variables constrained to be non-negative.  Then solve the problem by the

Phase 1–Phase 2  approach.  Sketch the feasible region.

maximize:  f x1 2 x2

subject to:    
x1 x2 1

x2 5

x1 unconstrained, x2 2

10.   (Mathematica)  A  woman  beginning  a  small  business  will  borrow

$10,000.   There  are  three  possible  lenders;  one  is  an  in-town  bank  who

charges an effective annual interest rate of 10%, the second is a savings and

loan  whose  interest  rate  is  8%,  and  the  third  is  a  major  out-of-town  bank,

whose interest rate is also 8%.  Because she wishes to establish a significant

credit history at the in-town bank where she will do most of her banking, she

will  borrow  at  least  $5000  from  this  institution.   Of  the  remaining  money,

she  will  borrow  at  least  as  much  from  the  out-of-town  bank  as  from  the

savings  and  loan.   How  much  should  she  borrow  from  each  institution  to

minimize the yearly interest she pays?

11.  There is an alternative method for solving problems with mixed inequal-

ity constraints, which can result in computational savings, called the "Big M"

method.  Instead of introducing an artificial variable into every constraint as
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Phase  1  does,  introduce  it  only  into  the  " "  constraints,  i.e.,  those  with

surplus  variables.   Then  maximize  the  original  objective  minus  a  large  but

unspecified number M  times the sum of the artificial variables.  

(a)  Solve Exercise 1 by the Big M method.

(b)   Argue  that  if  the  original  problem has  an  optimal  solution,  then  at

the  end  of  the  Big  M procedure  all  artificial  variables  will  be  zero  and  the

final system will represent the solution.  (Which variables should be basic in

the initial system?)

(c)   Examine  what  happens  to  this  procedure  when  it  is  applied  to  the

following infeasible problem:

maximize:   f x1 x2

subject to:  

2 x1 x2 4

x1 x2 5

x1, x2 0

12.   (Mathematica) A maker of bird seed will use three ingredients,  labeled

A, B, and C, to form boxes of exactly 100 grams of seed. It has been deter-

mined that the profit per gram of A is 5, and the profits per gram of B and C

are 4 each.  It is desired to achieve a threshhold value of at least 260 units of

protein  in  the  mixture,  while  limiting  the  fat  content  to  no  more  than  80

units.   Suppose  that  each gram of ingredient  A has  2 units  of  protein and 1

unit of fat, each gram of B has 3 units of protein but no fat, and each gram of

C  has  4  units  of  protein  and  1  unit  of  fat.   Formulate  the  problem  as  a

non-standard  linear  programming  problem,  and  solve  it  by:  (a)  the  Phase

1–Phase 2 approach, and (b) the Big M method (see Exercise 11).

13.   Formulate  as  a  non-standard  linear  program,  but  do  not  solve,  the

maximal flow problem of Example 2 of Section 1.5.

3.2 Transportation Problem

We  now  introduce  a  class  of  problems  known  as  transportation  problems
and a streamlined algorithm to solve them. Suppose that there are m sources

of  supply  and  that  supplies  must  be  transported  to  n  destinations.   For

simplicity, we  will  assume that  the  total  available supply exactly equals  the

total demand by these destinations.  The ith source has a quantity si of 
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supplies  available,  and  the  jth  destination  needs  a  quantity  d j.   There  is  a

transportation cost per item of ci j  for  a move from source i  to destination j.
The  problem may be depicted by a bipartite,  weighted,  directed  graph as  in

Figure  3.2,  in  which  vertices  1, 2, 3  are  sources  and  vertices  4, 5, 6  are

destinations.   We are to determine how many items must be sent from each

source to each destination to meet the demands at minimum total cost.  

1 2

3

4

5

6

c14

c15

c16
c24

c25

c26

c34

c35

c36

Figure 3.2 – A transportation problem

Denote  by  xi j  the  number  of  items  sent  from  source  i  to  destination  j.
Then ci j xi j is the cost of this particular shipment.  Also, notice that

j 1
n xi j 

is the total amount of supplies shipped out by source i,  and  

i 1
m xi j 

is the total amount received by destination j.   It  follows that the transporta-

tion problem can be formulated as a linear program by:

(1) minimize:   
i 1

m

j 1

n
ci j xi j

(2)
subject to:   

j 1

n
xi j si for each i 1, 2, ... , m

i 1

m
xi j d j for each j 1, 2, ..., n

 

all xi j 0
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We observe  that  there  are  m n  variables  xi j,  m  supply  constraints  and  n
demand constraints, comprising a total of m n constraints.  However, since

the  total   demand  d j  equals  the  total  supply  si,  the  sum  of  the  supply

constraints in (2) equals the sum of the demand constraints, which gives the

system a dependency.  Because of this, one constraint is superfluous,  which

implies  that  the  number  of  basic  variables  in  the  modified  version  of  the

simplex algorithm to be discussed will be m n 1,  rather than m n.

The  constraints  of  (2)  are  already  in  standard  equality  form,  and  the

origin  is  not  feasible.   Recall  that  we  may  solve  the  minimum problem  by

solving instead:

(3)maximize:  
i 1

m

j 1

n
ci j xi j 

The  optimal  value  of  the  minimum cost  transportation  problem  will  be  the

negative of the optimal value of  (3).  So, we have a non-standard problem of

the type that could be treated by the Phase 1 algorithm of Section 1.  How-

ever,  that  algorithm,  whose  purpose  is  to  find  a  basic  feasible  solution,

requires the introduction of many new artificial variables.  The result is that

an already large problem becomes even larger.  Because of the special form

of the constraints, it should be possible to replace Phase 1 by another routine

that does not increase the size of the problem.  Several strategies have been

used;  here we list one that is not necessarily the most efficient, but is easy to

understand  and  is  consistent  in  style  with  our  earlier  discussion  of  the

simplex algorithm.  For alternative treatments, you may refer to Rao [49], or

Walker [59].

To gain an appreciation of how special the constraints are, let us write in

full the system (2).

 

x11 x12 x1 n s1

x21 x22 x2 n s2

. .
. .

. .
xm 1 xm 2 xm n sm

x11 x21 xm 1 d1

x12 x22 xm 2 d2

. . . .
. . . .

. . . .
x1 n x2 n xm n dn

Figure 3.3 – The system of constraints for the transportation problem

All  coefficients  are  1  initially,  and  each  variable  appears  exactly  once  in  a

supply  constraint  and  exactly  once  in  a  demand  constraint.   If,  as  in  the
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simplex  algorithm,  we  imagine  choosing  a  variable  to  be  basic,  then  there

will  only be two equations  to be tested for  the binding constraint;  and once

the proper equation is located, there will only be one constraint equation, and

the  objective  row,  into  which  to  substitute  the  expression  for  the new basic

variable.   We  will  see  that  this  property  remains  true,  not  only  in  the  first

step, but throughout the transportation algorithm.

Activity  1  –  Is  there  an  easy  way  of  knowing  which  of  the  two  con-

straint  equations  in  which  an  entering  basic  variable  appears  is  the

binding one?

The strategy will  be  to  identify one  basic  variable  in  a  step.   Any other

variables  in  the  equation  in  which  it  becomes  basic  are  declared  to  be

non-basic,  not  only  for  the  next  step  but  throughout  the  remainder  of  this

phase of  the algorithm.  The choice of  which variable is to become basic is

made  from  among  all  variables  not  already  declared  to  be  either  basic  or

non-basic.   To  attempt  to  steer  the  algorithm  toward  a  good  basic  feasible

solution, we select at each step a new basic variable from among undeclared

variables  that  has  the  smallest  current  cost  coefficient  (equivalently,  the

largest  coefficient  in  the  objective  row  of  the  maximum problem (3)).   We

stop when there are m n 1 basic variables.  The system of constraints will

then  represent  a  basic  feasible  solution,  and  Phase  2,  the  ordinary  simplex

algorithm, can be brought in to finish the problem.

The  example  below  illustrates  the  procedure.   We  first  do  a  problem

longhand, and then later we will show how to use a command similar to the

SimplexOneStep  command  to  get  Mathematica  to  carry  out  the  computa-

tions. 

EXAMPLE  1.   An  army  commander  must  send  tanks  from  two  bases  to

three battle positions.  The supply and demand requirements are given in the

table  below;  also  listed  are  the  transportation  times  of  moving  a  tank  from

each base to each battle position.  How should the tanks be assigned so as to

minimize the total transportation time?

                                   Battle Positions

 1 2 3 Tanks Available

Bases  

1

2

Required # Tanks

 

5 10 12 s1 20

6 8 8 s2 20

d1 8 d2 12 d3 20 40

Let xi j  be the number of tanks to be sent from base i to position j.  Then, for

instance, the fact that base 1 has 20 tanks says that x11 x12 x13 20.  The

base  2   supply  requirement,  and  the  three  battle  position  demand  require-
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ments may be obtained from the table similarly.  Adjoining the objective of

maximizing  negative  cost,  we  can  write  the  initial  transportation  simplex

system as follows. 

(4)

0 20 x11 x12 x13

0 20 x21 x22 x23

0 8 x11 x21

0 12 x12 x22

0 20 x13 x23

f 5 x11 10 x12 12 x13 6 x21 8 x22 8 x23

 

The form given above, in which 0's appear on the left, is used as a reminder

that as yet no basic variables have been declared.  The maximum coefficient

in  the  objective  row  belongs  to  x11.   Since  8 20,  it  is  the  first  demand

constraint  that  is  binding.   There,   x11 8 x21.   Declare x11  to  be  basic in

row 3, declare x21  to be non-basic for the rest of transportation phase 1, and

substitute  the  expression  for  x11  into  the  first  supply  constraint  and  the

bottom row to get: 

(5)

0 12 x12 x13 x21

0 20 x21 x22 x23

x11 8 x21

0 12 x12 x22

0 20 x13 x23

f 40 10 x12 12 x13 x21 8 x22 8 x23

 

basic:  x11            non-basic:  x21

Among the undeclared variables, the largest objective coefficient belongs to

both x22  and x23.  If we declare x22  basic, then the second demand constraint

is binding, and x12  is declared non-basic.  Substituting the expression for x22

from row 4 into the second row and the bottom row, we obtain:

(6)

0 12 x12 x13 x21

0 8 x12 x21 x23

x11 8 x21

x22 12 x12

0 20 x13 x23

f 136 2 x12 12 x13 x21 8 x23

 

basic:  x11, x22           non-basic:  x21, x12
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Variable x23  is  the next  to  be declared basic.   The second supply constraint

(row  2)  is  binding,  and  no  new non-basic  variables  are  declared.   The next

system is: 

(7)

0 12 x12 x13 x21

x23 8 x12 x21

x11 8 x21

x22 12 x12

0 12 x12 x13 x21

f 200 10 x12 12 x13 7 x21

 

basic:  x11, x22, x23          non-basic:  x21, x12

Now we clearly see the degeneracy mentioned earlier.  The first supply and

third demand equations are the same.  Delete the top row and declare x13, the

only remaining choice, to be basic in the third demand equation.

(8)

x23 8 x12 x21

x11 8 x21

x22 12 x12

x13 12 x12 x21

f 344 2 x12 5 x21

 

basic:  x11, x22, x23, x13          non-basic:  x21, x12

(9) x11 8, x12 0, x13 12, x21 0, x22 12, x23 8, f 344

The  revised  Phase  1  for  the  transportation  problem  is  now  complete.   The

solution  represented  by  (9)  is  feasible,  and  the  ordinary  simplex  method

leads  us  to  the  optimal  solution  in  one  more  step  by  introducing  x12  to

replace x13 in the basic list (note the degeneracy): 

(10)

x23 20 x13 x21

x11 8 x21

x22 0 x13 x21

x12 12 x13 x21

f 320 2 x13 3 x21

 

(11) x11 8, x12 12, x13 0, x21 0, x22 0, x23 20, f 320
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The  solution  means  that  we  split  the  20  tanks  of  base  1  among positions  1

and  2,  and  position  3  is  supplied  entirely  by base  2  tanks.   This  solution  is

degenerate, since the basic variable x22 has the value zero.  

Activity 2 – Find all alternative optimal solutions, if any, in Example 1. 

The  algorithm  below  outlines  the  general  procedure  illustrated  by  the

example.   It  requires  the  cost  coefficients  ci j  and  the  supply  and  demand

constants si and d j. 

TRANSPORTATION PHASE 1 ALGORITHM

   1.  Initialize all xi j as undeclared, and all supply and demand equations 

        as unused. 

   2.  Do  a–b until n m 1 basic variables have been declared.

     a.  Find an xi j from the undeclared list whose corresponding 

         coefficient in the objective row is maximal.  Declare xi j to be basic.

     b.  Of the two equations, one supply and one demand, in which xi j 

          appears, select the binding equation, and

i.  Solve in this equation for xi j.

ii. Substitute into the other constraint equation in which xi j appears, 

     and into the objective equation.

iii.  For each variable that is currently undeclared in the equation in 

      which xi j became basic, declare it to be non-basic.

  3.  Delete the unused equation and return the others for use by the 

       ordinary simplex algorithm.

Some  other  questions  regarding  the  correctness  of  the  algorithm  arise,

which we now address  informally.  Note that  we have chosen to discard an

equation at the end of the algorithm.  Since there are only n m 1 indepen-

dent  constraints,  discarding  an  equation  produces  no  change  in  the  feasible

region.   In  Exercise  3  you  are  asked  to  show  that,  as  step  2b  requires,  if  a

variable  is  currently  undeclared,  then  it  appears  with  its  original  coefficient

in exactly one unused supply and exactly one unused demand equation.  

How do we know that the algorithm will succeed at producing n m 1

basic  variables?   Refer  to  the  constraints  in  Figure  3.3.   If  a  variable  is

declared  basic  in  a  supply  constraint,  then  since  each  unused  demand

equation has at most one variable in common with this supply equation, each

such demand equation can lose at  most one  undeclared variable.   Similarly,

if a variable becomes basic in a demand equation, then this demand equation

can  have  at  most  one  variable  in  common  with  each  unused  supply  con-

straint,  so  that  each  of  those  loses  at  most  1  undeclared  variable.   Separate

supply  constraints  and  demand  constraints  have  no  undeclared  variables  in
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common,  so  the  declaration  of  a  variable  in  a  supply  constraint  does  not

change  the  count  of  undeclared  variables  in  other  supply  constraints,  and

similarly for demand constraints.  Consequently, a sequence of k1  choices of

basic  variables  in  supply  constraints  and  k2  choices  of  basic  variables  in

demand constraints results in at least n k2  undeclared variables per unused

supply constraint in the m k1  unused supply constraints, and at least m k1

undeclared  variables  per  unused  demand  constraint  in  the  n k2  unused

demand  constraints.   Each  undeclared  variable  appears  once  in  each  group,

hence (correcting for double counting) we have at least:

 n k2 m k1 m k1 n k2 2 m k1 n k2

undeclared  variables  after  this  sequence  of  moves.   As  long  as  we  do  not

exhaust  all  equations  in  either  the  supply  or  the  demand  group,  then  we

know that this number of undeclared variables is at least 1, so that there will

be a variable to declare as basic.  This points up that perhaps we should add

a check to the basic algorithm that once a group, either supply or demand, of

equations  comes  within  one  equation  of  exhaustion,  we  should  discard  the

last  equation (which  is  dependent  on  the  others  anyway),  and just  finish by

declaring  exactly  one  basic  variable  in  each  remaining  unused  equation  in

the  other  group,  for  a  total  of  n m 1  basic  variables.   (See,  however,

Exercise 11.)

Activity 3  – Explain how we know that the set of variable values at the

end of Phase 1 forms a basic feasible solution.

Needs "KnoxOR`LinearProgramming "̀ ;

The LinearProgramming package has a command that performs a step of

the transportation algorithm in tableau form. 

TransportationOneStep tableau,

varlist,entering,row,basiclist

Like SimplexOneStep, it takes the current simplex tableau for the constraint

system with  the  objective  adjoined,  the  list  of  variables,  the  variable  that  is

now entering as a declared basic variable, the number of the row in which it

is  to  become  basic,  and  the  list  of  current  basic  variables.   Note  that  the

fourth  argument  differs  from  that  of  SimplexOneStep  in  that  there  is  no

departing variable for that row.  Also, the list of current basic variables will

have blanks in any row for which a basic variable has not yet been declared.
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Also  like  SimplexOneStep,  it  returns  the  pair{newtableau,  newbasiclist}for

use as arguments in the next step.  

EXAMPLE 2.  Let us illustrate the tableau implementation of the transporta-

tion  algorithm.   Suppose  that  there  are  two  beer  distributors,  owned  by  a

common  parent  company,  in  a  small  city.   Each  week  they  supply  four

taverns  with  kegs  of  a  limited-edition dark  beer.   The costs  per  keg  to ship

from each  distributor  to  each tavern  are  in  the  table  below.   Also  listed are

the required  number of  kegs in a week for  each tavern,  and the supplies on

hand at each distributor.  Find a distribution scheme that minimizes the total

shipping cost to the company, while fulfilling the needs of the taverns. 

       Taverns

      1 2 3 4 Kegs Available 

Distributors   
1

2
   

1 2 3 2

2 3 1 2
 
25

22

Required # Kegs:   10 12 10 15 47

We let xi j  be the number of  kegs shipped from distributor  i  to tavern j,  for

i 1, 2; j 1, 2, 3, 4.   Then  the  following  system  of  equations  represents

the constraints.  The objective function f  to be maximized is the negative of

the sum of coefficients ci j obtained from the table, times xi j.

(12)

x11 x12 x13 x14 25
x21 x22 x23 x24 22

x11 x21 10
x12 x22 12

x13 x23 10
x14 x24 15

x11 2 x12 3 x13 2 x14 2 x21 3 x22 x23 2 x24 f 0

No  variables  are  yet  declared.   This  system gives  rise  to  the  initial  tableau

shown below. 
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tableau 1, 1, 1, 1, 0, 0, 0, 0, 25 ,

0, 0, 0, 0, 1, 1, 1, 1, 22 ,

1, 0, 0, 0, 1, 0, 0, 0, 10 ,

0, 1, 0, 0, 0, 1, 0, 0, 12 , 0, 0, 1, 0, 0,

0, 1, 0, 10 , 0, 0, 0, 1, 0, 0, 0, 1, 15 ,

1, 2, 3, 2, 2, 3, 1, 2, 0 ;

MatrixForm tableau

1 1 1 1 0 0 0 0 25
0 0 0 0 1 1 1 1 22
1 0 0 0 1 0 0 0 10
0 1 0 0 0 1 0 0 12
0 0 1 0 0 0 1 0 10
0 0 0 1 0 0 0 1 15
1 2 3 2 2 3 1 2 0

The  rule  of  thumb that  says to  select  the  largest  entry  in  the  objective  row,

which  would  correspond  to  the  minimum cost  coefficient,  would  say  to  let

either  x11  or  x23  enter  the  basis.   Choosing  x11,  the  first  demand constraint,

i.e.,  row 3, is binding.  Now we set up and use TransportationOneStep.

varlist x11, x12, x13, x14, x21, x22, x23, x24 ;

basiclist "", "", "", "", "", "" ;

tableau, basiclist TransportationOneStep

tableau, varlist, x11, 3, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

0 0 0 0 1 1 1 1 22

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

0 0 1 0 0 0 1 0 10

0 0 0 1 0 0 0 1 15

obj 0 2 3 2 1 3 1 2 10

basic variables:  x11         non-basic variables:   x21

Because  the  undeclared  variable  x21  was  in  the  equation  in  which  x11  was

declared basic,  it  is  placed into the non-basic  list.   Next  to enter is  x23,  and

the  binding  constraint  is  the  third  demand  constraint,  in  row  5.   Since  the

undeclared variable x13 is in row 5, it is included into the non-basic list. 
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tableau, basiclist TransportationOneStep

tableau, varlist, x23, 5, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 0 1 0 0 0 1 15

obj 0 2 2 2 1 3 0 2 20

basic variables:  x11, x23         non-basic variables:   x21, x13

Now  we  can  choose  any  of  x12, x14, or x24.   Using  x24  for  example,  the

second  supply  constraint  (row  2)  and  the  fourth  demand constraint  (row  6)

are  the  competitors,  and  we  see  that  row  2  is  binding.   Since  x22  is  an

undeclared variable in that list, we must mark it as non-basic.

tableau, basiclist TransportationOneStep

tableau, varlist, x24, 2, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
0 1 1 1 1 0 0 0 15

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 1 1 1 1 0 0 3

obj 0 2 4 2 1 1 0 0 44

basic variables:  x11, x23, x24      non-basic variables:   x21, x13, x22

If we next let x12  enter, the second demand constraint (row 4) is binding and

no new non-basic variables come in. 

tableau, basiclist TransportationOneStep

tableau, varlist, x12, 4, basiclist ;

3.2 Transportation Problem 237



x11 x12 x13 x14 x21 x22 x23 x24
0 0 1 1 1 1 0 0 3

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

x12 0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 1 1 1 1 0 0 3

obj 0 0 4 2 1 1 0 0 68

basic variables:  x11, x23, x24, x12        

non-basic variables:   x21, x13, x22

To finish Phase 1, x14  enters the basis in either row 1 or row 6.   We choose

row 1. 

tableau, basiclist TransportationOneStep

tableau, varlist, x14, 1, basiclist ;

x11 x12 x13 x14 x21 x22 x23 x24
x14 0 0 1 1 1 1 0 0 3

x24 0 0 1 0 1 1 0 1 12

x11 1 0 0 0 1 0 0 0 10

x12 0 1 0 0 0 1 0 0 12

x23 0 0 1 0 0 0 1 0 10

0 0 0 0 0 0 0 0 0

obj 0 0 2 0 1 1 0 0 74

basic variables:  x11, x23, x24, x12, x14        

non-basic variables:   x21, x13, x22

To  pass  to  Phase  2,  the  ordinary  simplex  algorithm,  we  would  delete  the

unneeded  row  of  zeros  and  continue  to  pivot  away  positive  entries  in  the

objective  row,  but  we  see  that  in  fact  there  are  none,  and  so  Phase  1  has

already  led  us  to  the  optimal  solution.   Because  the  objective  row  corre-

sponds  to  the  equation  f 74 2 x13 x21 x22  and  these  variables  are

non-basic,  we  observe  that  the  maximal value  of  f  is  74,  hence  the mini-

mal cost is 74.  The optimal values of the problem variables are:

x11 10, x12 12, x13 0, x14 3,

x21 0, x22 0, x23 10, x24 12

 

For your reference,  to delete the unneeded row in Mathematica  so as to

begin using SimplexOneStep for  phase 2 when you do need to do that,  you

can use the standard Mathematica command
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Take list, m, n

which  returns  elements  m  through  n  of  the  given  list.   For  the  example

above,  we  would  keep  rows  1–5  and  the  objective  row  to  make  a  new

tableau for phase 2 by the following:

phase2tableau Join

Take tableau, 1, 5 , Take tableau, 7, 7 ;

MatrixForm phase2tableau

0 0 1 1 1 1 0 0 3
0 0 1 0 1 1 0 1 12
1 0 0 0 1 0 0 0 10
0 1 0 0 0 1 0 0 12
0 0 1 0 0 0 1 0 10
0 0 2 0 1 1 0 0 74

Activity  4  –  Check  in  Example  2  that  if  you  do  not  use  the  minimum

cost rule to select entering basic variables, then after Phase 1 is executed

there are still several steps of the ordinary simplex algorithm to execute.

Try,  for  example,  the  sequence  of  entering  basic  variables

x13, x22, x14, x21, x24.

Exercises 3.2

1.   (Mathematica)  Solve  the  transportation  problem  with  3  sources  and  3

destinations whose cost structure and supply and demand requirements are in

the table below.  (The table entries are costs per unit shipped.)

               destination

 

source 1 2 3 available

1 10 8 10 100

2 12 15 20 200

3 20 10 20 100

required : 150 150 100 400

2.  (Mathematica) A manufacturer of auto batteries has two plants, which are

to supply four retailers.  The plants have 1000 and 1500 batteries available,
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respectively.  The four retailers have ordered 800, 500, 400, and 800 batter-

ies, respectively.  The shipping costs, in cents per battery, from plant 1 to the

four retailers are 25, 25, 10, and 15, and costs from plant 2 to the retailers are

30,  20,  10,  and  20.   Determine  a  supply  strategy  to  minimize  the  total

transportation costs.

3.   Prove  that,  in  reference  to  the  Transportation  Phase  1  algorithm,  if  a

variable  is  currently  undeclared  in  step  2a,  then  it  appears  with  its  original

coefficient  in  exactly  one  unused  supply  and  exactly  one  unused  demand

equation.  

4.   Prove  that  if  the  entries  in  any  single  row or  column of  the  cost  matrix

ci j  of  a  transportation  problem  are  all  reduced  by  the  same number,  then

the optimal solution does not change.

5.   (Mathematica)  Solve  the  transportation  problem  whose  supply  and

demand requirements, and transportation costs are given in the table below.

             destination
source 1 2 3 4 available

1 4 2 2 3 80

2 1 4 5 2 50

3 6 3 3 2 100

4 3 1 1 3 50

required : 60 100 80 40 280

6.  Prove that under the assumptions of this section, Phase 1 of the Transporta-

tion Algorithm must result in an integer-valued feasible solution.

7.   One alternative to the minimum cost selection rule for the transportation

algorithm  is  the  Northwest  Corner  Rule.    In  this  approach,  the  chosen

sequence of basic variables is simpler.  Display the variables xi j  in an array

as shown  below:

x11 x12 x13 x1 n

x21 x22 x23 x2 n

xm 1 xm 2 xm 3 xm n

First let x11  be basic (i.e., begin in the northwest corner of the array) and let

all  other  variables  in  the  binding  constraint  be  non-basic.   If  the  supply

constraint  was  binding,  then  x1 j  are  declared  non-basic  for  all  j 1, ... , n,
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and  we  may  effectively  delete  the  first  row  of  the  array.   If  the  binding

constraint  was the demand constraint,  then the first  column may be deleted.

Choose as the next entering basic variable the entry in the northwest  corner

of  the reduced array.   In  the first  case above,  the next  basic  variable  would

be x21, and in the second case it would be x12.  Continue in this manner until

there are m n 1 basic variables.

(a)  Why should you expect that in general this approach will not lead as

quickly to an optimal solution as the minimum cost algorithm?

(b)   (Mathematica)  Redo  Example  1  using  the  Northwest  Corner

Algorithm.

8.   (Mathematica)  Redo  Example  2  using  the  Northwest  Corner  Algorithm

(see Exercise 7).

9.   Suppose that in Exercise 1, source 1 can only supply 90 items.  Execute

the  Transportation  Algorithm  on  the  resulting  problem,  and  explain  what

happens  in the final  system or  tableau.   (This  time, do not  discard an equa-

tion when it is the only one still unused in its group.)

10.   Suppose that in Exercise 1, source 1 can now supply 110 items.  As in

Exercise 9, execute Phase 1 of the Transportation Algorithm and explain the

result.

11.  Consider a step in the Transportation Algorithm in which there remains

exactly one supply constraint  that  has  no basic variable corresponding  to it,

and there are  two or  more unused  demand constraints.   Show that  it  cannot

be  the  case  that  when  a  new  basic  variable  is  selected,  the  final  supply

constraint is the binding constraint. (Hint: express the current constant in the

unused  supply  equation  in  terms  of  the  demand  constants  that  have  been

subtracted  from it  up  to  this  step,  and  argue  by  contradiction  that  this  con-

stant must exceed the demand constant in the demand constraint in which the

entering basic variable appears.)

12.   (Mathematica)  Use  the  tableau  version  of  the  Transportation  Phase  1

algorithm,  and  if  necessary  the  Phase  2  simplex  algorithm,  to  solve  the

following problem.  A bakery has five trucks servicing the four supermarkets

in a town.  The trucks contain 10, 8, 7, 10, and 6 units of bread, respectively,

and  the  supermarkets  are  demanding  12,  8,  14,  and  7  units,  respectively.

The delivery costs per unit from each truck to each supermarket are shown in

the table below.  Devise an optimal delivery plan.

3.2 Transportation Problem 241



                                   Supermarkets

                                    1 2 3 4

Trucks  

1

2

3

4

5

 

4 3 2 6

9 5 4 7

5 3 5 2

3 5 4 8

3 5 6 4

13.  We may view the optimal assignment problem of Chapter 1 as a transpor-

tation problem in the following way.  Let a variable xi j  equal 1 if worker i is
assigned to task j, and 0 otherwise.  There is a cost ci j  of assigning worker i
to task j.

(a)   Formulate an objective function for  the problem of  minimization of

total cost of assignment.

(b)   Formulate  constraints  corresponding  to  the  requirement  that  all

workers have a distinct task.

(c)  Solve the problem if the costs are as follows:

c11  =  6,   c12  =  4,  c13  =  3, 

c21  =  6,   c22  =  5,  c23  =  8, 

c31  =  8,   c32  =  2,  c33  =  4 .

14.  Referring to the discussion of Exercise 13, solve Exercise 12 of Section

6 of Chapter 1 using the Transportation Algorithm. 

3.3 Sensitivity Analysis

Discussion of the Problem

Up to this point in our study of linear programming it has been assumed that

all  parameters,  including  objective  coefficients,  constraint  coefficients,  and

constraint constants, are perfectly known and unchanging. This might not be

the  case  in  practice,  as  indicated  by  another  look  at  the  winery  problem of

Chapter  2.   For  convenience,  we  display  the  problem  and  its  final  simplex

system below. 
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maximize: f x1, x2, x3 1.25 x1 1.50 x2 2.00 x3

   subject to: 

2 x1 x3 200

2 x2 x3 150

2 x1 x2 1.5 x3 90

2 x1 x2 2 x3 250

x1, x2, x3 0

 

type 1 grapes

type II grapes

sugar

labor time

x4 185 1
2

x5 x6

x2
135
2

x1
3
4

x5
1
2

x6

x3 15 2 x1
1
2

x5 x6

x7
305
2

x1
1
4

x5
5
4

x6

f 524
4

5
4

x1
1
8

x5
5
4

x6

x1 0, x2 135 2, x3 15,

x4 185, x5 0, x6 0, x7 305 2

The standard maximum problem written in matrix notation is:  

max : c x , subject to A x b , x 0

Recall  that  the  variables  x1,  x2,  and  x3  represent  production  quantities  in

gallons  of  three  types  of  wine:  red,  white,  and  rosé.   The  objective  coeffi-

cient c j  is the profit per gallon of wine j, the constraint coefficient ai j  is the

amount  of  resource  i  (type  I  grapes,  type  II  grapes,  sugar,  or  labor  time)

needed  to  make  a  gallon  of  wine  j,  and  the  constraint  constant  bi  is  the

available amount of resource i.  In the optimal solution for these parameters,

x2  and x3  are basic, and x1  is non-basic, meaning that no red wine should be

made.  

It is reasonable to ask the question: by how much can the profit per unit

on  red  wine  be  increased  before  it  is  no  longer  optimal  to  produce  no  red

wine?   Must  we  execute  the  simplex  algorithm  over  and  over  again  with

different choices of c1  until by very good luck we hit upon the critical profit

at  which  red  wine  enters  the  basis?   Another  question  involves  changes  in

available resources.   In  the current  optimal solution,  the slack variable x5  is

non-basic,  which  means  that  there  are  no  unused  type  II  grapes.   Suppose

that  the  winery  has  an  unexpectedly  good  harvest  of  these  grapes,  and

therefore, there are more than the original 150  bushels available.  A change

in the constraint constant b2  results.  How does the optimal solution change?

Yet another question pertains to changes in resource requirements.  Suppose

that  a  reduction  in  the  amount  of  sugar  in  red  wine  is  being  contemplated.
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This would alter the constraint coefficient a31.  How do the optimal produc-

tion variables change?  Might it become profitable for red wine to be manu-

factured? 

All  of  these  questions  focus  on  what  happens  to  the  optimal  solution

when  a  parameter  changes.   This  subject  is  referred  to  as  sensitivity  (or

post-optimality) analysis.  We will analyze the effect on the optimal solution

of:  (1)  changing  the  objective  function  coefficients,  (2)  changing  the  con-

straint constants, and (3) changing the column of constraint coefficients for a

non-basic  variable.   Our  goal  is  to  characterize  the  range  of  values  of  the

parameter under  study for  which  the current  basic  list  remains optimal, and

to  recompute  the  optimal  value  of  the  objective  function  and  the  values  of

the  basic  variables,  if  indeed  they  change.   This  new  computation  can  be

done without repeating the simplex algorithm.  We remark briefly at the end

of the section on other forms of sensitivity analysis, and how to obtain a new

optimal  solution  if  the  basic  list  becomes  sub-optimal,  or  even  infeasible.

Our  presentation  follows  that  of  Winston  [61],  and  also  draws  somewhat

from Hillier and Lieberman [31], and Rao [49].

Matrix-Geometric View of the Simplex Method

In order to have a concise way of expressing the final simplex tableau for a

perturbed problem in terms of the original problem, it will be helpful to look

once  again  at  how  a  final  tableau  is  obtained.   We  now  adopt  the  point  of

view  of  matrix  geometry.   The  initial  tableau  for  the  winery  problem  is

displayed in Figure  3.4(a),  and elementary row operations  produce the final

tableau  in  Figure  3.4(b).   The initial  and  final  tableaux  for  this  problem,  as

well as any other standard maximum problem, can be written in block form

as in Figure 3.5(a) and (b), respectively.

x1 x2 x3 x4 x5 x6 x7

2 0 1 1 0 0 0 200

0 2 1 0 1 0 0 150

2 1 3 2 0 0 1 0 90

2 1 2 0 0 0 1 250

5 4 3 2 2 0 0 0 0 f 0

 

x4

x5

x6

x7

   

(a)
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x1 x2 x3 x4 x5 x6 x7

0 0 0 1 1 2 1 0 185

1 1 0 0 3 4 1 2 0 135 2

2 0 1 0 1 2 1 0 15

1 0 0 0 1 4 3 2 1 305 2

5 4 0 0 0 1 8 5 4 0 f 525 4

 

x4

x2

x3

x7

   

(b) 

Figure 3.4 – (a) Initial, and (b) final tableaux for winery problem

A I b

c 0 f 0

                       

A S b

c f f

(a)                                                         (b) 

Figure 3.5 – (a) Initial, and (b) final tableaux in block form

Below is a glossary of notation.  Some of it is already familiar, and some

is  illustrated  in  Figure  3.5.   The  rest  is  necessary  because  we  will  need  to

express  all  relevant  quantities  in  terms  of  the  separate  contributions  of  the

basic variables and the non-basic variables for the final simplex system. 

(a)   A m n  matrix  of  constraint  coefficients  for  original  problem  in

inequality form;

(b)  b m 1 column vector of constraint constants for original problem;

(c)   I m m identity matrix;

(d)  0 = vector of length m all of whose components are 0;

(e)   c 1 n   row  vector  of  objective  function  coefficients  for  original

problem;

(f)  f = objective function;

(g)  c 1 n m  row vector of objective function coefficients in final

tableau;

(h)  f  = value of objective function in final tableau;

(i)    b m 1   column  vector  of  values  of  basic  variables  in  final

tableau;

(j)  A m n   matrix of  constraint  coefficients  for  objective  variables

in final tableau;

(k)   x n m 1   column  vector  of  variables,  including  slacks,  in

(arbitrary) simplex system;

Chapter 3 Further Topics in Linear Programming 245



(l)   S m m   matrix  of  slack  variable  constraint  coefficients  in  final

tableau;

(m)    =  list  of  basic  variables  in  optimal  simplex  tableau,  ordered

according to the rows in which they are basic;

(n)    = list of non-basic variables in optimal simplex tableau, written in

an arbitrary order;

(o)    B m m  submatrix  of  initial  constraint  coefficent  matrix  whose

columns are the columns of the variables in , in the order specified by ;        

(p)   N m n   submatrix  of  initial  constraint  coefficent  matrix  whose

columns are the columns of the variables in , in the order specified by ;

(q)  cb 1 m row vector of entries of c corresponding to , in order;

(r)  cn b 1 n row vector of entries of c corresponding to , in order;

(s)  xb m 1  column vector of entries of x corresponding to , in order;

(t)  xn b n 1  column vector of entries of x corresponding to , in order.

The main idea here is to divide up the parts of the problem that have to

do  with  the  final  list  of  basic  variables  from those  that  have  to  do  with  the

non-basic  variables.   For  example,  in  the  winery  problem whose  initial  and

final tableaux are in Figure 3.4(a) and (b), 

(3)
x4, x2, x3, x7 , x1, x5, x6 ,

cb 0, 3 2, 2, 0 , cn b 5 4, 0, 0

Activity 1 – Identify all of the other quantities named in the glossary for

the winery problem.  Note particularly the submatrices B and N.

Recall that we wish to find ranges of values of the problem parameters in

which the list   of  basic variables  does not  change after  perturbation  of  the

parameters.  The actual values of the basic variables, as well as the objective

function  and  the  objective  coefficient  vector  c  may  change  under  the

perturbation.   It  turns  out  that  we  can  obtain  closed-form  expressions  for

these  quantities  in  terms  of  the  parameters  of  the  original  problem,  and,

perhaps  surprisingly,  in  terms  of  the  matrix  S  of  slack  variable  constraint

coefficients in the final tableau of the unperturbed problem.    

Note  that  the  standard  maximum  problem  in  equality  form  can  be

written, by separating the contributions of the basic and non-basic variables,

as:

(4)

max : f cb xb cn b xn b

subject to : B xb N xn b b, x 0
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(See  Exercise  1,  which  asks  you  to  check  this  for  the  winery  problem.)

When  we use  the  subscripts  b  and  n b,  you should  remember that  we  mean

the  basic  and  non-basic  lists  in  the  optimal  tableau  for  the  unperturbed
problem.  The main theorem is as follows.

THEOREM  1.   (a)   The  matrix  B,  composed  of  columns  of  the  initial

system of  constraints  corresponding  to  the  variables  in  ,  and  the  matrix  S,

composed of slack variable coefficients in the final system of constraints, are

inverses of one another. 

(b)  The values of the optimal basic variables are the components of the

vector

b B 1 b S b

in the order specified by .

(c)  The objective equation corresponding to the final row of the optimal

tableau has the form

f cb S b cn b cb S N xn b, 

where  N  is  the  matrix  composed  of  columns  of  the  initial  system  of  con-

straints  corresponding  to  the  variables  in  .   In  particular,  cb S b  is  the

optimal objective value,  and the vector coefficient cn b cb S N  of  xn b  in

the  second term on the right  gives the non-basic  variable coefficients  in the

order specified by .  

Proof.  (a)  Consider the basic variable submatrix B.  Because of the way in

which we have ordered the set , the first member of , corresponding to the

first  column  of  B,  will  be  basic  in  the  first  row  of  the  final  tableau,  the

second member of  will be basic in the second row, etc.  As we have seen

many times, a column of a basic variable in the final tableau has an entry of

1 in the row in which it is basic, and 0 elsewhere.  Thus, the elementary row

operations  performed  in  computing  the  final  tableau  have  the  effect  of

transforming B into I, the m m identity matrix.  Those same row operations

transform  the  identity  matrix,  formed  by  the  slack  variable  columns  of  the

initial  tableau,  into  S  (see  Figure  3.5).   By  the  well-known  procedure  from

linear algebra, S must be the inverse matrix of B.

(b)  The system of constraints for problem (4) is equivalent to
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(5)xb B 1 N xn b B 1 b

But the values of the non-basic variables are zero in the final tableau, hence

the  second  term  in  the  sum  on  the  left  of  the  equation  vanishes.    Since

B 1 S  for  the  final  tableau,  the  optimal  values  of  the  basic  variables  are

contained in the column vector S b.  

(c)   Substitution  of  expression  (5)  for  the  basic  variables  xb  into  the

objective function f  in equation (4) yields

f cb B 1 b B 1 N xn b cn b xn b

The  formula  in  (c)  is  a  simple  algebraic  rearrangement  of  the  above,  using

the fact that B 1 S.  

EXAMPLE  1.   We  can  check  the  results  of  Theorem  1  on  the  winery

example.   Refer  to  Figure  3.4.   Recall  that  x4, x2, x3, x7 ,  and

x1, x5, x6 ,  and that S  is the slack variable part of the final tableau, and

B  is  the  basic  variable  part  of  the  initial  tableau  in  Figure  3.4.   We  use

Mathematica to check easily that B S I S B:

B 1, 0, 1, 0 , 0, 2, 1, 0 ,

0, 1, 3 2, 0 , 0, 1, 2, 1 ;

S 1, 1 2, 1, 0 , 0, 3 4, 1 2, 0 ,

0, 1 2, 1, 0 , 0, 1 4, 3 2, 1 ;

MatrixForm B.S , MatrixForm S.B

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Also, b S b, as asserted by part (b) of the theorem.  

b 200, 150, 90, 250 ;

S.b

185,
135
2

, 15,
305
2
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As  in  part  (c),  the  optimal  value  of  the  objective  function  coincides  with

cb S b.

cb 0, 3 2, 2, 0 ;

cb.S.b

525
4

 

Activity 2  – Check, for the winery example, that the non-basic variable

coefficients in the objective row of the final tableau are the components

of the row vector cn b cb S N .

Determining Sensitivity of Parameters

We are now in a position to find the range of values of a parameter for which

the current list of basic variables remains feasible and optimal for a problem

in  which  the  parameter  is  perturbed.   We  will  also  be  able  to  compute  the

new values of the basic variables and the objective function for the perturbed

problem.  There are a number of changes to a problem that could be antici-

pated; here we discuss only three: (1) changing an objective function coeffi-

cient;  (2)  changing  a  constant  constraint  bound;  and  (3)  changing  a  con-

straint  coefficient for  a variable that  is non-basic in the optimal solution for

the original problem. 

Case 1: Perturbing  c

Suppose that we change one (or more) of the entries of the coefficient vector

c  of  the  objective  function  of  the  original  problem.   This  can  be  accom-

plished by adding some increment vector c to c.  Let cb  be the subvector

of  this  increment  vector  that  increments  the  basic  variable  coefficients,  and

let  cn b  correspond  similarly  to  the  non-basic  variable  coefficients.   The

constraint  constants  b  do  not  change.   There  is  no  change  to  the  matrix  B,

which has to do only with constraint coefficients, nor to its inverse matrix S.

Thus, part (b) of Theorem 1 allows us to conclude that:

(6)

The values of the basic variables do not change under perturbation 

of the objective coefficient.  

In particular, the basic solution remains feasible.
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Examination of the constant term in the linear equation for f listed in part (c)

of Theorem 1 yields that:

(7)

The new value of the objective function under perturbation of the 

objective coefficient is: 

cb cb S b

This  objective  value  is  still  the  optimal  value  of  the  new  f,  as  long  as  the

optimality condition of the simplex algorithm is satisfied.  By part (c) of the

theorem  again,  this  is  the  case  if  all  non-basic  variable  coefficients  in  the

new objective row are non-positive, i.e.:

(8)
The current basic solution is optimal iff: 

cn b cn b cb cb S N 0

Notice  what  the  matrix-geometric  approach  has  allowed  us  to  accomplish.

We have a check in (8) for optimality of the current solution, which requires

only  knowledge  of  the  original  objective  coefficients,  the  increment  vector,

the  slack  variable  portion  S  of  the  final  tableau,  and  the  non-basic  variable

portion N of the initial tableau.  No further simplex computations are neces-

sary.  Also, by (7),  we can compute the new optimal objective value know-

ing only the basic variable coefficients in the original objective function, the

perturbation,  the  matrix  S,  and  the  initial  constraint  constant  vector  b.  The

values  of  the  basic  variables  themselves  do  not  change  under  this  kind  of

perturbation,  and  of  course  the  values  of  the  non–basic  variables  remain  at

zero.  

EXAMPLE  2.   Return  to  the  winery  problem.   We  analyze  the  effect  of

perturbing  the profit  coefficient  of  red wine by an amount 1,  white by 2,

and rosé by 3.  The vectors cb and cn b will become: 

cb cb 0, 3
2 2, 2 3, 0   ,        

cn b cn b
5
4 1, 0, 0  

By part (c) of the theorem, the vector of new objective function coefficients

in the final tableau will be

(9) cn b cn b cb cb S N
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Using  the  definition  of  the  slack  variable  submatrix  S  from  before,  and

introducing the non-basic submatrix N , we get

cnb 5 4, 0, 0 ; cnb 1, 0, 0 ;

cb 0, 2, 3, 0 ;

Nmatrix

2, 0, 0 , 0, 1, 0 , 2, 0, 1 , 2, 0, 0 ;

Expand Simplify cnb cnb cb cb .S.Nmatrix

5
4 1 2 2 3,

1
8

3 2

4
3

2
,

5
4

2

2 3

Recall  that  the  ordering  is  determined  by  ,  hence  these  are  the  coeffi-

cients  of  the  non-basic  variables  x1,  x5,  and   x6,  respectively.   The  current

solution  remains  optimal  if  and  only  if  all  of  the  three  components  of  the

vector above are less than or equal to zero.  This system of inequalites forms

a  polyhedral  region  in  three-dimensional  space  consisting  of  those  points

1, 2, 3  whose  corresponding  perturbation  does  not  change  the  optimal

values of the variables.  We will not attempt to sketch this set; rather, we will

be content to determine the range of values of each i  individually such that

the  current  solution  remains  optimal,  assuming  the  other  profit  coefficients

are not changed.  See Exercise 6 for the two at a time perturbations. 

If  1  is  the  only  non-zero  perturbation,  then  the  Mathematica  output

shows that only the first component of the vector in (9) provides any restric-

tion.  To maintain optimality of the current solution, we must have

5
4 1 0   1

5
4

Since we are not perturbing any basic variable coefficients, the optimal value

of the objective function will still be 525/4.  If more than 5/4 is added to the

objective coefficient of x1, then the first non-basic variable, namely x1  itself,

has  a  negative  coefficient  in  the  "final"  tableau,  and  would  be  introduced

into the basic solution.  In other words,  it would become profitable to make

red wine.

If 2  is the only non-zero perturbation,  then all three components of the

vector  in  (9)  restrict  2.   The  same basic  feasible  solution  as  in  the  unper-

turbed problem will occur if

5
4 2 0

1
8

3
4 2 0

5
4

1
2 2 0

This system of inequalities is easily solved, to yield
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 1
6 2

5
4

For  this  range  of  values  of  2,  the  solution  x1 0,  x2 135 2,  x3 15  is

still  optimal.   By  Theorem  1(c),  the  new  optimal  objective  value  is

cb cb S b, which we compute as:

cb 0, 2, 0, 0 ;

Expand Simplify cb cb .S.b

525
4

135 2

2

If  3  is  the only non-zero perturbation,  then we obtain three restrictions

on this perturbation in a similar way:

5
4

2 3 0

1
8

1
2 3 0

5
4 3 0

        5
8 3

1
4

For this range of values of 3, the old optimal solution remains optimal, and

the new optimal objective value is

cb 0, 0, 3, 0 ;

Expand Simplify cb cb .S.b

525
4

15 3

Activity  3  –  Suppose  that  the  profit  coefficient  of  red  wine  was

increased by 1/4.   By how much can each of  the individual  coefficients

on  white  wine  and  rosé  be  changed  without  changing  the  optimal

solution?

Case 2: Perturbing  b

Suppose  next  that  we  change  one  or  more  of  the  entries  of  the  constraint

constant  vector  b,  by  adding  some increment  vector  b  to  b.   By Theorem

1(c), we observe that:
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(10)

Perturbation of b does not change the non-basic variable 

coefficients in the objective row of the final system; thus the 

current solution, if feasible, is still optimal.

We  check  for  feasibility  by  inspecting  the  list  of  values  of  the  basic  vari-

ables.   If  all  entries  are  non-negative,  then  the  current  solution  is  both

feasible and optimal.  Theorem 1(b) shows us how to verify this.

(11)
Feasibility of the solution under perturbation of b is equivalent to 

S b b 0

If  the  old  basis  is  indeed  optimal,  Theorem 1(c)  enables  us  to  compute  the

new optimal objective value.

(12)
The value of the objective function in the final simplex system 

after perturbation of b is f cb S b b .

As before, some simple matrix multiplications using data from the initial

and final simplex tableaux for the unperturbed problem are sufficient to find

the  range  of  values  of  the  perturbation  vector  b  such  that  the  old  optimal

basic variables are still basic in the new solution.  It is also easy to recalcu-

late new optimal values  of  the variables  and  the objective  without  resorting

to another application of the simplex algorithm.

EXAMPLE 3.  Now let us determine the effect of changes in the constraint

constants  on  the solution of  the winery problem.  The problem is  simply to

find the range of values of the perturbation vector b such that the inequal-

ity in (11) holds.  But by Theorem 1(b), this vector inequality is equivalent to

(13)b S b 0

The  vector  on  the  left  side  of  inequality  (13)  gives  the  new  values  of  the

basic variables.  Computing these in Mathematica gives

bstar 185,
135

2
, 15,

305

2
; b 1, 2, 3, 4 ;

Expand Simplify bstar S. b

185 1
2

2 3,
135
2

3 2

4
3

2
,

15 2

2 3,
305
2

2

4
3 3

2 4

Chapter 3 Further Topics in Linear Programming 253



Treat the perturbation one parameter at a time, setting the others to zero,

beginning  with  1.   We  see  from the  first  element of  the  vector  above  that

the  current  solution  is  still  feasible  and  optimal  if   185 1 0,  i.e.,

1 185.   In  terms  of  the  applied  problem,  the  current  solution  remains

feasible if no more than 185 bushels of type I grapes are subtracted from the

original  supply  of  200.   Note  that  since the  optimal x3  is  15  in  the  original

problem,  we  need  precisely  15  bushels  of  these  grapes  to  make  the  rosé

wine.  Also, 185 is the value of the slack variable associated with the type I

grape resource.  The perturbation 4  is also easy to analyze, since it appears

only in the last element of b S b.   Feasibility of the current solution is

preserved  if  4 305 2.   As  long  as  no  more  than  305/2   is  subtracted

from  the  available  labor  time  (note  that   305/2   is  the  value  of  the  slack

variable  associated  to  labor  time in  the  optimal solution),  the  current  list  of

basic  variables  is  feasible.   In  both  of  these  cases,  the  perturbation  changes

only  the  value  of  the  basic  variable  in  the  row  in  which  the  perturbation

appears.  More precisely, the new value of basic variable x4 under a perturba-

tion  of  the  constraint  constant  for  type  I  grapes  is  185 1.   Other  basic

variables, and all non-basic variables, do not change.  Similarly, 305 2 4

is  the  new value of  basic  variable  x7  under  a  perturbation  of  the  labor  time

constraint constant, and no other variables change their value.

To  see  the  effect  of  a  change  2  in  the  availability  of  type  II  grapes

requires  simultaneously  setting  all  four  elements of  b S b  greater  than

or equal to zero.  You should verify that the range of values under which the

current solution is still feasible is

90 2 30

Similarly, the range of perturbations of the third constraint, involving sugar,

is

15 3 305 3

In both cases, since the perturbation terms i  are contained in every element

of  b S b,  the  values  of  all  of  the  basic  variables  change.   The  new

values are determined by substituting the values of the perturbations i  into

the formulas from Mathematica above. 

 We also have an expression for  the new value of  the objective function

under  the  perturbation.   As  long  as  the  perturbation  terms  indicate  that  the

current  list  of  basic  variables  is  still  feasible,  the  new  optimal  value  is

f cb S b b , which we compute below.

Expand Simplify cb.S. b b
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525
4

2

8
5 3

4

The coefficients of the i's  above give useful information;  they are the rates

of  increase in profit  per  unit  increase in the resources  of  type II  grapes and

sugar.   Notice  that  they  are  the  same as  the  negatives  of  the  slack  variable

coefficients  (i.e.,  the  optimal  dual  variables)  in  the  optimal  simplex  system

(2) corresponding to these resources.  In Section 4 of Chapter 2, we referred

to these values as the shadow prices of the resources.  We therefore have an

interesting connection between duality theory and sensitivity theory, namely

that the shadow price of a resource is the same as the rate of increase in the

objective function  per  unit  increase of  the resource.   (See Exercise 10 for  a

general result.)  

Activity 4 – What are the values of the basic variables if simultaneously

there is an increase of 30 bushels of type II grapes and 10 lbs. of sugar?

Is the old optimal solution still feasible and optimal?

Case 3:  Perturbing constraint coefficient column 

of a non-basic variable

Finally,  we will  investigate changes in a single column of  constraint  coeffi-

cients  in  the  original  problem.   We  only  consider  the  case  in  which  the

column variable is non-basic in the final simplex system.  By Theorem 1(b)

and  (c),  the  only  change  induced  in  the  final  system  is  that  the  non-basic

variable portion N  of the constraint matrix will change in one column. Recall

that S is the inverse of B, which is the basic variable portion of the constraint

matrix;  consequently,  S  will  not  change,  nor  are  we  changing  the  original

objective  coefficients  or  the  constraint  constants  in  this  case.   We  observe

immediately that

(14)

A change in a non-basic variable constraint coefficient column 

leaves b  untouched; consequently, the current solution is still 

feasible for the perturbed problem.

(15)
The value of the objective function does not change under 

perturbation of a non-basic variable constraint coefficient column.

Consequently, it remains to check only whether the vector of coefficients of

non-basic  variables  in  the  objective  row  of  the  final  system is  still  entirely

non-positive after the change to N .  A perturbation of a column, say the jth,

in  N  can  be  accomplished  by  adding  a  matrix  N  to  N,  which  is  zero  in

every column except column j, and in that column has entries 1, 2, ... , m.
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(16)

The current solution remains optimal under a perturbation of a 

non-basic variable constraint coefficient column iff 

cn b cb S N cb S N 0

Note  that  the  parenthesized  term  in  the  inequality  of  (16)  is  the  old

vector  of  non-basic  variable  coefficients  in  the  final  objective  row.   It  is

known  to  be  non-positive,  by  the  optimality  of  the  solution  to  the  unper-

turbed  problem.   From this  is  subtracted  a  vector  which,  since  N  is  non-

zero  only  in  its  jth  column,  could  only  be  non-zero  in  its  jth  component.

Because of this, it is only necessary to check whether the new coefficient of

the  jth  non-basic  variable  has  become  positive,  and  if  not,  the  current

solution  is  still  optimal  for  the  perturbed  problem.   This  fact  will  come out

more clearly in the example below.

EXAMPLE 4.   In  the  winery  example,  suppose  we  contemplate increasing

the amount of sugar required to make a gallon of red wine by an amount .

A  negative  value  of   is  allowed,  meaning  that  there  is  a  reduction  in  the

required  amount  of  sugar.   We find  the range  of  values  of   such  that  it  is

still  not  optimal  for  x1  to  enter  the  basis.   Following  (16),  we  compute  the

vector cb S N ,  where N  has a column for each non-basic variable,  but

whose only non-zero  element is  in  row 3  (for  sugar)  and column 1 (for  red

wine).

N 0, 0, 0 , 0, 0, 0 , , 0, 0 , 0, 0, 0 ;

MatrixForm N

cb.S. N

0 0 0
0 0 0

0 0
0 0 0

5
4

, 0, 0

Since the coefficient of x1in the objective row of  the final tableau in Figure

3.4 is 5 4, we see that x1 will remain non-basic iff

5
4

5
4

0 1

This means that if the sugar content of red wine is reduced by no more than

one unit per gallon, then it will still be optimal not to make any red wine.  
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We  have  not  covered  every  possible  perturbation  of  a  given  linear

programming problem.  One noticeable absence is the change of a constraint

coefficient  column  belonging  to  a  variable  that  is  basic  in  the  optimal

solution  to  the  original  problem.   Theorem  1  still  applies  to  this  kind  of

perturbation,  but  the situation is somewhat more complicated than the cases

that we have addressed.  Referring to the formulas listed in parts (b) and (c)

of  the theorem, we see that since the perturbation changes B,  it changes the

inverse  matrix  S  in  a  way  that  is  not  obvious.   The  values  of  the  basic

variables,  the  value  of  the  objective  function,  and  the  coefficients  of  the

non-basic  variables  in  the  objective  equation  all  change  as  well;  hence  the

new  solution  may  not  be  feasible  or  optimal.   Hillier  and  Lieberman  [31]

shed some light on this problem.

Perturbations  of  a  different  type  involve  the  introduction  into  the  prob-

lem of  features  that  were  not  even  present  before.   For  example,  suppose  a

new  constraint  was  introduced.   In  the  winery  example,  this  could  arise  in

the  form  of  a  new  ingredient  for  the  wines,  which  is  available  in  limited

amounts.  One easy way to check for optimality of the current solution is to

see whether it satisfies the new constraint.  If the solution is feasible for the

new constraint, then it is still optimal for the new problem, because the new

problem maximizes the same objective over a smaller set of  feasible points.

A  feasible  solution  with  a  strictly  better  objective  value  than  the  current

solution could not exist.   If  the current optimal solution does not satisfy the

constraint, Rao ([49], Sec. 4.5) suggests a Phase 1–Phase 2 approach to find

the new optimal solution. 

Another way of introducing an entirely new feature into the problem is to

include a new variable.  In the case of the winery problem, it might be that a

new kind  of  wine  is  being considered.   This  wine has  its own profit  coeffi-

cient  and  requirements  on  resources.   We  might  wish  to  find  the  range  of

values of these coefficients such that the new variable does not enter into the

basic solution.  A clever way of attacking this problem is to pretend that the

variable was present as a non-basic variable in the original problem, but with

all coefficients equal to zero.  Then employ the other perturbation techniques

that we have discussed to analyze the effect of moving the coefficients away

from zero.  The reader can find more on these issues in Winston [61], as well

as Hillier and Lieberman [31].

We  have  also  not  discussed  the  problem  of  what  to  do  when  the  old

solution  is  no  longer  optimal.   In  the  case  where  the  constraint  constant

vector  b  does  not  become  negative,  the  feasibility  condition  for  the  basic

variables  will  not  be  violated.   Consequently,  even  when  the  perturbations

are  extreme  enough  to  destroy  optimality,  we  can  just  begin  the  simplex

algorithm  again,  with  the  perturbed  final  tableau  representing  an  initial

feasible solution.  Until now, there has been little need to say anything about

changes to the A  block (see Figure 3.5) of the final tableau for the original

problem.  But if we are to restart the simplex algorithm after a perturbation,
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we  must  know  the  entries  in  this  block.   The  only  case  among  those  dis-

cussed  earlier  in  which  A  will  change  is  when  there  is  a  change  to  a  con-

straint  coefficient  column  for  a  non-basic  objective  variable.   This  will  not

change  S B 1,  and  Figure  3.5  makes  it  clear  that  the  matrix  A  will  be

obtained by multiplying the perturbed matrix A by S.

If  feasibility  is  lost  under  the  perturbation,  it  is  possible  to  continue  the

simplex  algorithm  from  the  current  tableau,  rather  than  returning  to  the

beginning of the problem.  As noted above, there is a two-phase approach in

which the first phase locates a feasible solution for the new problem and the

second  phase  is  just  the  ordinary  simplex method.   But  there  also  exists  an

algorithm called the dual simplex algorithm, which steps through super-opti-

mal,  non-feasible  solutions  using  similar  row  operations  to  the  ordinary

simplex  algorithm,  until  a  feasible  solution,  which  is  also  optimal,  is

reached.  Hillier and Lieberman ([31], Sec. 9.2) give a nice discussion of this

algorithm.   

Exercises 3.3

1. Check that the winery problem can be decomposed as in formula (4).

2.  Express the LP problem of Example 2 of Chapter 2, Section 3 in the form

(4).   (For your convenience, we were to maximize f 4 x1 2 x2  subject to

the constraints below.)

x1 x2 2

2 x1 x2 3

x1, x2 0

3.  We return to the coal mining example, which is Example 4 of Chapter 2,

Section 3.

(a)  Identify the vectors b  and c  and the matrix S  of Figure 3.5 for this

problem.

(b)  Express the problem in the form of formula (4).

(c)   Verify  the  equations  in  parts  (b)  and  (c)  of  Theorem  1  for  this

problem.

4. (Mathematica) For Example 4 of Chapter 2, Section 3:

(a)  Find the range of values of each component of a perturbation vector

c 1, 2  such that the basic solution depicted in the final tableau is still

optimal.

(b)   Sketch  the  set  of  all  pairs  1, 2  in  the  plane  such  that  the  old

optimal solution is still optimal.

(c)   If  the  profit  coefficient  of  x2  in  the  original  problem is  changed  to

4500, obtain the entire new "final" tableau under this perturbation.  Note that
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it  no  longer  represents  an  optimal  solution.   Use  the  simplex  algorithm  to

obtain an optimal solution for the perturbed problem.

5.   Prove  that  the  non-basic  variable  columns  of  the  matrix  A  of  Figure

3.5(b) are the corresponding columns of  S N . (Hint: Use formula (5).)

6. (Mathematica) In Example 2, sketch the regions in the: (a) 1 2  plane;

(b)  2 3  plane;   and  (c)  1 3  plane,  such  that  the  optimal  solution  of

the original problem remains optimal when the given pair of perturbations is

imposed, holding the remaining perturbation at zero.

7. (Mathematica) Consider Exercise 4 of Chapter 2, Section 3 involving the

farmer and his hogs, chickens, and ostriches.

(a)  Find a system of inequalities characterizing the set of all perturbation

vectors  b 1, 2  for  b  such  that  the  optimal  solution  does  not  change

under the perturbation. 

(b)   Express  the new value of  the objective  function in terms of  1  and

2.

(c)  Find the range of values of the two individual perturbations such that

the current solution remains feasible and optimal.

8. (Mathematica) Repeat Exercise 7 for the problem of Exercise 1 of Chapter

2, Section 3.

9. (Mathematica) (a) Find the new optimal tableau for the winery problem if

the  constraint  constant  vector  is  perturbed  by  a  vector  b   whose  compo-

nents are: 1 75, 2 4, 3 16, and 4 91 2.

  (b)   For  fixed  1 75, 4 21 2,  graph  the  set  of  all  2, 3  in  the

plane such that the current optimal solution remains unchanged. 

10.   Show in general the observation that was made in Example 3.  That is,

prove  that  the  negatives  of  the  slack  variable  coefficients  in  the  objective

row of  a  final  simplex system (the optimal values of  the dual  variables)  are

the  same  as  the  coefficients  of  1, 2, ... , m   in  the  expression  for  the

objective function of the problem in which the constraint constant vector  b

is perturbed by these i. 

11.  In Example 4 on the winery, find a system of inequalities for the perturba-

tions 1, 2, 3, and 4  of the red wine column of constraint coefficients to

characterize the set of such perturbations under which the current solution is

still optimal.

12.   Consider Exercise 1 of Chapter 2, Section 1 on allocation of city funds

for the purchase of two types of vehicles.  Suppose that the purchase price of

vans is incremented by an amount 1, and the maintenance cost per year for

a  van is changed by an amount 2.   Characterize the set of  all  such 1  and

Chapter 3 Further Topics in Linear Programming 259



2,  such  that  the  old  optimal  solution  computed  in  that  problem  is  still

optimal.

13. (Mathematica) This problem refers to Example 3 of Chapter 2, Section 3,

which is repeated below.

   (a)  Find the set of perturbations of the form , ,  to the column of x1

constraint coefficients that do not change the optimal solution.

   (b)  If 2, find the resulting perturbed final tableau, and use it as the

initial  tableau  in  the  simplex  method  to  find  an  optimal  solution  for  the

perturbed problem. (Hint: Use Exercise 5.)

 maximize: f x1 3 x2

subject to:

x1 2 x2 3

2 x1 x2 3

x1 x2 2

x1, x2 0
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4

Markov Chains

Introduction

Appendix A gives a review of key ideas and results from probability theory,

one of  the main focuses of  which is the random variable.   A single random

variable  is  appropriate  in  experiments  that  are  static.   The  experiment  is

performed, an outcome  happens, and we observe a numerical value X .

But  to  model  an  experiment  that  progresses  over  time, we need a family of

random  variables  Xt ,  one  for  each  time  t  in  some  time  set.   The  random

variable Xt  is  the numerical  value observed at time t.    (Though we usually

suppress it  in the notation, bear in mind that random variables are functions

of  the  outcome  .)    We  see  that  this  family  of  random  variables,  called  a

stochastic  process,  can  be  thought  of  as  a  function  of  two  arguments:

X X t, .   For  fixed time t,  X  is  a  random variable.    For  fixed outcome

,  X  is an ordinary function of the real variable t.   The latter will probably

be  most  helpful  to  your  intuition,  because  you  can  begin  to  think  of  a

stochastic process as a random graph in the plane.   Figure 4.1 below shows

the sketch of an integer-valued process for a typical outcome , in which the

time set is the set of non-negative reals. The sequence of values taken on by

this  process  is  0,  1,  3,  2,  ...,  and  the  process  spends  an  interval  of  time  at

each value before moving to the next.  For a different experimental outcome

this graph, called the path of the process, might look different.  We are led to

the definition below.

time0

0.5

1

1.5

2

2.5

3

state

Figure 4.1 – A graph of t Xt  for fixed 
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DEFINITION.   A stochastic process  with time set  T  and state space  E
is  a  family  of  random variables  Xt t T  such  that  each  random variable

Xt takes values in the set E.

It is not hard to think of examples of stochastic processes.  The following

are only a few of many interesting models:

1.  Xt =  price of a common stock at time t;
2.  Xt =  level of water in a reservoir at time t;
3. Xt  =  number of demands for service in a time-sharing computer 

system through time t;
4.  Xt = energy level of an electron within an atom at time t;
5.  Xt = number of customers waiting in a line at time t;
6.  Xt = 0 or 1, respectively, according to the value of the bit in position t 

in a binary string.

Notice  that  in  the  last  example  the  index  set  for  the  family  of  random

variables  represents  position  in  a  sequence  rather  than  time.   We  mention

this  to  indicate that  the results  we obtain are  not  confined only to problems

of random motion through time, though this  is  the easiest way to think of  a

stochastic process.

We have not specified what kind of sets T and E are.  Typically the time

set T is either the non-negative integers  or the non-negative real numbers

,  depending  on  the  context  of  the  problem.   The  space  of  states  E  is

usually some subset of the real line or higher dimensional real space.  Much

useful   and  interesting  work  has  been  done  on  non-discrete  state  spaces;

however,  most  of  it  requires  measure  theory  and  other  mathematics  that  is

somewhat beyond the level of this text.  So, for our purposes, the state space

will usually be some discrete subset of Euclidean space.

There are many probabilistic questions that can be asked about stochastic

processes.   As  with  single  random  variables,  one  can  try  to  compute  the

distribution  of  the  value  of  the  process  at  a  fixed  time t;  that  is,  P Xt B
for  subsets  B  of  the  state  space.   We  might  also  desire  to  know  where  the

process  tends to be in the long-run,  i.e.,  limt P Xt B .   Also, since time

is a factor in the experiment, we may be able to observe the evolution of the

process  for  awhile,  and  use  the  data  to  make  predictions  about  the  future.

Thus, conditional probabilities like the following would be interesting:

P Xt B Xs A ,      for  t s

which is the probability that the process is in set B at time t, given that it was

in set A at the earlier time s. 

In  this  chapter  we  study  a  class  of  memoryless  discrete  time  processes

with  discrete  state  space,  called  Markov  chains.   After  the  basic  definitions
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are  given  in  Section  1,  we  will  deduce  the  conditional  and  unconditional

distributions of the state of the process at a fixed time n in Section 2.   In the

third  section  we  will  show  an  inductive  method  for  the  problem of  finding

the distribution of the time when a given state is first visited by the process.

Sections 4,  5,  and 6 give a rather detailed discussion of the limiting proper-

ties of Markov chains as time becomes infinite.  Some chains can be shown

to  spend  a  stable  fraction  of  time  in  each  state,  while  others  can  be  com-

pletely absorbed by a state.

This chapter will rely heavily on results and examples from two excellent

books  on  the  subject  of  stochastic  processes:  Cinlar  [15]  and  Ross  [52].

Other  references  include  Volume  3  of  the  series  by  Hoel,  Port,  and  Stone

[34], and Volume 1 of the series by Karlin and Taylor [40]. 

4.1 Definitions and Examples

A Markov  chain is  a  discrete  process  such that  future  motions are indepen-

dent  of  the  past,  given  the  present  state.   More  precisely,  we  have  the

following definition:

DEFINITION  1.   A  discrete  time  stochastic  process  Xn n 0,1,2,...  with

finite  or  countable  state  space  E  is  called  a  Markov  chain  if  for  each

n 0, 1, 2, ... , and subsets B0, B1, ... , Bn of E,

   P Xn 1 j X0 B0, X1 B1, ...., Xn 1 Bn 1, Xn i
P Xn 1 j Xn i

 

Furthermore,  the  Markov  chain  is  called  time-homogeneous  if  the

conditional probabilities in the formula above do not depend on n.   The

transition  matrix  T  of  a  time-homogeneous  Markov  chain  is  the  matrix

defined by:

T i, j P Xn 1 j Xn i i, j E
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We  may  depict  the  state  space  E  and  the  transition  probabilities  T i, j
together  on  a  weighted  directed  graph  called  a  transition  diagram  as  in

Figure 4.2.   The chain hops in discrete time units from node to node on the

transition diagram.  For the chain to be Markov, at any time the distribution

of  the  next  state  to  be  visited  is  conditionally  independent  of  the  past

sequence of states, given the present state.  

1 2

3 4

0.5

0.5

0.33
0.67

0.75
0.25

1

Figure 4.2 – Transition diagram of a Markov chain

For a time-homogeneous chain, the only kind that we will consider here, the

conditional probability that the process goes to state j next,  given that at the

current  time it  is  at  state  i,  does  not  change  as  time progresses.   The  entry

T i, j  in  row  i  and  column  j  of  the  transition  matrix  is  this  conditional

probability.  For example, in Figure 4.2, given that the current state is 4, the

next state to be visited is 3 with probability 1.  Thus, T 4, 3 1.  Given that

the present  state is  1,  the chain moves next to either state 2 or 3 with equal

probability, stochastically independent of the past, and functionally indepen-

dent of the clock time.  So, T 1, 2 T 1, 3 1 2.  The complete transition

matrix T is:

                          (next state)

    (current state)   1 2 3 4

                     T =   

1

2

3

4

0 1 2 1 2 0

1 3 2 3 0 0

0 0 3 4 1 4

0 0 1 0
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Activity  1  –  What  is  the  probability  that  the  Markov  chain  whose

transition  diagram is  as  in  Figure  4.2  goes  in  two  steps  from state  1  to

state 4?  From state 1 back to itself?

The world teems with examples that can be modeled by Markov chains,

if one is willing to accept the assumption of independence of past and future.

In  the  introduction  to  the  chapter  are  a  few  examples;  following  are  a  few

more that illustrate the diversity of the applications.

EXAMPLE 1.   The state Xn of the chain at time n may be:

(a) the salary of a worker in year n;

(b) the number of items in inventory at time n;

(c) the condition of a patient's health at time n;

(d) the position of a case in the legal system on day n;

(e) the level of the national debt in year n;

(f) the condition of the weather at hour n;

(g) the population of a town in year n.     

We  consider  three  more  examples  in  some  detail,  in  order  to  illustrate

how transition matrices are found.

EXAMPLE 2.  Three  companies  are  competing for  the  market  in  the  gour-

met frozen food industry.  Company 1 is mounting an advertising campaign,

and as a result  the shares of the market possessed by each company change

from  day  to  day.   Let  us  extrapolate  individual  behavior  to  mass  behavior,

e.g.,  to say that a randomly selected individual has probability 1/2 of favor-

ing  company 1  says  that  company 1  has  50% of  the  market.   Let  Xn  be

the  company preferred  by  a  randomly selected individual   (an  outcome in

the sample space)  at time n.   If  future preference is independent  of  the past

given  the  present,  then  Xn  forms  a  Markov  chain  with  state  space

E 1, 2, 3 .  Suppose that in any time period, company 1 retains half of its

customers,  and  the  others  are  split  equally among the other  two companies.

Half  of  the  customers  of  company  2  are  converted  to  company  1  in  a  time

period,  and  the  rest  remain  with  company  2.   Company  3  keeps  3/4  of  its

customers,  and  the  rest  change  to  company  2  in  one  time  period.   The

transition matrix is below, and the transition diagram is shown in Figure 4.3.

Recall that in the transition matrix, the rows represent current states and the

columns are the states to be visited in the next time period.

T
1 2 1 4 1 4

1 2 1 2 0

0 1 4 3 4
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Figure 4.3 – Frozen food example

Company 1  would  be  interested  in  its  share  of  the  market  on  day  n,  which

according  to  our  extrapolation  is  P Xn 1 .   Also  of  interest  would  be  the

limit  of  this  probability  as  n  approaches  ,  if  that  limit exists.   This  repre-

sents  the long-run  share  of  the market  belonging  to company 1.   This  com-

pany might also want to know the probability that it  takes exactly k  days to

win over a customer initially favoring company 3.  We will have the means

to solve all of these problems later.  

Activity  2  –  On  the  macroscopic  level,  what  is  the  meaning  of  the

probability  that  it  takes  k  days  for  company  1  to  win  over  a  customer

initially favoring company 3?

EXAMPLE 3. Successive customers to a discount store make their purchase

decisions  independently  of  one  another,  spending $0,  $1,  $2,  or  $3,  respec-

tively, with probabilities 1/2, 1/3, 1/12, and 1/12.  Let us develop a Markov

chain  model  for  the  process  in  which  Xn  is  the  cumulative  dollar  amount

purchased by all customers through the nth. 

Clearly the Markov property is satisfied, because Xn 1  is the cumulative

amount Xn  spent up through the nth  customer, plus the amount Zn 1  spent by

the  n 1st  customer,  which  is  independent  of  the  past  before  customer  n.

More formally,

P Xn 1 j Xn i P Xn Zn 1 j Xn i
P Zn 1 j i Xn i
P Zn 1 j i
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If  the  cumulative  amount  spent  through  customer  n  is  i,  then  the  amount

spent through customer n 1 is either i, i 1, i 2, or i 3 with the probabili-

ties  above.   The  transition  matrix  of  the  chain  is  easy  to  derive  from  this

observation. 

      0 1 2 3 4 5

T

0

1

2

3

1 2 1 3 1 12 1 12 0 0

0 1 2 1 3 1 12 1 12 0

0 0 1 2 1 3 1 12 1 12

0 0 0 1 2 1 3 1 12

   

EXAMPLE 4. Suppose that there are N  residents of a college dormitory, all

of whom start the week with the flu. Each day, a random positive number of

those who had the flu the day before will recover.  Let Xn  be the number of

sick individuals  remaining on day n.   Then X0 N ,  and  for  n 0,  the state

Xn 1 at day n 1  is the state Xn at day n minus a random variable Z  with the

discrete uniform distribution on 1, ... , Xn  which we suppose is independent

of  the  past  recovery  history,  in  order  that  the  Markov  property  is  satisfied.
Notice  that  under  our  conditions,  once  the  number  of  infected  individuals

reaches  either  1  or  0,  the  next  state  is  0  with  certainty.  This  means that  the

transition matrix of the chain Xn  is: 

T

0 1 2 N 1 N
0

1

2

3

N

1 0 0 0 0

1 0 0 0 0

1 2 1 2 0 0 0

1 3 1 3 1 3 0 0

1 N 1 N 1 N 1 N 0

Later  we  will  calculate  the  expected  value  of  the  number  of  steps  it  takes,

starting from the complete epidemic state N, to reach the healthy state 0.   

4.1 Definitions and Examples 267



Simulation

One way to obtain information about stochastic processes is to simulate them

over  many  time  periods  and  observe  the  facet  of  their  behavior  that  is  of

interest.  In the next two chapters we will be using some commands defined

in  the  KnoxOR`StochasticProcesses`  package  that  comes  with  this  book.

The command to load the package is in the closed cell just above Figure 4.1,

which  has  already  been  executed  if  you  initialized  the  electronic  notebook.

This  package  has  been  set  up  to  load  two  of  the  Mathematica  standard

packages  called  Statistics`ContinuousDistributions`  and  Statistics`Discrete-

Distributions`,  which  contain  useful  commands  for  simulating  observations

from  given  probability  distributions.  The  following  Mathematica  functions

are in both of these standard packages:

Random dist RandomArray dist,n

The argument called dist can be set to one of the predefined distributions in

Mathematica, such as 

UniformDistribution[a,b]

which is the continuous uniform distribution on the interval a, b .  Then the

Random  command  returns  a  randomly  sampled  observation  from the  given

distribution,  and  the  next  time that  it  is  called,  it  samples another,  typically

different  from  the  previous  observation.  For  RandomArray,  the  second

argument  n  can  be  set  so  that  the  command returns  a  list  of  such  observa-

tions of length n.  To repeat previously simulated random numbers, you can

reinitialize the seed value from which the stream of random numbers comes

using the following command:

SeedRandom seedvalue

The seedvalue argument can be any integer; and if the argument is left blank,

then the seed is reinitialized randomly.  

Observe  how  Mathematica's  random  number  generation  works  in  the

sequence of commands below.  
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SeedRandom 4563 ;

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

1.91038

0.591598

0.983016

SeedRandom 4563 ;

Random UniformDistribution 0, 2

Random UniformDistribution 0, 2

SeedRandom ;

Random UniformDistribution 0, 2

1.91038

0.591598

0.176409

When the seed is initialized to 4563,  the sequence of numbers generated by

the  Random  command  begins  with  1.91038,  0.591598,...,   regardless  of

when  you execute  the  commands.   Unless  the  seed  is  reinitialized,  the  next

random number  in  the sequence  will  be  0.983016.   But  in  the second input

cell  above,  we  reinitialized  the  seed  randomly,  thus  obtaining  a  different

random  number  from  the  uniform  (0,2)  distribution.   Like  many  random

number generators,  what Mathematica  actually does is to create a stream of

pseudo-random  numbers  deterministically  as  a  function  of  the  seed  that

nevertheless appear to have all the properties of truly random numbers.  For

more information,  and  for  a  concise review of  the probability theory  that  is

necessary for operations research, see Appendix A.

Let us try to write a Markov chain simulator that will take the transition

matrix of the chain, a starting state, and a desired number of time steps, and

that  will  output  a  simulated  sequence  of  states  that  behaves  as  the  Markov

chain  would.   The  heart  of  the  algorithm  will  be  the  generation  of  a  next

state  given  the  current  state  and  the  row  of  the  transition  matrix  that  forms

the  discrete  probability  distribution  for  the  next  state.   There  is  a  utility

4.1 Definitions and Examples 269



function  in  the  KnoxOR`StochasticProcesses`  package  that  has  been  set  up

to do this for you.  Exercise 7 will ask you to program this.

SimDiscreteDist problist

SimDiscreteDist  takes  a  list  of  numbers  that  forms  a  valid  probability

distribution  on  the  integers  1, 2, …, n ,  and  simulates  a  value  taken  from

that  distribution.   It  works  by forming a list of  cumulative probabilities and

then  searching  for  the  first  element  of  that  list  that  exceeds  a  uniform(0,1)

random number. 

To  simulate  the  Markov  chain,  we  initialize  a  list  of  states  of  the  chain

with the given start state.  Then for the desired number of steps, we append

to  the  state  list  a  newly  simulated  observation  from  the  distribution  deter-

mined  by  the  row  of  the  most  recently  added  state  in  the  transition  matrix.

Read  the  code  below  carefully.   This  command  is  also  contained  in  the

KnoxOR`StochasticProcesses` package. 

SimMarkovChain

transmatrix_, start_, numsteps_ :

Module statelist ,

statelist start ;

Do AppendTo statelist,

SimDiscreteDist transmatrix

Last statelist , numsteps ;

statelist ;

Here is a sample run of the simulator for the chain of Figure 4.3.  Notice

that,  as  the  transition  probabilities  determine,  the  chain  cannot  make transi-

tions from state 3 to state 1, nor from state 2 to state 3.  Also, starting from

state 3, the chain frequently stays at state 3.  

graph43

.5, .25, .25 , .5, .5, 0 , 0, .25, .75 ;

SeedRandom 91687 ;

states SimMarkovChain graph43, 3, 40

ListPlot states, PlotStyle PointSize .02 ,

DefaultFont "TimesNewRoman", 8 ;
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3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2,

2, 1, 2, 2, 2, 1, 2, 1, 3, 3, 3, 3, 3, 3,
2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 3, 3, 2

10 20 30 40

1.5

2

2.5

3

Later  we  will  be  able  to  analytically  solve  the  problem  of  finding  the

long-run proportion of  time that a Markov chain occupies each of its states.

Simulation is  able  to  give  approximate answers  to  this  problem too.   Using

Mathematica's Frequencies  command, we can simulate the chain over many

time periods  and  tabulate  the  number  of  visits  to  each  state  as  below.   The

output shows that among 10,000 time steps, each state seems to appear about

equally  often.   You  should  reinitialize  the  seed  randomly  in  the  electronic

text  and  execute  the  cell  a  few more times to see  if  this  behavior  is  consis-

tent. 

SeedRandom 85091 ;

Frequencies SimMarkovChain graph43, 3, 10000

3312, 1 , 3435, 2 , 3254, 3

Exercises 4.1

1.   A  sales  representative  for  a  cosmetics  firm  makes  calls  in  an  area  with

four regions.  If she is in region 1 this week, then she will be in region 2 with

probability  60%,  or  region  4  with  probability  40%,  next  week.   If  she  is  in

region  2,  then  she  goes  to  one  of  the  other  three  regions  next  week  with

equal probability.  The same property holds if she is in region 3 this week.  If

she  is  in  region  4  this  week,  then  next  week  she  will  be  in  region  2  with

certainty.   Define  a  Markov  chain  that  models  her  travels,  and  find  the

transition matrix and transition diagram for this chain.

2.  Compute, and interpret the meaning of, the row 1, column 4, entry of T2

for the transition matrix of the chain of Exercise 1.  
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3.   An n n  matrix is  called a Markov matrix  if  its entries are non-negative

and  the  sum  of  the  entries  in  every  single  row  is  1.   Thus,  the  transition

matrix of a Markov chain is a Markov matrix.  Show that the product of two

Markov matrices is a Markov matrix.

4.   A  television  manufacturer  inspects  the  TV  sets  that  it  makes  before

releasing them for  sale.  The inspection of a set results in classification into

one  of  four  categories:  poor  condition  (P),  fair  (F),  good  (G),  or  excellent

condition (E).  Sets in excellent condition are sent off for sale, while those in

poor condition are disposed of.   Televisions classified as either fair or good

are taken to the shop for adjustment, then reinspected.  A set that had been in

fair  condition  prior  to  the  adjustment  changes  to  poor  condition  afterward

with  probability  1/10,  remains  fair  with  probability  3/10,  and  changes  to

either  good  or  excellent  with  equal  probability.   A  set  that  was  in  good

condition  before  the  adjustment  becomes  good  or  excellent  afterward  with

equal probability.  The adjustments and reinspections continue until the set is

either ready for sale or disposed of.  

Define  a  Markov chain Xn  that  models the progression  of  a  randomly

selected set.   Find the transition matrix and diagram of the chain.  Compute

P X1 F, X2 F, X3 E X0 F .

5.   Make  up  your  own  example  of  a  Markov  chain,  and  provide  intuitive
justification for the Markov property in Definition 1.  

6.   A model that is studied in theoretical computer science is the finite state
automaton.  This is a machine that reads input from a tape, one character at a

time, and based on what it reads it moves from where it currently is to one of

several  other  internal  states.   For  instance,  a  machine that  is  built  to  recog-

nize  the  pattern  000  in  an  input  string  of  0's  and  1's  can  be  designed  as

follows.  State A is a start state, where we go if we have not seen a 0 yet, or

have just seen a 1 so that the machine must try to look anew for the pattern.

State B is a state we go to if we have seen a single 0, state C is a state we go

to if we have seen two 0's in a row, and similarly state D is for three 0's in a

row.  The machine stops and returns a success message if it reaches state D;
otherwise,  if  it  does  not  before  the  input  string  runs  out,  then  it  returns  an

unsuccessful message.  

(a)  If  the  automaton  described  above  is  given  the  input  string

1, 0, 0, 1, 0, 1, 0, 0, 0, what sequence of states does it occupy?  

(b) Assuming that input strings are fed in such that characters are equally

likely  to  be  0  or  1,  independently  of  previous  characters,  argue  that  the

sequence  of  automaton  states  forms  a  Markov  chain,  and  find  its  transition

matrix. 

7.   (Mathematica)  Write  your  own  version  of  the  SimDiscreteDist  function

described in the section.
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8. (Mathematica) Another problem that we will solve analytically later is the

problem of finding the expected time that it takes a Markov chain to reach a

state starting from another state.  Consider the Markov chain with transition

matrix and diagram below.

matrix8 .375, .625, 0, 0, 0, 0, 0, 0, 0 ,

.375, 0, .625, 0, 0, 0, 0, 0, 0 ,

0, .375, 0, .625, 0, 0, 0, 0, 0 ,

0, 0, .375, 0, .625, 0, 0, 0, 0 ,

0, 0, 0, .375, 0, .625, 0, 0, 0 ,

0, 0, 0, 0, .375, 0, .625, 0, 0 ,

0, 0, 0, 0, 0, .375, 0, .625, 0 ,

0, 0, 0, 0, 0, 0, .375, 0, .625 ,

0, 0, 0, 0, 0, 0, 0, 0, 1 ;

1

2 3 4 5 6 7 8

9

3 8

5 83 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

1

Exercise 8

Build  a  command to  let  you approximate  the  average number  of  transitions

necessary to reach state 9, starting from a given one of the other states.  Run

your command for each of the initial states 6, 7, and 8.  
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4.2 Short-Run Distributions

As  the  examples  in  the  last  section  suggest,  the  following  quantities  are

important to know for a Markov chain Xn :

(1)P Xn j X0 i

(2)p n j P Xn j

The next theorem gives these, plus a little more.  Its proof is a simple matter

of manipulating conditional probabilities.  It turns out that the powers of the

transition  matrix can be used to find both  the conditional  distribution of  Xn
given X0 in (1), and the unconditional distribution of Xn in (2).  

THEOREM  1.   Let  Xn  be  a  time-homogeneous  Markov  chain  with

transition matrix T, and let p 0  be the probability distribution of  X0, i.e., the

row vector whose jth component is p 0 j P X0 j .  Then,

(a)    For all  n 0, P Xn j X0 i Tn i, j  (  i.e.,  the i j  compo-

nent of the nth power of T);

(b)   For all  n 0, P Xn j p 0 T j  (i.e., the jth  component of the

product p 0 T);

(c)  The conditional joint distribution of  Xn 1, ... , Xn m given Xn  is:

P Xn 1 j1, Xn 2 j2 , ... , Xn m jm Xn i
T i, j1 T j1, j2 T jm 1, jm

Proof.   It is convenient to prove part (c) first.  By the multiplication rule for

conditional probabilities and the Markov property:

P Xn 1 j1, Xn 2 j2, ..., Xn m jm Xn i
P Xn 1 j1 Xn i P Xn 2 j2 Xn i, Xn 1 j1

P Xn m jm Xn i, Xn 1 j1, , Xn m 1 jm 1

P Xn 1 j1 Xn i P Xn 2 j2 Xn 1 j1
P Xn m jm Xn m 1 jm 1

T i, j1 T j1, j2 T jm 1, jm

The last step follows from the time-homogeneity of the chain.

To prove (a), we condition and uncondition on all states from times 1 to

n 1:
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P Xn j X0 i

j1 E j2 E jm 1 E
P X1 j1, , Xn 1 jn 1, Xn j X0 i

j1 E j2 E jm 1 E
T i, j1 T j1, j2 T jn 1, j

Tn i, j

The second line follows by part (c), and the third line is by the definition of

matrix multiplication.

Part (b) now follows easily, since

P Xn j
i E

P X0 i P Xn j X0 i

i E
p 0 i Tn i, j

p 0 Tn j

Activity  1  –  Considering  the vectors  p n  as  a  sequence  of  row vectors,

show that they can be built up recursively by  p n p n 1 T

EXAMPLE 1.Let us return to Example 2 of Section 4.1 on the frozen food

companies  to  illustrate the application of  Theorem 1.   The transition matrix

in that example was

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
 

First,  by  Theorem 1(c),  the  conditional  probability  that  a  consumer  will

use  company  1  at  times  1  and  2  given  that  he  was  initially  a  company  2

customer is

(3)P X1 1, X2 1 X0 2 T 2, 1 T 1, 1 1
2

1
2

1
4

By time-homogeneity and the Markov property,  the above probability is the

same as, for instance,

(4)P Xn 1 1, Xn 2 1 Xn 2, Xn 1 3, Xn 2 3

for any n 2.

  Next, suppose that initially company 1 has 1/8 of the market, company 2

has 3/8, and company 3  has 1/2.  What share does each  company have after

one, two, three, and four days of ads?  So, given p 0 1 8, 3 8, 1 2 , we

would  like  to  compute each  of  p 1 , p 2 , p 3 , and p 4 .  By  Theorem 1(b),  or
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alternatively  by  the  observation  in  Activity  1,  we  can  enter  the  transition

matrix and the vector of initial probabilities into Mathematica and compute:

T 1 2, 1 4, 1 4 ,

1 2, 1 2, 0 , 0, 1 4, 3 4 ;

p0 1 8, 3 8, 1 2 ;

p1 N p0.T

0.25, 0.34375, 0.40625

p2 N p1.T

0.296875, 0.335938, 0.367188

p3 N p2.T

0.316406, 0.333984, 0.349609

p4 N p3.T

0.325195, 0.333496, 0.341309

So we see that company 1 grows quickly from its initial share of the market

of  1 8 0.125 to 0.25 after 1  day,  then to over  0.29 after  2 days,  and then

more  modest  growth  occurs  over  the  next  two  days  to  about  32.5%  of  the

market.  Meanwhile, companies 2 and 3 are losing their shares, from starting

values of 37.5% and 50%, respectively, to ending values of about 33.3% and

34.1%.  

Activity  2  –  As  you  read  down  the  columns  of  the  output  matrix  in

Example 1, the market shares of the three companies seem to be stabiliz-

ing.  Compute a few more of the vectors p n  for n 5 to verify that this

is happening. 

EXAMPLE  2.   Consider  the  Markov  chain  whose  transition  diagram is  in

Figure  4.4.   In  the  closed cell  above  the graphics,  the transition matrix was

named T .
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Figure 4.4 – Transition diagram of a cyclic Markov chain

The transition matrix, and its second and third powers are as follows:

MatrixForm T ,

MatrixForm T.T , MatrixForm T.T.T

0 1 0
0 0 1
1 0 0

,

0 0 1
1 0 0
0 1 0

,

1 0 0
0 1 0
0 0 1

Then,  for  example,  using  the  second  matrix  we  see  that

P X2 2 X0 1 0 and P X2 3 X0 1 1, hence the chain must be at

state  3  at  time 2,  given  that  it  starts  at  state 1.   The third  power  of  T  is  the

identity  matrix.   This  tells  us  that  with  certainty  the  chain  will  return  to  its

initial  state  at  time  3.   Moreover,  T4  will  equal  T,  since  T4 T3 T ,   and

similarly T5 T2,  T6 T3,  etc.   All  of  these  observations  make sense  with

the dynamics of the chain shown by the transition diagram.  

Computation  of  the  short-run  distributions  is  reduced  by  Theorem  1  to

computation of powers of the transition matrix T .   In theory, this solves the

problem,  but  in  practice  the  state  space  may  be  large  (or  infinite)  and  the

desired time n  may also be so large as to make it very costly to compute Tn.

But  perhaps  more  importantly  still,  it  may  be  possible  to  find  analytical

expressions for the entries of Tn that would allow us to answer questions like

the one in Activity 2,  which was essentially asking for the limiting value of

these  matrix  powers.  The  following  ideas  and  results  from  linear  algebra

involving eigenvalues and diagonalization of a matrix can help.  

Recall that a number  is called an eigenvalue of an m m matrix A, and

a column vector x is an eigenvector for  if

(5)A x x
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Suppose  that  A  has  m  distinct  eigenvalues  1, 2, ... , m.    Let

x1, x2, ... , xm  be  eigenvectors  for  these  eigenvalues,  in  the  corresponding

order.  Define the diagonal matrix and corresponding eigenvector matrix by

(6)D
1 0 0 0

0 2 0 0

0 0 0 m

,      N x1, x2, …, xm

so that  the columns of   N  are  the eigenvectors,  in the corresponding  order.

Then it can be proved that N 1 exists, and

(7)A N D N 1

The  hypothesis  of  distinct  eigenvalues  can  be  weakened.   All  that  is  really

needed is that there exist m linearly independent eigenvectors.

This  can  be  used  to  express  the  transition  matrix  in  the  form

T N D N 1, in which case

(8)

Tn N D N 1 N D N 1 N D N 1

N D N 1 N D N 1 N N 1 N D N 1

N Dn N 1

The  matrix  N Dn N 1  is  simple  to  calculate,  since  the  diagonal  matrix  D
raised to the nth  power  is  the diagonal  matrix whose  ith  diagonal  element is

i
n.  Thus, the main work in calculating the probability distribution of Xn is

in the computation of the eigenvalues and eigenvectors of T.  The following

facts can be helpful.

(9)
For a transition matrix T , 1 is always an eigenvalue with 

eigenvector 1, by which we mean a column of 1's  (see Exercise 5).

(10)
The trace of T, that is, the sum of the diagonal entries of T, equals 

the sum of all eigenvalues of T.

(11)
The trace of Tk is the sum of the kth powers of the eigenvalues of 

T.

EXAMPLE 3.  In Example 1, we computed some short-run probabilities for

the  Markov  chain  related  to  the  frozen  food  market.   Now  we  will  use  the

diagonalization  procedure  to  obtain  a  formula  for  Tn  for  arbitrary  n.   We

need the eigenvalues 1, 2, and 3, and an eigenvector for each.  By observa-

tion  (9),  we  can  put  1 1  and  x1 1.   As  for  the  other  eigenvalues,
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(10)–(11)  give  us  a  system of  equations  for  these  two unknowns.   First  we

compute T2.

T 1 2, 1 4, 1 4 ,

1 2, 1 2, 0 , 0, 1 4, 3 4 ;

MatrixForm T , MatrixForm T.T

1
2

1
4

1
4

1
2

1
2 0

0 1
4

3
4

,

3
8

5
16

5
16

1
2

3
8

1
8

1
8

5
16

9
16

Then,

trace T 1 2 1 2 3 4 7 4 1 2 3

trace T2 3 8 3 8 9 16 21 16 1 2
2

3
2

Solve 1 2 3 7 4,

1 2
2

3
2 21 16 , 2, 3

2
1
4
, 3

1
2

, 2
1
2
, 3

1
4

Alternatively, we could have asked Mathematica directly for the eigenvalues.

Eigenvalues T

1,
1
2
,

1
4

Written in decreasing order,  our three eigenvalues are 1 1, 2 1 2, and

3 1 4.   To  find  the  eigenvector  xi x, y, z  for  eigenvalue  i,  the  form

of T  implies that we must solve

x 2 y 4 z 4 i x
x 2 y 2 i y

y 4 3 z 4 i z

You can either do this longhand,  or  with the Mathematica  Solve command,

or  use  the  following  Eigenvectors  command.   Note  that  the  eigenvectors

correspond  to  eigenvalues  written  in  the  same order  as  in  the  output  of  the

Eigenvalues command.
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Eigenvectors T

1, 1, 1 , 0, 1, 1 , 1, 2, 1

Then we can set 

D
1 0 0
0 1 2 0
0 0 1 4

,     N
1 0 1
1 1 2
1 1 1

and N 1 turns out to be:

D0 1, 0, 0 , 0, 1 2, 0 , 0, 0, 1 4 ;

N0 1, 0, 1 , 1, 1, 2 , 1, 1, 1 ;

NInv Inverse N0 ;

MatrixForm NInv

1
3

1
3

1
3

1 0 1
2
3

1
3

1
3

From these matrices and formula (8) we find that Tn is

TPower n_ : N0.MatrixPower D0, n .NInv;

MatrixForm TPower n

1
3

1
3 21 2 n 1

3
4 n

3
1
3

4 n

3
1
3

1
3 22 2 n 2 n 1

3
1
3 21 2 n 1

3
1
3 21 2 n 2 n

1
3

1
3 21 2 n 2 n 1

3
4 n

3
1
3 2 n 4 n

3

Our labor has returned a very powerful  result.  For any time n  we wish,

we  may  calculate  the  probability  that  an  individual  favors  each  company,

given  that  at  the  start  he  favored  some  other  company.   For  instance,  the

probability  that  a  customer  who  began  with  company  2   favors  company 1

on the sixth day is the (2, 1) entry of the preceding matrix evaluated at n 6,

which is 0.348633 as shown below.

N MatrixForm TPower 6
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0.333496 0.333252 0.333252
0.348633 0.333496 0.317871
0.317871 0.333252 0.348877

When  Tn  is  pre-multiplied  by  p 0 1 8 3 8 1 2 ,  one  gets  the  uncondi-

tional  distribution  of  Xn,  which  is  the  vector  p n  representing  the  shares  of

the market possessed by each company at time n.  For example, p 6 1  is the

share of the market that company 1 has at time 6, which is 0.33136, the first

component of the vector below:

N 1 8, 3 8, 1 2 .TPower 6

0.33136, 0.333344, 0.335297

One  last  important  observation  is  that  as  n ,  the  matrix  Tn

approaches  a  matrix  all  of  whose  rows  are   1 3 1 3 1 3 ,  because  the

exponent  n  appears  with  a  negative  coefficient  in  all  of  the  exponential

expressions  in  the  matrix  Tn.   In  terms  of  the  applied  problem,  no  matter

what the initial state, the shares of the market possessed by the three compa-

nies are (rapidly) approaching equal shares of 1/3 apiece as time progresses.

It  is  common that  such  limits  exist  and  are  independent  of  the  initial  state,

though  it  should  be  pointed  out  that  the  equality  of  the  three  numbers  is

coincidental  to  this  problem.   We  will  have  a  more  convenient  way  of

finding limiting probabilities in Section 5.   

Activity  3  –  Find  the  number  of  days  it  takes  for  the  first  company  to

achieve a share of 0.333 of the market, using the same initial distribution

p 0  as in the example.
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Exercises 4.2

1.   (Mathematica)  Consider  the  Markov  chain  whose  transition  diagram  is

below.  Assume that it is certain that the chain begins in state 3.  

   (a)  Find the probability distribution of X2.

   (b)  For arbitrary n, find the distribution of Xn.

1

2
3

1

2 3

1 3

1 4

3 4

Exercise 1

2.   (Mathematica)  Consider  the Markov chain with transition matrix below.

Suppose  the  initial  distribution  is  p 0 1 4, 1 4, 1 4, 1 4 .   Find  and

interpret: (a) T3 3, 4 ;  (b) p 0 T5 3 ;  (c) Tn 1, 1 .

.27 .15 .30 .28

.06 .54 .22 .18

.90 .02 .06 .02
1 0 0 0

3.   (Mathematica)  A  random  walk  with  reflecting  barriers  0  and  N  is  a

Markov  chain  whose  state  space  is  E 0, 1, 2, ... , N ,  which,  at  any  state

strictly  between  0  and  N,  moves  next  to  either  the  state  immediately to  the

left or immediately to the right with equal probability.  If the chain is at state

0, then it is certain to be at state 1 at the next time; and if it is at state N, then

it is certain to be at state N 1 at the next time.  For the random walk with

reflecting barriers at 0 and 4, find the conditional distribution of the state at

time 6, given that the initial state is each of: 0, 1, 2, 3, and 4.  

4.  Let Xn  be an arbitrary two-state Markov chain with a transition matrix T
whose every entry is non-zero.  Find an expression for Tn, and find the limit

as n   of Tn.

5.  Verify condition (9).
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6.  (Mathematica) For Example 4 of Section 4.1, the flu recovery model with

N 5, compute  P X3 0 X0 5  and P X2 1, X3 0 X0 5 .

7.   A Markov chain of three states has the transition matrix below.  Draw a

tree  diagram  representing  the  first  three  transitions  of  the  chain,  in  which

each state has  a  directed edge pointing to the possible next  states, weighted

by  the  probabilities  of  visiting  those  states.   Use  this  tree  to  find

P X3 1 X0 1 .

0 1 2 1 2
1 3 1 3 1 3
1 4 0 3 4

8.   (Mathematica)  A machine can either  be in excellent,  good,  fair,  or  poor

working condition at each time. Given that its current condition is any of the

first  three,  it  can  be  in  either  the  same condition  next  time with  probability

.95, or in a condition that is one level worse with the remaining probability.

When  the  machine  reaches  the  poor  condition,  it  stays  there.   At  least  how

much  time must  elapse  before  a  machine  that  begins  in  excellent  condition

reaches poor condition with probability at least 1/2? 

9.   A program vehicle  is  used  by a car  dealer  until  it  reaches the end of  its

useful  lifetime, and  then is  immediately replaced by  a similar vehicle.   It  is

reasonable  to  suppose  that  the  successive  lifetimes  Z1, Z2, Z3, ...  of  these

vehicles  are  i.i.d.  with  some  discrete  distribution:

p j P Z j , j 1, 2, 3, ... .  Assume also that  if  the old vehicle breaks

during  time  period  n, n 1 ,  then  the  new  one  is  put  into  service  at  time

n 1.   Let  Yn  be  the age of  the vehicle  in  use at  the start  of  time n.   (Then

Yn 1 is  0  if the vehicle in use at time n was replaced.) 

   (a)  Compute qi P Yn 1 i 1 Yn i .

   (b) Find the transition matrix T of Yn .

   (c)  Show that row i of  T2  has non-zero entries only in columns  0, 1, and

i 2, and find those entries in terms of the qi's.

10.   (Mathematica)  Consider  the  Markov  chain  with  the  transition  matrix

below.  Investigate the behavior of Tn  for large n, and interpret it in terms of

the geometry of the transition diagram. 

T

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4
0 0 0 0 0 1
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4.3 First Passage Times

The  first  time  that  a  Markov  chain  hits  a  given  state  j E  is  a  random

variable called a first passage time.  Let T j be that time.  We are interested in

the  conditional  probability  distribution  of  T j  given  the  initial  state  i,  which

we denote by

(1)Fk i, j P T j k X0 i

We will not be able to compute a closed form for Fk  directly in most cases,

but we will show how to calculate it recursively in k.

The computation is not difficult.  For k 1 we have

F1 i, j P T j 1 X0 i
P X1 j X0 i
T i, j

where,  as  usual,  T  is  the  transition  matrix of  the  Markov  chain.   For  k 2,

the idea is that in order to hit state j for the first time at time k, the chain first

visits some state x j, then it stays away from  j for exactly k 1 more time

units.  By the law of total probability,

Fk i, j
P X1 j, ... , Xk 1 j, Xk j X0 i

x E j P X2 j, ... , Xk 1 j, Xk j X1 x
P X1 x X0 i

x E j Fk 1 x, j T i, x

We therefore have the following theorem.

THEOREM  1.   Let  T  be  the  transition  matrix  of  a  Markov  chain,  and  let

Fk i, j  be the first passage time probability defined by (1). Then,

(2)Fk i, j
T i, j if k 1

x E j T i, x Fk 1 x, j if k 2
    

EXAMPLE 1. A student attending a certain college must satisfy a mathemat-

ics requirement.  An entrance test, if  passed,  is enough.   If  the student does

not pass on the first  try,  he must take a certain course.   Let us suppose that

the probability of passing the exam is 1/4, and that the probability of passing

the  course  is  2/3,  no  matter  how many times the  course  is  taken.   We  may

model  the  situation  as  a  Markov  chain  with  three  states,  as  in  Figure  4.5.
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State  3  is  the  entrance  state;  state  2  is  the  state  of  being  enrolled  in  the

course,  and  state  1  represents  passing  the  math  requirement.   The  random

variable  Xn  is  the  state  at  semester  n,  and  the  transition  probabilities  are

easily deduced  from the given information.   We shall  compute the distribu-

tion of the amount of time taken by a student entering in state 3 to reach state

1. This particular chain is simple enough that we can obtain closed formulas.

1

2

3

1

2 3

1 3

1 4

3 4

Figure 4.5 – Markov chain model for satisfaction of math requirement

In the notation of (1), this distribution is

 Fk 3, 1 P T1 k X0 3 , k 1, 2, 3, ...

First,  F1 3, 1 T 3, 1 1 4,  by  Theorem  1  and  the  given  transition

probabilities.  Again by the theorem,

F2 3, 1 x 1 T 3, x F1 x, 1

T 3, 2 F1 2, 1 T 3, 3 F1 3, 1

T 3, 2 T 2, 1 0 3 4 2 3

since T 3, 3 0.  To find F3 3, 1 , we will need F2 2, 1  as well, which is

F2 2, 1 x 1 T 2, x F1 x, 1

T 2, 2 F1 2, 1 T 2, 3 F1 3, 1

1 3 2 3 0

The computation of F3 3, 1  is similar:

F3 3, 1 x 1 T 3, x F2 x, 1

T 3, 2 F2 2, 1 T 3, 3 F2 3, 1

3 4 1 3 2 3 0

A pattern has emerged.  Since T 3, 3 0 and T 2, 3 0,  we can write

for general k 2,
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(3)Fk 3, 1 T 3, 2 Fk 1 2, 1    and    Fk 2, 1 T 2, 2 Fk 1 2, 1

The second equation in (3) says that Fk 2, 1  forms a geometric progression

in  k  with  common  ratio  T 2, 2 1 3  and  initial  term

F1 2, 1 T 2, 1 2 3.  Hence,

(4)Fk 2, 1 1 3 k 1 2 3 ,    k 1, 2, 3, ... 

Substitution into the left-hand equation in (3) yields

(5)Fk 3, 1
1 3 k 2 2 3 3 4 if k 2, 3, ...

1 4 if k 1

Recall  that  (5)  gives  the  probability  that  the  math requirement  is  passed  by

the kth semester.  

The  answer  is  very  intuitive,  given  the  structure  of  the  transition  dia-

gram.  Starting in state 3, a student requires only one time unit to reach state

1  if  the  exam is  passed,  and  this  occurs  with  probability  1/4.   In  what  way

can  exactly  k  semesters  (k 2)  be  required  to  reach  state  1  from  state  3?

First,  the  exam  must  be  failed,  which  happens  with  probability  3/4.   Then

k 2  semesters  must  be  spent  in  the  course.   Recall  that  one  retakes  the

course  with  probability  1/3.  Finally,  after  these  k 2  unsuccessful  efforts,

one  successful  effort  occurs  with  probability  2/3.   The  meaning  of  the

product in the first line of (5) should now be clear.   

Activity  1  –  Check  that  the  functions  of  k  in  (4)  and  (5)  are  proper

probability mass functions.

The  form  of  equation  (2)  suggests  an  efficient  recursive  algorithm  for

computing  first  passage  time  probabilities.   Consider  the  target  state  j  as

fixed.   For  each k 1,  view Fk i, j  as  a  column vector  formed  as  i  ranges

through the state space E.  Then the sum in the second part of the formula is

almost the product of row i of the transition matrix T with the column vector

Fk 1 x, j , except that the Fk 1 j, j T i, j  term is excluded.  If we introduce

a  new  matrix  T  into  the  problem,  which  agrees  with  T  except  that  its  jth
column is set to zero, then (2) becomes

(6)Fk , j T Fk 1 , j

The  first  such  vector  F1  should  be  defined  as  column  j  of  the  original

transition matrix T, by the first part of (2).  We show how to use this observa-

tion in the next example. 
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EXAMPLE  2.   A  small  three-space  parking  lot  behaves  such  that  the

sequence  of  values  X1, X2, X3, ...  defined  as  the  number  of  parked  cars  at

the time instants 1, 2, 3, ... forms a Markov chain.  If no cars are present, it

is  twice  as  likely  for  there to  be  no  cars  at  the  next  time instant  as  it  is  for

there to be one car.  If either one or two cars are present, at the next instant

there will either be one fewer car, the same number of cars, or one more car,

with equal probability.  And if three cars are present, it is twice as likely for

there to still be three cars at the next time instant as it is for there to be two

cars.  We look at the probability distribution of the time it takes for the lot to

become full for the first time, starting from each of states 0, 1, and 2.  

The state  space E 0, 1, 2, 3  gives  the  possible  number  of  cars  in  the

lot.  We are interested in finding Fk i, 3 , k 1, 2, 3, ... for each i 0, 1, 2.

The transition matrix of the chain is below, and to use (6) we must zero out

the last column corresponding to state j 3 to obtain T .  The starting vector

F1 is the last column of T.

T
2 3 1 3 0 0
1 3 1 3 1 3 0

0 1 3 1 3 1 3
0 0 1 3 2 3

,  T
2 3 1 3 0 0
1 3 1 3 1 3 0

0 1 3 1 3 0
0 0 1 3 0

,  

F1

0
0

1 3
2 3

We now set these definitions into Mathematica and compute the next several

vectors Fk .

F1 0, 0, 1 3, 2 3 ;

Ttilde 2 3, 1 3, 0, 0 , 1 3, 1 3, 1 3, 0 ,

0, 1 3, 1 3, 0 , 0, 0, 1 3, 0 ;

F2 Ttilde.F1

F3 Ttilde.F2

F4 Ttilde.F3

F5 Ttilde.F4

0,
1
9
,

1
9
,

1
9

1
27

,
2
27

,
2
27

,
1
27

4
81

,
5
81

,
4
81

,
2
81

13
243

,
13
243

,
1
27

,
4
243
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For instance, the first components of these vectors, 0, 1/27, 4/81, and 13/243,

respectively,  give  the  probabilities  that  it  takes  2  time units,  3  time units,  4

time units,  and 5 time units  for  an empty lot  to first  reach the state of  three

cars.  The fact  that  F4 2 4 81 (the  third  element of  the  F4 vector)  means

that the probability that 4 time units are required to reach state 3 from state 2

is  4/81.   Much  other  similar  information  can  be  gained  by  continuing  the

iterative process.   

Activity 2  –  Use the vector  approach  to verify the results  we found for

the Markov chain of Example 1.

EXAMPLE  3.  In  theory,  the  distribution  Fk  characterized  by  Theorem  1

could  be  used  to  calculate  expected  values  of  first  passage  times,  but  in

particular problems there are sometimes faster ways.  Recall the flu recovery

model  of  Example  4  of  Section  4.1.   Let  T T0  be  the  time  at  which  the

healthy state 0 is reached.  We would like a closed-form expression for

(7)f i E T X0 i  ,

which  is  the  expected  number  of  steps  required  to  reach  the  healthy  state,

beginning at state i, for  i 1, 2, ... , N .  If we begin at state 0, then no more

steps  are  required,  hence  f 0 0;  and  if  we  begin  at  state  1,  then  exactly

one more step is required, consequently f 1 1.  To find f i  for the other

states, we will write f i  in terms of  previous f j , j i,  by using a condi-

tioning argument similar to the one used to calculate the distribution of first

passage times.

Roughly,  the  reasoning  is  as  follows.   Begin  at  a  state  X0 i 2.   The

time needed to reach the optimal state is  one plus the time needed from the

next state X1.  Condition on X1, and uncondition, knowing that X1  is one of

the i equally likely states that are better than i.  By the law of total probabil-

ity, applied to the conditional probability measure P X0 i ,

(8)P T k X0 i j 0
i 1 P T k X1 j, X0 i P X1 j X0 i

Thus,  multiplying  both  sides  by  k,  summing,  and  interchanging  order  of

summation yields:

288 Chapter 4 Markov Chains



 

k 1
i k P T k X0 i

k 1
i k j 0

i 1 P T k X1 j, X0 i P X1 j X0 i

j 0
i 1 P X1 j X0 i k 1

i k P T k X1 j, X0 i

The last formula implies

(9)

E T X0 i

j 0
i 1 E T X1 j, X0 i P X1 j X0 i

j 0

i 1
1 E T X0 j 1

i

1
i j 0

i 1 1 1
i j 0

i 1 E T X0 j

The  second  line  results  from  the  time-homogeneous  Markov  property  and

the  known conditional  distribution  of  X1  given   X0 i.    We now have  the

recursive formula:

(10)f i
1 1

i j 1
i 1 f j if i 2, 3, ... , N

1 if i 1

Computation  of  f 2  gives  1,  and  computation  of  f 3  gives  1 1 2.   We

define  this  function  recursively  in  Mathematica,  and  check  a  few  more

values:

f 1 : 1;

f i_ : 1
1

i
Sum f j , j, 1, i 1 ;

f 2 , f 3 , f 4 , f 5

3
2
,

11
6

,
25
12

,
137
60

Noting  that  11 6 1 1 2 1 3  and  25 12 1 1 2 1 3 1 4,  a

reasonable guess at a closed-form expression for f i  is therefore

(11)f i j 1
i 1 j if i 1, 2, 3, ... , N

0 if i 0
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You  are  asked  to  show  (11)  by  induction  on  i  in  Exercise  10.   For

instance, in a problem with six states in which the starting point is 6 students

with the flu, the expected number of steps to the healthy state is

1 1 2 1 3 1 4 1 5 1 6 49 20

The  expected  number  of  steps  required  to  reach  the  optimum  point  in  this

simple  algorithm model  is  roughly  a  logarithmic  function  of  the  number  of

states.  

Exercises 4.3

 1.  Find  Fk 3, 1  for all k 1 for the frozen food companies of Example 2,

Section  4.1.   For  your  convenience,  the  transition  matrix  of  the  chain  is

reproduced below.

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
            T =   

1
2
3
4

0 1 2 1 2 0
1 3 2 3 0 0

0 0 3 4 1 4
0 0 1 0

1 2 3 4

     Exercise 1                                                Exercise 2                        

2.   (Mathematica)  For  the  Markov  chain  of  Figure  4.2,  whose  transition

matrix is above, compute Fk 1, 3  for k 1, 2, 3, 4, 5.  

3.   Let  Xn  be  the  chain  with  transition  matrix  below.   Find  Fk i, 2  for

i 1, 2, 3 and all k 1, 2, 3, ...  .

T
1 0 0

1 2 1 4 1 4
1 3 3 5 1 15

4.   (Mathematica)  Write  a  Mathematica  program  to  compute  the  vector

Fk i, j  (as i ranges through the state space) given j and the transition matrix

T.

5.   Compute  the  distribution  of  the  time of  first  passage  of  a  television  set

from the fair state to the excellent state for the chain of Exercise 4 of Section

4.1.  (Note that it is possible for this time to be + .)

6.   A  judicial  case  can  be  heard  at  three  levels:  lower  court  (1),  appellate

court  (2),  and high court (3).   State 4 in the transition diagram below repre-

sents final termination of the case.  The weights in the directed graph are the

probabilities  that  the  case  will  move  from  one  court  to  another,  e.g.,  an

appellate court  case will return there with probability 1/4,  or be appealed to
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high court  with probability 3/4.   Find the probability that a case that begins

in lower court is finally terminated after exactly k hearings.

1

2 3

4

1

1 4 3 4 1 3

2 3

1

Exercise 6

7.  (Mathematica) A game is played so that the wealth of the gambler at each

play either rises by 1 with probability .51 or  falls by 1 with probability .49,

until  the wealth either  hits 0 or  8,  at  which point  the game stops.   For  each

interior state 1, 2, ..., 7 in the transition diagram below, find the probability

that  it  takes  k  units  of  time  to  reach  state  8,  for  values  of

k 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.   Comment  on  whether,  if  the  computation

were continued indefinitely, these probabilities would sum to 1.  

0

1 2 3 4 5 6 7

8

1

0.49
0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51

0.49

0.51
1

Exercise 7

8.  In Exercise 6, the time of first visit from state 3 to state 4 has a geometric

distribution with success parameter 2/3,  so that E T4 X0 3 3 2.  Find

E T4 X0 2  without  finding  the  conditional  distribution  of  T4  given

X0 2.

9.   For  a  general  two-state  Markov  chain  with  all  transition  probabilities

non-zero, find expressions for Fk 1, 2   and  Fk 2, 1 .
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10.   Verify  formula  (11)  for  the  expected  time to  reach  the  healthy  state in

the flu model.

11.  For a general three-state Markov chain in which state 1 is an absorbing

state,  find  formulas  for  Fk i, j  for  all  pairs  of  states  i, j 2, 3.   What  is

Fk 1, j  for  j 2, 3?   Set  up,  but  do  not  attempt  to  solve,  equations  for

Fk 2, 1  and Fk 3, 1 .

12.  For a cyclic Markov chain with five states, that is, a chain in which state

1  must  go  to  state  2,  state 2  must go  to state 3,  etc.,  what  does  formula (2)

reduce to?  Find all first passage time probabilities Fk i, j .

4.4 Classification of States

We now begin an examination of the long-run behavior  of a Markov chain.

Recall that in Section 2 of Chapter 1 we discussed what it meant for a graph

to  be  closed.   In  the  language  of  Markov  chains,  a  set  S  of  states  is  called

closed  if there does not exist a path from a state in S to a state outside of S.

For  example,  in  Figure  4.6  below,  the  set  5, 6, 7  is  closed,  as  are  the  sets

2, 3, 4 , 8 , and 1, 2, 3, 4 .  The set 2, 3  is not closed, since state 4 can be

reached from it.

1

2

3

4

5

6

7

8

Figure 4.6 – Some closed sets of states in a Markov chain
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A  more  important  property  of  state  spaces  of  Markov  chains  is  the

following.

DEFINITION 1.   A  set  of  states  is  irreducible  if  it  is  closed  and  con-

tains no proper closed subsets.  The Markov chain itself is called irreduc-
ible if its state space is irreducible.

A look back at Figure 4.6 shows that the set 1, 2, 3, 4  is not irreducible,

since  2, 3, 4  is  a  proper  closed  subset.   But  the  sets  2, 3, 4  and  5, 6, 7

are both irreducible.  Single states, such as state 8 in Figure 4.6, from which

no  escape  is  possible,  form  their  own  irreducible  sets,  and  are  given  the

special  name  of  absorbing  states.   The  chain  whose  transition  diagram  is

shown in Figure 4.7 is irreducible.

1

2 3

4

Figure 4.7 – An irreducible Markov chain

Activity 1  – Look back at the frozen food company example of Section

4.1.   Is that Markov chain irreducible?   Does the Markov chain that we

used as a simple model for recovery from a flu epidemic (Example 4 of

Section 4.1) have any closed sets of states?

To motivate the ideas  that  we will  discuss  in  this  section,  refer  again to

the chain whose transition diagram is in Figure 4.6.  Beginning at state 8, the

probability of being again at state 8 at any later time n is 1.  Hence, trivially

P Xn 8 X0 8   approaches 1 as n .  Beginning at state 1, the chain

leaves state 1 immediately and permanently, so that the probability of being

at  state  1  at  any  time  n 0  is  0.    Again,  trivially  P Xn 1 X0 1

approaches  0  as  n .   We  call  such  a  state  transient.    It  is  only  the

irreducible sets 2, 3, 4  and 5, 6, 7  that have non-trivial long-run behavior.

Beginning  in  either  of  these  sets,  the  chain  visits  each  state  in  the  set  over
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and over again, and the state space is essentially limited to that set.  We refer

to such states as recurrent.  One might ask what fraction of its time the chain

spends in each recurrent state, in the long run.  This is the main question to

be  answered  in  Section  5  on  limiting  probabilities.   Here  we  will  be  con-

cerned only with classifying states as either transient or recurrent. 

We consider  a Markov chain Xn  with a finite state space E  and transi-

tion matrix  T.  Recall that 

Tn i, j P Xn j X0 i

The  finiteness  of  the  state  space  removes  certain  technical  obstacles  that

obscure the main issue upon first reading.  The main results do extend to the

countable case, however,  with small alterations.  The goal is to partition the

state  space  of  the  Markov  chain  into  several  sets  called  recurrence  classes,

and one other set of transient states .  

First  let  us  give  definitions  for  the  ideas  motivated  in  the  above

discussion.

DEFINITION 2.  A state j is called recurrent  if the probability that the

chain eventually returns to j, given that it started there, is one.  Denoting

by S (or  S j) the first time n 1 such that Xn j,  we say that j is recur-
rent if and only if

P S X0 j 1

A state j that is not recurrent is called transient.  If S is as above, then j is
transient if and only if either of

P S X0 j 1  or  P S X0 j 0

Note that we require a somewhat weaker condition for transience than state 1

in  Figure  4.6  actually  satisfies.   It  is  only  necessary  to  have  a  non-zero

probability  of  never  returning  in  order  for  a  state  to  be  transient,  whereas

state 1 was certain never to be visited again after the first time.

It  is  convenient  to  introduce another  piece of  notation.   We write i j
if there is a path from i to j in the transition diagram.  In this case we say that

" i  reaches  j" , or "j  is accessible from  i ".  It is easy to see that

(1)i j     n 0  such that Tn i, j 0

EXAMPLE 1.  In Figure 4.8, we see that for example 1 2, 2 3, 3 2,

1 5  (since 1 6 in one step and 6 5 in one step), etc.  

Several  things  can  be  seen  about  the  chain  in  Figure  4.8.   First,  state  1

must be transient, since the probability is 3/4 that the next step is into one of
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the  two  closed  sets  2, 3  or  4, 5, 6 ,  from  which  1  can  never  again  be

visited.  State 2  should be recurrent, because starting there, the chain either

returns  there  immediately  or  goes  to  state  3.   In  the  latter  situation  the

probability  of  staying  in  state  3  forever  is   1 4 1 4 1 4 0,  i.e.,  the

chain must eventually return to state 2.  State 6 is clearly recurrent,  because

from it the chain could either go to state 5 (after which it must go back to 6),

or to state 4.  From state 4 the chain could either return directly to 6 or pass

through 5 before returning to 6.  In any case, a return to state 6 is inevitable.

1

2

3

4

56

1 4

1 2

1 4

1 4

3 4

3 4

1 4

1 32 3

1

1 3

2 3

Figure 4.8 – Several recurrent states

Activity 2 – If the Markov chain of Figure 4.8 starts at state 5, is a return

to 5 inevitable? Why?

The  next  results  give  a  more  systematic  approach  to  the  problem  of

classifying states as transient or  recurrent.   They employ the following easy

lemma, whose proof we leave to the reader as Exercise 9.

LEMMA 1.   If  i j  and  j k , then  i k.  

A second lemma will also be necessary.  This lemma gives an interesting

characterization  of  recurrence  in  terms of  the  expected  number  of  visits   to

the alleged recurrent state.

LEMMA 2.    A state k is recurrent iff 

(2) n 1 Tn k, k

(This sum is the expected number of return visits to k.)

4.4 Classification of States 295



Proof.  Define random variables:

(3)In
1 if Xn k
0 otherwise

Then the expected number of visits to k starting from k is

E n 1 In X0 k n 1 E In X0 k

n 1 P Xn k X0 k

n 1 Tn k, k

If  state  k  is  recurrent,  then  with  certainty  it  will  be  visited  infinitely  often,

hence the number Nk  of  visits to k  has  infinite expectation.  This shows the

forward  part  of  the  double  implication.   For  the  converse,  assume  that  the

expected  number  of  visits  to  k  is  infinite.   An  open-ended  sequence  of

Bernoulli  trials  is  generated,  in  which  the  ith  trial  is  a  success  if,  after  the

i 1 st  visit to k, state k is eventually visited again.  The success probability

for  a  trial  is  fk k P Sk X0 k .   The  number  of  return  visits  to  j  is

therefore  the  number  of  successes  until  the  first  failure,  which  has  the

geometric distribution with success parameter fk k .   The expected number of

successes  is  1 1 fk k ,  which  has  been  assumed  to  be  infinite.   The  only

way for this to happen is for fk k  to be 1, i.e., k is recurrent.  This proves the

lemma.  

THEOREM 1.  If j is recurrent and j k, then k j  and k is recurrent. 

Proof.     Suppose  that  j  is  recurrent  and  that  j k.   We  show  first  that

k j.  Since there is a path from j to k, there is also a simple path from  j to
k  ,  in  particular,  one  that  does  not  pass  through  j  as  an  intermediate  state.

Figure 4.9 illustrates the simple path.

j

x1

x2 xn

k

p1 p2

pn

pn 1

Figure 4.9 – A simple path from state j to state k
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The event 

X1 x1, X2 x2 , ... , Xn xn, Xn 1 k, Xi j for all i n 1

is contained in the event Xi j for all i 1 .  Therefore,

(4)

P X1 x1, X2 x2 , ... , Xn xn,

Xn 1 k, Xi j for all i n 1 X0 j
P Xi j for all i 1 X0 j

The probability on the left side of (4) is

p1 p2 pn pn 1 1 P S j X0 k

The probability on the right side of (4) is 1 P S j X0 j .  But since j
is recurrent, the right side of (4) is zero.  Consequently the left side of (4) is

also zero, which yields

P S j X0 k 1

The latter can only be true if there is a path from k to j.
Now we show that k is recurrent.  There is a path, say of length n, from j

to k, hence Tn j, k 0.  Also, by the argument of the last paragraph there is

a path,  say of  length m,  from k  to j,  hence Tm k, j 0.  The event that  the

chain goes from state k  to itself in some number m n x  of steps contains

the event that the chain goes from k  to j  in m  steps, and from j to itself in x
steps, and from j to k in n steps.  Therefore,

Tm n x k, k Tm k, j Tx j, j Tn j, k

Because of this, we have

i 1 Ti k, k i 1
m n Ti k, k x 1 Tm n x k, k

i 1
m n Ti k, k x 1 Tm k, j Tx j, j Tn j, k

i 1
m n Ti k, k Tm k, j Tn j, k x 1 Tx j, j

The right side is infinite by Lemma 2, since j is recurrent.  Thus, the left side

is  infinite,  and  the  same lemma implies that  k  is  recurrent.   This  completes

the proof of Theorem 1.  

The last theorem helps to classify recurrent states, because if one state is

known to be recurrent, then all states that it can reach are also recurrent.  The

next  result  helps  to  classify  transient  states.   You  are  asked  for  a  proof  in

Exercise 7.
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THEOREM 2.   Let j  be a state.  If there is  a state k  such that j k  but k
does not reach j, then j is transient.  

Finally,  Theorem  3  uses  the  previous  results  to  generate  a  method  for

recognizing transient and recurrent states.

THEOREM 3.  Fix a state j.  Let C  be the set of all states in the finite state

space  E  that  are  reachable  from  j  (together  with  j  itself).   If  every

k C reaches j,  then all states in C are recurrent and C is an irreducible set.

If,  on  the  other  hand,  there  is  some  k C  that  cannot  reach  j,  then  j  is

transient.

Proof.    First, if there is k C  that cannot reach j, then j must be transient,

by Theorem 2.  This proves the second assertion of the theorem.  Henceforth

assume that every state k in C reaches j.  
It  is  easy  to  see  that  C  is  closed,  by  construction.   We  claim that  there

must be at least one recurrent state in C.  If not, then all states in C would be

transient,  and  by  Lemma  2,  the  expected  number  E Nk  of  return  visits  to

each  state  k  in  C  would  be  finite.   This  would  mean  that  for  almost  every

outcome, and every k C,  Nk  itself must be finite.  But this is a contradic-

tion,  since  C  is  closed  and  of  finite  size,  hence  the  total  of  the  number  of

visits to all states k C must be infinite.

The  argument  in  the  last  paragraph  allows  us  to  suppose  that  there  is  a

recurrent state, say i, in C.  Let k be any other state in C.  We have i j by

assumption,  and  j k  by  construction  of  C.   Thus,  the  recurrent  state  i
reaches k, and Theorem 1 implies that k is recurrent.  

We have already seen that C is closed.  It remains only to show that C is

irreducible.   Let  k1  and  k2  be  in  C;  we  will  show  that  both  k1 k2  and

k2 k1.   By  assumption,  k1 j ,  and  by  construction,  j k2.   Thus,

k1 k2.   The same argument  can be  used  to  show that  k2 k1.   Since all

states  commumicate with  each  other,  C  can  have  no  proper  closed  subsets.

The proof is complete.   

In the first case of Theorem 3, the irreducible set of recurrent states C is

called the recurrence class of  state j. 

Activity  3  –  Argue  that  a  finite,  irreducible  Markov  chain  such  as  the

one in Figure 4.7 must consist of a single recurrence class.

Given  a  state  j,  the  Connected  Components  Algorithm  of  Chapter  1

allows us  to  find  the  set  C  of  all  states  reachable  from j.   The last  theorem

gives a condition that allows us to tell if j is transient, namely if not all k C
can  reach  j.   If  j  is  not  transient,  then  j,  as  well  as  all  k C,  are  recurrent.

The  recurrence  class  C  is  also  irreducible,  so  that  there  are  no  cliques  of
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states  inside  C  that  can  capture  the  chain  forever.   Since C  is  closed,  if  the

chain starts in C, then C is essentially a state space of its own, for the chain

can never leave C.  By finding recurrence classes and transient states in this

way,  we  can  partition  the  state  space  into  fundamental  subspaces,  and  we

will see in the next two sections how to use this partition to fully character-

ize the limiting behavior of the chain. 

EXAMPLE  2.   We  now  classify  the  states  of  the  diagram  in  Figure  4.8.

State 1 can reach all of states 2, 3, 4, 5, 6, but none of these states can reach

1, hence 1 is transient.  State 2 is the next unclassified state; it reaches only

state 3.   Since 3 2 ,  the  set  2, 3  forms a  recurrence  class  C1.   The next

unclassified state is 4, which reaches 5 and 6.   Both 5 and 6 reach 4, hence

the set 4, 5, 6  forms a recurrence class C2.

Mathematica confirms our analysis, and can be used as below to assist in

finding  transient  states  and  recurrence  classes  for  larger,  more  complicated

chains.   A  version  of  the  Components  function  that  was  developed  in

Chapter  1  is  in  the  package  KnoxOR`StochasticProcesses`.   We  give  it  a

name that is more appropriate for this context.  

ReachableSet transmatrix,state

The ReachableSet command takes the transition matrix of the Markov chain,

and  the  number  of  a  state.   It  returns  a  list  of  all  states  reachable  from the

given  state.   In  the  closed  cell  that  produced  the  graph  in  Figure  4.8,  the

adjacency matrix of the graph was named graph8.  We call on ReachableSet

for all states in the chain, and find that state 1 reaches all states, but none of

them can  get  to  1.   States  2  and  3  reach  only  each  other,  and  states  4, 5, 6

only reach each other, as we noted above.  

Needs "KnoxOR`StochasticProcesses "̀ ;

ReachableSet graph8, 1 ,

ReachableSet graph8, 2 ,

ReachableSet graph8, 3 ,

ReachableSet graph8, 4 ,

ReachableSet graph8, 5 ,

ReachableSet graph8, 6

1, 2, 3, 4, 5, 6 , 2, 3 ,
2, 3 , 4, 5, 6 , 4, 5, 6 , 4, 5, 6
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EXAMPLE  3.   Consider  the  Markov  chain  whose  transition  diagram is  in

Figure  4.10.   Let  us  partition the  state  space  into  transient  states  and  recur-

rence  classes.   (We  suppress  the  transition  probabilities  as  being  irrelevant

for this purpose.)

1

2

3

4

5

6

7

8

9

10

Figure 4.10 – Classifying states of a Markov chain

 The reachable sets for the ten states are computed below.  

ReachableSet graph10, 1 ,

ReachableSet graph10, 2 ,

ReachableSet graph10, 3 ,

ReachableSet graph10, 4 ,

ReachableSet graph10, 5 ,

ReachableSet graph10, 6 ,

ReachableSet graph10, 7 ,

ReachableSet graph10, 8 ,

ReachableSet graph10, 9 ,

ReachableSet graph10, 10

1, 2, 3, 7 , 1, 2, 3, 7 ,

3, 7 , 1, 2, 3, 4, 5, 7, 8, 9, 10 ,
1, 2, 3, 5, 7, 8, 9, 10 , 1, 2, 3, 5, 6, 7, 8, 9, 10 ,

7 , 1, 2, 3, 5, 7, 8, 9, 10 ,
1, 2, 3, 5, 7, 8, 9, 10 , 1, 2, 3, 5, 7, 8, 9, 10

Note that state 7 only reaches itself, that is, state 7 is an absorbing state.  But

all of the other states can reach 7, which does not reach any of them.  So, we
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have  a  large  set  of  transient  states  1, 2, 3, 4, 5, 6, 8, 9, 10 ,  and  a  single

recurrence class C consisting of state 7 only.   

Exercises 4.4

1.  Find all closed sets for the court case chain of Exercise 6, Section 4.3.

2.   (Mathematica)  Find  all  irreducible  sets  of  states  for  the  chain  with  the

transition  diagram  below.  (The  arrows  represent  all  transitions  that  have

non-zero  probability.)   Find  the  recurrence  classes  and  the  set  of  transient

states.

1 2 3

4

5

6

7

8

9

Exercise 2

3.   (Mathematica)  Calculate  the  first  four  powers  of  the  transition  matrix T
for the chain whose transition diagram is below.  Is the graph a regular graph

in  the  sense  of  Chapter  1?   Is  the  chain  irreducible?  Can  anything  be  said

about the behavior of  Tn as  n ?

1

2 3

4

1 2 1 2

1 1

1

1

2

3

4

5

1 2

1 2

1 2

1 2

1

2 3

1 3
1 3

2 3

Exercise 3                                       Exercise 4

4.  Classify all states in the Markov chain with transition diagram above.
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5.   (Mathematica)  Find  the  recurrence  classes  and  transient  states  of  the

chain whose transition matrix is below.  

1 4 0 0 0 1 2 1 4 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 2 0 0 0 0 1 2 0

1 3 0 0 0 2 3 0 0 0
1 4 0 0 0 1 4 1 2 0 0

0 1 2 0 0 0 0 1 2 0
0 1 4 0 1 4 0 0 1 4 1 4

Exercise 5

0 1 0 0 0 0 0 0
3 4 0 1 4 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 2 3 1 3 0 0 0
0 0 1 2 1 2 0 0 0 0
0 0 0 1 3 0 0 1 3 1 3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

  Exercise 6

6.   (Mathematica)  Repeat  Exercise  5  for  the  Markov  chain  with  transition

matrix above.

7.  Prove Theorem 2.

8.   Show  that  if  Xn  is  a  Markov  chain  with  finite  state  space  E  such  that

i j  for  all  states  i  and   j,  and  such  that  there  exists  a  state  i0  with

T i0, i0 0, then the chain is regular (i.e., it has a regular transition diagram,

in the sense of Chapter 1).

9.  Prove Lemma 1.

10. Devise an example of a Markov chain with two absorbing states 1,2 and

three  transient  states  3,4,5  in  which  the transient  states have self-loops,  and

the probability that, starting from each transient state, the chain is eventually

absorbed in state 1 is 1/2 and the probability that it is eventually absorbed in

state 2 is also 1/2.  

11.   In  view  of  the  recursive  equation  p n p n 1 T  for  the  short-run

distributions  of  a  Markov  chain,  assuming  that  there  is  such  a  thing  as  a

long-run  or  limiting  distribution  represented  by  a  vector  p,  what  equation

should that vector satisfy?  Check your hypothesis against the computations

of Examples 1 and 3 in Section 4.2 on the frozen food companies. 
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4.5 Limiting Probabilities

Main Results

 In this section we will derive the limiting probabilities

limn P Xn j X0 i

for  a  Markov  chain.   The  notation  is  as  usual,  and  the  state  space  E  is

assumed  to  be  finite  in  this  section.   Recall  that  we  have  shown  that  the

conditional  probability  whose  limit  is  being  taken  is  the  same  as  Tn i, j .

The  following  is  a  preliminary result  that  clarifies  the  limiting behavior  for

transient  states,  shows  that  the  limiting  probabilities  for  recurrent  states  do

exist,  and  gives  an  intuitive  interpretation  of  the  limiting probabilities  for  a

recurrent  state  in  terms of  the  time between  visits  and  the  long-run  propor-

tion of time spent in the state.  One extra term must be introduced in order to

state  part  (c)  of  the  theorem.   We  say  that  a  Markov  chain  is  regular  if  its

transition diagram represents a regular graph, i.e., there is some power Tn  of

the transition matrix which is non-zero in every component.

THEOREM 1. (a)  If a state j is transient, then

lim n Tn i, j lim P Xn j X0 i 0 , i E

(b)  If i cannot reach j, then lim Tn i, j 0.  This occurs in particular if

i  is  recurrent  and  j  is  transient,  or  if  i  and  j  belong  to  different  recurrence

classes.

(c)  If  i  and  j  belong  to  the  same  recurrence  class,  and  the  transition

matrix  restricted to that class is regular, then the quantity

j limn Tn i, j

exists and does not depend on i.
(d)    Under  the hypothesis  of  part  (c),  the limiting probability j  equals

the reciprocal of the mean time between visits to state j.
(e)   Under the hypothesis of part (c), for almost every outcome ,

j limn Nt t

where Nt is the number of visits by the chain to state j through time t.   
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We will not give the proof here, since it depends on results from renewal
theory, to be introduced in Chapter 5.  In the exercise set of Section 5.3, you

are led through a proof.  Part (a) is intuitively obvious, since a transient state

will eventually be left forever.  Part (b) is also clear, since the condition that

i does not reach j implies that P Xn j X0 i 0 for all n.  In part (d), for

example, if a recurrent state has limiting probability 1/4 then we can say that

the average number of  time units between visits to that state is 4.  And part

(e)  is  analogous  to  the  Strong  Law  of  Large  Numbers  for  independent

events,  in  the  sense  that  it  says  that,  except  for  an  exceptional  set  of  out-

comes of probability zero, if we follow the path of the chain for a very long

time, it will spend a fraction of the time j in the recurrent state j. 

Activity  1  –  Make up  an  example of  a  regular  Markov  chain with  four

states.

Let us look for a moment at the structure of the transition matrix T.  The

states in E can be reordered so that the states in the first recurrence class C1

appear first, then the states in the second recurrence class C2, etc. out to class

Cm,  and after all of  those classes is the set of transient states, denoted by S.

Recall  that  a  recurrence  class  is  closed,   therefore  different  classes  cannot

reach  each other.  Also,  no  recurrent  state  can  reach  a  transient  state.   Then

the transition matrix T can be written in block form as in Figure 4.11.  Each

block  Ti i  is  the transition matrix of  the  chain  restricted  to  class  Ci.   Blocks

Q1, Q2, ... , Qm  give transition probabilities from transient states to recurrent

states  in  recurrence  classes  1, 2, ... , m,  respectively.   We  denote  by  R  the

submatrix of T  containing the transition probabilities from transient states to

transient states.

    C1 C2 Cm S  
C1

C2

Cm

S

T11 0 0 0

0 T22 0 0

0 0 Tm m 0

Q1 Q2 Qm R

Figure 4.11 – Block structure of a transition matrix

Now consider the limit as n   of Tn.  By part (a) of Theorem 1, the

entire  S  "column"  of  this  limiting  matrix  is  0.   By  part  (b)  of  the  same

theorem, the block of the limiting matrix corresponding to the Ci  "row" and

C j   "column" for i j  must be 0 as well.  Therefore the northwest quadrant

of  the limiting matrix will  have the same diagonal  structure as  the matrix T

304 Chapter 4 Markov Chains



in Figure 4.11.  The southeast quadrant of the limiting matrix will be a zero

block, as opposed to the block R in the southeast corner of T . 

Each  recurrence  class  Ci  corresponds  to  a  Markov  chain  of  its  own,

whose  state  space  is  the  recurrence  class.   Just  two  tasks  must  be  done  in

order  to  compute  all  limiting  probabilities.   The  first  is  to  find  the  limit  of

Tn i, j  for i and j in the same recurrence class, and the second is to find this

limit for i transient and j recurrent.  The latter problem is solved in Section 6.

The  next  theorem  solves  the  former  problem  by  showing  that  limiting

probabilities restricted to a given class may be found by solving a system of

linear  equations.   The  hypothesis  of  regularity  of  the  restricted  chain  is

needed, however. 

THEOREM 2.  Let Xn  be a regular Markov chain with transition matrix T
and  finite  state  space  E.   Let  j  be  as  in  (3),  and  let    be  the  row  vector

formed by the j as j ranges through E.  Then

(5)T   and  ·1 = 1

where 1 is the column vector of length equal to the size of the state space, all

of whose entries are equal to 1.

Proof.    We claim that the state space E consists of a single recurrence class.

By assumption, for some m,  Tm  is entirely non-zero, hence there is a path of

length m  from every i  to every j  in  E.   By Theorem 3 of  Section 4.4,   E  is

irreducible, and each state in E is recurrent.  

Thus,  by  part  (c)  of  Theorem  1,  the  limiting  matrix   lim Tn  exists,  and

every  row of  this  limiting matrix is  .   For  each i E  and  each n 0,  the

sum of the entries in row i of Tn equals 1, hence:

1 limn j E Tn i, j j E limn Tn i, j j E j

which shows that 1 1.

Expressing Tn 1 as Tn T ,  we can write that, for all states i and j,

(6)Tn 1 i, j k E Tn i, k T k, j

We  wish  to  send  n  on  both  sides  of  (6).   Because  the  state  space  is

finite, the limit can be brought past the sum on the right side, to yield:

(7)

j limn Tn 1 i, j k E limn Tn i, k T k, j

k E k T k, j

T j

Therefore T , which completes the proof.  

4.5 Limiting Probabilities 305



Referring  again  to  the  block  form of  T  in  Figure  4.11,  each  recurrence

class Ci  can be treated as the state space of an irreducible Markov chain with

transition matrix Ti i.  As long as Ti i  is regular, the limiting vector  for that

class  can  be  found  by  solving  the  linear  system   Ti i   subject  to  the

condition  that  the  entries  of   sum  to  1.   We  hasten  to  point  out  that  the

finiteness  of  the  state  space  is  not  a  necessary hypothesis  in  Theorem 2.   It

was  only  included  to  facilitate  the  exchange  of  limit  and  sum  in  (7).   The

same result can be shown in the infinite state case; for the more subtle proof,

see Ross ([52], Thm. 4.3.3).  

Activity 2 – Check that the Markov chain with transition matrix below is

regular,  and  write  out  in  full  detail  the  system  of  equations  for  the

limiting  probabilities.   If  you  solve  for  2  in  terms of  3  in  the  second

equation,  and  then  substitute  that  into  the  first  equation,  what  do  you

notice?

1 3 0 2 3
1 2 1 2 0

0 3 4 1 4

Examples

We now illustrate the application of the preceding results.

EXAMPLE  1.  Return  to  the  Markov  chain  of  Figure  4.8  in  Section  4.   In

the electronic version of the text, you can execute the cell below this one to

reproduce  the  transition  diagram.  Recall  that  state  1  was  the  only  transient

state, states 2 and 3 formed a recurrence class, and states 4, 5, and 6 formed

a second recurrence class.

    We can block off the transition matrix as follows:

          2 3 4 5 6 1

T

2
3

4
5
6

1

1 4 3 4 0 0 0 0
3 4 1 4 0 0 0 0

0 0 0 1 3 2 3 0
0 0 0 0 1 0
0 0 1 3 2 3 0 0

1 2 0 0 0 1 4 1 4
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The block corresponding to the set of states 2, 3  is itself a transition matrix

of a regular chain.  Let x, y .   The relevant system of equations for the

limiting probabilities for the irreducible set 2, 3  is

1 4 3 4

3 4 1 4

x 1
4

x 3
4

y

y 3
4

x 1
4

y
x y 1

The  first  two  equations  both  simplify  to  x y,  hence  it  is  easy  to  find  the

solution to the resulting system of two equations in two unknowns, which is

x 1 2, y 1 2.  The meaning of this computation is

(8)
limn P Xn 2 X0 i 1 2 , i 2, 3 

lim n P Xn 3 X0 i 1 2 , i 2, 3

The limit of the 2, 3  diagonal block of Tn  as n   is a 2×2 matrix, both

of whose rows are 1 2 1 2 .

Similarly, we can calculate the limit of the 4, 5, 6  diagonal block.  You

are asked in Exercise 8 to check that paths of length 4 exist from each state

in  4, 5, 6  to  each  other  state,  hence  the  chain  restricted  to  4, 5, 6  is

regular.  Theorem 2 can now be applied.  The equations are

x y z x y z
0 1 3 2 3
0 0 1

1 3 2 3 0
, x y z 1

When the system is  expanded  out,  you can check that  we get the following

system, which we solve in Mathematica:

system x
1

3
z,

y
1

3
x

2

3
z, z

2

3
x y, x y z 1 ;

Solve system, x, y, z

x
3
19

, y
7
19

, z
9
19

Thus,  in  the  block  of  T  corresponding  to  4, 5, 6 ,  the  limiting  matrix  is  a

3 3  matrix  all  of  whose  rows  are  3 19 7 19 9 19 .   Regardless  of  the

initial state within 4, 5, 6 , the long-run probabilities that the chain occupies

states  4,  5,  and  6,  respectively,  are  given  by  these  three  values.   Also,  for

example, by Theorem 1(d),  the mean time between return visits to state 5 is

1 7 19 19 7.  
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Activity 3 – It can be shown (see Exercise 7) that the system T  is

always dependent,  hence an equation can be thrown away with no loss.

Use  Mathematica  to  check  to  see  that  you  get  the  same solution  to  the

system if you discard each of the first three equations in turn.  

EXAMPLE 2.  We can compute the limiting distribution for the frozen food

companies  of  Example  2  in  Section  1  much  more  easily  now  than  we  did

earlier.   The transition matrix is  below,  and  the  diagram is  in  Figure  4.3  of

Section  1,  the  code  for  which  is  in  the  closed  cell  beneath  the  transition

matrix, so that you can reproduce it in the electronic text.  It is easy to check

that T2 is entirely positive, hence the chain is regular. 

T
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
 

 The following system must be solved:

x y z x y z
1 2 1 4 1 4
1 2 1 2 0

0 1 4 3 4
,   x y z 1

  

x 1
2

x 1
2

y

y 1
4

x 1
2

y 1
4

z

z 1
4

x 3
4

z
x y z 1

The  first  and  third  equations  imply  that  x y z,  hence  the  last  equation

yields x y z 1 3.  This is precisely what was found in Section 2.  

EXAMPLE  3.  An  air  conditioning  system  can  be  running  at  one  of  three

speeds: high, low, or off.  The table below gives the conditional probabilities

that at the next minute the speed will be j  given that now the speed is i,  for

each possible pair  i, j .  Find the long-run proportion of time spent at each

speed.
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      next speed

current speed   

high low off
high .7 .2 .1
low .1 .8 .1
off 0 .4 .6

The table is the transition matrix of the Markov chain Xn ,  where Xn  is

the  speed at  which the air  conditioner  is  running  at  minute n.   By Theorem

1(e),  the  long-run  proportion  of  time  spent  at  speed  j  is   j,  which  is,  by

Theorem  2,  the  jth  component  of  the  vector  x y z  satisfying  the

system of equations (5).  You can check that the equations translate to those

below.   (We discard the third  equation in T  since it  is  expressible  in

terms of the other equations.)

system3

x .7 x .1 y, y .2 x .8 y .4 z, x y z 1 ;

Solve system3, x, y, z

x 0.2, y 0.6, z 0.2

Thus, the machine is on high 1/5 of the time, low 3/5 of the time, and off 1/5

of the time on the average, in the long run.  We also observe from part (d) of

Theorem 1 that the mean time between shutoffs is 1 1 5 5  minutes.  If

the  air  conditioner  costs  1  cent  per  minute  when  it  is  on  high,  1/2  cent  per

minute on low, and nothing when it is off,  then over a 300-minute span, we

expect about 60 minutes of high speed and 180 minutes of low speed, for an

approximate cost of  60 1 180 1 2 150 cents.   

Activity 4 – See what Mathematica's reaction is if you ask it to solve for

x, y, z  in  Example  3  using  only  the  three  equations  you  get  from

T .

REMARK.   Suppose  that  a  regular  chain is such that  its initial distribution

is the same as its limiting distribution , i.e.,  j P X0 j .  Then

p n p 0 Tn Tn T Tn 1 Tn 1 T

where  p n  is  the  distribution  of  Xn.   The  equation  above  says  that

P Xn j j  for all times n, if  is the initial distribution.  For this reason,

 is  often  referred  to  as  the  stationary  or  steady-state  distribution  of  the

chain.  Similarly, the equations (5) that characterize  are called the station-
ary, or steady-state equations.  

4.5 Limiting Probabilities 309



EXAMPLE 4.     Our  final  example deals  with  the  long-run  distribution  of

inventory  for  a  discrete-time  demand  model,  with  a  particular  kind  of

reordering  policy,  called an s S  policy,  in  which  the stock is  restored  to a

level of S as soon as demands for the stocked item decrease the inventory to

a  level  below  s.   A  hardware  store  stocks  a  certain  type  of  lawn  mower.

When  inventory  level  falls  to  0,  an  order  is  placed  immediately  to  a  local

distribution center so that by the next morning there are four lawn mowers in

stock.  Total daily demands for the mower are independent random variables

taking the values 0, 1, 2, and 3, respectively, with probabilities 2/3, 1/9, 1/9,

and  1/9.   Unsatisfied  demands  are  simply  lost.   Let  Xn  be  the  number  of

mowers in stock at the beginning of day n.  Find the limiting distribution of

Xn.

 Denote  by  Dn  the  number  of  demands  for  the  mower  during  day  n.

Then we can relate the inventory at the beginning of day n 1 to the inven-

tory at the beginning of day n by

(9)Xn 1

4 if Dn Xn

Xn Dn otherwise

By the  independence  of  the  demands,  it  is  clear  that  the  chain  Xn  has  the

Markov property.  To solve the problem we find the transition matrix of the

chain and solve the stationary equations.

 Formula  (9)  indicates  how  to  find  the  transition  probabilities.   For

instance,  suppose  that  this  morning  the  inventory  level  was  2.   Tomorrow

morning,  the  level  will  be  4   if  either  2  or  3  demands  come  in,  forcing  a

reorder.   This  occurs  with  probability  2/9.   Tommorow's level  cannot  be  3,

since we either decrease level due to sales or reorder up to 4.  The inventory

level  tomorrow  can  be  2  if  no  demands  come  in,  and  this  occurs  with

probability  2/3.   Finally,  the  next  level  could  be  1  if  exactly  1  demand

arrives.  This happens with probability 1/9.  The preceding analysis justifies

the second row of the transition matrix below.  You should check the other

rows  using  similar  reasoning.   Also,  check  to  see  that  this  is  a  regular

Markov chain.  

         1 2 3 4

T
1
2
3
4

2 3 0 0 1 3
1 9 2 3 0 2 9
1 9 1 9 2 3 1 9
1 9 1 9 1 9 2 3
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Set  x y z w .   The  stationary  equations  have  the  form  below.

Recall  that  the  first  four  equations  of  the  system  T  are  dependent;

therefore we may as well throw out the most complicated one, say the fourth

involving w.

system4 x
2

3
x

1

9
y

1

9
z

1

9
w,

y
2

3
y

1

9
z

1

9
w,

z
2

3
z

1

9
w,

x y z w 1 ;

Solve system4, x, y, z, w

x
1
4
, y

3
16

, z
9
64

, w
27
64

Thus, the limiting distribution of inventory is 1
4

, 3
16

, 9
64

, 27
64

.  If,

for  instance,  there  is  a  daily  cost  of   $10  per  mower  for  storage,  then  the

long-run average cost per day is

N 1 4, 3 16, 9 64, 27 64 . 10, 20, 30, 40

27.3438

 

Long-Run Discounted Cost

In Example 3 on the long-run behavior of air conditioners, and Example 4 on

lawn mower inventory, we had a Markov chain Xn  that produced a cost of

f Xn  at time n.  We found the limiting distribution  and computed the dot

product   f  to  evaluate  long-run  average  cost  per  unit  time.   To  be  more

precise, as in Theorem 1(e), it can be shown that for almost every outcome ,

(10)limn k 0
n f Xk n f

where  the  function  f  is  looked  upon  as  a  vector,  with  an  entry  for  each

member of  the state space of  the chain.   A different criterion for evaluating

long-run cost is the expected discounted cost:

(11)R f i E n 0
n f Xn X0 i
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where 0, 1 .   The interpretation  is  that  at  time n,  when  the  state of  the

chain is Xn, an absolute cost of f Xn  is charged.  But relative to the value of

money  today  (time  0),  the  cost  is  only  n  times  this  absolute  cost,  i.e.,  we

discount by a factor of  in each time period after time 0.  Then R f  gives,

for each initial state i, the conditional expectation of the total discounted cost

relative  to  the  present  value  of  money.   In  this  subsection  we  develop  a

method to calculate the expected total discounted cost.

We assume that f is non-negative and that the state space is finite.  By the

monotone  convergence  theorem  we  may  interchange  expectation  with

summation in (11) to obtain

(12)

R f i n 0
n E f Xn X0 i

n 0
n

j E f j Tn i, j

j E n 0
n Tn i, j f j

The second line follows because row i of the matrix Tn  gives the conditional

distribution  of  Xn  given  X0 i,  and  the  third  line  changes  the  order  of

summation, which is acceptable for series of non-negative terms. 

For small state spaces, one way of computing this is to diagonalize T  as

in Section 2.  But a faster method is possible, as we have seen in the computa-

tion  of  long-run  probabilities.   The  vector  R f  can  be  found  by  solving  a

system of linear equations.  To see this, consider the matrix defined by

(13)R n 0
n Tn

From  (12),  we  see  that  the  quantity  R f  is  just  the  matrix  product  R f.

Also,

R I T 2 T2 3 T3

I T I T 2 T2

I T R

where I is the identity matrix of the appropriate size.  Solving for R ,

(14)I T R I  R I T 1

which implies that

(15)I T R f f

We have the option of either solving for the matrix R  by inverting I T ,

or  solving  directly  for  the  vector  R f  by  solving  the  linear  system in  (15).

The latter might save slightly in the amount of computation; but if one wants
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to  reuse  the  same  chain,  the  same  discount  factor  ,  and  compare  several

different  cost  functions  f,  then  it  is  efficient  to  compute  the  matrix  R  and

just matrix multiply to get R f for all desired cost functions.

Though  we  have  been  speaking  in  the  context  of  cost,  the  function  f
might  just  as  well  be  a  reward  function,  in  which  case  R f  becomes  the

long-run expected discounted reward.

EXAMPLE 5.   A gambler has the choice of  two games, each consisting of

repeated plays.  In the first game, he either wins $3 or nothing on each play

according  to  whether  the  result  of  the  play  is  state  1  or  state  2.   If  state  1

comes up on a given play, state 1 will be next with probability .25, or state 2

with probability  .75;  and if  state 2  comes up  on a play,  then state 1  will be

next with probability .15, so that as the game progresses, the outcome of the

next play is conditionally independent  of the past history of the game given

the present state.  The second game available to the gambler is similar to the

first, except that he wins $2 or nothing on each play, and a return to state 1

happens with probability 1/3 and a transition from state 2 to state 1 happens

with probability .2, as shown in Figure 4.12.  Which game is preferable if an

absolute dollar earned on the nth play is only worth .9n in present terms?

1 2

1 4

3 4

.15 .85

1 2

1 3

2 3

.2 .8

(a) Game 1: $3 for 1, $0 for 2                      (b) Game 2: $2 for 1, $0 for 2

Figure 4.12 – Which is the better gamble?

There  is  a  trade-off  that  we  must  analyze,  between  game 1  which  pays

more  per  visit  to  state  1,  and  game 2  which  visits  state  1  more  often.   For

each  game,  we  compute  the  expected  long-run  discounted  reward  with

discount  factor  .9.   The  Markov  chain  involved  is  defined  in  the  same

way for each game, namely Xn state at play n.  The absolute reward earned

when  the state  is  k  is  the kth  component  of  the  reward  vector  for  the corre-

sponding  game.   Those  vectors  are,  respectively,  f1 3 0 , f2 2, 0 .

The  transition  matrices  for  the  two  games  were  defined  as  matrix12a  and

matrix12b in the closed cell that generated the graphics for Figure 4.12.  For

the first game, by (14) we have:
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ident 1, 0 , 0, 1 ;

Ralpha1 Inverse ident .9 matrix12a ;

MatrixForm Ralpha1

2.58242 7.41758
1.48352 8.51648

Hence, the expected discounted reward for game 1 is

Ralpha1. 3, 0

7.74725, 4.45055

Similarly for the second game,

Ralpha2 Inverse ident .9 matrix12b ;

MatrixForm Ralpha2

Ralpha1. 2, 0

3.18073 6.81927
2.04476 7.95524

5.16484, 2.96703

We conclude that game 1 is better, no matter whether the chain begins with

state 1 or state 2.  We can easily answer another question: how much should

be  won on  a  play  of  game 2  so  that  this  game is  equal  in  value  to game 1,

when the initial state is 1?  If the winnings at state 1 for game 2 equal some

unknown  c,  then  for  parity  between  games  we  require  that  row  1  of   R2

times  c 0  must  equal   the  expected  discounted  reward  from  state  1  in

game 1, namely 7.74725.  

Solve 3.18073 c 7.74725, c

c 2.43568

Again we see the versatility gained by computing the matrix R  rather  than

solving system (15) for R f.  
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Activity 5  –  In Example 5, suppose that the game 1 transition matrix is

as on the left below, and the game 2 transition matrix is as on the right.

Do you really need the machinery of Markov chains to compare the two

games?  Why or why not?

T1
1 4 3 4
1 4 3 4 ,     T2

1 3 2 3
1 3 2 3

Exercises 4.5

1.   (Mathematica) For the chain of  Exercise 6 of  Section 4.4,  whose transi-

tion matrix is reproduced below, find the limiting distribution  within each

recurrence class.  

0 1 0 0 0 0 0 0
3 4 0 1 4 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 2 3 1 3 0 0 0
0 0 1 2 1 2 0 0 0 0
0 0 0 1 3 0 0 1 3 1 3
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

Exercise 1

2.   (Mathematica)  Find  the  limiting  distribution  for  the  following  random

walk with "sticky barriers."

1

2 3

4

.5

.5

.5

.5

.5

.5

.5

.5

Exercise 2

3.   (Mathematica)  A  company  rents  vans  for  personal  moving.  There  are

three  districts  from  which  vans  can  be  rented,  and  to  which  they  can  be

returned.   The conditional  probabilities that  vans originating in each district

are returned to each district are given in the table below.  Find the long-run

proportion of vans in each district.  
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          to

from    

1 2 3
1 .1 .5 .4
2 .6 .2 .2
3 .3 .3 .4

  

4.   For  a  general  regular  two-state  Markov  chain,  find  closed-form expres-

sions for the limiting probabilities.

5.   (Mathematica)  For  the sales representative  of  Exercise 1  of  Section 4.1,

suppose that there are weekly travel expenses of $500, $600, $700, and $800

respectively,  in  the  four  regions.   Find  the  long-run  average  weekly  travel

expense.

6.  Two drill presses are under consideration by a manufacturer.  If the first

press works one day, then the probability is .9 that it will also work the next.

If  this  press  does  not  work  one  day,  then  it  will  be  back  in  service  on  the

next day with probability .7.  For the other drill press, these two conditional

probabilities  are  .95  and  .6,  respectively.   Presuming  that  the  two  presses

cost the same, which should the manufacturer purchase?

7.   Show  that  the  system  of  equations  T ,  where  T  is  the  transition

matrix of a Markov chain, must have infinitely many solutions.

8.   For  the  chain  of  Example  1,  find  paths  of  length  4  from every  state  to

every  other  state  in  the  set  4, 5, 6 ,  and  check  that  4  is  the  shortest  path

length with this property.

9.   For  the random walk with a reflecting barrier  at 0  pictured below, write

the stationary equations and verify that the vector 0 is the only solution such

that the sum of its components is bounded.

0 1 2 3

1

.5

.5

.5

.5

.5

.5

.5

Exercise 9
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10.  A college-owned van is used until it will not run anymore, and then it is

immediately  replaced  by  a  similar  new  one  whose  lifetime  Z   has  discrete

distribution  p1 P Z 1 , p2 P Z 2 , ...  ,  where  the  times  are  in

months.  The  process  continues  through  successive  van  replacements.   Let

Xn  be the chain defined by Xn  = remaining life of the van in use at month

n.   Notice  that  a  new  van  has  a  remaining  life  with  the  distribution  of  Z;

otherwise the remaining life of a van next month is one month less than the

remaining  life  this  month.  Find  the  transition  matrix  of  this  Markov  chain.

Show that  if  the mean van lifetime m  is  finite,  then the limiting distribution

of Xn exists.  Find that limiting distribution.

11.   Let Xn  be a finite, irreducible Markov chain with limiting distribution

, and let f  be a real-valued function on its state space.  We think of f Xn
as  the  reward  earned  at  time n.   Use  the  Dominated Convergence  Theorem

(see Appendix A) to show that

limm
1

m 1 n 0
m E f Xn X0 i f

i.e.,  the time average expected reward converges to f,  independent  of the

initial state, as time becomes infinite.

12.   A  substitute  teacher  must  choose  between  two  school  systems.   In  the

first,  the probability  that  he  will  work  on  the  next  school  day  given  that  he

worked today is 2/3.  The probability that he will work on the next day given

that he does not  work today is  1/4.   The corresponding  probabilities for  the

second school system are 3/5 and 1/5.  In the first system he is paid $80 per

day worked, and in the second he is paid $90 per day worked.  Compare the

two school  systems based  on:  (a)  long-run  expected salary per  day;  and (b)

total expected discounted salary, based on a daily discount factor of  .95. 

13.   Let  Xn  be  a  two-state  Markov chain over  which  we have a degree  of

control, in the sense that the transition matrix is

T
.5 .5

.2 2 .8 2

where   may be  chosen from .1, .1 .   If  we receive a  reward of  $2  when

state 1 is occupied, and $1 when state 2 is occupied, and there is a discount

factor  .9,  find   to  maximize  the  expected  total  discounted  reward

starting at state 1.

14.  A store stocks an item, for which there is a random demand D each day.

We  suppose  that  demands  on  successive  days  are  i.i.d.  random  variables

with  the  discrete  uniform  distribution  on  0, 1, 2 .   When  the  demand

exceeds the stock, excess demand is lost.  If there are no items left in stock at

the end of the previous day, then an order for S items is placed.  The order is
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filled by morning.  Let Xn  be the number of items in stock at the beginning

of day n.  

(a)  Write the transition matrix of the chain Xn .

(b)   Write  the  stationary  equations  and  verify  that  the  following  is  a

solution:

xk
2
3

xS 1 1 2 S k 1     , k 1, 2, ... , S,

where xk  is the limit as n  of  P Xn k .

(c)   Find   xS .  (The  information  in  this  problem  would  be  needed,  for

instance,  to  minimize,  with  respect  to  the  reorder  quantity  S,  the  sum  of

long-run expected storage cost and cost due to lost sales.)

4.6 Absorption Probabilities

We have not yet solved the problem of finding the limit as n  of Tn i, j
for i transient and j recurrent.  From Figure 4.8, repeated below, we see that

starting from state 1 the chain may or may not ever go to the set 2, 3 , since

the set 4, 5, 6  may capture the chain first.  

1

2

3

4

56

1 4

1 2

1 4

1 4

3 4

3 4

1 4

1 32 3

1

1 3

2 3

Figure 4.8 (revisited) – Limiting probabilities from transient states to recurrent states
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Intuitively,  we  suspect  that  the  probability  that  the  chain  ever  reaches

2, 3  starting  from state  1  might be  the  ratio  of  the  one-step  probability  of

going  to  2, 3  to  the  total  one-step  probability  of  going  to  either  2, 3  or

4, 5, 6 , i.e.,

1
2

1
2

1
4

2
3

Our  next  aim  is  to  develop  a  systematic  approach,  which  works  for  more

complicated chains.

Activity  1  –  Draw  the  transition  diagram  of  the  Markov  chain  with

transition  matrix  below,  and  guess  the  probabilities  of  ever  going  to

states 2, 3, 4, and 5 starting from state 1.  

T

1 2 1 4 1 8 1 16 1 16
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Denote S j inft 1 t : Xt j , the time of first visit to state j, and

(1)fi j P S j X0 i

which is the probability that the chain will ever reach j, starting from state i.

THEOREM 1.   Let D  be the set of transient states of a Markov chain Xn
with finite state space E and transition matrix T.  Let i D, and let j belong

to a recurrence class C.  Then

(2)fi j k D T i, k fk j k C T i, k

Proof.   The  idea  of  the  proof  is  to  condition  and  uncondition  on  X1.   If

X1 i, then at time 1 the chain could move to another state in D, to a state in

C,  or  to  a  state  in  some other  recurrence  class,  i.e.,  to  the  set  E D C  .

From a state in E D C, j cannot be reached; and from a state in C,  j is
certain to be reached.  Thus, we have

fi j P S X0 i

k E P S X1 k, X0 i P X1 k X0 i

k D P S X1 k, X0 i T i, k

k C P S X1 k, X0 i T i, k
k D fk j T i, k k C 1 T i, k
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We  can  now  finish  the  computation  of  the  limit  of  Tn.   If  i  is  transient

and j is recurrent, then

limn Tn i, j
limn P Xn j X0 i
limn P Xn j S j , X0 i P S j X0 i

The  second  factor  in  the  line  above  is  fi j.   The  fact  that  the  former  is  j
requires  an  argument  in  which  we  condition  on  the  state  XS  at  the  random

time  S S j.   To  do  this,  an  extension  of  the  Markov  property  to  random

times is needed.   This extension is called the strong Markov property;  for  a

discusssion see Cinlar ([15], Cor. 5.1.26).  We omit these details, and merely

appeal to the reader's intuition that, if it is known that j  will be visited, then

in  the  long  run,  the  proportion  of  time spent  in  j  is  unaffected  by the  finite

amount of time spent outside of the recurrence class of  j. To summarize, we

have that for i transient and j recurrent,

(3)limn Tn i, j fi j j

where fi j  may be computed by solving the system of linear equations in (2)

and j may be obtained from the stationary equations in the usual way.

Exercise  8  asks  you  to  show  that  system  (2)  may  be  rewritten  in  a

compact matrix form.

EXAMPLE  1.   Let  us  now  complete  the  determination  of  the  limiting

transition matrix for the chain of Figure 4.8.  The only transient state is i 1.

Theorem 1 gives us

f12 T11 f12 T12 T13

1 T11 f12 T12 T13

3
4

f12
1
2

0

f12 2 3

A  similar  computation  shows  that  f13  also  equals  2/3.   In  fact,  this  is  a

general result:  If states k and j are in the same recurrence class and state i is
transient, then fi j fi k  (see Exercise 3).  Also, we have

f16 T11 f16 T14 T15 T16

1 T11 f16 T14 T15 T16

3
4

f16 0 0 1 4

f16 1 3

From  the  last  line,  and  the  observation  above,  we  see  that

f14 f15 f16 1 3.   In  light  of  the  fact  that  the  probability  was  2/3  that
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the chain would be absorbed by the other recurrence class 2, 3 , this answer

is not surprising. 

Combining the results of Example 1 with those of Example 1 of Section

4.5, the limit of the nth power of T is

                          2 3 4 5 6 1

limn Tn

2
3

4
5
6

1

1 2 1 2 0 0 0 0
1 2 1 2 0 0 0 0

0 0 3 13 1 13 9 13 0
0 0 3 13 1 13 9 13 0
0 0 3 13 1 13 9 13 0

1 3 1 3 1 13 1 39 3 13 0

The row corresponding  to state 1  was obtained by multiplying f1 j  by j  as

suggested by (3).  

Activity 2 – Apply Theorem 1 to the Markov chain of Activity 1.

EXAMPLE  2.This  example  illustrates  a  class  of  Markov  chains  called

random walks, as well as a famous problem in stochastic processes called the

gambler's ruin problem.  In a random walk, a particle moves in discrete time

on an integer grid.  In one time unit, the particle is allowed to move only to

an  adjacent  grid  point.   Future  positions  are  independent  of  the  past,  given

the  present  position.   In  the  gambler's  ruin  problem,  the  net  wealth  of  a

gambler,  who  either  wins  or  loses  $1  on  each  independent  play  of  a  game,

follows  a  one-dimensional  random walk.   The  gambler's  ruin  problem is  to

find  the  probability  that  the  gambler  goes  bankrupt  before  some level  N  of

wealth is reached.

In  our  application,  at  each discrete instant  of  time, a  small business  has

some  whole  number  i  of  millions  of  dollars  in  assets.   At  the  next  time

instant the firm will gain a million with probability 5/8 or lose a million with

probability  3/8.   Given  an  initial  amount  of  4  million in  assets,  what  is  the

probability that the business will reach 8 million before it becomes bankrupt?

If  future  asset  levels  are  independent  of  the past  given the present,  then

the  successive  asset  levels  of  the  firm  can  be  modeled  as  a  Markov  chain

with transition matrix as in the Mathematica  command below, and transition

diagram as in Figure 4.13.
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matrix13 1, 0, 0, 0, 0, 0, 0, 0, 0 ,

3 8, 0, 5 8, 0, 0, 0, 0, 0, 0 ,

0, 3 8, 0, 5 8, 0, 0, 0, 0, 0 ,

0, 0, 3 8, 0, 5 8, 0, 0, 0, 0 ,

0, 0, 0, 3 8, 0, 5 8, 0, 0, 0 ,

0, 0, 0, 0, 3 8, 0, 5 8, 0, 0 ,

0, 0, 0, 0, 0, 3 8, 0, 5 8, 0 ,

0, 0, 0, 0, 0, 0, 3 8, 0, 5 8 ,

0, 0, 0, 0, 0, 0, 0, 0, 1 ;

0

1 2 3 4 5 6 7

81
3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

3 8

5 8

1

Figure 4.13 – The gambler's ruin problem

Starting from state 0 (bankruptcy) the chain will remain there throughout

time, so that 0 is an absorbing state.  For our purposes we can suppose that

state  8  is  also  absorbing,  since  we  are  only  interested  in  the  motion  of  the

chain up to the time that it hits 8.  Note that from states 1, 2, ... , 7, it is only

possible  to  step to an adjacent  state.  Steps to the right  have probability 5/8,

and steps to the left have probability 3/8.  So, this chain is a random walk on

0, 1, 2, 3, ... , 8  with absorbing barriers at 0 and 8.  Defining Xn  = assets at

time n, we see that we have been asked for the quantity:

f48 P S8 X0 4

States  1  through  7  are  clearly  transient.   Theorem  1  yields  a  system  of

equations  in  the  unknowns  f18,  f28,  etc.,  as  in  the  Mathematica  command

below.  
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system13 f18
5

8
f28,

f28
3

8
f18

5

8
f38, f38

3

8
f28

5

8
f48,

f48
3

8
f38

5

8
f58, f58

3

8
f48

5

8
f68,

f68
3

8
f58

5

8
f78, f78

3

8
f68

5

8
;

Solve system13, f18, f28, f38, f48, f58, f68, f78

f18
78125
192032

, f28
15625
24004

, f38
153125
192032

, f48
625
706

,

f58
180125
192032

, f68
23275
24004

, f78
189845
192032

N %

f18. 0.406833, f28. 0.650933,
f38. 0.797393, f48. 0.885269,

f58. 0.937995, f68. 0.96963, f78. 0.988611

The  answer  originally  sought  was  the  probability  of  going  to  state  8

from  state  4,  which  is  625/706,  but  the  computation  has  given  much  more

information.    We  have  computed  the  probability  of  reaching  8  million

before  bankruptcy  starting  from  each  of  the  initial  states.   Also,  since  we

must  either  reach  8  million  or  bankruptcy  eventually,  the  complementary

probabilities to the ones above are the bankruptcy probabilities. For instance,

the  probability that  the firm goes bankrupt  starting with 2  million dollars  is

about 1 .65 .35.   

Exercises 4.6

1.  For Exercise 4 of Section 4.1, the television inspection problem, find the

probability,  starting  from each  of  the  states  F  and  G,  of  being  absorbed  by

each of the states P and E.  If half of the sets that are made are in fair condi-

tion  initially,  and  half  are  in  good  condition,  what  proportion  of  sets  are

eventually sent out for sale?
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2.   (Mathematica)  For  the  chain  with  transition  matrix  below,  find  the

probabilities of absorption into each of the classes 1, 2, 3  and 4, 5  starting

from  each  of  the  transient  states  6  and  7.   Find  also  the  limiting  transition

matrix.

1 3 1 3 1 3 0 0 0 0
1 2 0 1 2 0 0 0 0
1 4 0 3 4 0 0 0 0

0 0 0 1 2 1 2 0 0
0 0 0 2 3 1 3 0 0

1 8 1 8 0 1 4 1 4 0 1 4
0 0 0 0 0 1 2 1 2

3.  Let i, j, and k be states of a finite state Markov chain.  If i is transient and

j and k are in the same recurrence class C, show that fi j fi k.

4.   (Mathematica)  Consider  again  Example  2,  in  which  the  firm  gains  or

loses one million in assets at each instant.  If we now let the gain probability

p  be general, what is the smallest p  such that, starting with four million, the

probability is at least 2/3 that assets will hit eight million before bankruptcy? 

5.  A retail clothing store has begun to issue credit cards in May.  Of its card

holders, 1000 have not paid the minimum payment in June.  Company policy

states  that  if  an  account  has  still  not  been  paid  after  two  months,  card

privileges  will  be  revoked.   The  experience  of  similar  stores  indicates  that

60%  of  one-month  delinquent  accounts  pay  up,  and  75%  of  two-month

delinquent accounts pay up.  How many of the 1000 cards mentioned above

can be expected to be revoked?

6.   (Mathematica)  Find  the limit as  n  of  Tn,  where  T  is  the transition

matrix  of  the  Markov  chain  of  Exercise  2  of  Section  4.4.   The  transition

matrix and  diagram are  shown below for  your  convenience;  note  that  when

multiple edges are directed out  of a state, the chain is equally likely to visit

any of the states to which these edges point.

T

1 2 1 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 4 1 4 1 4 1 4 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 2 0 1 2 0 0
0 0 0 1 3 0 1 3 0 1 3 0
0 0 0 0 0 0 1 2 0 1 2
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 2 1 2

324 Chapter 4 Markov Chains



1 2 3

4

5

6

7
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Exercise 6

7.   (Mathematica)  A  graduate  school  offers  a  5-year  Ph.D.  program  in

mathematics.   Its  records  show  a  50%  attrition  rate  between  the  first  and

second years, 40% between the second and third, 10% between the third and

fourth,  10% between the fourth  and fifth,  and also 10% of those who reach

their  fifth  year  fail  to  receive  their  degrees.   Model  this  phenomenon  as  a

Markov  chain,  and  find  the  probabilities  that  an  entering  student,  a  begin-

ning second-year, third-year, fourth-year, and fifth-year student will success-

fully complete their degree.  

8.  (Mathematica)  In  system (2),  define a matrix F fi j  to  have a row for

each transient state in the set D of all transient states and a column for each

recurrent state in a given recurrence class C; define TD C  to be the portion of

the  transition  matrix  of  the  chain  whose  rows  are  the  rows  of  the  transient

states  in  D  and  whose  columns  are  the  states  in  C;  define  TD D  to  be  the

portion of the transition matrix corresponding to the transient states, and let 1

be a square matrix consisting entirely of 1's, whose size equals the number of

states in C. Argue that (2) in matrix form is

F TD D F TD C 1

Execute  this  in  Mathematica  for  the  gambler's  ruin  problem  of  Example  2

for  recurrence  class  8 ,  and  make sure  that  you  get  the  same equations  for

fi 8 as in that example.

9.  Some elementary texts on Markov chains present the following procedure

for chains with absorbing states and transient states.  Let S  be the submatrix

of  the  full  transition  matrix  T  corresponding  to  the  rows  of  transient  states

and the columns of absorbing states.  Let R  be the submatrix corresponding

to  the  rows  and  the  columns  of  transient  states.   Compute  the  matrix

4.6 Absorption Probabilities 325



Q I R 1, called the fundamental matrix of the chain.  Show that Q i, j
is  the  expected  number  of  visits  to  transient  state  j  if  the  chain  begins  in

transient  state  i.  (Here  we  suppose  that  Q i, i  includes  the  occupancy  of

state i  at time 0.)  Finally, compute the matrix A Q S.   Show that A i, j  is

the probability that the chain will be absorbed in state j  given that it started

in  state  i.   (Hint:  To  justify  the  meaning  of  Q,  consider

E n 0 I j Xn X0 i ,  where  the  indicator  function  I j  is  1  if  its  argument

equals j and 0 otherwise.  For A, rewrite formula (2) in the notation of these

texts.)   

10.  (See  Exercise  9)  Let  Xn  be  the  Markov  chain  with  transition  matrix

below.  Find the expected number of visits from each transient state i to each

other transient state j.   Find,  for each transient state i  and absorbing state j,
the probability that the chain will be absorbed at j given that it starts at i.

T

1 0 0 0 0
1 2 1 4 1 4 0 0

0 0 1 0 0
0 1 3 1 3 0 1 3
0 1 4 0 1 2 1 4
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5

Continuous Time Processes

Introduction

We  turn  now  to  stochastic  processes  that  evolve  in  continuous  time.   In

Section 1, we discuss the simplest such process, the Poisson process, which
jumps  upward  by  one  unit  in  such  a  way that  the  times between  jumps  are

i.i.d.  exponential  random  variables.   This  is  generalized  in  Section  2  to  the

birth-death process, which is allowed to jump downward by one unit as well

as  upward.   Then  a  different  generalization  of  the  Poisson  process  is  intro-

duced in Section 3, called the renewal process, which again is constrained to
jump  upward  by  one  unit,  but  whose  inter-jump  times  are  not  necessarily

exponentially distributed.  The rudiments of one of the main applications of

stochastic  processes,  namely  queueing  theory,  are  covered  in  Section  4.

Finally, we study a process with continuous state space called the Brownian
motion in Section 5, together with some of its applications.

5.1 Poisson Processes

Definitions and Main Results

The  process  that  we  wish  to  study  in  this  section  is  a  member  of  a  class

called  arrival  counting  processes.   The  path  of  such  a  process  for  a  typical

outcome  is  depicted  in  Figure  5.1.   The  main  feature  is  that  the  process

proceeds  consecutively  through  the  non-negative  integers,  jumping  by  one

unit  at  each  of  a  sequence  of  random  times  T1, T2, T3, ...  .   For  the  out-

come   displayed  in  the  figure,  T1 1,  T2 2.5,

T3 3, T4 3.8, ....   A  different  outcome  might  have  jumps  at

different  times,  but  the  structure  of  the  graph  is  the  same.   The  function

t Nt  for  fixed  that is  graphed below is referred to as a sample path
of the process.
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Figure 5.1 – A sample path t Nt  for a typical outcome 

DEFINITION  1.   A  process  Nt t  is  called  an  arrival  counting
process  if  there  is  an  increasing  sequence  of  random  variables

T0 0, T1, T2, T3, ... taking values in , such that

Nt n if Tn t Tn 1

The  defining  condition  can  be  understood  by  thinking  of  a  service

facility  at  which  the  nth  customer  arrives  at  time  Tn.   In  order  for  t  to  be

between  Tn  and  Tn 1,  the  nth  customer  must  have  arrived  by  time t  but  the

n 1 st  customer has not.  A total of n  customers have therefore arrived by

time t.   The  random  variable  Nt  is  a  counter  that  indicates  this  fact.   More

generally,  the  times  Tn  may  be  successive  times  of  occurrence  of  some

phenomenon, and Nt  is the number of such occurrences up to and including

time t.   Some common applications  include  arrivals  of  planes  to  an  airport,

messages  to  a  communication  station,  customers  to  a  store,  and  users  to  a

time-sharing computer system.

Activity 1 – Suppose that the first five times between successive arrivals

of  a  certain  arrival  counting  process  are  2.1,  1.7,  3.4,  1.2,  and  0.8.

Sketch the path of the process.

In  order  to  derive  some results  easily,  we specialize to  a  particular  kind

of arrival process.
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DEFINITION  2.    An  arrival  counting  process  is  called  a  Poisson
process with rate  if the differences:

S1 T1 T0, S2 T2 T1, S3 T3 T2, ...

                              

are  independent,  identically  distributed  exponential  random  variables

with parameter .

Since  we  know  the  probability  law  of  the  inter-arrival  times  Si,  we

suspect  that  we  should  be  able  to  calculate  many  things  about  Poisson

processes.   To  compute  the  probability  distribution  of  Nt  =  number  of

arrivals  by  time  t,  we  first  derive  the  distribution  of  Tn  =  time  of  the  nth

arrival.

THEOREM 1.  If Tn  is the time of the nth  arrival in a Poisson process with

rate , then Tn has the n, 1  density, and furthermore,

(1)P Tn t
k 0

n 1
e t t k k

Proof.    We can express Tn  as the sum from i 1 to n  of   i.i.d. exponential

inter-arrival times Si.  The moment-generating function of Tn is therefore

E et Tn E exp t i 1
n Si

E exp t S1 exp t Sn

E exp t S1 E exp t Sn

E exp t S1
n 1 t n

by the independence of the Si, and the well-known formula for the moment-

generating  function  of  the  exponential  distribution.   The  last  formula  is  the

moment-generating  function  of  the  gamma  distribution  with  parameters  n
and  1 .   By uniqueness  of  the  moment-generating function,  Tn  must  have

the gamma density:

f x n xn 1 e x n 1 , x 0

It remains to show that the integral of this density from t to  equals the sum

in  the  statement  of  the  theorem.   One  application  of  integration  by  parts

(with u xn 1, d v e x) yields

t
n . xn 1 e x n 1 d x

n

n 1
xn 1 e x n 1

t xn 2 e x d x
n 1 tn 1 e t

n 1

n 1

n 2 t xn 2 e x d x
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The  first  term  on  the  right  is  the  highest  term  in  the  summation  of

formula  (1).   You should  verify that  repeated integration  by parts  generates

the other terms in the summation.  

With Theorem 1 in hand, it is easy to compute the probability law of Nt.

THEOREM 2.  If Nt  is a Poisson process with rate , then

(2)P Nt n e t t n

n , n 0, 1, 2, ...

in other words, Nt has the Poisson distribution with parameter t.

Proof.    The events Nt n  and Tn t  are the same, since both happen if

and  only  if  the  nth  arrival  has  not  occurred  by  time  t.   Thus,  P Nt n  is

equal to the expression in (1).   Therefore,

P Nt n P Nt n 1 P Nt n

k 0

n
e t t k k

k 0

n 1
e t t k k

e t t n n

Activity  2  –  The  exponential  distribution  modeling  the  inter-arrival

times  is  highly  skewed  to  the  right,  with  a  lot  of  its  probability  weight

near zero and a long right tail.   What effect do you think that will have

on the appearance of typical sample paths as in Figure 5.1?

The  definition  of  Poisson  process  that  we  have  given  is  a  constructive

definition.   An  arrival  counting  process  is  Poisson  if  it  is  the  counting

process  associated  with   i.i.d.  exponential  inter-arrival  times.   It  can  be

shown that this condition is equivalent to the following axiomatic definition.

DEFINITION 3.  (Axiomatic definition of Poisson process)  An arrival

counting process Nt  is a Poisson process if both:

(a) For any t, s 0, the difference Nt s Nt is independent of all 

random variables Nu for u t;
(b) For any t, s 0, the probability law of Nt s Nt does not depend 

on t.

The first property in Definition 3 is a sort of probabilistic amnesia, which

says that arrivals occurring between times t  and t s  are independent of the

past  history  prior  to  t.   This  condition  is  usually  called  the  independent
increments  condition.   Property  (b)  is  called  stationarity,  which  says  that  it
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doesn't matter whether we begin to count arrivals at time 0 or at time t.   The

number of arrivals in a period of s time units (in the former case, the interval

0, s  and  in  the  latter,  the  interval   t, t s  )  is  a  random  variable  whose

distribution  depends  only  on  s.   Under  our  constructive  definition,  these

properties  can  be  verified  by  appealing  to  properties  of  the  exponential

distribution of the i.i.d  inter-arrival times.  To show the converse, that is to

show  that  the  axiomatic  definition  implies  that  the  inter-arrival  times  are

i.i.d. exponential random variables, is more difficult.  We refer the reader to

Ross [52] or Cinlar [15] for this.

Another  interesting  and  useful  result  about  Poisson  processes  involves

the  joint  distribution  of  the  arrival  times  given  the  number  of  arrivals  in

0, t .   It  turns  out  that  if  the  number  of  arrivals,  say  n,  during  0, t  is

known,  then  it  is  as  if  the  n  arrival  times were  thrown  down  at  random on

0, t .   To  be  more  precise,  let  U1, U2, ... , Un  be  i.i.d.  uniform  random

variables on 0, t , and let U 1 , U 2 , ... , U n  be these same values written in

increasing  order  (i.e.,  the  order  statistics of  the  sample).   Then  it  is  easy  to

compute  (see,  e.g.,  Hogg  & Craig  ([36],  Sec.  4.6))  that  the  joint  density  of

U 1 , U 2 , ... , U n  is

(3)f u1, u2, ... , un
n
tn if 0 u1 u2 ... un t

THEOREM  3.   Let   T1, T2, T3, ...   be  the  arrival  times  of  a  Poisson

process Nt  with rate .  Then the conditional density of T1, T2, T3, ... given

that Nt n is the function f  in formula (3).

Proof.  We will not prove Theorem 3 in complete generality, but we will do

the proof for n 1,  i.e., we show that

P T1 s Nt 1 s t , s 0, t

In words, conditioned on the event Nt 1, T1 has the uniform distribution on

0, t .

The conditional probability above is equal to

P T1 s, Nt 1 P Nt 1 P Ns 1, Nt Ns 0 P Nt 1

P Ns 1 P Nt s 0 P Nt 1

e s s 1
1 e t s t s 0

0

e t t 1 1

s t

In  the second line of  the computation we have used the stationarity and the

independent  increments  properties.  (See  Exercise  10  for  the  n 2  case.)

Since the last expression is the uniform c.d.f. on 0, t , the proof for the n 1

case is complete.  
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Examples

With  the  main results  in  hand,  let  us  now show  some examples  of  Poisson

process computations.  

Recall that Mathematica  has standard packages that contain the distribu-

tion  objects  we  need  in  order  to  make computations.   Discrete  distributions

like Poisson are contained in the first package loaded below, and continuous

distributions  like  the  exponential  and  gamma  distributions  are  contained  in

the second.

Needs "Statistics`DiscreteDistributions "̀ ;

Needs "Statistics`ContinuousDistributions "̀ ;

The  syntax  for  the  three  distributions  we  have  met  so  far  in  our  study  of

Poisson processes is below.  The usages of the parameter  for the exponen-

tial distribution and the parameter  for the Poisson distribution are precisely

as we are using it.  Note that the second argument for the gamma distribution

is its scale parameter , which for us is 1 .  

PoissonDistribution ;

ExponentialDistribution ;

GammaDistribution , ;

Computations  of  probabilities  can  be  done  by  using  the  PDF  and  CDF

functions, contained in both the DiscreteDistributions and the ContinuousDis-

tributions packages:  

PDF distribution, x ;

CDF distribution, x ;

The  PDF  function  returns  the  probability  mass  function  value

f x P X x  for  a  discrete  random  variable  X  that  has  the  distribution

specified in the first argument (including parameters of the distribution).  In

the case of continuous random variables, PDF returns the density at point x.

The  CDF  function  returns  the  cumulative  distribution  function  value

F x P X x  in  both  the discrete and  continuous  cases.   You might also

find occasion to use the functions
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Mean distribution ;

Variance distribution ;

which  return  the  mean  and  variance  of  the  given  distribution.   To  simulate

values from a given distribution, we have

Random distribution ;

RandomArray distribution, n ;

which,  respectively,  return  a  single  value  and  a  list  of  n  values  simulated

from the given distribution.  

EXAMPLE  1.   Suppose  that  arrivals  of  buses  to  a  stop  form  a  Poisson

process  with  rate   equal  to  4  per  hour.   Then,  for  instance,  the probability

that there are strictly more than 4 arrivals during the next hour is:

P T5 1 P N1 5 1 P N1 4 1
k 0

4 e 4 4k

k

Note  that  by  Theorem  2,  the  random  variable  N1  has  the  Poisson(4·1)

distribution.  In  Mathematica  we  can  calculate  P N1 4  either  by  directly

requesting  the  c.d.f.  value  at  4,  or  by  adding  the  terms  of  the  probability

mass function from 0 to 4, as shown below.

dist PoissonDistribution 4 ;

N 1 CDF dist, 4

N 1 Sum PDF dist, k , k, 0, 4

0.371163

0.371163
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Carrying  the  example  further,  what  is  the  probability  that,  given  that  there

have been exactly 4 arrivals in the first hour, there will be exactly 8 buses by

the end of the third hour?  This is

(4)

P N3 8 N1 4 P N3 N1 4 N1 4

P N3 N1 4

P N2 4

e 4 2 4 2
4

4

N PDF PoissonDistribution 8 , 4

0.0572523

You are asked to verify the first line of (4) in Exercise 2.  The second line of

(4)  is  by  the  independent  increments  property,  and  the  third  line  is  by

stationarity, since the number of arrivals between times 1 and 3 has the same

distribution as the number of  arrivals in the first  2 hours.   Only the elapsed

time matters.  

Thus  far,  the  small  questions  that  we  have  asked  could  be  answered  by

hand  computation;  Mathematica  was  just  a  convenience.   A  more  sophisti-

cated question necessitates the use of the computer.  How fast must the rate

of  arrivals  be such that  the probability  that  at  least  4  buses  will  come in an

hour is at least 80%?  

The  probability  of  at  least  4  buses  in  the  first  hour  (or  any  hour)  is

P N1 4 1 P N1 3 .   Since the time period is 1 hour,  the distribution

of  N1  is  Poisson( ·1).   To require  that  P N1 4  be  at  least .8  is  to  require

that P N1 3  be no more than .2.  So we define a function of the parameter

 that  returns the probability that N1 3,  and study it  to find out  where  the

probability hits .2.  

P3orfewer _ : CDF PoissonDistribution , 3 ;

g1 Plot P3orfewer , .2 ,

, 1, 10 , DefaultFont "Times", 8 ,

DisplayFunction Identity ;

g2 Plot P3orfewer , .2 , , 5.51, 5.52 ,

DefaultFont "Times", 8 ,

DisplayFunction Identity ;

Show GraphicsArray g1, g2 ,

DisplayFunction $DisplayFunction ;
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(a)                                                                           (b)

Figure 5.2 – Finding the rate  such that P N1 3  is no more than .2 

(Why  does  this  curve  decrease?)   As  shown  in  part  (a)  of  Figure  5.2,  the

crossover  point  seems  to  be  around  5.5.   Some  zooming  shows  that  to

the second decimal place, 5.52, as in part (b) of the figure.   

Activity 3 – Referring to Example 1, at least how fast must the rate  be

such that the expected number of arrivals in an hour is 4?  (Yes, this is a

"Who is buried in Grant's Tomb?" question, but it directs your attention

to  the  meaning  of  ,  and  why  it  is  called  the  rate  parameter  of  the

process.)  How slow must the rate be so that the probability of 2 or fewer

buses in an hour is at least 50%? 

EXAMPLE  2.   Let  us  continue  the  bus  example  by  calculating  some

expectations.   First,  the  expected  number  of  buses  to  arrive during  the time

period 2.5, 10  is

E N10 N2.5 E N7.5 4 7.5 30

by stationarity.  By independent increments, this is the same, for example, as

E N10 N2.5 N1.5 3 .  

The expected time of arrival of the fourth bus is

E T4 E T1 T2 T1 T3 T2 T4 T3

4 E T1 4 1 4 1

since  the  inter-arrival  times  Ti 1 Ti  have  identical  exponential  distribu-

tions with parameter 4, and the mean of such a distribution is 1/4.   

If  we know that  the first  bus  arrived at  time 2 hours  (a long wait),  then

the expected time of arrival of the second bus is
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E T2 T1 2 E T1 T2 T1 T1 2

E T1 T1 2 E T2 T1 T1 2

2 E T2 T1 2 1 4

Notice that it does not matter that the first bus was late; the second bus is still

expected  to  arrive  15  minutes  later,  which  is  the  average  inter-arrival  time.

This  is  another  instance  of  the  "memoryless"  property  of  the  exponential

distribution.  

Finally,  to  compute  probabilities  involving  the  arrival  times  Tn  we  can

appeal to Mathematica.  For instance, the probability that the 10th bus comes

between time 5 and 6 is P 5 Tn 6 F 6 F 5 , where F is the c.d.f. of

the distribution of Tn, which is 10, 1 4 , by Theorem 1.  We compute this

below.  

F x_ : N CDF GammaDistribution 10, 1 4 , x ;

F 6 F 5

0.00457002

EXAMPLE 3.   Suppose that dividends on an investment arrive at the times

Ti of a Poisson process with parameter , and the worth to the investor of the

ith  dividend in present day terms is f Ti .  Typically the function f would be

a  decreasing  function  of  time,  such  as  f t c e t,  where  0.   Let  us

calculate  the  expected  present  worth  of  dividends  received  during  the  time

interval 0, t .  Observe that this is the same as:

E i 1
Nt f Ti E E i 1

Nt f Ti Nt

where Nt  is the number of dividends by time t,  whose distribution is known

to  be  Poisson t .   By  Theorem  3,  given   Nt n,  the  random  variables

Ti, i 1, ... , n  have the same joint  distribution as  the uniform order  statis-

tics  on  0, t ,  and  thus  f Ti  has  the  same distribution  as  f Ui ,  where

the  variables  Ui  are  independent  and  uniformly  distributed  on  0, t .   The

expected value of this sum is therefore:

E i 1
n f Ui i 1

n E f Ui n E f U1 n
0

t f u 1
t d u

Hence,

E i 1
Nt f Ti E Nt

1
t 0

t f u d u
1
t 0

t f u d u E Nt

0

t f u d u
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since E Nt t.   

Activity  4  –  In  Example  2,  if  dividends  are  constantly  $50  and  money

discounts  continuously  at  rate  5%  (that  is,  .05),  find  the  present

value of the dividend stream through time 10. 

EXAMPLE 4.  Commuters arrive to a train station at which trains are ready

to  load and depart.   Under  the  current  plan of  the transit  authority,  a  single

train  leaves  at  precisely  T  minutes  after  the  hour,  and  it  is  assumed  to  be

large enough to carry all waiting passengers.   But the transit authority finds

that it is able to increase service by providing another train, to leave at some

time t earlier than T, taking with it all the commuters who have arrived to the

station  by  that  time.   At  what  time  should  this  new  train  be  scheduled  to

leave  so  as  to  minimize  the  expected  total  waiting  time  of  all  commuters

arriving in 0, T ?

We shall assume that arrivals of commuters form a Poisson process Nt
with some rate .  Let their times of arrival be denoted by T1, T2, T3, ...  , as

usual.   The  expected  total  waiting  time of  all  commuters  is  the  sum of  the

expected  waits  of  those  arriving  before  t  plus  the  expected  waits  of  those

arriving in t, T .   If Ti t,  then commuter i  waits for t Ti  minutes.  Thus,

the total expected wait by arrivals prior to t is

(5)E i 1
Nt t Ti n 0

E i 1
Nt t Ti Nt n P Nt n

We  have  used  the  law  of  total  probability  in  (5).   Given  Nt n,  the  inner

sum  has  the  same  distribution  as  the  sum  of  n  random  variables  t Ui ,

where  the Ui's  are  uniformly distributed on 0, t .   The conditional  expecta-

tion in (5) is therefore

n
0

t t u 1
t d u n t 2

after calculation.  Substituting back into (5) gives us the expected total wait

of commuters arriving prior to time t:

n 0 n t 2 P Nt n t 2 E Nt t2 2

The  same  reasoning  applied  to  the  time  interval  t, T ,  which  has  length

T t,   shows that the total expected wait of commuters arriving after time t
is  T t 2 2.  Therefore the objective function for the problem of minimiz-

ing expected total waiting time has the form

f t t2 2 T t 2 2, t 0, T
f t t T t 1
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It  is  easy  to  check  that  the  critical  point  is  t T 2,  and  that  the  absolute

minimum of the objective is taken on at the critical point.  The conclusion is

that,  regardless of  the actual value of  the arrival rate, as long as arrivals are

Poisson, we should dispatch the first train at the halfway mark T 2 in order

to  minimize expected  total  waiting  time.   The  value  of  the  objective  at  the

optimum point, however, does depend on .  

Activity 5  –  Verify  the claim in  Example 4 that  the expected total wait

of commuters arriving after time t is T t 2 2.

Exercises 5.1

1.  (Mathematica) Calls arrive to a central telephone exchange according to a

Poisson process with rate 3.6 per minute.  Let Nt  be the total number of

calls up to and including the tth minute.  Compute

(a)  P N1.5 1

(b)  P N1.5 1 N.7 0

(c)  P N.7 0, N1.2 0, N1.5 1

2.  Verify the first line of (4).

3.   A  clock  hangs  precariously  on  a  wall,  falling  occasionally.   The  clock

ceases  to  work  when  it  falls  for  the  kth  time.   If  falls  occur  according  to  a

Poisson  process  with  rate  2  per  week,  find  the  probability  distribution,

mean, and variance of the time until the clock breaks.

4.  If Nt  is a Poisson process with rate , find

(a)  E Nt s Nt
(b)  E Nt Nt s

5.  Suppose that patients arriving to a doctor's office form a Poisson process

with rate  per hour.   Given that there are n  patients during the 8-hour day,

what is the probability that there were k patients during the first 3 hours?

6.   (Mathematica)  In  order  for  a  machine  to  continue  functioning,  each  of

two parts must work.  One replacement is available for each of the parts.  A

part  lasts  for  an  exponentially  distributed  amount  of  time  with  parameter

.03 before breaking, and parts behave independently of one another.  

(a)   If  T  is  the time when the machine will  no longer function,  find and

graph as a function of t, P T t . 

(b)  Compute the probability density function of  T.

338 Chapter 5 Continuous Time Processes



(c)  Find E T . 

(d) Graph as a function of  the probability that the machine lasts for at

least 100 time units.

7.  Suppose that cars traveling west on a two-lane highway pass a fixed point

on the road at the times of  a Poisson process with rate 1,  and similarly the

eastbound cars form a Poisson process with rate 2,  independent of the first

process.   Find the  distribution  of  the  total  number  of  cars  passing  the fixed

point by time t.  (Hint: Use moment-generating functions.)

8.   In  Example  3,  suppose  that  f  is  a  non-negative  function  such  that

0
f t d t  is finite.  Find the expected present value of all dividends earned

throughout time.

9.   (Mathematica) A telephone customer service system can give an accept-

able  service  level  if  it  receives  no  more  than  two  calls  per  minute.   The

supervisor of the system has a quality goal of giving acceptable service 95%

of  the  time.   If  incoming  calls  form a  Poisson  process  with  rate  ,  at  most

how large can  be without failing the quality goal?

10.   Let  T1  and  T2  be  the  first  two  arrival  times  of  a  Poisson  process  Nt .

Show that the joint conditional density of  T1 and T2,  given Nt 2,  is

f t1, t2
2 t2 if 0 t1 t2 t

0 otherwise

11.   Cabs arrive to drop passengers  off  at  an airport  according to a Poisson

process with rate 1 per minute.  A cab can contain 1, 2, or 3 passengers with

probabilities 2/3,  1/6,  and 1/6,  respectively.  The number of passengers  in a

cab is independent of the number in every other cab, and is also independent

of  the  cab  arrival  process.   Find  the  expected  number  of  passengers  that

arrive in a 30-minute period.  (To justify your answer, condition and uncondi-

tion on the number of cabs that arrive.)

12.   Customers  arrive  to  a  store  according  to  a  Poisson  process  with  rate

10  per  hour.   On  average,  one  fourth  of  all  customers  buy  something,

and  their  decisions  are  made  independently  of  other  customers  and  of  the

arrival  process.   Find  the  expected  number  of  purchases  made  during  a

2-hour  period.  (To  justify  your  answer,  condition  and  uncondition  on  the

number of customers that arrive.)

13.   Suppose  that  the  number  Nt  of  salmon  that  have  passed  a  point  on  a

river by time t forms a Poisson process with rate 2 per minute.  The probabil-

ity  is  1/4  that  a  given  salmon  is  over  five  pounds,  and  successive  salmon

weights  are  independent  of  one  another.   Show that  the  arrival  process  that
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counts  only  the  number  of  salmon  exceeding  five  pounds  is  also  Poisson,

and find its rate.

14.   As illustrated in the diagram below, Wagner  Ct.  and Schneider  Dr.  are

parallel  one-way  eastbound  roads,  and  Scott  Ave.  is  a  one-way  northbound

road  that  terminates at  Wagner.   Cars arriving to  intersection 1 on  Wagner,

intersection  2  on  Schneider,  and  intersection  2  on  Scott  form  Poisson

processes  with  rates  4  per  minute,  6  per  minute,  and  3  per  minute,  respec-

tively.  At intersection 2, the probability that a car from Schneider turns left

on  Scott  is  1/2  and  the  probability  that  a  car  from  Scott  turns  right  on

Schneider  is  1/3.   Decisions  by  a  car  to  turn  are  made independently  of  all

other  cars.   Find  the  expected  number  of  cars  per  unit  time  passing  out  of

intersection 1, east on Wagner.

1

2

Scott Ave.

Schneider Dr.

Wagner Ct.

Exercise 14

15.  (Mathematica) (a) Write a Mathematica  command to simulate a desired

number of arrival times T1, T2, ...  of a Poisson process with a desired rate .  

(b)  Write  a Mathematica  command that  accepts  a  list  of  arrival  times and a

particular time t, and returns the value of Nt. 

5.2  Birth and Death Processes

Preliminaries

We now study a different  generalization of  the Poisson process.   The times

between  successive  jumps  are  once  again  exponentially  distributed,  but  the

rate  parameter  may depend  on  the  current  state  i  of  the  process.   Also,  we

allow the  process  to  jump down by  one  unit,  as  well  as  up  by  one  unit.   A

typical path is in Figure 5.3.
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Figure 5.3 – A sample path t Nt  for a typical outcome  of a birth–death process

One  might  choose  such  a  model  for  population  processes,  in  which  a

jump  upward  represents  a  "birth"  or  migration  into  the  system, and  a  jump

downward  represents  a  "death"  or  migration  out  of  the  system.   These

processes  are  also  used  as  models  in  queueing  theory,  where  a  birth  is  an

arrival of  a customer to the waiting line and a death is a departure from the

line  after  service.   In  Section  4,  we  will  apply  the  results  of  this  section  to

queueing problems.

Before  giving  the  precise  definition  of  a  birth–death  process,  some

motivation is required.   At a moment when the current population level is i,
we may determine the amount of time until the next change in population, as

well as whether that change is a birth or a death, by observing two indepen-

dent random variables.  The first, say U, is thought of as a "birth time," and

is  exponentially  distributed  with  rate  i.   The  second  is  a  "death  time"  W,

which is also exponentially distributed with some rate i.   The next popula-

tion change will occur at the random time S min U , W .  If this minimum

is  U,  then  the  next  change  is  a  birth,  otherwise  it  is  a  death.   To  find  the

probability distribution of the time S until the next change in population, we

compute

(1)

P S h P U h, W h
P U h P W h
e i h e i h

e i i h

Therefore  the time until  the next  jump is exponentially distributed with rate

equal  to  the  sum of  the birth  and death rates.   The probability  that  the next

change is a birth is the same as the following probability:
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(2)

P U W
0

u
i e i w d w i e i u d u

i
0

e i i u d u

i
i i

Hence, the probability that the next change is a death is

(3)1 i
i i

i

i i

The  birth  and  death  rates  therefore  completely  determine  the  probabilistic

structure of the process.

Activity  1  –  Is  the exponential  distribution special  in  this  construction?

To  address  this,  what  do  you  get  for  the  probability  distribution  of  S  if

you assume that U  has the uniform distribution on 0, 2 i  and W  has

the  uniform  distribution  on  0, 2 i ?   What  is  the  probability  that  the

next change is a birth? 

The discussion above should make the following definition intuitive.

DEFINITION 1.   For  each  i E 0, 1, 2, 3, ... ,  let  there  be  given  a

constant i  and a constant i.   Let  Nt t 0  be a process with state space

E,  such  that  almost  every  path  t Nt  increases  or  decreases  by

jumps of size ±1 only.  Let  T0 0, T1, T2, ...  be the sequence of jump

times of Nt ,  and let X0, X1, X2, ...  be the sequence of states occupied

by Nt , i.e.:

Nt Xn if Tn t Tn 1

                                           

The process Nt  is called a birth–death process with birth rates i  and

death rates j  if:

(a)   For  each  n 1,  the  conditional  distribution  given  Xn j  of

Tn 1 –Tn  is  exponential  with  rate  j j,  and  is  conditionally  indepen-

dent of  T1, T2, ..., Tn  and  X1, X2, ... , Xn 1 given Xn j;
 (b)  Xn  forms a Markov chain with transition probabilities

 

P Xn 1 j 1 Xn j j

j j
  ,  P Xn 1 j 1 Xn j j

j j
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Roughly  speaking,  a  birth–death  process  spends  an  exponential  amount

of  time  in  each  state  before  moving  to  an  adjacent  state.   Only  the  current

state affects the probability law of the waiting time until the next change, and

the  law of  the  next  state  visited.   The parameters j  and  j  are  the  rates  at

which transitions upward and downward, respectively, are made.  Their sum

is the rate at which any sort of transition is made.  The relative size of j  to

j j dictates the probability that the next jump will be a birth rather than a

death.   Observe  that  in  order  for  the  formula for  P Xn 1 j 1 Xn j  in

part  (b)  of  the  definition  to  make  sense  in  the  case  j 0,  we  must  have

0 0.  That is, when the population has size 0, deaths occur at rate 0.

EXAMPLE 1.    A hospital has N  beds.  New patients appear according to a

Poisson process  with rate ,  but  they are turned away if  the hospital  is  full.

When j beds are occupied, we assume that the time until the next departure,

either  by  a  death  or  a  release  of  a  patient,  is  exponentially  distributed  with

rate  j.  (This  is  an  appropriate  assumption  if  each  of  the  j individuals

present  tends  to  depart  at  the  same rate  .)    Granting  the  independence  of

future arrivals and departures from the past history, it is reasonable to model

the  number  of  beds  Nt  occupied  at  time  t  by  a  birth–death  process.   The

parameters are

(4)j
if j 0, 1, 2, ... , N 1

0 if j N   ,   j j, if j 0, 1, 2, ...

We have set j 0 for j N  because when all beds are occupied, no one is

admitted, even if people are arriving in search of care.  This fact also limits

the state space to 0, 1, ... , N , because in order to reach the complement of

this set, the process first must go through state N  and hence,

P Xn 1 N 1 Xn N N
N N

0
0 N 0

It follows that for j N , it does not matter how j is defined.  

To  understand  birth–death  processes  better,  and  to  enable  us  to  observe

their  properties,  it  is  helpful  to  develop  a  command  in  Mathematica  to

simulate them.  To characterize the sample path, we will need to produce the

sequence  of  jump  times  T1, T2, T3, ...  and  the  sequence  of  states  visited

X1, X2, X3, ...  up  to  some  fixed  time  t,  which  will  be  one  of  the  input

parameters.  As other input parameters, we will need the initial state X0, and

functions  i  and  i that  give  the  birth  and  death  rates.   We  will  use  the

strategy  of  the  beginning  of  the  section,  simulating  an  inter-jump  time  as

S min U , W ,  where U  and W  are suitable exponential  random variables,

and simulating the next state as the current state plus or minus 1, depending

on  whether  U  was  smaller  than  W  or  not.   Based  on  this  discussion,  the
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following  code  should  be  straightforward.   A  slight  technicality  is  that  the

ExponentialDistribution  is  undefined  if  the  parameter  is  0;  so  we  add  If

statements to make sure that the parameter is positive, which will return  if

not.   The  command below  is  also  contained  in  the  KnoxOR`StochasticPro-

cesses`  package,  which  is  loaded  automatically  in  the  electronic  version  of

this section when you evaluate initialization cells.

SimBirthDeathProcess x0_,

finaltime_, birthrate_, deathrate_ :

Module timelist, statelist,

U, W, S, currtime, i ,

initialize the lists

timelist ;

statelist x0 ;

currtime 0;

i 1;

While currtime finaltime,

while there is more time to go in

the simulation, simulate the next

birth and death time intervals

U If birthrate statelist i 0,

Random ExponentialDistribution

birthrate statelist i , Infinity ;

W If deathrate statelist i 0,

Random ExponentialDistribution

deathrate statelist i , Infinity ;

S Min U, W ;

update the list of jump times,

and the list of states

AppendTo timelist, currtime S ;

If U W,

AppendTo statelist, statelist i 1 ,

AppendTo statelist, statelist i 1 ;

advance clock to the jump time just

added, and advance subscript

currtime timelist i ;

i i 1 ;

timelist, statelist ;
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Here is an example in which births occur at a constant rate of 2 per unit

time when the population size is at least 0, and deaths occur at a rate of 3 per

unit time when the population size is at least 1.  

i_ : If i 0, 0, 2 ;

i_ : If i 0, 0, 3 ;

SeedRandom 456347 ;

SimBirthDeathProcess 0, 4, ,

0, 0.16583, 0.387183, 1.06746,
1.29945, 1.52056, 1.7819, 1.81948, 1.83295,

2.4456, 2.57291, 2.62224, 2.89913, 3.04436,
3.12149, 3.43512, 3.57244, 4.04572 ,

0, 1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3

Then  starting  from  state  0,  at  about  time  0.166  the  first  birth  happened,

followed by a death at  about  time 0.387.   At about  time 1.07  the next  birth

occurrred, bringing the population size back up to 1, etc.  

Activity  2  –  Run  the  SimBirthDeathProcess  command  several  more

times, for longer time periods than just 4 units.  Make note of the largest

population size throughout  time for each of your runs.  Is it common to

get very large populations?   What do you think the choice of values for

the  constant  rates   and   have  to  do  with  this  question?   Try  to  find

values of  and  that make the population grow very large within 5 time

units.  

Kolmogorov Equations

In problems such as the hospital example above, we might well be interested

in such quantities as

(5)Pi j t P Nt j N0 i , i, j E

which is the probability that j beds will be occupied at time t, if there were i
patients  initially.   Unfortunately,  these  short-run  probabilities  are  hard  to

calculate.   But  by  looking  at  Pi j t  as  a  function  of  t,  we  can  heuristically

derive a system of differential equations satisfied jointly by these functions.

The  reasoning  alone  is  worth  seeing,  for  it  appears  often  in  the  study  of
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stochastic  processes.   But  more  than  that,  as  a  consequence  we  will  derive

explicit expressions for the limiting probabilities:

(6)p j limt P Nt j N0 i

which turn out to be independent of the initial population i.
Referring to equation (1),  P S h e i i h, by a Taylor expansion of

the function exp i i h  about 0, we see that when the current popula-

tion is i, the probability that there will be no change in population in the next

h time units is approximately

1 i i h

The  error  of  approximation  involves  powers  h2  or  higher.   Similarly,  the

probability of a birth in the next h  time units is approximately i h,  and that

of a death is approximately i h.  In an effort to form a differential equation

for  Pi j t ,  let  us  write  an  expression  for  Pi j t h  by  conditioning  on  the

population at time t.  First take j 1.  If h is small enough, then the event of

having  two  or  more  births  or  deaths  in  h  time  units  should  have  negligible

probability  (order  h2  or  smaller).   Ignoring  such  unlikely  events,  there  are

only three ways in which we could have a population of j at time t h:

1.   The population  at  time t  was j 1,  and  there  was  a  birth  during  the

time interval t, t h ;  or

2.   The  population  at  time  t  was  j,  and  there  was  neither  a  birth  nor  a

death during t, t h ;   or

3.   The  population  at  time  t  was  j 1,  and  there  was  a  death  during

t, t h .

Therefore, by the law of total probability, we have the following approxima-

tion, which ignores only events having probability of the order h2:

(7)Pi j t h Pi, j 1 t j 1 h Pi j t 1 j j h Pi, j 1 t j 1 h

Subtraction of Pi j t  from both sides yields

Pi j t h Pi j t
h j 1 Pi, j 1 t j j Pi j t j 1 Pi, j 1 t

Now  divide  both  sides  by  h  and  let  h  approach  0.   The  error  term  in  the

above approximation, involving powers h2  or higher, approaches 0. Thus we

have the system of differential equations:
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(8)Pi j t j 1 Pi, j 1 t j j Pi j t j 1 Pi, j 1 t , j 1

Similar reasoning (see Exercise 3) for the j 0 case leads to the differential

equation

(9)Pi 0 t 0 Pi 0 t 1 Pi 1 t

The  equations  derived  heuristically  in  the  last  paragraph  are  called  the

Kolmogorov forward equations for birth–death processes, and can be given a

rigorous foundation under regularity conditions on the birth and death rates.

Reasoning  again  nonrigorously,  it  is  at  least  plausible  that  if  the  limit  as

t  of Pi j t  does exist, then this function should be stabilizing, so that its

derivative approaches 0 as t .  Letting t  on both sides of (8) and (9)

gives  a  system  of  linear  equations  for  the  limiting  probabilities

p j limt Pi j t :

(10)

0 0 p0 1 p1

0 j 1 p j 1 j j p j j 1 p j 1

These  equations  can  be  solved  recursively.   We  leave  p0  temporarily

arbitrary,  solve  for  the  other  p j  in  terms  of  p0,  and  then  set

p0 p1 p2 1 to find p0.  The first equation gives

1 p1 0 p0 p1
0

1
p0

Substituting this into the next equation in (10)  (i.e., the equation for the case

j 1) yields

0 p0 1 1 p1 2 p2 0

2 p2 1 p1 1 p1 0 p0 1 p1

p2
1 p1

2

0 1

1 2
p0

Activity 3 – Show as above that p3
0 1 2

1 2 3
p0.

One  can  show  easily  by  induction  that,  since  the  remaining  equations  in

system (10) have the same form as the second equation,

(11)p j
0 1 j 1

1 2 j
p0

The condition that the sum of all of the p j equals 1 implies that
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1 p0 p0 j 1

0 1 j 1

1 2 j

If the series is convergent, then we have the non-zero solution:

(12)p0 1
j 1

0 1 j 1

1 2 j

1

Our  detailed  plausibility  argument  motivates  the  following  theorem,

whose formal proof we omit.

THEOREM  1.    If  the  infinite  series  in  (12)  converges,  then  the  limiting

probabilities p j limt Pi j t  for a birth-death process Nt  with birth rates

i  and death rates i  are as in (11) and (12).  

Examples

EXAMPLE 2.  We return to the hospital problem, Example 1.  The long-run

probability of having no patients is, by Theorem 1,

p0 1
k 1

N k

k k

1

k 0

N k

k k

1

For j 1, 2, ... , N , the long-run probability of having j patients is

p j
j

j j p0

Here  are  Mathematica  functions  that  let  us  compute  these  quantities,  in

terms of , , and the number of beds N0.

Clear , , N0, p0 ;

p0 _, _, N0_ :

1 1 NSum k k k , k, 1, N0 ;

p j_, _, _, N0_ :
j

j j
p0 , , N0 ;
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These functions allow us to easily examine the sensitivity of the distribution

of the number of  patients to changes in the arrival  rate ,  the departure rate
, and the number of beds N0.  For example, for N0 20, and departure rate

4  per  unit  time, Figure  5.4  contains  connected list  plots  of  the  distribu-

tions for 8 and 15 per unit time.  The median occupancy grows only

from  about  2  to  about  4,  which  is  unexpectedly  modest;  however,  it  is  not

out  of  line  when  you  remember  that  the  overall  rate  of  departure  from  the

system when k  beds are occupied is k , not just , which tends to empty out

the hospital.  

Needs "Graphics`MultipleListPlot "̀ ;

problist8 Join 0, p0 8, 4, 20 ,

Table j, p j, 8, 4, 20 , j, 1, 20 ;

problist15 Join 0, p0 15, 4, 20 ,

Table j, p j, 15, 4, 20 , j, 1, 20 ;

MultipleListPlot problist8, problist15 ,

PlotJoined True, PlotStyle

RGBColor 0, 0, 0 , Dashing .01, .01 ,

DefaultFont "Times", 8 ;

5 10 15 20

0.05

0.1

0.15

0.2

0.25

Figure 5.4 – Limiting bed occupancy probabilities, 8 (solid), 15 (dashed)

Most  of  the  interesting  questions  about  this  example  would  have  to  be

answered  numerically  as  we  have  just  done,  but  there  are  some  interesting

analytical results.   Suppose that each patient pays at a rate of $200 per day.

Then the long-run expected revenue per day for the hospital is

5.2 Birth and Death Processes 349



limt E 200 Nt 200 limt E Nt

200 limt j 1
N j P Nt j N0 i

200 j 1
N j p j

200 p0 j 1

N
j

j

j

200 p0 k 0

N 1 k

k

200 p0
1
p0

N

N

200 1
p0

N

N

This  can  be  calculated  for  a  given  number  of  beds  N  and  given  arrival  and

departure  rates  and .   It  is  interesting to note that  this long-run  expected

revenue per day reaches a limit as the number of beds N  approaches infinity.

As  N ,  the  term  N N  approaches  zero,  thus  the  long-run

expected revenue per day converges to 200 .  As shown in Figure 5.5 for

the case where 30 and 4, the convergence of the expected revenue as

a function of the number of beds is rather rapid; the hospital will get almost

all the revenue that it will be able to get by about N 15 beds. 

exprev _, _, N0_ :

200 1 p0 , , N0
N0

N0
;

exprevlist Table N0, exprev 30, 4, N0 ,

N0, 5, 22 ;

ListPlot exprevlist, PlotJoined True,

DefaultFont "Times", 8 ;

7.5 10 12.5 15 17.5 20

900

1000

1100

1200

1300

1400

1500

Figure 5.5 – Limiting expected revenue per day as a function of the number of beds
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Activity 4 – Try several combinations of values of  and  for a 20-bed

hospital and plot the limiting distribution of the number of patients.  If 

is fixed at 4, about how large should  be so that the peak of the distribu-

tion is around 10?

EXAMPLE  3.   Suppose  that  at  time  0,  one  person  among  a  family  of  M
individuals  has  a  cold.   Other  family  members  contract  the  cold  at  random

times T1, T2, ... .  Suppose that at any time, the distribution of the time until

the  next  person  contracts  the  cold  is  exponentially  distributed,  independent

of  the  past.   The  rate  at  which  the  disease  spreads  is  proportional  to  the

product  of  the  number  infected  times  the  number  uninfected.   Find  the

expected  value  and  variance  of  the  amount  of  time  required  for  the  whole

family to contract the cold.

A typical path of the process Nt   = number infected by time t is in Figure

5.6, in the case of M 9 family members.  (Why do you think that the path

exhibits a slight S-shape, longer at the ends and more vertical in the middle?)

0.8 1.4 2.6 3.3 3.9 4.8 6.1 7.1
0

2

4

6

8

Figure 5.6 – Number infected as a function of time for a fixed outcome 

The process proceeds deterministically through the states 1, 2, ..., M  in that

order,  jumping  at  times  Ti  such  that  the  intervals  Ti 1 Ti  are  exponential

random  variables.   When  there  are  i  infected  individuals,  the  uninfected

population contains M i individuals, and the rate at which a jump occurs is:

(13)i c i M i , i 0, 1, 2, ... , M

for  some  constant  c.   Thus,  we  have  a  special  birth–death  process  called  a

pure birth process in which there are no deaths, and the birth rates are given

by (13).

Notice  that  Ti 1, Ti  is  the  time  interval  in  which  exactly  i  individuals

are  infected  (for  convenience,  we  set  T0 0),  for  i 1.   Also,  TM 1  is  the

first  time  that  Nt M ,  since,  starting  from  state  1,  the  process  must  jump
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M 1  times  to  reach  state  M .   We  can  compute  the  mean  and  variance  of

TM 1 by telescoping in the following way:

(14)TM 1 TM 1 TM 2 TM 2 TM 3 T2 T1 T1

Because the mean of the exponential distribution is the reciprocal of the rate,

(15)

E TM 1 i 1
M 1 E Ti Ti 1

i 1

M 1 1
c i M i

For  example,  if  c .1,  and  the family size  M 9,  then  the  mean time until

the whole family gets the cold is

Sum
1

.1 i 9 i
, i, 1, 8

6.03968

Because  the  times  between  jumps  are  independent,  and  the  variance  of  the

exponential distribution is the square of the reciprocal of the rate,

(16)

Var TM 1 i 1
M 1 Var Ti Ti 1

i 1

M 1 1
c i M i

2

For  the  case  c .1  and  M 9  again,  the  variance  of  the  time until  they all

get the cold is

Sum
1

.1 i 9 i

2

, i, 1, 8

5.26269

The previous results on limiting distributions do not apply here, because the

death  rates  are  zero.   But  it  is  intuitively  obvious  that  as  time  approaches

infinity, the number of infected individuals converges to M, and the limiting

distribution is therefore degenerate with all of its weight on M.  

352 Chapter 5 Continuous Time Processes



Exercises 5.2

1.  Let Nt  be a birth-death process with only two states, 0 and 1.  Denote by

 the birth rate at state 0, and  the death rate at state 1.

(a)  Write the Kolmogorov forward equations for P00 t  and P11 t .

(b)  Solve the equations obtained in part (a).

(c)  A pay phone may be either engaged (state 1) or unengaged (state 0).

Assuming  that  a  birth-death  process  is  an  appropriate  model,  find  the

long-run proportion of time that the phone is engaged.

2.   (Mathematica)  Write  a  Mathematica  function  to  take  the  output  of  the

SimBirthDeathProcess  command  and  find  the  proportion  of  time  that  the

process was in each of the states it visited.  

3.  Give a plausibility argument for the forward equation for Pi 0 listed in (9).

4.  (Mathematica) In Example 2, for 20 and 5, what number of beds

N  is  necessary  so  that  the  hospital  can  come  within  $5  of  their  highest

possible long-run expected profit per day?  

5.   A  single  individual  in  an  essentially  infinite  population  has  a  disease

initially.   Let  Nt  be  the  cumulative  number  of  individuals  who  have  con-

tracted  the  disease  by  time  t;  thus  Nt  is  a  non-decreasing  process.   We

assume that the rate of transfer  of the disease is,  at every time, proportional

to the number of individuals who have had the disease.

(a)   Make  appropriate  assumptions  so  that  Nt  forms  a  birth–death

process, and find the birth and death rates.

(b)  It is possible to show inductively that the c.d.f. of the nth  jump time

Tn is

                                        P Tn t N0 1 1 e t n

                                        

where   is  the  proportionality  constant  mentioned  above.  (The  idea  is  to

condition  and  uncondition  on  the  value  of  Tn 1,  producing  a  rather  messy

integral  that  nonetheless  yields  to  a  succession  of  standard  integration

techniques.)  Use this formula to show that

                     P1 j t P Nt j N0 1 e t 1 e t j 1

6.   Write  the  Kolmogorov  forward  equations  for  the  process  in  Exercise  5,

and verify that P1 j t  listed in part (b) satisfies them.
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7.  (Mathematica) In Example 3, for a family of size 10, what is the smallest

value of  the transmission constant  c  such that  the mean time until  everyone

has the cold is no more than 3 days?

8.   A population  begins with  n  individuals,  who die at  the times of  a  birth-

death process with death rates i,   i 1, ..., n.   Write an expression for the

mean  and  variance  of  the  time  until  extinction  of  the  population.   If  n  is

even,  j 1 4  for  j n 2,  and  j 1 3  for  j n 2,  calculate  the  exact

mean and variance of the extinction time.

9.   A  delicatessan  has  four  service  lines,  each  manned  by  one  server.   The

food is not particularly good there, so customers who arrive when all servers

are busy just decide to go to some other restaurant.  Suppose that the times at

which  customers  arrive  form a  Poisson  process  with  rate  2  per  minute,  and

the duration of a service is exponential with mean 5 minutes, independent of

other  services  and  of  the  arrival  process.   Find  the  long-run  distribution  of

the number of busy servers.

10.  The size of a fish population follows a birth-death process.  Suppose that

the  birth  rate  when  there  are  no  fish  is  some  positive  constant  0  (i.e.,

migration to empty water is possible); otherwise the birth rate is proportional

to the number of fish present.  The death rate when there is only one fish is

some  positive  constant  1;  otherwise  the  death  rate  is  proportional  to  the

population  size  minus  one.   Find  the  limiting distribution  of  the  population

size.

11.  An electric generator can be running at one of three speeds at any time:

high, low, or off.  It cannot change directly from high to off, nor from off to

high.   When  it  is  on  low,  the  probability  is  2/3  that  it  will  next  go  to  high,

and  consequently  1/3  that  it  will  shut  off  when  the  next  change  of  state

comes.   The  amount  of  time  that  the  generator  stays  in  each  of  the  three

states  H,  L,  and  O   is  exponentially  distributed,  with  rates  H ,  L,  and  O,

respectively.  Model the speed as a birth-death process, and find the limiting

probabilities for each state.

12.   In deriving the forward equations,  we conditioned on the population at

time t  in order to approximate Pi j t h .   Give a similar argument in which

you condition on the population at time h instead.  The resulting differential

equations are called the Kolmogorov backward equations.
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5.3  Renewal Processes

Introduction

In this section, we generalize the Poisson process by permitting inter-arrival

times to have distributions other than exponential.  The common distribution

function  of  the  inter-arrival  times will  be  denoted  throughout  the section as

F.   And,  in  place  of  the  phrase  "arrival  times"  we  will  now  use  "renewal

times," anticipating that these times are instants of some kind of regeneration

of a process,  so that the future of the process after one of these times looks

probabilistically the same as the future after any other of the renewal times.

As  in  Poisson  processes,  we  use  Nt  to  indicate  the  number  of  renewals

through time t.

DEFINITION  1.   A  counting  process  Nt  with  renewal  times

T0 0, T1, T2, T3, ...   is  called  a  renewal  process  if  the  inter-renewal

times:

S1 T1 T0, S2 T2 T1, S3 T3 T2, ...

are i.i.d. random variables with c.d.f. F and mean 0, .

EXAMPLE 1.  There are many situations in which renewal processes might

reasonably be used as models.  For example, the times T1, T2, T3, ...  may be

times of demand by customers for an item stocked in an inventory.  Then Nt
is the number of items requested by time t.  Alternatively, Ti  might represent

the ith time at which a certain machine has been repaired.  If each repair costs

c  dollars,  then c Nt  is  the  total  repair  bill  up  to  time t.   Renewal  processes

have also been used to advantage in the study of  queues,  in which Ti  is  the

time  of  arrival  of  the  ith  customer  seeking  service.   In  all  of  these  illustra-

tions, the main hypothesis is that the times between renewals should be i.i.d.

random variables with a finite mean.  

One interesting problem involving renewal processes is to find

P Nt n , n 0, 1, 2, ...  

i.e., the distribution of the number of renewals up to time t.  Also of interest

is the mean number of renewals in 0, t :

(2)m t E Nt ,
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called the renewal function.   Although the short-run  probabilities in (1)  can

be characterized in terms of the inter-renewal distribution F, calculations are

usually difficult. We take up this subject in the second subsection.

The long-run number of renewals per unit time:

(3)limt Nt t

is  another  item of  interest.   In  contrast  to  the short-run  behavior  of  renewal

processes,  the  long-run  behavior  will  be  simple  and  intuitive.   This  will  be

examined in the third and fourth subsections.  The latter concerns itself with

the  following problem.   Let  rewards  (or  costs),  denoted by Rn,  occur  at  the

renewal times.  We will compute the long-run average reward per unit time:

(4)limt n 1
Nt Rn t

To  understand  this  expression,  note  that  there  are  Nt  renewals  in  0, t .   At

the nth  renewal the reward Rn  is received, and therefore the ratio is the total

reward during 0, t  divided by t.   

Short-Run Distributions

To  approach  the  problem  of  calculating  short–run  probabilities,  recall  the

formula for the convolution of two distribution functions:

(5)F G t
0

tG t s d F s

In  the  case  that  F  is  continuous  with  density  f,  the  notation  d F s  means

f s d s.  For instance, the convolution of the exponential(1) c.d.f. F  with the

identity function G u u, u 0, 1  is

0

t

t s s s

1 t t

In the discrete case, the integral in (5) is a sum of terms G t si p si  over

all points si t that have positive positive probability p si .  

The most important fact about convolutions for our purposes is that if F
and G  are the distribution functions of two independent random variables X
and Y, then F G  is the distribution function of X Y .   For the continuous

case, we can see this from the following computation:
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P X Y t
0

t
0

t s fy u fx s d u d s

0

t
0

t s fy u d u fx s d s

0

tG t s fx s d s

 The iterates of a distribution function G are the repeated convolutions of

G with itself:

G 1 G, G 2 G G, G 3 G G G, …

Activity  1  –  Consider  the  cumulative  distribution  function  F t  of  the

trivial distribution that puts all probability at state t 0.  Find the iterates

F 2 , F 3 .   If,  instead,  the distribution puts all  of  its probability at  t 1,

find the convolution.  Give an intuitive explanation of the results, and try

to generalize.

Inductively,  it  is  easy  to  prove  that  the  n-fold  convolution  of  a  c.d.f.  F
with  itself  is  the  distribution  of  the  random  variable  X1 X2 Xn,

where the Xi  are i.i.d. with the distribution characterized by F. (Try to show

this.)  Thus, because inter-renewal times Si  are i.i.d. with distribution F, and

because Tn is the sum of the first n of them, we have

(6)P Tn t F n t

But then,

P Nt n P Nt n P Nt n 1

P Tn t P Tn 1 t

which gives the following result.

THEOREM 1.   If  Nt  is  a  renewal  process  with  inter-renewal  distribution

F, then

(7)P Nt n F n t F n 1 t      
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EXAMPLE 2.Suppose that the inter-renewal times have the density

f x
x e x if x 0,

0 otherwise

This  is  a  member of  the  ,  family  for  which  2  and  1,  some-

times  called  the  Erlang  2, 1  density.   The  convolutions  can  be  calculated

with some effort; for example,

F 2 t
0

tF t s d F s
0

t
0

t su e u d u s e s d s

Repeated  integration  by  parts  or  an  appeal  to  Mathematica  can  be  used  to

obtain a closed formula.  

F2 t_ :
0

t

0

t s

u E u u s E s s;

F2 t Simplify

1
1
6

t 6 t 6 t 3 t

The third iterate may be obtained by convolving F 2  with F as follows:

F3 t_ :
0

t

F2 t s s E s s;

F3 t Simplify

1
12

2 t 3 2 t 17 7 t t

2 t 3 t 12 t2 3 7 t 5 t

But the larger the order  of the iterate, the harder is the computation and the

messier is the answer.  For this example, it is much easier to use moment-gen-

erating  functions  to  compute  F n .   The  m.g.f.  of  the  gamma  distributed

inter-renewal times is M t 1 1 t 2, hence the m.g.f. of the sum Tn  of n
independent  and  identically  distributed  such  times  is  the  product  of  n
identical  factors  of  this  M t .   It  therefore  follows  that  the  m.g.f.  of  Tn  is

1 1 t 2 n,  which  is  identical  to  the  m.g.f.  of  the  2 n, 1  distribution.   In

other words, Tn has the Erlang 2 n, 1  distribution. 

Into  equation  (7)  we  can  now  substitute  appropriate  gamma  c.d.f.'s  for

F n  and F n 1 :

P Nt n
0

tx2 n 1 e x 2 n 1 d x
0

tx2 n 1 e x 2 n 1 d x
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To  simplify,  integrate  by  parts  twice  on  the  second  integral  above.   You

should verify that the resulting expression for this integral is

e t t2 n 1 2 n 1 e t t2 n 2 n
0

tx2 n 1 e x 2 n 1 d x

Substitution into the previous line gives us the distribution of Nt:

(8)P Nt n e t t2 n 1 2 n 1 e t t2 n 2 n     

There is  a  general  expression  for  the renewal function m t ,  though it is

usually difficult to calculate explicitly.  It is listed in the next theorem.

THEOREM 2.  m t E Nt n 1
F n t .

Proof.   Define a sequence In  of random variables by

In
1 if Tn t
0 otherwise

Then E In P Tn t .  (See the Activity below.)  Also, it is easy to see that

Nt n 1 In.  By the monotone convergence theorem, we may take expecta-

tion inside this infinite sum, to obtain

m t E Nt E n 1 In

n 1 E In

n 1 P Tn t

n 1 F n t

which establishes the claim.  

Activity  2  –  Why  is  it  true,  in  the  proof  of  Theorem  2,  that

E In P Tn t ?  Explain why it is true that Nt n 1 In.

EXAMPLE 3.  Continuing Example 2, let us calculate the expected number

of  renewals  during 0, t  when the inter-renewal distribution is  Erlang 2, 1 .

As before, since F n is the c.d.f. of the 2 n, 1  distribution,

F n t
0

tx2 n 1 e x 2 n 1 d x

Hence, by Theorem 2,
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(9)

m t E Nt n 1 F n t

0

t

n 1 x2 n 1 e x 2 n 1 d x

1
2

0

t
1 e 2 x d x

t
2

e 2 t

4
1
4

In  this  computation,  the  interchange  of  integration  and  summation  in  the

second  line  can  be  justified  by  the  uniformity  of  convergence  of  the  series

for  x 0, t .    Also,  the  series  in  the  second  line  has  been  computed  by

rewriting it as

1
2

e x 1 x x2

2
x3

3
1 x x 2

2

x 3

3
1
2

e x ex e x

Incidentally,  the  Erlang 2, 1  distribution  is  the  distribution  of  the  sum  of

two  i.i.d.  exponential(1)  random  variables.   This  kind  of  inter-renewal

distribution might arise in the manufacturing of a piece of heavy equipment,

in  which  there  are  two phases,  one  after  the other,  and each phase takes an

exponential  amount of time to complete.  The renewal times are the succes-

sive times of completion of an entire piece, and the expression in (9) gives us

the expected number of pieces made by time t.  

Activity  3  –  In  Example  3,  what  does  the  ratio  m t t  converge  to  as

t ?  Interpret what this limit means.

Long-Run Results

In Example 3, formula (9) allows us to find the limit of the expected number

of renewals per unit time, as time becomes large:

limt
m t

t limt
t 2 e 2 t 4 1 4

t 1 2

Notice that for the given Erlang 2, 1  distribution of inter-renewal times, the

mean  inter-renewal  time  is  2,  which  is  the  reciprocal  of  this  long-run

expected number of renewals per unit time.  

360 Chapter 5 Continuous Time Processes



We would now like to take a closer look at the limiting theory of renewal

processes.   The next results characterize the long-run time average behavior

of Nt.  First note that Nt  as  t , with probability one, since

P limt Nt P n Sn n 1 P Sn 0

The first equation follows from the fact that the only way that the number of

renewals  Nt  can  approach  a  finite  limit as  t  is  for  some inter-renewal

time Sn  to be infinite.  The inequality is by countable subadditivity.  The fact

that  Nt  for  almost  every  outcome  is  necessary  for  the  proof  of  the

following  important  theorem.   Its  content  is  that  the  long-run  average

number  of  renewals  per  unit  time  is  the  reciprocal  of  the  average  time

between renewals, for all but some exceptional outcomes in a set of probabil-

ity  zero.  The  proof  here  follows  along  the  lines  of  Ross  ([52],  Proposition

3.3.1).

THEOREM  3.  (Renewal  Law  of  Large  Numbers)   If  Nt  is  a  renewal

process with mean inter-renewal time , then

(10)P limt
Nt
t

1 1

Proof.    Denote  by  T Nt  the  random  time  whose  value  for  an  outcome  

such  that  Nt n  is  Tn .   In  other  words,  T Nt  is  the  time of  the  Nt
th

arrival.   Similarly,  let  T Nt 1  equal  Tn 1  for  outcomes  where  Nt n.   It

can be seen that T Nt  is the time of the last renewal prior to t, and  T Nt 1

is the time of  the first  renewal after t.   For  all  outcomes, we therefore  have

the inequalities

T Nt t T Nt 1

Thus,

(11)
Nt

T Nt

Nt
t

Nt
T Nt 1

Nt
Nt 1

Nt 1
T Nt 1

But, by the strong law of large numbers,

Nt
T Nt

T Nt
Nt

1
i 1
Nt Si
Nt

1
1 as t
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Similarly,  Nt 1 T Nt 1  approaches  1 .   Because  Nt  converges  to  

for almost every outcome, the ratio  Nt Nt 1  converges to 1.  Therefore,

the  outsides of  inequality (11)  force  the middle to approach 1  for  almost

every outcome.  

 Surprisingly,  the corresponding  theorem for  expectations requires  more

machinery; consequently we will list it without proof.

THEOREM 4. (Elementary Renewal Theorem)  If Nt  is a renewal process

with mean inter-renewal time  and renewal function m t E Nt , then

m t
t

1 as t     

To summarize, both the expected, and the actual, number of renewals per

unit time approach 1  in the long run.

EXAMPLE 4.   A computer software marketing group wants to decide how

best to allocate their labor.  If the supply of programmers is broken into three

groups,  each  working  on  a  separate  phase  of  a  project,  then  it  is  estimated

that  each  phase  requires  an  exponential  amount  of  time  to  complete,  with

parameter 1/2.   If  the programmers are  broken into two groups,  each work-

ing on a separate phase,  then each phase requires  an exponential  amount of

time with  parameter  1/4.   We  assume that  successive  projects  are  indepen-

dent of one another, that the groups can work simultaneously, and that work

on  the  next  project  does  not  commence until  the  previous  one  is  complete.

Which organizational structure produces the fastest output of software in the

long run?

The  successive  completion  times  of  software  projects  form  a  renewal

process.   For  the  first  organization,  a  typical  inter-renewal  time  is  the

maximum  of  the  three  completion  times  for  the  three  work  groups.    Let

those times be labelled X1, X2, and X3.  They are each exponentially distrib-

uted  with  parameter  1/2,  and  we  assume  that  they  are  also  independent.

Because of this, the distribution function of the maximum of the Xi's  is

P S t P max X1, X2, X3 t
P X1 t P X2 t P X3 t

1 e t 2 3

Differentiation  gives  the  probability  density  function  of  the  inter-renewal

times:

f t 3
2

e t 2 1 e t 2 2

And the expected inter-renewal time for the first plan is as below.
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1
0

t
3

2
t 2 1 t 2 2

t

11
3

For the second organizational plan, the model is almost the same, except

that  two  independent  groups  must  be  finished  before  the  project  can  be

finished.   A  typical  inter-renewal  time  is  therefore  the  maximum  of  two

random  variables,  say  Y1  and  Y2,  each  exponential  with  parameter  1/4.

Computing  as  in  the  last  paragraph,  we  obtain  the  density  of  the  inter-re-

newal time under plan 2:

g t 1
2

e t 4 1 e t 4

The mean inter-renewal time is

2
0

t
1

2
t 4 1 t 4 t

6

Therefore,  the  long-run  number  of  projects  completed  per  unit  time  is

1 1 3 11  under  the  first  system,  and  1 2 1 6  under  the  second,  by

the  Renewal  Law  of  Large  Numbers.   The  analysis  shows  that  the  first

system, with three programming groups, is better under this criterion.   

Renewal Reward Processes

As  our  final  renewal  process  model,  suppose  that  at  the  renewal  times

T1, T2, T3, ...  of a renewal process Nt , we receive rewards (or are charged

costs)  R1, R2, R3, ...,  respectively.   We  assume  that  the  sequence  of  pairs

Sn, Rn n 1,2,3,...  are  independent  and  identically distributed,  where,  as  usual,

the  Sn's  are  inter-renewal  times.  Let   be the mean inter-renewal time, and

denote  by r  the common mean reward r E Rn .   You are asked for  a

proof  of  part  (a)  of  the  following  theorem  in  Exercise  14.   Part  (b),  the

version for  expectations,  is omitted because of the extra machinery required

for its proof.

THEOREM 5. (a) P limt n 1
Nt Rn t r 1

 (b) E n 1
Nt Rn t r as t   
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Activity 4 – Try to interpret Theorem 5 intuitively, then read on to check

your hypothesis. 

We can interpret the result as follows.  Since Nt  is the number of rewards

received (or costs charged) during the time interval 0, t , the sum in part (a)

is the total reward up to time t.  For all but some exceptional outcomes of no

probability,  the  average  reward  per  unit  time during  0, t  converges  to  the

average  reward r  per  renewal,  multiplied  by  the  average  number  1  of

renewals  per  unit  time.   Part  (b)  says  that  the  expectation  of  the  average

reward per unit time reaches the same limit.

EXAMPLE 5.  An office manager is considering the purchase of one of two

competing duplicating machines.  Machine 1 survives for a random length of

time between repairs, with the following density function:

f1 x x 2 3 e x 2 1 3

3 21 3 if x 0

(This  is  a  case  of  the  so-called  Weibull  distribution.)   Repair  costs  of  this

machine are  random variables R1, R2, ...  ,  which are i.i.d.  with the discrete

uniform distribution  on  the  set  50, 51, ..., 99 .   The  times between  repairs

for  the  second  machine  have  the  exponential  distribution  with  parameter

1/10,  and  a  service  agreement  is  available  such  that  the  cost  of  a  repair  is

fixed at $60.  Which machine is preferable from the point of view of minimiz-

ing long-run average cost per unit time?  

Each  machine  has  an  associated  renewal  process.  The  times  of  renewal

are  the  successive  times at  which  repair  is  done.   For  machine  1,  the  times

between renewals have the given Weibull density f1; and for machine 2, they

have the exponential distribution, whose mean inter-renewal time is 2 10.

The mean inter-renewal time for machine 1 is

1
0

x
1

3 21 3
x 2 3 x 2 1 3

x

12

Costs  R1, R2, ...  are  charged  at  the  times  of  repair  of  each  machine.   For

machine 1, the distribution of a typical cost R is discrete uniform, and so the

average cost per repair r1 E R  is
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r1 N
k 50

99

k
1

50

74.5

For  machine  2,  the  costs  are  constantly  r2 60.   Recall  that  Theorem  5

implies  that  as  elapsed  time becomes  larger,  the  total  cost  incurred  divided

by  the  elapsed  time  converges  to  r ,  so  that  a  comparison  of  the  two

machines yields

r1 1 74.5 12 6.2; r2 2 60 10 6.0

Therefore machine 2 minimizes long-run time average cost.  

Exercises 5.3

1.   If  F x 1 e x for x 0,  and  zero  otherwise,  find  a  formula  for  the

n-fold convolution F n t .

2.  Let G x  be the c.d.f. of the continuous uniform distribution on 0, 2 , and

let F x  be  the c.d.f.  of  the discrete uniform distribution on the set of  states

1, 2 .  Find G F t  and F G t .  

3.  (Mathematica) Suppose that the inter-renewal times of a renewal process

have  the  (discrete)  Poisson  distribution  with  parameter  2.   Note  that  this

means  it  is  possible  for  successive  renewal  times  to  be  the  same.   Find  a

series  expression  for  the  distribution  of  the  number  of  renewals  by  time  t,
and  for  the  renewal  function  m t .   Produce  a  connected  line  graph  of  the

large  portion  of  the  probability  mass  function  of  N6.5.  Evaluate  m 1

explicitly.

4.  The preparation of a report requires the efforts of three people, each one

beginning  after  his  predecessor  finishes.   When  one  report  is  finished,  the

next  one  is  begun,  etc.   Suppose  that  person  i  among  the  three  requires  an

exponentially  distributed  time  with  parameter  i,  i 1, 2, 3  to  finish  his

portion of the report,  and that reports are independent  of one another.   Find

the  long-run  expected  number  of  reports  that  can  be  finished  per  unit  time.

Is it necessary to assume that the completion times of the three workers for a

given report are independent of one another?

5.   The  elementary  renewal  theorem  does  not  follow  trivially  from  the

renewal  law  of  large  numbers,  because  the  convergence  of  a  sequence  of

random  variables  X1, X2, X3, ...   to  a  constant  does  not  necessarily  imply
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that  their  expectations  converge  to  the  same constant.   Show this  last  state-

ment by considering the sequence of random variables defined by

Xn
0 if U 1 n
n otherwise

where  U  is  uniformly  distributed  on  0, 1 .   Show  first  that

P Xn 0 as n 1, and then compute E Xn .

6. (Mathematica) A machine receives shocks at the times T1, T2, T3, ...  of a

renewal  process,  and  incurs  damage  at  a  level  of  Di  as  a  result  of  the  ith
shock.   The  damage from each  shock  ebbs  exponentially  as  time wears  on.

We shall suppose that the times  Ti 1 Ti  between shocks are independent

of  the  damage levels  Di,  which  are  independent  and  identically  distributed.

Hence the total damage sustained by the machine up to time t can be written:

D t i 1
Nt Di e t Ti

Write a simulation program that takes as parameters the probability distribu-

tion of the damages, the inter-renewal distribution, the constant , and a final

time t, and returns the cumulative damage level D t  at time t. Exercise your

program  in  the  case  where  the  inter-renewal  times  have  the  exponential(2)

distribution, .01, the damage levels have the continuous uniform distribu-

tion  on  the  interval  0, 1 .  By  running  the  simulation  many  times,  use  the

average damage level D t  in the simulated trials to estimate the expectation

E D t . Repeat for several different times t and generate a list plot in time to

get an estimate of the function that maps t to E D t .

7.   Customers  arrive  to  a  single  server  according  to  a  Poisson  process  with

rate  3  per  hour.   Those  customers  who  arrive  when  the  server  is  busy  are

simply  lost.   The  server  requires  a  constant  time  of  c  to  activate,  then  an

exponential  length  of  time with  rate  2  per  hour  to  actually perform service.

Find the long-run average number of customers served per hour.  How many

customers  are  being  lost  per  hour  if  the  activation period  is  10  minutes?   5

minutes? 

8.   Use  Theorem 2 to find the renewal  function  in the case that  the interre-

newal distribution is deterministic with all of its weight on the point 1.5. 

Exercises 9–12 lead the reader through a renewal theoretic proof of the result

on convergence of Markov chains, Theorem 1 of Section 4.5.

9.  A delayed renewal process is similar to a renewal process, except that the

c.d.f. G of the first renewal time T1  may be different from the common c.d.f.

F of the inter-renewal times Tn 1 Tn, n 1, 2, ... .  Show that for a delayed

renewal process Nt ,
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E Nt n 1 G F n 1 t

10.   Given  a  Markov  chain  Xn n 0,  argue  that  the  times  S1, S2, S3, ...   of

successive visits  to  a  state j,  starting from a state i,  form a delayed renewal

process, as defined in Exercise 8.

11.   There  is  a  theorem  from  renewal  theory  called  Blackwell's  Renewal
Theorem  (see  Ross  ([52],  Prop.  3.5.1)  that  is  applicable  to  processes  with

integer-valued renewal times that are otherwise non-periodic.   It implies the

following  for  delayed  renewal  processes:  the  expected  number  of  renewals

exactly at time n  converges to the reciprocal of the mean inter-renewal time

as n .  Prove parts (c) and (d) of Theorem 1 of Section 4.5 by presum-

ing that the hypotheses of Blackwell's Theorem are in force, and considering

the sequence of random variables I0, I1, I2, ... , defined by setting In  to 1 or

0 according to whether Xn equals j or not.

12.   Finally,  with  In  as  in  Exercise  11  and  Nt  equal  to  the  sum of  the  I's
through t, appeal to the Renewal Law of Large Numbers to establish part (e)

of Theorem 1 of Section 4.5.

13.   A  machine  begins  in  good  running  condition,  lasts  for  an  exponential

length  of  time  with  rate  1,  then  breaks  down.   The  repair  of  the  machine

lasts for an exponential period of time with rate 2, after which the machine

is completely repaired, lasts for another exponential length of time with rate

1, is repaired again, etc.  If a repair costs c dollars, find the long-run cost of

repairs per unit time.  

14.  Prove Theorem 5(a).

15.  Three investments are available.  The first pays fixed dividends of $100

at the times of a renewal process whose inter-renewal distribution is exponen-

tial with parameter 1/5.  The second can pay either $80, $100, or $140, each

with  probability  1/3,  at  the  times of  a  renewal  process  whose  inter-renewal

distribution is 2, 4 .  The third pays an amount $50 Mi  at the deterministic

times  i 3, 6, 9, ...  ,  where  each  Mi  has  the  Poisson  distribution  with

parameter  1,  and  the  Mi's  are  mutually  independent.   Which  investment  is

preferable  from  the  point  of  view  of  maximizing  the  long-run  expected

reward per unit time?

16. (Mathematica) A device is currently new.  We replace it with an identi-

cal new device either when it breaks or at the fixed time T, whichever comes

first.  The lifetime of a device has the Weibull density:

f x
1
2

x 1 2 e x1 2

if x 0

0 otherwise
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The  cost  incurred  due  to  breakdown  is  twice  as  much  as  the  cost  due  to  a

simple replacement of a functioning device.  Show that to minimize long-run

average  cost  per  unit  time,  it  is  optimal  never  to  replace  the  device.  (Note

that the inter-renewal time has a density on 0, T  and puts positive mass on

the point T.  Use a sensible extension of the definition of expectation for this

mixed discrete–continuous random variable.) 

17.   Consider  a  renewal  process  Nt  with  discrete,  geometric  inter-renewal

distribution:

g n 1 p n 1 p, n 1, 2, 3, ...

(a) Find the limit as t   of  Nt t.
 (b) Find explicitly the distribution of Nt. (Hint: Think about what kind of

experiment gives rise to geometric times between renewal.)

(c) Find explicitly m t t.
(d)  If  a  reward  of  either  $2  or  $4,  with  equal  probability,  is  earned  at

each  renewal  time,  find  the  expected  average  reward  in  the  finite  time

interval 0, t .

18.  A common stock currently sells at $20 per share.  The price changes by

plus  $1  or  minus  $1  (respectively  with  probabilities  p  and  1 p)  at  times

T1, T2, T3, ... such  that  the  times  between  changes  are  i.i.d.  4, 2  random

variables.  For large time t, approximately what do we expect the price to be

at that time?

5.4 Queueing Theory

Preliminaries

A  vital  application  of  stochastic  processes  is  the  study  of  waiting  lines,  or

queues.   In  queueing  problems,  there  are  customers  arriving  to  a  service

facility  as  time  passes  (e.g.,  people  to  a  store,  jobs  to  a  central  processing

unit, cars to a parking lot, messages to a communication station, or planes to

an airport).  Customers who do not go immediately into service must wait in

line.   After  their  service  is  finished,  they depart.    One is  interested in  how

the queue length tends to rise and fall. Also, the waiting times of individual

customers are of interest.  

There are several pertinent aspects of a queueing model:
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1. the probabilistic arrival pattern of the customers;

2. the probability law of the time taken by a server to serve a customer;

3. the number of servers present at the service facility;

4. the size of the waiting area, if only a limited number of customers may

wait;

5.  the  queue  discipline,  that  is,  the  rule  by  which  a  new  customer  is

selected to be served when a server becomes available;

6. the presence of one or more other queues that interact with the one of

principal  interest  (e.g.,  customers  may  not  be  able  to  arrive  to  one  queue

until they are serviced at another).

The  variations  to  the  underlying  model  are  many,  and  there  are  also  many

quantities  of  interest  for  a  single  model.   In  this  brief  introduction  we  will

concentrate on single queues as opposed to networks of several queues.  The

queue discipline is first-in, first-out (FIFO), in which customers are served in

the  order  in  which  they  arrive.   We  present  two  models  with  multiple

servers, and three with only one server.  In one of our problems there will be

a  finite  waiting  room,  so  that  arrivals  who  come when  the  waiting  room is

full  are  turned  away.   Either  the  inter-arrival  times  or  the  customer  service

times  or  both  will  be  exponentially  distributed  and  mutually  independent.

Our main goal will be to calculate the long-run distribution of queue length.

Let  us  look  at  a  typical  outcome  of  a  queue  length  process.   The  table

below gives the first few arrival and service times. 

 

arrival times Ti service times Si

3.5 5.3

5.8 3.0

7.0 2.8

16.2 2.9

The  path  of  the  queue  length  process  Xt  for  this  outcome  is  sketched  in

Figure  5.9.  The  first  arrival  comes  at  time  T1 3.5  and  requires  5.3  time

units  for  service;  therefore  this  customer  departs  at  time 8.8.   In  the  mean-

time, both the second and third arrivals have occurred,  at times 5.8 and 7.0,

respectively.   Therefore  the queue length rises  to  2  at  time 5.8,  then to 3  at

time 7.0.   When the first  customer leaves, the second goes into service, and

the  queue  size  is  reduced  to  2.   Since  the  second  service  time  is  3.0,  cus-

tomer  2  departs  at  time  8.8 3.0 11.8.   At  this  time,  the  third  customer

starts  service;  and  since  the  service  period  takes  2.8  time  units,  the  third

customer  departs  at  time  11.8 2.8 14.6.   The  fourth  arrival  does  not

appear  until  time  16.2,  so  that  the  queue  is  empty  for  1.6  time  units.   The

queue size moves up to 1 at time 16.2, and the service process continues.   
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Figure 5.9 – Sample path of the queue length process

There  is  a  standard  shorthand  that  has  arisen  to  specify  the  queueing

model  under  study.   This  consists  of  a  string  of  characters  separated  by

diagonal slashes, of the form: A B n N .  In the first position is an abbrevia-

tion  for  the  distribution  of  the  times  between  successive  arrivals.   The

symbol  M  is  used  for  exponential,  D  for  deterministic  or  non-random

arrivals, Ek  for Erlang with parameter k, and G for a general distribution, for

example.   The  second  position  B  represents  the  distribution  of  the  service

times  of  a  single  customer.   The  same  abbreviations  are  used.   The  third

position is the number of servers n, and the fourth position is the number of

waiting spots N.   The latter is  usually left  blank when there is  no bound on

the  waiting  room  size.   Thus,  M M 1 6  indicates  a  single  server  queue

whose  arrivals  form  a  Poisson  process,  say  with  rate  ,  such  that  service

times are i.i.d. exponential random variables, say with parameter , and such

that  there  are  six  waiting  positions.   The  shorthand  M G 2  means  a  two-

server queue with unlimited waiting space, such that arrivals form a Poisson

process and service times have some unspecified distribution function.

Activity 1 – Think of at least two queues that you have been in recently.

In the queueing shorthand, explain what the D M 4 5, M Ek , and

G M 1 models are.

Simple Poissonian Queues

EXAMPLE 1. (M G )  Suppose that arrivals to a service facility occur at

the times T1, T2, T3, ...  of a Poisson process, and upon arrival a customer is

immediately served  by one of  an infinite  number  of  servers.   This  could be

an approximate model of a self-service facility such as a grocery store where
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shoppers select their own items, or a parking garage with a large number of

spaces.  Service of a customer takes a random amount of time with distribu-

tion function G, and customers are served independently of one another.  We

find the distribution of Xt, which denotes the number of customers in service

at time t.
Normally  it  is  difficult  to  calculate  the  short-run  distribution  of  queue

length,  but  here  we  have  enough  structure  that  it  is  relatively  easy.   The

random  variable  Nt,  defined  as  the  total  number  of  arrivals  by  time  t,  is

Poisson with parameter t.  By the law of total probability,

(1)

P Xt k n 0 P Xt k Nt n P Nt n

n k
P Xt k Nt n e t t n

n

The  sum  begins  at  k  because  it  is  impossible  for  the  number  of  customers

still in the system at time t to be more than the number who have arrived by

time t.
Recall  from  Theorem  3  of  Section  5.1  that,  given  Nt n,  the  arrival

times T1, T2, ..., Tn  have the joint distribution of the uniform order statistics

on 0, t .   The event that exactly k  of  these arrivals are still in the system at

time t  is  the  event  that  exactly  k  of  the  events  Ti Si t  occur,  where  Si
denotes the service time of the ith  customer.  But this has the same probabil-

ity as the event that exactly k of the events Ui Si t  occur, where the Ui's
are  i.i.d.  uniform  random  variables  on  0, t .   By  this  reasoning,

P Xt k Nt n  is  the  probability  of  exactly  k  successes  in  a  binomial

experiment  of  n  trials.   Conditioning  and  unconditioning  on  U ,  the  success

probability per trial is

(2)

p P Ui Si t
0

t
P u S t U u 1

t d u

0

t
P S t u 1

t d u

1
t

0

t
1 G t u d u

1
t

0

t
1 G x d x

The last line is the result of the substitution x t u.  By (1),
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P Xt k
n k

n
k n k pk 1 p n k e t t n

n

t p k e t

k n k
t 1 p n k

n k

t p k e t

k e t 1 p

t p k e t p

k

We have proved that the number of customers Xt  in the system at time t
has the Poisson distribution with parameter t p, where p is given by (2).  In

particular, the mean number of customers in service at time t is

(3)E Xt t p
0

t
1 G x d x

In the case of the M M  queue, where services are exponential with rate

, the mean number in service at time t is

E Xt 0

te x d x 1 e t

As t , the mean number in service approaches .  

Activity  2  –  In  Example  1,  what  is  the  mean  number  in  service  if  the

service  time  distribution  is  the  continuous  uniform  distribution  on  the

interval 0, 2 ?

EXAMPLE 2.  (M M s)   Suppose  that  cars  arrive to a toll  station accord-

ing  to  a  Poisson  process  with  rate  ,  and  that  their  service  times  are  i.i.d.

exponential  random  variables  with  parameter  .   There  are  s  toll  booths  at

the station handling the incoming traffic.  Let Xt  be the number of cars at the

station at time t.  We wish to find the limiting distribution of Xt as t .

We  claim that  Xt  is  a  birth–death  process.   Consider  a  time such  that

Xt n,  i.e.,  there  are  n  cars  waiting  at  the  toll  station.   Because  both  the

inter-arrival and service time random variables have the memoryless exponen-

tial distribution, the time t  may as well be time 0 and the past history of the

queue is irrelevant given the current state.  Regardless of how long we have

waited for a change of state, there is still an exponential amount of time until

the  next  arrival,  and  an  exponential  amount  of  time  until  the  next  service.

The  queue  size  can  only  increase  by  one  if  the  arrival  comes  first,  and

decrease  by  one  if  the  service  happens  first  (if  n 0,  then  of  course  the

queue  size  must  increase  by  one).   Thus,  Xt  satisfies  the  properties  of  a

birth–death process. 

It  remains only to compute the birth and death rates.   Consider  the case
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1 n s first.  Let T be the time of the next arrival, and let S1, S2, ..., Sn  be

the  times  at  which  the  currently  busy  servers  1, ..., n  finish  their  service.

Then  the  probability  that  the  queue  size  does  not  change  for  u  more  time

units is

P T u, Si u for i 1, ... , n e u e u n e n u

The probability that the next change in queue length is a birth is

P T Si for i 1, ... , n

0 t t e s1 e sn d s1 d sn e t d t

0
e n t d t

n

The case where n s is similar, except that only the s servers can be work-

ing,  so  that  n  in  the  above  expressions  is  replaced  by  s.   When  n 0,  it  is

easy to  see that  the birth  rate  is   and  the death rate  is  0.   In  summary, the

queue length process Xt  is a birth–death process with parameters

(4)n , n 0, 1, 2, ... n
n if n 0, 1, ... , s
s if n s 1, s 2, ...

We can  use  Theorem 1  of  Section  5.2  to  find  the  limiting probabilities.

Recall that p0 limt P Xt 0  is

p0 1
j 1

0 1 j 1

1 2 j

1

1
j 1

s j

j j j s 1

j

j s j s s

1

1
j 1

s j

j
s

s k 1 s
k 1

The infinite series in the last expression converges to s 1 s  for

s.  Under this condition, the limiting probabilities exist and

p0 j 0

s j

j
s

s s

1

after  some  algebraic  rearrangement.   Also,  from  the  limit  theorem  on

birth–death processes, we have
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pn limt P Xt n 0 1 n 1

1 2 n
p0

n

n p0 if n s
n

s sn s p0 if n s

If,  for  example, the arrival rate is 4 cars per minute, and each booth

can  only  serve  at  a  rate  of  3  cars  per  minute,  then at  least  s 2 booths

are necessary to satisfy s, and thereby to save the queue from blowing

up.  For these numbers, we have p0 1 5 as shown below.

p0 Sum 4 3 j j , j, 0, 2
4 3 2 4

2 3 2 4

1

1
5

Therefore, 

pn

1
5

4 3 n

n if n 1, 2

1
5

4 3 n

2 2n 2

2
5

2
3

n
if n 3, 4, 5, …

We show this distribution in Figure 5.10 as a connected list plot.  Notice that

the large preponderance of the time, there are 12 or fewer vehicles in queue.

p n_ : Which n 0, 1 5, 1 n 2,

1 5 4 3 n n , n 3, 2 5 2 3 n ;

longrundist Table n, p n , n, 0, 12 ;

ListPlot longrundist, PlotJoined True,

DefaultFont "Times", 8 ;
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Figure 5.10 – Limiting distribution of queue length for M M 2 queue with 4, 3

Activity  3  –  In  Example  2,  try  increasing  the  arrival  rate   to  see  the

effect on the long-run queue length distribution.

EXAMPLE  3.  (M M 1 N)  Let  arrivals  to  a  barber  shop  form  a  Poisson

process  with  rate  ,  and  suppose  that  the  time  required  for  a  haircut  is

exponential with rate .  There is a single barber, and there are only N  chairs

in the shop, including the one that the barber is using for the customer he is

currently serving.  When the shop is full, arrivals are turned away.  We will

compute the limiting distribution of the number of customers in the shop.

By  the  same  reasoning  as  in  the  last  example,  we  can  treat  the  queue

length process Xt  as a birth–death process with parameters

j
if j 0, 1, …, N 1

0 otherwise
, j

0 if j 0

if j 1, 2, 3,

Then,

(5)

p0 limt P Xt 0 1
j 1

0 1 j 1

1 2 j

1

1
j 1

N j

j

1

1

1 N 1

The  above  computation  is  valid  for  ;  when   we  can  see  directly

from the second line of (5) that p0 1 N 1 .  We also have

(6)pn limt P Xt n n p0, if n 1, 2, …, N

Equation  (6)  holds  in  each  of  the  cases  , ,  and  .   (Try

verifying  that  (5)  and (6)  form a valid probability  mass function.)   Because
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of  the  finite  waiting  room  size,  it  is  not  necessary  to  impose  the  condition

that  to ensure convergence of an infinite series in this problem.  Also,

note  that  in  the  case   we  just  have  pn p0 1 N 1  for  each

n 1, 2, ..., N .  

In passing we note that the mean of the limiting distribution of the queue

length  (the  limiting average  number  of  customers  in  the  shop)  can be  com-

puted.  This is

(7)L n 0
N n pn n 1

N n p0
n

Exercise 4 asks you to calculate that in the case ,

(8)L N N 1 N 1 N 1

1 N 1 1

and in the case , L N 2.  

The ratio  has arisen several times.  We denote it by  and call it the

traffic  intensity  of  the  queue,  since  it  is  the  ratio  of  the  arrival  rate  to  the

service rate.

M/G/1 Queue

In  this  subsection  we  discuss  a  family  of  queues  in  which  the  service  time

distribution  is  general,  and  the  inter-arrival  times  are  independent  and

exponentially  distributed.   Accordingly,  suppose  that  Poisson  arrivals  come

in  to  a  single  server,  whose  service  times  are  independent  and  have  some

unspecified distribution function G.  We are interested in finding the limiting

distribution  as  time t  of  the  queue  length  Xt.   We  will  not  be  able  to

compute this directly, but fortunately it can be shown (see Gross and Harris

[28]) to be the same as the limiting distribution of a discrete time embedded
Markov  chain,  defined  as  follows.  Let  Yn  be  the  number  of  customers

waiting  for  service  just  after  the  nth  departure.   For  the  queueing  outcome

depicted in Figure 5.9, the first three departure times are 8.8, 11.8, and 14.6.

For  this  outcome,  Y1 2,  since  customers  2  and  3  are  left  behind  by  the

departing  customer  1;Y2 1,  since  customer  2  leaves  customer  3  still

standing  in  line;  and  Y3 0,  since  the  fourth  arrival  has  not  yet  occurred

when customer 3 finishes service.
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Activity 4  –  If  the first  few arrival  times are 3.1,  4.5,  6.7,  8.1,  and 8.7,

and the service times are, respectively, 2.1, .8, 1.6, 2.4, and 1.2, sketch a

graph  of  the  queue  length  as  a  function  of  time and  determine the  first

few values of the Markov chain Yn  embedded at the departure instants.

If  Yn  is  known,  does Yn 1  depend on the past  history before time n?   In

the case Yn 0, the number of customers after the n 1 st departure is

(9)Yn 1 Yn 1 A

where  A  is  the  number  of  arrivals  during  the  service  period  of  the  n 1 st

customer.  In equation (9), 1 is subtracted because the n 1 st  customer has

just left.  In the case Yn 0, we just have

(10)Yn 1 A

Because  of  the  memoryless  property  of  the  exponential  distribution,  the

number  of  arrivals  A  during  the  service  of  customer  n 1  is  completely

independent  of  the past  arrival  and service stream.  Thus, Yn 1  is  condition-

ally independent  of  past  Yi's  given Yn.   This  indicates  that  the queue length

chain Yn  embedded at departure instants is Markov.

Let us compute the transition matrix of the embedded chain Yn .  Formu-

las (9) and (10) indicate that we will need to know, for each k 0, 1, 2, ...,

the  probability  that  there  will  be  exactly  k  arrivals  during  a  service.   If  the

duration of service is known to be t, then the number of arrivals is a Poisson

random variable with parameter t.   Thus,  conditioning and unconditioning

on the duration of service, we obtain

(11)qk P exactly k arrivals during a service
0

e t t k

k d G t

where the integral with respect to the distribution function G is interpreted as

g t d t  if  services  are  continuously  distributed  with  density  g,  and  as

g t  if services are discretely distributed with probability mass function

g.   Recall that Yn  is the number of customers still to be served when the nth

customer  departs.   Given  Yn 0,  Yn 1  equals  k  if  and  only  if  k  arrivals

occurred  during  the  service  of  customer  n 1.   This  event  occurs  with

probability qk  as in (11).  Given that Yn 1, the event Yn 1 k  occurs with

the  same  probability  qk.   But  given  Yn 2,  the  nth  customer  leaves  behind

the n 1 st  customer plus one other, so that the event Yn 1 k  is the same

as  the  event  that  exactly  k 1  arrivals  have  occurred  during  the  service  of

customer n 1.  By this reasoning we see that the transition matrix of Yn  is:
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(12)

         0 1 2 3

T   

0
1
2
3
 

q0 q1 q2 q3

q0 q1 q2 q3

0 q0 q1 q2

0 0 q0 q1

The  stationary  equations  T  for  this  transition  matrix are  impossi-

ble to solve explicitly.  However, the limiting probabilities n  for the embed-

ded chain can be generated recursively.   You should verify that  the station-

ary equations have the form:

(13)i 0 qi j 1
i 1

j qi j 1, i 0, 1, 2, ...

The  next  theorem  shows  how  to  calculate  0,  in  order  to  initialize  the

computation,  and  gives  a  rearrangement  of  (13)  that  directly  expresses  i 1

in terms of the previous i's.  The proof, which involves probability generat-

ing functions, is outlined in Exercises 10–12.

THEOREM  1.   Let   denote  the  reciprocal  of  the  mean  of  the  service

distribution G for the M G 1 queue, let  be the Poisson arrival rate, and let

 be the traffic intensity.  Under the condition that 1, the limiting

distribution  of the embedded chain Yn  exists and satisfies

(14)
0 1

i 1 q0 i 0 qi j 1
i

j qi j 1

EXAMPLE  4.   Suppose  that  a  manufacturer  keeps  a  large  number  of

machines,  and  that  breakdowns  of  machines  follow  a  Poisson  process  with

rate  three  breakdowns  per  week.   One repairman is  available  to  service  the

machines,  and  a  repair  takes  one  day  with  probability  1/2,  two  days  with

probability  1/4,  and  three  days  with  probability  1/4.   What  is  the  long-run

probability that there will be at least three machines under repair?

Here,  the  queueing  process  is  defined  by  Xt  number  of  machines

waiting for repair at time t.   We will calculate the first few entries of , the

limiting  distribution  of  the  chain  Yn  embedded  at  instants  of  repair.   As

mentioned before, the discrete chain has the same limiting distribution as the

continuous process.  Inter-arrival intervals of machines to the repair shop are

exponential random variables with rate 3 per week. The repairman is the

service  facility  in  this  application.   The  probability  mass  function  of  the

successive repair times is
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g x  

1 2 if x 1 7 week

1 4 if x 2 7 week

1 4 if x 3 7 week

The  expected  value  of  the  repair  time  is  easily  found  to  be  1/4  week,  and

consequently  the  repair  rate  is  4  per  week.   Because  of  this,  the  traffic

intensity 3 4 satisfies the hypothesis of Theorem 1.  We are asked for

limn P Yn 3 1 0 1 2

and by Theorem 1,

0 1 1 4

1
1
q0

0 0 q0

2
1
q0

1 0 q1 1 q1

To  complete  the  solution  of  the  problem,  we  must  calculate  q0  and  q1.

Recall that these are the probabilities of having zero and one arrival, respec-

tively, during a service period.  From (11),

qk t 1 7,2 7,3 7

e 3 t 3 t k

k g t

We can set up a function to compute these as follows:

g t_ : Which t 1 7,

1 2, t 2 7, 1 4, t 3 7, 1 4 ;

q k_ : NSum
E 3 t 3 t k

k
g t ,

t, 1 7, 3 7, 1 7 ;

Below are the q's that we need, followed by the 's, and the limiting probabil-

ity of 3 or more machines under repair, which comes out to around .32.   

q 0 , q 1

0.500926, 0.319391
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1
1

q 0

1

4

1

4
q 0

2
1

q 0
1

1

4
q 1 1 q 1

1 1 4 1 2

0.249076

0.179019

0.321905

In Exercise 9 you are asked to write a Mathematica function that implements

formula (14), with which to plot the limiting distribution.  

G/M/1 Queue

Up to this point we have discussed queues for which arrivals form a Poisson

process.   Our  last  example  is  the  G M 1  family  of  queues,  where  interar-

rival  times  are  i.i.d.  random  variables  with  distribution  function  G  (i.e.,

arrivals form a renewal process), and service times are exponential with rate
.   Let   be  the  arrival  rate,  by  which  we mean the  reciprocal  of  the  mean

interarrival time, and let  be the traffic intensity.  

We  again  take  an  embedded  chain  approach.   Let  Yn  be  the  number  of

customers  in  the  system  when  the  nth  arrival  comes  (excluding  that  nth

arrival).   In  Figure  5.9,  the  arrivals  occur  at  times  3.5,  5.8,  7.0,  and  16.2.

The  first  arrival  finds  no  customers  in  the  queue  yet,  hence  Y1 0.   The

second  customer  finds  the  first  customer  ahead,  so  that  Y2 1.   The  third

customer finds both of the first two still in the system, hence Y3 2.  But by

the time the fourth customer has arrived, all others have been served, so that

Y4 0.  

Activity 5 – For the arrivals and departures listed in Activity 4, give the

first few values of the chain Yn  embedded at arrival instants.

To relate Yn 1 to Yn, note that the n 1 st customer will arrive to find the

customers  that  were  ahead  of  the  nth  customer,  plus  customer  n,  minus  the

number  of  customers  whose  service  has  been  completed  since  customer  n
arrived.  Therefore,

(15)Yn 1 Yn B 1
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where  the  random  variable  B  is  the  number  of  services  performed  between

the  times  of  arrival  of  the  nth  and  n 1 st  customers.   As  in  the  M G 1

queue,  the  Markov  property  of  the  embedded  chain  Yn  for  the  G M 1

queue  holds  because  of  the  memoryless property  of  the  exponential  service

time distribution.  Also, (15) suggests how to compute the transition matrix.

If Yn 0, i.e., the nth  customer finds no one ahead in the line, then Yn 1  can

only be 0 or  1,  according to whether  or not customer n  has finished service

by  the  time that  customer  n 1  arrives.   Similarly,  if  Yn 1,  then  Yn 1  can

only be 0, 1, or 2.  It is 2 if neither customer n  nor the customer in front of

customer n  has finished service by the time customer n 1 arrives; it is 1 if

the customer in front of n has been served, but customer n has not, and it is 0

if  both services have been performed, perhaps with some time to spare.  By

the  same  argument  used  in  (11)  to  obtain  the  M G 1  probability  of  k
arrivals during a service interval, we can write

(16)

qk P exactly k services during an inter–arrival interval

0

e s s k

k d G s

Thus, denoting ri 1 q0 q1 qi , we have that the transition matrix

of the chain embedded at the arrival instants of the G M 1 queue is

     0 1 2 3 4  

T

0
1
2
3

r0 q0 0 0 0
r1 q1 q0 0 0
r2 q2 q1 q0 0
r3 q3 q2 q1 q0

The  following  remarkable  result  is  proved  by  solving  the  stationary

equations. 

THEOREM  2.   Let  Yn  be  the  Markov  chain  embedded  at  the  arrival

instants  of  the  G M 1  queue,  and  suppose  that  1.   Then  the

limiting probabilities j limn P Yn j  exist and take the form

(17)j 1 j, j 0, 1, 2, ...

where 0, 1  is a solution of the equation

(18)q0 q1 q2
2

Proof. The stationary equations are
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(19)

0 r0 0 r1 1 r2 2

1 q0 0 q1 1 q2 2

2 q0 1 q2 2

By the fact that ri 1 q0 q1 q2 qi ,  it  is easy to see that the top

equation in (19) is just one minus the sum of all the others, and consequently

it is superfluous.

We  leave  unproved  (see  Cinlar  [15])  the  fact  that  if  1,  then  the

limiting  distribution  exists.   But  the  limiting  distribution  must  be  unique

when  it  does  exist,  so  that  all  we  need  do  is  show  that  our  candidate

j 1 j satisfies the infinite linear system (19).  Note that the vector 

does form a good probability mass function for  between 0 and 1.

For k 1, the kth equation in (19) has the form

k q0 k 1 q1 k q2 k 1

Substitute 1 i for each factor i on the right side of this equation, to get

q0 1 k 1 q1 1 k q2 1 k 1

1 k 1 q0 q1 q2
2

1 k 1

1 k

The  third  line  follows  from  (18).   This  establishes  that  our  candidate  is  a

solution of the stationary equations.   

REMARK.   Unfortunately  it  is  not  true,  unless  the  queue  is  M M 1,  that

j  is the limiting probability of j in the queue for the continuous time queue

length process Xt .   Also, for both the M G 1 and G M 1 queues,  it can

be shown (see Çinlar [15]) that when 1, the limiting probabilities for all

states are 0.

EXAMPLE 5. (D M 1) Suppose that at a large bakery, cakes come off of

a conveyor belt non-randomly at exactly one per minute.  The cakes are to be

iced  by  a  single  skilled  icer,  who  requires  an  exponentially  distributed

amount of time with mean 30 seconds to ice a cake.  Find the limit as n
of the probability that the number of cakes waiting to be iced at the time of

the nth cake arrival is k, for each k 0, 1, 2, ....

In this problem, the customers are cakes, and the inter-arrival probability

mass function is
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g t
1 if t 1

0 otherwise

The  arrival  rate  is  1  per  minute.   The  single  server  is  the  icer,  and  the

service time distribution is exponential with mean 1/2 minute, hence the rate

is  2  per  minute.   Since  the  traffic  intensity  1 2,  Theorem 2

can be applied.  To solve for , we will need to compute the q j's.  Referring

to (16), the integral is just the discrete sum of one term, namely,

qk
e 1 1

k

k 1 e 2 2k

k

Thus,  is the solution of

k 0

e 2 2k

k
k e 2

k 0

2 k

k e 2 1

Though 1 is a solution,  it  is  not  the one that we want,  or else all of  the

limiting probabilities  in  (17)  would  be  0.   Other  solutions  are  not  available

analytically,  so  we  must  use  a  numerical  procedure  such  as  FindRoot  to

approximate :

FindRoot E 2 1 , , .5

0.203188

The  value  of   correct  to  three  decimal  places  is  0.203.   The  limiting

distribution of the chain embedded at arrival instants is therefore

k limn P Yn k .797 .203 k , k 0, 1, 2, ...   

Exercises 5.4

1. (a)  Compute the birth and death rates for the M M 4 6 queue.

    (b)  Find the limiting probabilities, if 4 and 2.

(c)   What  effect  does  doubling  the  service  rate  have  on  the  long-run

probability that the queue is full?

2.   Compute  the  traffic  intensity  of  a  single  server  queue  in  which  arrivals

form  a  Poisson  process  with  rate  5,  and  service  times  have  the  Weibull

distribution:  g t 2 t e t2

, if t 0.  Will  this  queue  have  a  limiting

distribution?

3.  Find the limiting distribution of the M G  queue.
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4.   Verify expressions  (7) and (8)  for the limiting mean queue length of the

M M 1 N  queue.

5.  (Mathematica)  For  an  M M 1 N  queue  with  arrival  rate  2  and

service rate 3, find the smallest value of N  such that the limiting probabil-

ity of two or fewer in the queue is less than .75.  

6. (Mathematica)  In Example 2, set 5.2 and 1.3.  At least how many

toll stations should there be so that 95% of the time in the long run, there are

ten or fewer vehicles in queue?

7.  Suppose that the barber of Example 3 is unlucky enough to have only one

employee  (himself),  and  no  waiting  space  other  than  the  chair  used  by  the

customer  on  which  he  is  currently  working.   He  wishes  to  minimize  the

long-run  average  queue  length  L  by  decreasing  the  traffic  intensity (i.e.,  by

increasing  the  service  rate  ),  but  counterbalancing  this  is  an  implicit  cost

inversely proportional to .  Find the traffic intensity  that minimizes

f L 1
4

8.   A  cattle  rancher  is  preparing  to  brand  his  cattle.   A  single  brander  is

working, who can finish one steer in exactly 5 seconds.  If cattle arrive to the

brander according to a Poisson process with rate 10 per minute, find the limit

as t  of the probability that there are 3 or fewer cattle waiting at time t.

9.  (Mathematica)  Write  a  Mathematica  function  that  implements  formula

(14) for the repair time distribution of Example 4. Use it to plot the limiting

distribution for states from 0 to 8.  

Exercises  10–12  complete  the  proof  of  Theorem 1  on  the  limiting distribu-

tion of the M G 1 queue, by calculating  0.

10.  Let pn n 0,1,2,... form a discrete probability mass function on the non-neg-

ative integers.  Define the probability generating function of this distribution

as the function 

P z n 0 pn zn p0 p1 z p2 z2

Show  that  P n 0 n pn,  and  show  that  P 1  is  the  mean  of  the

distribution.

11.   Let z  be the probability generating function of  the limiting distribu-

tion   for  the  M G 1  queue,  and  let  Q z  be  the  probability  generating

function of the distribution qn  in (11).  Multiply both sides of (13) by zi and

sum from i 0 to  to obtain the relation
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z 0 Q z z 1

z Q z

12.  Send z 1 on both sides of the equation in Exercise 11, using L'Hopi-

tal's  rule  to  evaluate  the  limit  on  the  right  side,  to  finish  the  proof  that

0 1 .  (Hint: To calculate the mean number of arrivals during a service

interval, condition and uncondition on the duration of the service interval.)

13.  By viewing the M M 1 queue as a special case of the G M 1 queue,

find  the  limiting  distribution  of  the  queue  length,  embedded  at  arrival

instants.  Compare this to the results of Example 2 for the M M s queue in

the special case that s 1.

14.   Precisely one  bit  of  information arrives  to  a  processor  every  microsec-

ond.   The  processor  requires  an  exponentially  distributed  amount  of  time

with rate ln 4  per microsecond to analyze a bit and then proceed to the next

bit.   Find  the  limit  as  n  of  the  probability  that  two  or  fewer  bits  are

waiting to be processed at the time of arrival of the nth bit.

15.   (Mathematica)  Arrivals  come  to  a  single  server  queue  with  exp(2.5)

service time distribution so that only two interarrival times, 0.8 and 1.2,  are

possible,  occurring  with  equal  likelihood.   Find  the  limiting  distribution  of

the chain embedded at arrival instants.  

16.   Cars  arrive  to  a  state  vehicle  testing  station  according  to  a  Poisson

process with rate .   It  requires an exponential length of time with rate  to

test a car.  But, cars arriving when there is at least one vehicle waiting have a

probability p 0, 1  of joining the queue, and 1 p of driving away.  Find

the limiting distribution of the queue length.

17.   Consider  an  M M 1 N  queue  whose  arrival  and  service  rates  are

equal.  Suppose that customers who join the queue receive a reward R at the

end  of  service,  but  pay  at  a  rate  of  C  per  unit  time while  they  are  waiting.

Find  inequalities  that  characterize  the  optimal  waiting  room  size  N  that

maximizes the long-run expected profit per customer, per unit time:

R limt P Xt N C limt E Xt

(Hint:   If  a  function   f   on  the  integers  has  a  maximum  at  n ,  then  both

f n f n 1  and f n f n 1 .) 
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5.5 Brownian Motion

Relation to Random Walks

Thus  far  the  stochastic  processes  that  we  have  studied  either  had  a  discrete

time set or a discrete state space, or both.   In this section we meet the most

important  process  in  the  realm  of  continuous-time,  continuous-state  pro-

cesses, the Brownian motion.  It arises, however, as a limiting process of one

of  the  simplest  kind  of  discrete-time,  discrete-state  processes,  the  random

walk.  But in passing to the limit, some interesting and rather strange behav-

iors are introduced.  

We will be able to do little more than scratch the surface of the Brownian

motion process and its applications, so the goal of this section is to allow you

to  learn  enough  to  give  you  background  for  future  study.   Because  of  its

continuous  nature,  it  requires  heavy analytical machinery to properly  derive

results  about  this  process,  and  in  fact  the  true  applications  of  Brownian

motion also can only be done with some background in measure theory and

partial  differential  equations,  which  we  do  not  assume here.  These  applica-

tions  are  in  such  diverse  areas  as  particle  physics,  the  time  variability  of

economic  quantities,  and  the  changes  in  populations  of  individuals  or  in

levels of epidemics.  

The  history  of  the  study  of  Brownian  motion  is  filled  with  familiar

names in the sciences and mathematics.  An English botanist by the name of

Robert  Brown  noted  in  1827  that  particles  immersed  in  a  liquid  undergo

continual,  irregular  motions.   Albert  Einstein  in  1905  theorized  that  such

Brownian  motion  was  produced  by  countless  collisions  with  the  molecules

of the surrounding liquid, and derived using physical principles a mathemati-

cal  description  of  the  motion.   Other  famous scientists,  such  as  Fokker  and

Planck, continued to work out the physical theory of Brownian motion after

this.  Beginning in 1918, and continuing for years after, the great mathemati-

cian  Norbert  Wiener  gave  a  mathematical  formulation  of  the  Brownian

motion process  and derived many of  its properties.   In  his honor,  Brownian

motion  is  also  sometimes  referred  to  as  the  Wiener  process.   But  not  only

scientists were interested in this stochastic process.  As early as 1900, in his

Ph.D. dissertation, the French economist Louis Bachelier used the process to

model the motion of stock market prices.  Its use in economic problems grew

slowly at first,  but  then very  rapidly later,  fueled by the work  of  Black and

Scholes [7] on the valuation of options in the 1970's, as well as the work of

other  mathematical economists such as Merton [43] on portfolio  and capital

market theory.  
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Needs "KnoxOR`StochasticProcesses "̀ ;

To  motivate  Brownian  motion  and  its  paths,  consider  a  symmetric

random walk starting at a point x0  in which a very short step up or down by

an  amount  of  x  is  taken  at  time  intervals  separated  by  a  short  amount  of

time t.  So that a non-trivial limiting process of the kind we want exists, it

turns  out  that a connection should be made between the state increment x
and  the  time  increment  t.   We  take  for  the  moment  x t .   To  see

what such a process looks like, let us simulate it. 

There  is  a  function  in  the  KnoxOR`StochasticProcesses`  package  that

plots  the  path  of  a  simulated  discretized  Brownian  motion as  follows.   The

initial state is x0,  the parameter deltat is as described above,  and numpoints

is the number of time points in the simulation.

PlotSimulateBrownianMotion

x0_,deltat_,numpoints_

It is educational for you to see how the function is written. First, we need

a utility function that takes the argument t  and returns the size of the step,

t  each with probability 1/2.  This is routine and is shown below.  (It is

also in the StochasticProcesses package.)

StepSize deltat_ : If Random 1 2,

Sqrt deltat , Sqrt deltat ;

Now to simulate the full random walk, starting with a list containing only the

initial state x0, we continually append the next state, which is the most recent

state plus the random step size.  The function below does this, constructs the

corresponding  series  of  time  points  t, 2 t, 3 t, ...,  and  ListPlots  the

resulting  (time,  state)  pairs.   This  version  of  the  program joins  neighboring

points  with  a  line  segment,  essentially  forming  a  continuous-time  process

with continuous state space by linear interpolation. 
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PlotSimulateBrownianMotion

x0_, deltat_, numpoints_ : Module

statelist, timepoints , statelist x0 ;

Do AppendTo statelist, Last statelist

StepSize deltat , numpoints ;

timepoints Table n deltat,

n, 0, numpoints ;

ListPlot Transpose timepoints, statelist ,

PlotJoined True ;

Here is a simulation for initial state 0, t 0.001, and 1000 time points,  so

that  the  terminal  time  in  the  simulation  is  1.   In  the  electronic  text,  you

should rerun the command many times to get an idea of the behavior of this

random walk.  

PlotSimulateBrownianMotion 0, .001, 1000 ;

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0.2

0.4

0.6

Figure 5.11 – Approximate sample path of the standard Brownian motion process

Activity 1  – Modify the program to return the state of the random walk

at  the  final  time; then  write  a  program that  generates  a  list  of  100  such

random  walk  final  states.   To  make  your  command  run  faster,  use

t 0.01,  and  100  time  points.  Use  the  command below,  contained  in

KnoxOR`StochasticProcesses`,  to  plot  a  histogram of  the data with  five

rectangles to study the empirical distribution of the final state. 

Histogram datalist,numrectangles
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Definition and Properties of Standard Brownian Motion

The  random  walk  construction  above  suggests  several  properties  that  the

limiting  process  should  have.   First,  the  state  Xn t  at  time n t  consists  of

the  sum  of  independent,  identically  distributed  step  sizes  Yi, i 1, ... , n,

where each Yi has mean and variance

(1)
y

1
2

t 1
2

t 0,

y
2 E Y2 1

2
t 1

2
t t

The sum of the steps Xn t i 1
n Yi  therefore has mean 0 and variance n t,

so  the  variance  equals  the  time subscript.   Because  Xn t  is  an  independent

sum  of  random  variables,  we  expect  it  to  have  an  approximate  normal

distribution,  and  in  the  limit  as  n  and  t 0  in  such  a  way  that

n t t, a constant time, the distribution of Xt  ought to be normal with mean

0 and variance t.  
There are further properties to expect of the limiting random walk.  If the

random walk  is  currently  in  a  state  Xn t,  then  the  change  in  state  over  the

next,  say  m t  units  of  time,  depends  only  on  the  next  m  steps

Yn 1, Yn 2, ... , Yn m.  Specifically, 

(2)Xn t m t Xn t i n 1
n m Yi

The probability distribution of this change in state depends only on m, since

the  Yi's  are  independent  and  identically  distributed,  not  on  the  current  state

Xn t  or the current time n t.  So changes in state should be independent of

the past, and moreover the distribution of the change in state should depend

only on the amount of time that elapses between the change. 

Having  made  these  observations,  we  have  motivation  to  define  the

following process.

DEFINITION  1.   A  stochastic  process  Xt t 0  is  called  a  standard
Brownian motion (with initial state 0) if 

(a) X0 0 and for all outcomes  except possibly some in a set of 

probability zero, the function t Xt  is continuous at every t;
(b) For all t 0, Xt is normally distributed with mean 0 and variance 

t;
(c) For all t, s 0, the distribution of Xt s Xt does not depend on t;
(d) For all t, s 0 Xt s Xt is independent of Xr for all r t.

Property  (c)  is  called  the  stationarity  property.   The  distribution  of  the

change  in  value  of  the  Brownian  motion  between  times  t  and  t s  is  the

same for  all  t;  consequently,  choosing  t 0,  the  distribution  of  Xt s Xt  is
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the same as that of  Xs X0 Xs.   In light of  assumption (b),  it  follows that

Xt s Xt N 0, s  for  all  s, t.   Property (d)  is  called the independent  incre-
ments  property,  which  implies  that  the  changes  in  value  Xt s Xt  and

Xr u Xr  of  the  Brownian  motion  on  disjoint  time  intervals  t, t s  and

r, r u  are  independent.  We saw these  properties  earlier  in  the context  of

Poisson processes.

Activity 2 – What changes should be made to properties (b), (c), and (d)

of Definition 1 if we allow standard Brownian motion to begin at a state

x0 other than 0?

EXAMPLE  1.   The  definition  of  Brownian  motion  permits  us  to  make  a

number  of  elementary  probabilistic  computations.  Suppose  that  the  process

Xt t 0 is a standard Brownian motion as in Definition 1.  Let us compute: 

(a) P X2.3 1 ; 

(b) P X4.1 X1.8 1 X0.9 0 ; 

(c) P X2.3 1 X0.9 .5 ; and 

(d) P Xt s y Xt x . 

For  part  (a),  condition  (b)  of  the  definition  yields  directly  that

X2.3 N 0, 2.3 , so the desired probability is the c.d.f. value below:

CDF NormalDistribution 0, 2.3 , 1

0.745174

To answer  part  (b),  note  that  the time interval  1.8, 4.1  is  disjoint  from

the time interval 0, 0.9 , and so by the independent increments property, the

difference  X4.1 X1.8  is  independent  of  the  event  X.9 0.   In  addition,  by

stationarity, X4.1 X1.8 has the same distribution as X2.3 X0 X2.3.  Hence,

P X4.1 X1.8 1 X0.9 0 P X4.1 X1.8 1

P X2.3 1 0.745174

In  part  (c),  the  random  variable  X2.3  is  not  independent  of  X0.9,  so  we

must  be  more  clever.   Adding  and  subtracting  X0.9  on  both  sides  of  the

inequality gives
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(3)

P X2.3 1 X0.9 .5 P X2.3 X0.9 X0.9 1 X0.9 .5

P X2.3 X0.9 .5 X0.9 .5

P X2.3 X0.9 .5

P X1.4 .5

The  third  line  follows  from  the  independent  increments  condition,  and  the

fourth line is by stationarity.  The last probability on the right is 

CDF NormalDistribution 0, 1.4 , .5

0.663698

Part  (d)  is  simply  a  generalization  of  part  (c).   Following  the  steps  of

display (3) for general starting time t and time increment s, 

(4)

P Xt s y Xt x P Xt s Xt Xt y Xt x
P Xt s Xt y x Xt x
P Xt s Xt y x
P Xs y x

(Be sure that you can justify each line of this derivation.) The last probability

is  a  function  of  the  time  increment  s,  the  starting  state  x,  and  y,  which  we

will denote by P s, x, y  and call the transition c.d.f. of the standard Brown-

ian  motion.   Its  derivative  with  respect  to  y,  calculated  below,  is  called  the

transition density of the process:

(5)

p s, x, y d
d y P s, x, y d

d y P Xs y x

d
d y

y x
1

2 s
e

u2

2 s d u

1

2 s
e

y x 2

2 s

We  can  interpret  the  result  of  this  last  computation  by  saying  that  given

Xt x, the conditional distribution of the state at time t s is N x, s , which

is consistent with the defining properties of the standard Brownian motion.  

One  of  the  most  prominent  of  the  peculiar  properties  of  Brownian

motion mentioned at the start of the section is this:  If B 0 is a point in the

state  space  of  the  Brownian  motion  then  the  first  hitting  time of  B  is  finite

with  probability  1,  but  has  infinite  expectation.   By  the  symmetry  of  the

Brownian motion, it  is  clear that  the same property holds for B 0.  Let us
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now show this property.

Denote TB inf s 0, Xs B ,  the first  hitting time of  B 0.   Because

the event Xt B  is contained in the event TB t , we can write

P Xt B P Xt B, TB t P Xt B TB t P TB t

It can be shown rigorously that since XTB B, the conditional probability on

the right of the last string of equations is the same as P Xt XTB 0 , but to

do so we really need a stonger version of the Markov property applied at the

random  time  TB  rather  than  at  a  deterministic  time,  so  we  will  omit  this

detail.   But  by  stationarity,  the  increment  Xt XTB  would  have  a  normal

distribution symmetric about 0, so this probability is exactly 1/2.  Therefore,

(6)

P Xt B 1
2

P TB t

P TB t 2 P Xt B 2
B

1

2 t
e

u2

2 t d u

To  show  that  TB  is  finite  with  probability  1  means  to  show  that

P TB limt P TB t 1.  To  do  this,  make  the  substitution

z u t , d z d u t  to obtain

limt P TB t limt 2 B
1

2 t
e

u2

2 t d u

limt 2 B t
1

2
e

z2

2 d z

2
0

1

2
e

z2

2 d z 1

 

The  last  line  is  true  because  the  integrand  is  the  standard  normal  density,

which is symmetric about 0, so the integral gives half of the total area under

that  density.  We  have  therefore  proved  that  TB  is  finite  with  probability  1,

that is,  no matter how distant is the target state B  from the initial state of 0,

the  standard  Brownian  motion  is  certain  to  hit  it  eventually.   But  let  us

furthermore show that the expected value of TB  is infinite, which means that

for  a  significantly  probable  set  of  outcomes,  it  may  take  the  process  very

long to reach B.  

To  do  this,  recall  the  standard  result  from  the  theory  of  non-negative,

continuous  random  variables  that  E X
0

P X x d x.   Applying  this  to

X TB using the expressions derived above, we can compute that:
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E TB 0
P TB t d t

0
1 P TB t d t

0
1 2 B t

1

2
e

z2

2 d z d t

0 B t
B t 1

2
e

z2

2 d z d t

0

2
0

B t 1

2
e

z2

2 d z d t

 

In  the  last  integral  on  the  right,  change  the  order  of  integration.   Since

z B t , it must be that t B z t B2 z2.  Thus,

E TB
0

2

2
e

z2

2
0

B2 z2

d t d z

2 B2

2 0

1
z2 e

z2

2 d z
 

By comparison with the integral of 1 z2  near the left endpoint of 0, the last

integral fails to converge.  Thus, E TB  as desired. 

Activity 3 – In the computation of the distribution of the hitting time TB
above, try to give a rough argument that:

       P Xt B TB t P Xt XTB 0

EXAMPLE 2.   We know that Brownian motion is the continuous analogue

to the discrete random walk.  Let us try to solve a problem about Brownian

motion  that  we  asked  earlier  about  a  random  walk:  the  gambler's  ruin

problem. Specifically, suppose that a standard Brownian motion starting at 0

is  to  be  stopped  either  when  it  has  reached  a  positive  number  M ,  or  a

negative number N ,  whichever comes first.   What is the probability that it

will reach M  before N? 

As  often  happens,  it  is  helpful  to  generalize  a  bit  and  solve  the  more

general problem first, then apply it in the specific case.  We will try to solve

for the quantity

(7)f x P Xt reaches M before N X0 x

for  all  x N , M .   We  will  do  so  by  using  an  approach  similar  to  the

development of the Kolmogorov equations for birth–death processes, that is,

by deriving a differential equation for f .  

It is clear that f N 0 and f M 1, so consider x N , M .  Now

formula  (6)  and  L'Hopital's  Rule  can  be  used  to  show  that  the  probability

that standard Brownian motion hits a point at a fixed non-zero distance from
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its  starting  point  within  a  time h  is  of  the  order  o h  (see  Exercise  14).   In

light  of  this,  if  we  condition  and  uncondition  on  the  state  of  the  Brownian

motion at a time h near zero, we may safely ignore the unlikely event that Xt
has already hit Mor N  by time h starting from x.  Thus, we may write:

f x E P Xt reaches M before N Xh, X0 X0 x
E f Xh o h X0 x  

Expanding f  in a Taylor series of order 2 about the point x yields

(8)
f x E f x f x Xh x 1

2
f x Xh x 2

terms in Xh x 3 and higher o h X0 x

Given  X0 x,  the  moments  E Xh x n  equal  zero  for  odd  n,  since  the

distribution of Xh  is normal with mean x; in particular, it is symmetric about

x.  For n even and n 4, we have by symmetry,

E Xh x n X0 x 2 x y x n 1

2 h
e

y x 2

2 h d y

2 hn 2
0

zn 1

2
e z2 2 d z

after  substituting  z y x h  (check  this  yourself).   Dividing  by  h,  the

limit is zero when n 4; and when n 2, E Xh x 2 X0 x 2 h 1
2

h,

since  the  integral  is  half  of  the  integral  representing  the  variance  of  the

N 0, 1  distribution. Putting these facts together with formula (8) gives us 

(9)

f x f x f x E Xh x X0 x
1
2

f x E Xh x 2 X0 x o h
0 f x 0 1

2
f x h o h

f x 0

upon dividing both sides by h and letting h 0.  

Therefore  f  must  be  a  linear  function;  f x m x b,  where  also

f N 0  and  f M 1.  It  is  easy  to  check  that  the  boundary  conditions

imply that

f x x N
M N

Hence the quantity that we originally sought is f 0 N M N .  

Brownian Motion with Drift

We  now  generalize  the  standard  Brownian  motion  to  allow  the  process  to

experience a trend or "drift" with time.  Here is the definition.  
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DEFINITION  2.   A  stochastic  process  Xt t  is  called  a  Brownian
motion  with  drift  rate  ,  variance  rate  2,  and  initial  state  x  iff  the

process  defined  by  Yt
Xt t x

 is  a  standard  Brownian  motion  with

initial state 0. 

Several  properties  follow  from  Definition  2  and  the  definition  of  standard

Brownian motion:

(a)  X0 x  and  for  all  outcomes   except  possibly  some  in  a  set  of

probability zero, the function t Xt  is continuous at every t;
(b)  For  all  t 0,  Xt  is  normally  distributed  with  mean  x t  and  vari-

ance 2t;
(c) For all t, s 0, the distribution of Xt s Xt does not depend on t;
(d) For all t, s 0, Xt s Xt is independent of Xr for all r t. 

Activity 4 – Verify properties (a)–(d) above.

The  non-standard  Brownian  motion  can  also  be  viewed  as  the  limiting

process of a random walk as the time step and the state step approach 0.  We
just need to begin with a non-symmetric random walk.  For simplicity let the

random  walk  start  at  0.  Let  the  independent  step  size  random  variables  Yi
have the distribution

Yi
t with probability p

t with probability 1 p

where  the  probability  p  of  moving  to  the  right  is  to  be  chosen  presently  in

order to make the drift rate equal to .  Then,

E Yi p t 1 p t t 2 p 1

Var Yi p t
2

1 p t
2

t 2 p 1
2

2 t 1 2 p 1 2
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The  sum  of  the  steps  Xn t i 1
n Yi  therefore  has  mean  n t 2 p 1

and  variance  n 2 t 1 2 p 1 2 .   So  if  we  let  p 1
2

1 t ,

then  E Xn t n t ;  that  is,  the  drift  rate   times  the  time  subscript.

Also,  Var Xn t
2 n t 1 2 t 2 ;  that  is,  the  variance  rate  2

times  the  time  subscript  times  an  expression  approaching  1  as  t 0.

Property  (b)  is  motivated,  and  properties  (c)  and  (d)  are  inherited  by  the

limiting  process  from  the  independence  of  the  steps,  as  with  standard

Brownian motion.  

EXAMPLE 3. An epidemic in its rapidly spreading initial stages is such that

the  number  of  units  of  population  that  are  infected  can  be  modeled  by

It eXt ,  where  Xt  is  a  Brownian  motion  with  drift  rate  2,  variance  rate  1,

and initial state .5.  Find (a) P I3 2 ; (b) E It ; (c) Var It .

To  compute  the  probability  in  part  (a),  first  note  that  Xt N .5 2 t, t .

Then,

P I3 2 P eX3 2

P X3 log 2

1 P X3 log 2

 

The  numerical  value  is  computed  below,  using  the  fact  that

X3 N .5 2 3, 3 .

N 1

CDF NormalDistribution .5 2 3, 3 , Log 2

0.9996

For  part  (b),  we also  need  to  use  the  distribution  of  Xt,  and  we need to

recall that the moment-generating function of a N , 2  random variable Y
is M s E es Y e s 2 s2 2.  Then,

E It E eXt

MXt 1

exp .5 2 t 1 1
2

t 12

exp .5 2.5 t

 

For  the  variance  in  part  (c),  we  can  use  the  computational  formula

Var It E It
2 E It

2.   The second moment of  It  can be found  similarly

to the mean:
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E It
2 E e2 Xt

MXt 2

exp .5 2 t 2 1
2

t 22

exp 1 6 t

 

The variance is therefore 

Var It exp 1 6 t exp 2 .5 2.5 t exp 1 6 t exp 1 5 t .  

EXAMPLE  4.   This  example  concerns  the  optimal  balance  of  assets  in  a

portfolio of one risky and one non-risky asset.  Before stating the problem in

a  way  that  permits  solution,  we  need  to  review  a  couple  of  economic  con-

cepts.

If the price of a deterministic asset at time t  is denoted by p0 t , and the

asset is  experiencing exponential  growth at rate r,  as is often assumed, then

p0 t p0 er t,  where  p0  is  the  initial  price  of  the  asset.   For  an  investment

period beginning at time 0 and ending at time t, the rate of return on the asset

per  dollar  invested  is  the  difference  between  the  final  value  and  the  initial

value, divided by the initial value:

rate of return =
p0 t p0

p0

p0 er t p0

p0
er t 1 

Activity  5  –  The instantaneous  rate  of  return  on an  asset  is  the limit as

t 0  of  the  rate  of  return  on  time interval  0, t  divided  by  t.   What  is

that limit for the deterministic asset?  

A reasonable way to model a risky asset similar to the deterministic asset

is  such  that  its  price  behaves  as  P1 t p1 eYt ,  where  Yt  is  a  Brownian

motion  with  drift  rate  ,  variance  rate  2,  and  initial  state  0.   Then

Yt N t, 2 t  so  that  the  expected  value  of  the  random  variable  in  the

exponent of P1 t  is a constant times t.  We normally assume that risky assets

grow on average faster than non-risky ones, hence r. Now if at time 0 an

investor  has  a total wealth of W0,  which he chooses to apportion  by buying

s0 shares of the deterministic asset and s1 shares of the risky asset, then

s0 p0 s1 p1 W0

Hence the proportions of initial wealth devoted to the deterministic and risky

assets, respectively, are

s0 p0

W0
w0,

s1 p1

W0
w1

Note that w1 1 w0. The final wealth at time t is

5.5 Brownian Motion 397



W1 s0 p0 t s1 P1 t
s0 p0 er t s1 p1 eYt

w0 W0 er t 1 w0 W0 eYt

hence  the  rate  of  return  on  the  whole  portfolio  of  assets,  that  is,  the  final

wealth minus the initial wealth divided by the initial wealth, is

(10)R W1 W0

W0

w0 W0 er t 1 w0 W0 eYt W0

W0
w0 er t 1 w0 eYt 1

The problem is to decide what proportion of initial wealth w0 to invest in

the  deterministic  asset,  and  consequently  what  proportion  w1 1 w0  to

invest in the risky asset.  So we seem to have a single variable optimization

problem,  with  variable  w0,  but  we  have  not  yet  decided  on  a  criterion  for

optimization.  It does not make sense to optimize rate of return, because that

is  random and  therefore  not  wholly  subject  to  our  control.   We  could  opti-

mize  the  expected  rate  of  return,  but  that  would  pay  no  attention  to  the

undesirability  of  the  variation  in  the  return  on  the  risky  asset.   Reasonable

investors  would  attempt  to  weigh  that  risk  negatively  in  their  decision.   A

commonly used optimization criterion is

(11)maximize E R a Var R

where a is a constant called the risk aversion.   The greater is the value of a,

the  more  the  investor  considers  the  variance  of  the  rate  of  return  to  be

undesirable.   Note  that  in  formula  (10)  the  1  that  is  subtracted  on  the  right

will neither change the variance of R nor will it alter the value of w0 at which

the maximum occurs, so we will drop it.

To  obtain  an  explicit  expression  for  the  objective  function  in  (11),  we

again  use  the  formula  for  the  moment-generating  function  of  a  N , 2

random variable: M s e s 2 s2 2.  Then,

E R E w0 er t 1 w0 eYt

w0 er t 1 w0 E eYt

w0 er t 1 w0 e t 2 t 2

and
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Var R Var w0 er t 1 w0 eYt

1 w0
2 Var eYt

1 w0
2 E e2 Yt E eYt

2

1 w0
2 e2 t 2 2 t e2 t 2 t

Therefore we want to maximize the following with respect to w0:

(12)f w0 w0 er t 1 w0 e t 2 t 2 a 1 w0
2 e2 t 2 2 t e2 t 2 t

For  concreteness,  take  the  final  time  as  t 1,  and  let  r .05,  .06,

.03.  We set up f  as a function of both w0  and a in order to see how the

optimal solution changes with the risk aversion. 

f w0_, a_ : w0 E.05 1 w0 E.06 .032 2

a 1 w0 2 E.12 2 .032 E.12 .032 ;

Plot f w, 4 , w, 1, 1 ,

DefaultFont "Times", 8 ;

1 0.5 0.5 1

1.055

1.056

1.057

1.058

Figure 5.12 – Optimizing a portfolio with risk aversion 4

Figure  5.12  shows  the  case  where  the  risk  aversion  constant  a 4.   An

unexpected  result  shows  up,  that  hints  at  economic  considerations.   The

optimal value of  the objective  function  occurs  near  w0 .5.   It  appears  as

if,  given that  it  is  possible  to  hold  a negative or  short  position  (i.e.,  borrow

cash from the non-risky asset to buy more of the risky asset) in the non-risky

asset,  that we should do so in order  to optimize the objective.   Specifically,

an amount w0 W0 should be borrowed against the non-risky asset at time zero

in order to buy shares at a total value of 1 w0 W0  in the risky asset.  The

total  value  of  the  portfolio  at  time zero  is  then  w0 W0 1 w0 W0 W0.

If  w0  is  constrained  economically  to  be  non-negative,  then  w0 0  is  the

optimal value.
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Let  us  use  a  surface  graph  to  see  how the  optimal  value  of  w0  changes

with the risk aversion a.

Plot3D f w, a , w, 1, 1 ,

a, 4, 12 , AxesLabel "w0", "a", " " ,

DefaultFont "Times", 8 ;

1

0.5

0

0.5

1

w0

4

6

8

10

12

a

1.04

1.05

1

0.5

0

0.5w0

Figure 5.13 – Dependence of optimal portfolio on risk aversion

You can see from the graph in Figure 5.13 that as a moves up between 4 and

12, the peak on the curve is found at higher and higher values of w0, which

makes intuitive sense because the more risk averse the investor is, the more

of his wealth he should choose to devote to the non-risky asset.  In Exercise

9 you are asked to show this observation in general. 

Exercises 5.5

1.   Let  Xt  be  a  standard  Brownian  motion.   Compute  (a)  P X5.4 2 ;  (b)

P X3.1 X2.1 1 X.5 1.6 ; (c) the joint density of X2, X3, X4.  

2.   Let  Xt  be  a  Brownian  motion  with  initial  state  0,  drift  rate  2,  and

variance rate 4.  Compute (a) P X8.2 X4.5 6 ; (b) P X1 3, X2 4 .

3.   (Mathematica)  Write  a  program  to  simulate  standard  Brownian  motion

many  times,  and  to  return  the  proportion  of  the  replications  in  which  the

process hits M  before N , and compare your empirical results to the analyti-

cal result in Example 2 for several choices of M  and N.  

4.   Extend  the  result  of  Example  2  for  the  probability  f x  of  hitting  M
before  N  starting  at  x  to  the  case  of  Brownian  motion  with  drift   and
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variance  rate  1.   (Hint:  Begin  by  following  the  steps  of  that  example,  but

look harder at the expected powers of Xh x.)

5.  (Mathematica) Write a simulator for non-standard Brownian motion with

parameters   and   analogous  to  the  PlotSimulateBrownianMotion  com-

mand  in  the  section,  which  was  designed  for  standard  Brownian  motion.

(Hint: See the discussion subsequent to Definition 2.) 

6.   Consider  as  in  Example  4  a  risky  asset  whose  price  behaves  as

P1 t p1 eXt ,  where  Xt  is  a  Brownian  motion  with  drift  rate  ,  variance

rate 2,  and initial state 0.   Suppose that at time 0 an investor  purchases an

option to buy a share of this asset at time T  at a fixed price K  if it is profit-

able  to  do  so.   If  the  market  price  of  the  asset  at  T  exceeds  this  K,  the

investor  can  purchase  the  share  at  K  and  immediately  resell  it  at  a  profit;

otherwise the option is worthless.  Find an expression for the expected value

of this option. 

7.   Let  Xt  be  a  standard  Brownian  motion  with  initial  state  0,  and  for  a

point  M 0  let  TM  be  the  first  time  that  the  Brownian  motion  achieves  a

value  of  at  least  M .   Let  Yt maxu t Xu.   The  process  Yt  is  called  the

maximum process  for Xt.  By relating the maximum process to hitting times

TM , show that the c.d.f. of Yt is  G y 1 2 y
1

2 t
e x2 2 t x.

8.   (Mathematica)  Suppose  that you have a parcel  of  land for  sale,  and you

receive offers of Xt  at each time t 0, T ,  where Xt  is a standard Brown-

ian motion with initial state x.  At time T  the game runs out and all offers are

withdrawn.  Consider  a  policy  that  exercises  the  option  at  the  first  time  the

offer  exceeds  a  value  y,  and  does  not  accept  an  offer  otherwise.   Find  an

expression for the expected profit under such a policy as a function of y.  If

T 10, x 100,  use  Mathematica  to  find  the  optimal  value  of  y.  (Hint:

Express the event of earning a positive profit in terms of the maximum over

times in 0, T  of  the Brownian motion Xt,  and use  the result  of  Exercise 7

regarding the distribution of the maximum.)

9.  Use formula (12) to solve explicitly for the optimal value of w0  in terms

of  a,  and  show that  the  optimal  portion  of  wealth  invested  in  the  non-risky

asset increases as a increases.

10.  In  the  portfolio  problem  with  the  same  choice  of  parameters

t 1, r .05, .06, .03, how large should a be so that it is optimal to

keep at least half of the initial wealth in the non-risky asset?

11.  A geometric Brownian motion is a process Yt  such that its log forms a

standard  Brownian  motion.   For  such a process  with initial  state 1,  find  the

probability density function of Yt and compute P 2.3 Y1 5.6 .
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12.   If  Xt  is  a  standard  Brownian  motion,  then  the  process

Yt M M Xt  is called a Brownian motion with reflecting barrier at M .

Explain the terminology, and find the c.d.f. and density function of Yt.  

13.   In  advanced  courses  in  stochastic  processes,  it  is  possible  to  define  a

stochastic integral with respect to a standard Brownian motion 

a
b Xs Ws

where  Xs  is  a  stochastic  process  and  Ws  is  the  Brownian  motion,  by  a

limit-taking  process.   These  are  used  heavily  in  the  area  of  mathematical

finance. The building blocks are the following simple versions of  stochastic

integrals.   Let  xs  be  a  deterministic  step  process,  with  jumps  at  times

t1, t2, ..., tn 1 and values

xs

x0 if a s t1
x1 if t1 s t2

xn 1 if tn 1 s b

Let  the  stochastic  integral  a
b xs Ws  be  defined  as  (the  Riemann-Stieltjes

integral) 

i 0
n 1 xi Wti 1

Wti

where  t0  is  taken  to  be  a  and  tn  is  b.   Note  that  a
b xs Ws  is  a  random

variable.  Find its mean and variance.  

14.  Show that the probability that standard Brownian motion hits a point at a

fixed distance 0 from its starting point within a time interval of length h
is of the order o h .  (Hint: Express the question in terms of the hitting time

T , and use formula (6) and L'Hopital's Rule.)
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6

Dynamic Programming

Introduction

This chapter will introduce the reader to concepts, examples, and techniques

of stochastic dynamic programming.  Roughly described, we are to control a

system that  is  moving from state to state as time progresses.   As a result  of

the sequence of controlling actions that we take, the motion of the system is

influenced,  and  a  sequence  of  rewards  (or  costs)  is  accumulated.   What

actions should be taken in order to maximize total reward (or minimize total

cost)?   There  are  diverse  applications  of  this  general  problem,  including

re-ordering  in  inventory  problems,  production  control  problems,  gambling

models,  fishery  harvesting  models,  and  financial  models,  especially  the

control of stock portfolios.  

In  the  first  section  we  describe  the  problem more  precisely,  first  in  the

context  of  the  simpler  deterministic  dynamic  programming  model,  then  in

the  stochastic  case.   Section  2  illustrates  the  dynamic  programming  tech-

nique  that  is  used  to  solve  problems  in  which  control  is  exerted  over  finite

time.   Then,  Sections  3  and  4  extend  the  problem  to  control  over  infinite

time,  with  a  discount  factor  incorporated  into  each  time  period.   A  related

problem, called the optimal stopping problem, is introduced in Section 5.  In

this problem, reward is only earned at some final time which is subject to the

choice of the controller, and we will find that many ideas from other areas of

this  text  are  united  in  a  common  setting.   Finally,  Section  6  gives  further

applications of stochastic dynamic programming that are less straightforward

than  the  examples used  in  the  earlier  sections,  featuring problems of  inven-

tory control and optimal control of stock portfolios.

6.1  The Markovian Decision Model

In  this  chapter  we  will  primarily focus  on  stochastic  dynamic programming

problems.   But  before  we  include  the  influence  of  randomness  in  these

problems, we will begin with an example of a deterministic dynamic program-

ming problem to gain a better understanding of the structure and components

of the model.  This example will also introduce us to the method of solving

finite  horizon  problems  that  starts  at  the  end  of  the  problem  and  works

backward.  We explore this method in the stochastic context in Section 2.
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Deterministic Dynamic Programming

EXAMPLE  1.One  of  the  simplest  dynamic  programming  problems  is  to

find  the  shortest  path  from  a  starting  point  to  a  destination.   To  place  the

problem into context,  suppose that a guide is giving a tour of a college to a

prospective  student   (see  Figure  6.1).  The  guide  wants  to  show the  student

five  key  attractions  on  campus,  including  the  starting  point  A  and  the

destination K, in 50 minutes. It is advantageous to make the travel time from

A to K as short as possible, in order that the prospective student can spend as

much  of  the  50  minutes  as  possible  at  the  attractions.  The  other  possible

attractions  that  can  be  visited  are  labeled  B,  C,  D,  F,  G,  H,  I,  and  J.  They

happen  to  be  laid  out  in  levels,  so  that,  for  instance,  starting  from  A,  you

have the option of visiting B, C, or D next. 

A

B

C

D

F

G

H

I

J

K

4

3

6

5

2

3

4

6

4

3

4

5

6

4

n=0       n=1       n=2      n=3      n=4

Figure 6.1 – Possible routes on a campus tour

The  edge  weights  indicate  the  number  of  minutes  it  takes  to  walk  from

the  attraction  on  the  left  of  the  arrow  to  the  attraction  on  the  right  of  the

arrow.  An admissible campus tour is a path from the starting point A to the

destination  K  that  follows  existing  arrows.  Thus,  the  amount  of  time spent

walking  during  the  tour  is  equal  to  the  total  weight  of  the  path  taken.   We

want  to  minimize  this  sum  among  all  admissible  tours,  so  as  to  find  the

optimal path that spends the least amount of time walking.

 A  useful  mathematical  model  for  the  problem  is  a  sequence  of  states
x0, x1, x2, x3, and x4  where xn  represents the state of a system at time n.  The

times here correspond to the levels of the graph in Figure 6.1 as shown, from

left to right, and the state xn  is the attraction the student is looking at in level

n.  In  particular,  our tour constrains x0  to be A and x4  to be K. The set E of

all states consists of all the attractions, E = {A, B, C, D, F, G, H, I, J, K}.  

 Another  useful  element  of  the  model  is  a  sequence  of  action  functions
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u0, u1, u2, ...,  where un  depends on the current attraction and gives the next

attraction chosen for  the tour.   An action function is therefore  a function of

the state: un i  is the action taken when the state is i  and the time is n.   The

graph tells us not only what actions are possible at each state, but also what

the next state will be given the current state and the action we take.  

As you can see from the graph, for each current state, there are a limited

number  of  possible  actions  to  take.   For  example,  at  state  C  you  can  only

move to state F or  state G.    In many problems, not  all  actions are possible

for  every  current  state.   Rather,  when  the current  state  is  i,  there  is  a  given

subset  Ai  of  admissible  actions.   This  imposes  a  condition  on  the  action

functions described below:

un i Ai , for each n 0, 1, 2, ... and each i E.

In  addition  to  describing  the  permissible  actions,  the  graph  also  shows

the cost structure of the problem. There is a cost of taking an action when we

are at a state, namely the amount of time it takes to go from current attraction

to the next attraction.  In general, costs can be described by a function, called

the cost function r i, a , giving the cost when the state is i and the action is a.

The actual cost incurred at time n can then be denoted by: Rn r xn, un xn .

For  example,  if  we  were  at  attraction  B  and  decided  to  go  to  attraction  F,

then we would have n 1, x1 B, u1 x1 F, and R1 r B, F 5.  

In summary, the building blocks of a mathematical model for the shortest

path  problem,  as  well  as  many  other  deterministic  dynamic  programming

problems, are:

1.  the space E of possible states the system can be in;

2.  the sets Ai of possible actions that can be taken when the state is i;
3.  a means for determining the next state given the current state and the

action taken;

4.  the cost function r i , a .

The  goal  in  such  problems  will  be  to  find  the  sequence  of  action  functions

un  that yield smallest total cost. 

Though we will go on to solve the campus tour problem in Section 2,  a

word or two in the way of preview is in order here.  This particular example

has  relatively  few  possible  tours,  and  with  patience  we  could  itemize  them

all,  compute  the  travel  time  that  each  one  takes,  and  pick  the  shortest.   If

there  were  many  more  attractions  at  each  level,  or  many  more  levels,  this

brute-force approach could quickly become unmanageable.  So we will look

for  something more systematic, and also amenable to solution by computer.

What  makes  the  problem  complicated  is  that  there  are  several  levels  to  go

through.   If  only  levels  3  and  4  existed  in  the  graph  of  Figure  6.1,  for

example,  then  there  would  have  been  no  decisions  to  make  at  all.   The
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shortest  (and  only)  paths  from attractions H,  I,  and J,  respectively, to K are

the  single  edges  H , K , I, K , and J , K  requiring  5,  6,  and  4  minutes,

respectively.  If we back up to level 2 and ask what is the shortest path from

attraction  F  to  K,  it  seems  intuitively  reasonable  that  we  can  find  it  by

minimizing  among  the  neighbors  of  F  (H  and  I)  the  total  of  the  edge  cost

from F  to  the  neighbor  plus  the  shortest  path  cost  from the  neighbor  to  K,

which  is  known  from  the  previous  stage  of  the  computation.   We  would

choose between path F, H, K with a total cost of 6 5 11 and path F, I, K

with a total cost of 4 6 10; hence the latter is the shortest path from F to

K.   We can continue  to  back  up  to  level  1,  and  then to  level  0  in  the same

way to ultimately find the shortest path from A to K, which was our original

goal.  The complete solution will be given in the next section; the following

activity is a stepping stone.

Activity 1 – Use the approach suggested in the last paragraph to find the

shortest path from G to K, and use that to find the shortest path from C

to K.

Stochastic  Dynamic  Programming:  The  Finite  Horizon

Problem

With an  understanding  of  the concepts  of  states,  actions,  and costs in hand,

we can move on to the problem of stochastic dynamic programming.  There

is  a  large  amount  of  structure  and  notation  in  stochastic  dynamic  program-

ming problems; consequently we will use this section to set the notation and

discuss  the  main  features  of  the  problem,  without  yet  trying  to  solve  the

problem.  Once  again  we  will  be  working  with  a  sequence  X0,  X1,  X2,  ...  ,

where Xn  represents the state of a system at time n.   These Xn's are random

variables  taking  values  in  the  state  space  E,  which  we  will  once  again

assume to  be  finite.    We  also  have  a  sequence  of  actions  U0,  U1,  U2,  ...  ,

where Un  is interpreted as the action taken by the controller at time n. These

actions are also random variables, because of their relationship with the Xn's,

which  take  values  in  a  set  A,  called  the  action  set.   The  sequence  of  pairs

Xn , Un n 0  will  be called a Markov decision process  if,  for  each n 0, the

probability  distribution  of  Xn 1  is  completely  determined  by  the  previous

state-action pair Xn, Un ,  in particular,  it is not  dependent on past states or

actions  prior  to  time  n.  (Note  that  this  does  not  necessarily  mean  that  the

chain Xn  itself is Markov, for we have not yet restricted to the case where

action Un  is  conditionally independent of the past prior to time n,  given Xn.

We will do this shortly when we discuss admissible policies.) 

The  basic  difference  between  deterministic  dynamic  programming  and

stochastic  dynamic  programming  is  that  in  a  deterministic  problem,  the

action taken at a current state completely determines what the next state will
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be; while in a probabilistic problem, the action taken at a current state alters

the probability law of the next state of the process, but the next state is still a

random variable.  

Activity 2  –  Consider  the following situation.   You are playing a game

in  which  you  have  $5.  If  you  use  strategy  A,  you  could  win  $2  with

probability 1/4, or stay the same with probability 3/4.  If instead you use

strategy  B,  you  could  win  $5  with  probability  1/3,  or  lose  $2  with

probability  2/3.   Formulate  this  as  a  single-stage  stochastic  dynamic

programming  problem.   Which  action  should  you  take,  and  on  what

basis do you make that decision?

To  describe  the  probability  law  of  the  chain  of  states,  we  assume  that

there is, for each possible action a A, a transition matrix Ta such that:

(1)Ta i, j P Xn 1 j Xn i, Un a  .

The  notations  Ta i, j  and  T i, j; a  will  be  used  interchangably  for  the

probability that the next state will be j, given that the current state is i and the

action taken is a.

For example, if the two following transition matrices describe a problem

T1=

1
3

2
3

3
4

1
4

 and  T2=

1
5

4
5

1
4

3
4

then, when action 1 is taken, the process behaves as on the left of Figure 6.2;

and when action 2 is taken,  the process  obeys the transition diagram on the

right.

A B

1 3

2 3

3 4 1 4

A B

1 5

4 5

1 4 3 4

(a) Action 1                                 (b) Action 2

Figure 6.2 – Transition diagrams for two actions in a Markov decision process
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For the most general kind of policy, the action Un  taken at time n  could

depend  on  the  entire  previous  history  of  states  and  actions

X0, U0, X1, U1, ... , Xn 1, Un 1, Xn.   In  fact,  Un   may  even  be  randomized,

in the sense that for a given history, we may flip a coin to determine whether

to take one action or another.  But for the problems that we will consider, it

will  be  enough  to  take  actions  of  a  simpler  kind,  called  feedback  actions.

That  is,  we  assume  that  the  action  taken  at  each  time  n  is  a  deterministic

function of the state at time n:

(2) Un un Xn ,   for each n 0, 1, 2, ... 

where  un  is  a  function  mapping the state space  E  to  the  action space A.   In

many problems, not  all  actions are practical for  every current  state.   So,  we

suppose that when the current state is i, there is a given subset Ai of permissi-

ble  actions.   This  imposes  a  condition  on  the  action  functions  described  in

(2):

(3)un i Ai, for each  n 0, 1, 2, ...  and each i E.

DEFINITION  1.   An  admissible  (feedback)  policy  is  a  sequence

u u0, u1, u2, ...  of functions from E to A such that (3) holds.  Such a

policy prescribes that action un Xn  be taken if the state of the system at

time  n  is  Xn.   An  admissible  policy  u  is  called  stationary  if  all  of  its

component functions ui are the same.

REMARK.   Under  an  admissible  feedback  policy,  the  chain  Xn  has  the

Markov property (i.e., independence of past and future given present), but it

is  not  time-homogeneous  (i.e.,  the  transition  probabilities  are  not  indepen-

dent  of  time)  unless  the  policy is  stationary.   The reader  can check that  we

have, for instance,

(4) 

a P Xn 1 j Xn i P Xn 1 j Xn i, Un un i
T i, j; un i

b P X1 j1, X2 j2, ..., Xn jn X0 i
T i, j1; u0 i T jn 1, jn; un 1 jn 1

c P Xn jn X0 i

j1,..., jn 1
T i, j1; u0 i T jn 1, jn; un 1 jn 1

For  the Markov decision process  of  Figure 6.2,  for  example, suppose that  a

policy  uses  action  function  u0 A 2, u0 B 1  at  time  0,  and  action  func-

tion  u1 A 1, u1 B 2  at  time  1.   To  form  the  transition  matrix  of  the

controlled  process  for  time  0,  we  glue  together  the  first  row  of  T2  and  the
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second  row  of  T1,  since  at  state  A  action  2  is  taken  by  u0,  and  at  state  B
action 1 is taken.  Similarly, to form the transition matrix for time 1, because

of the way that u1 is defined, glue together the first row of T1 and the second

row of T2.  The two transition matrices are then 

 Tu0

1 5 4 5

3 4 1 4
,  Tu1

1 3 2 3

1 4 3 4

Under this policy for example, following (4)(b), 

P X1 B, X2 A X0 A 4 5 1 4 1 5

When  more  than  one  policy  u  is  under  study,  it  may  be  necessary  to

exhibit the dependence of the probability distributions in (4) (a), (b), and (c)

on  the  policy.   We  do  this  by  subscripting:  Pu.   Similarly,  the  associated

expectation operator under a policy is written Eu.

At  a  time  when  the  state  is  x  and  the  action  taken  is  a,  there  will  be  a

current  reward  (or  cost)  r x, a .   In  the  case  that  the  state  space  E  and  the

action  space  A  are  both  finite,  this  reward  function  is  necessarily  bounded.

Then,  under  an  admissible  feedback  policy  u u0, u1, u2, ... ,   there  is  a

sequence of reward random variables R0, R1, R2, ..., where

Rn r Xn, un Xn

The expected value of the reward received at time n, given the initial state, is

(5)Eu Rn X0 i j r j, un j Pu Xn j X0 i

The probability inside the summation is given by (4)(c).

Activity  3  – Consider  again  the  Markov  decision  process  illustrated by

Figure  6.2  and  the  policy  with  action  functions  u0  and  u1  described

above.   If  the  reward  function  is  r A, 1 4,  r B, 1 3,  r A, 2 2,

r B, 2 5, find the expected reward Eu R1 X0 A .

Let us review for a moment.  The building blocks of the Markov decision

model are the following:

(1) State space E;

(2) Sets Ai of actions that can be taken when the state is i;
(3) Transition matrices Ta i, j  for each action a;

(4) Reward function r i, a .

The  system  begins  in  state  X0.   The  controller  takes  an  admissible  action

u0 X0 .  As a result, a reward r X0, u0 X0  is earned, and the system moves
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to a new state X1  according to transition probabilities T X0, j; u0 X0 .  The

controller then takes another admissible action u1 X1 , dependent only on the

current  state  X1.   Another  reward  r X1, u1 X1  is  earned,  and  the  system

moves to a state X2 according to the transition probabilities T X1, k; u1 X1 .

The system continues to move in this way.  

The Markov decision problem is to find a policy, consisting of the action

functions u0, u1, u2, ...   to maximize the expected total reward (or minimize

expected total cost).   The following definition carefully sets  down the finite
horizon problem, in which control is only exerted up to a finite time T, and a

terminal reward R XT  is earned at time T .

DEFINITION 2.  Let R x  be a non-negative valued function on E,  and

let T be a positive integer.  The function

                                        

 V i, u Eu n 0
T 1 r Xn, un Xn R XT X0 i

                                                    

is  called  the  value  function  of  policy  u  for  the  finite  horizon  problem

with time horizon T.  The optimal value function for this problem is

V i maxu V i, u   (minimum for a minimum cost problem) 

                                                 

A policy u  is optimal if V i, u V i  for all initial states i.

In  this  section  and  the  following  one,  we  will  consider  optimal  policies

in  Markov  decision  models  for  the  finite  horizon  problem  in  the  definition

above.   Later,  in Sections 6.3 and 6.4,  we will focus on the infinite horizon

problem with a discounted reward, in which control is exerted forever.

A  remark  on  the  magnitude  of  the  problem  is  in  order.   For  the  finite

horizon problem, a policy is a sequence u0, u1, ... , uT 1  of functions from

the  finite  set  E  to  the  finite  set  A  (possibly  with  some admissibility  restric-

tions).   If  the  elements  of  E  are  labeled  1, 2, ..., N ,  then  each  component

function ui can be thought of as an N-tuple:

ui a1, a2, ..., aN ,

where  a j  is  the  action  that  ui  prescribes  if  the  state  is  j.   There  are  n A j
possible such actions, so that there are n A1 n A2 n AN  action functions

ui, by the fundamental counting principle.  A sequence of T such functions ui
makes up a policy, hence there are 

n A1 n A2 n AN
T

possible  policies.    As  the  action  set,  the  state  space,  or  the  time  horizon

grows, the number of policies grows rapidly.  Even if we restrict to only the

class  of  stationary  policies  u u ,  by  the  above  reasoning  there  are  about
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n A n E  of  those,  a  potentially  very  large  number.   Thus  we  need  more

efficient  methods  of  locating  optimal  policies  than  simple  brute-force

evaluation of all policies.  

Examples

Thus far, we have discussed the Markov decision problem in the abstract.  A

"system" is in "state" i, an "action" a is taken that determines both a "reward"

r i, a  and the probability T i, j; a  that the system next will move to state j.
What  concrete  experiments can be so formulated?   To close this section we

present two models.  Other examples will be studied later in the chapter, and

still more are contained in the exercises.

EXAMPLE  2.   The  defense  department  has  ordered  exactly  one  rocket

booster  from  a  contractor.   Quality  standards  are  strict,  so  that  the  chance

that a single manufactured rocket will be acceptable is just 1/4.  The plan is

to use no more than 3 production runs.  Either 0, 1, 2, or 3 rockets are to be

made on each run,  and are checked after the run is complete. No more runs

will  occur after a satisfactory rocket has finally been made.  If a production

run makes any rockets, there is a fixed set–up cost C1 10 and a production

cost of C2 5 per rocket.  There is a penalty cost of C3 64 if a successful

rocket  has  not  been  made  by  the  third  production  run.   What  production

strategy minimizes the expected total cost of the process?

The  "times"  are  represented  by  the  production  runs,  so  n 0, 1, 2, 3 ,

with  time  0  representing  the  initial  time  before  manufacturing  begins.   At

time 3, a terminal penalty may or may not be incurred.  The action at time n
will be defined as the number of rockets made in production run n, but as it

often  happens  in  dynamic  programming,  it  is  not  so  easy  to  see  how  the

"state" of the system should be defined.  Since the cost at time n is only to be

dependent  on  the  action,  and  the  terminal  cost  depends  only  on  whether  a

successful rocket has been made, it would seem that we need to keep track of

whether or not a good rocket has been made yet.  Accordingly, denote

(6)
Xn = # of good rockets (0 or 1) still to be made at the beginning of 

the nth production run; 

(7)Un = # rockets made in production run n.

The  state  space  is  clearly  E 0, 1 .   State  0  means  that  there  are  no  more

rockets  to  make,  consequently  only  action  0,  the  action of  making no rock-

ets,  is  permissible  at  state  0.   Likewise,  for  state  1,  the  state  where  1  good

rocket  still  needs  to  be  made,  A1 0, 1, 2, 3 .    The  cost  function  for

state–action pairs x, a  for each time period (prior to the terminal time) is
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(8)r x, a
10 5 a if x 1 and a 0

0 otherwise

and the terminal cost function at time 3 is

(9)R x
64 if x 1

0 otherwise

Among N rockets, the probability that all are unacceptable is 3 4 N .  Thus,

a run that makes N rockets will produce an acceptable rocket with probabil-

ity  1 3 4 N .  Because of this, it is easy to see that the transition matrices

Ta are as follows:

T0

0

1

1 0

0 1

0 1

        T1

0

1 1 4 3 4

0 1

   

T2

0

1 7 16 9 16

0 1

     T3

0

1 37 64 27 64

0 1

   

A  policy  for  this  production  problem  is  a  sequence  u u0, u1, u2 ,  where

un x  is  the  number  of  rockets  to  be  made  on  production  run  n,  if  x  good

rockets  (x 0  or  1)  remain  to  be  made.   Since  we  will  obviously  make  no

more rockets after a good one has been made, un(0)  is  constrained to be 0.

We wish to minimize over u:

(10)V x, u Eu n 0
2 r Xn, un Xn R X3 X0 x

for x 0, 1, and we are of course most interested in the case x 1.  We will

solve this problem in the next section.  

EXAMPLE  3.    A  certain  type  of  shellfish  is  harvested  by  fishermen  as

years  pass.   The  population  can  be  at  six  levels,  0  population  units  up  to  5

units.   In  the  absence  of  harvesting,  the  population  would  form  a  Markov

chain with the transition diagram in Figure 6.3.
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Figure 6.3 – Transition diagram for shellfish population change

Fishermen  can  only  harvest  as  many  population  units  of  fish  in  a  year  as

there  are  in  existence  at  the  start  of  the  year,  and  then  a  "natural"  change

occurs  due  to  randomness  described  by  the  transition  diagram  above.   The

population  at  the  start  of  a  year  will  be  the  population  at  the  start  of  the

previous  year  minus  the  amount  harvested  in  the  previous  year  plus  the

natural  change.   To  clarify the  behavior  near  state  0,  suppose  that  if  i  units

are  harvested  in  a  year  in  which  the  population  level  started  at  i  units,  the

population  will  remain  extinct  with  certainty  for  all  following  years.   The

government fishing bureau wants to determine how many fish to allow to be

harvested  over  the  next  3  years.   There  is  a  net  benefit  of  h  monetary units

per population unit harvested, and a terminal benefit of R monetary units for

each population unit  of  fish remaining at the end of  the 3 year fishing plan.

Model  this  problem as  a  Markov  decision  problem,  including  a  description

of  the  state  space,  the  action  sets,  the  transition  matrices,  the  reward  func-

tion, and the optimal value function.

First, we need to determine what the state space is. The problem explains

that the population of fish can change over time and determines the terminal

reward.  Thus, a reasonable choice is to let Xn be the population level at time

n, so that the state space is E 0, 1, 2, 3, 4, 5 .

The actions can be defined to be  the number  of  units  of  fish to harvest.

The maximum that can be harvested is the population at the beginning of the

year.  Thus, the action sets are as follows:

A0 0 , A1 0, 1 , A2 0, 1, 2 , A3 0, 1, 2, 3 ,

A4 0, 1, 2, 3, 4 , A5 0, 1, 2, 3, 4, 5

The  dynamics  of  the  fish  population  that  are  described  in  the  problem

allow  us  to  write  the  transition  matrices  Ta  that  describe  how  the  chain

moves given that action a is taken (see below).  For example, consider action

2  and  the  corresponding  matrix  T2;  the  states  cannot  be  0  or  1  (it  is  not

feasible  to  harvest  more  units  than  there  are).  If  the  initial  state  is  2  and  2

units are harvested, the population becomes extinct, that is the next state is 0,

with probability 1.  If the initial state is 3, then after the 2 units are harvested,

leaving  1  unit,  the  population  can  go  back  up  to  2  with  probability  3/4,  or
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down to  0  with  probability  1/4.   This  explains  the  third  and  fourth  rows  of

T2, and the rest should be self evident.  

T0

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4
0 0 0 0 1 4 3 4

  , 

T1

1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0
0 0 0 1 4 0 3 4

,

T2
1 0 0 0 0 0

1 4 0 3 4 0 0 0
0 1 4 0 3 4 0 0
0 0 1 4 0 3 4 0

 , 

T3 1 0 0 0 0 0
1 4 0 3 4 0 0 0

0 1 4 0 3 4 0 0

T4

1 0 0 0 0 0
1 4 0 3 4 0 0 0

   ,   T5

1 0 0 0 0 0

The  reward  for  harvesting  a  units  is  a h,  by  the  conditions  stated  in  the

problem.   We  could  of  course  characterize  the  reward  function  by  the

formula  r x, a a h for x a,  but  for  computational  solution,  it  is  also

convenient  to  characterize  the  reward  as  the  matrix  below,  where  r x, a  is

the entry in row x and column a of this matrix.

 r x

0
1
2
3
4
5

0
0 h
0 h 2 h
0 h 2 h 3 h
0 h 2 h 3 h 4 h
0 h 2 h 3 h 4 h 5 h

a
0 1 2 3 4 5
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At time T 3, a terminal reward may be incurred, given by R x R x.  This

terminal reward can also be thought of as a vector:

R

0
R

2 R
3 R
4 R
5 R

 

We wish to find a policy u u0, u1, u2  to maxmize

V x, u Eu n 0
2 r Xn, un Xn R X3 X0 x   

for every initial state x.  

Activity 4 – Verify the entries of the other transition matrices Ta  for the

fish harvesting example.

Exercises 6.1

1.  Consider  the  Markov  chain  with  the  transition  diagram below.   Suppose

that  there  are  two  possible  actions,  labelled  0  and  1.   Under  action  0,  the

chain  moves  according  to  this  transition  diagram,  and  under  action  1,  the

chain  moves  with  certainty  to  state  2.   Let  u  be  the  stationary  policy  with

action function defined by:

u i
0 if i 1, 2

1 if i 3, 4

If,  for  a  certain  experimental  outcome  ,  we  observe  X0 1,

X2 3, X3 2, what are the first four actions taken under this policy?

Again for this outcome, if the reward function is r i, a i a, what are the

first four rewards?
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1 2

3 4

1

1 2

1 2
1 3 1 3

1 3 1

Exercise 1

2. Prove formula (4)(b). 

3.   If  the  state  space  of  a  Markov  decision  process  has  size  4,  the  action

space has size 3,  and all  actions are admissible at all states, then how many

stationary  policies  are  there?   How  many  admissible  feedback  policies  are

there for a finite horizon problem with terminal time T 5?

4. Below is a directed graph seen earlier in the book as Figure 1.26.  Find the

shortest  paths  in  the  graph  from  vertices  7,  8,  and  9  to  vertex  10,  and  use

these to find the shortest  paths  from vertices 5  and 6 to 10.   (Note  that this

graph is not as simply partitioned into levels as Figure 6.1 was.)
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Exercise 4

5.  An advertising agency will conduct a campaign for a new soft drink.  The

agency  follows  the  share  of  the  market  possessed  by  the  soft  drink,  in

increments  of  5%,  from  month  to  month.   Each  month  that  advertising

continues, there is a cost of c dollars to the drink manufacturer.  But there is

a  reward  of  r  dollars  to  the  manufacturer  for  each  5%  of  the  market  pos-
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sessed  by  their  product.   If  no  advertising  is  used  in  any  given  month,  the

share of the market will not change.  If there is advertising, the share of the

market  will  either  increase  by  5%  (with  probability  1/2)  or  stay  the  same

(also with probability 1/2), until a maximum of 30% is reached, where it will

stay  forever.   Formulate  the  problem  of  finding  the  optimal  advertising

policy  as  a  Markov  decision  problem,  including  a  description  of  the  state

space, the admissible action sets, the transition matrices, the reward function,

and the optimal value function.

6. Consider the Markov decision process illustrated by Figure 6.2.  Suppose

that  the  time  horizon  is  T 3,  the  terminal  reward  function  is

R x 0; x A, B,  and  the  per  period  reward  function  is  r A, 1 4,

r B, 1 3, r A, 2 2, r B, 2 5.  For the policy u that always uses action

1 at time 0, action 2 at time 1, and action 1 at time 2, compute V A, u  and

V B, u .

7.  How many stationary policies are there in the problem of Exercise 5?

8.   How  many admissible  feedback  policies  are  there  in  the  fish  harvesting

problem of Example 3?

9.  For the Markov decision process of Exercise 1, find the transition matrix

corresponding to the stationary policy u, and calculate Eu n 0
2 Rn X0 1 .

10.  For the Markov decision process of Exercise 1, calculate the expectation

Eu n 0
2 Rn X0 3  for  the  non–stationary  policy  for  which  u0 i 0  for

all i,  u1 i 1 for all i, and u2 i 0 for all i. 

11.   At  a  small  cellular  phone  company,  servers  must  spend  a  half  hour

discussing  options  with  each possible  customer who comes in.   During  any

half hour period, either 0, 1, or 2 customers will come in, with probabilities

1/2,  1/4,  and 1/4 respectively.  A total of three servers can be summoned to

work  if  necessary.  Customers  who  are  being  served  will  not  leave  before

their  service  is  complete.   If  there  are  6  or  more  customers  in  the  store,

including those in service,  all  of  those not  currently being served will leave

without being served, otherwise if there are 5 or fewer customers in the store

all of those who are not being served will stay for the next half hour period.

The company can control how many servers are on the floor, but they pay a

price  of  s  dollars  per  half  hour  per  server  to  keep  them there.  They  earn  a

profit of p dollars for each customer who stays and gets served.  The store is

open  from  9:00  am to  4:00  pm.   Customers  left  over  at  closing  time leave

without  service  or  profit  to  the  company.   Formulate  this  problem  as  a

Markov decision problem, describing the state and action spaces, the transi-

tion matrices, and the per period and terminal reward functions. 

6.1 The Markovian Decision Model 417



12.   The  population  of  a  country  can  be  approximately  modelled  so  that  it

has  a  value  of  either  0  units,  1  unit,  2,  3,  4,  or  5  units.   The  population

undergoes  a  natural  change from one time period  to the next,  increasing by

one  unit  with  probability  p  and  decreasing  one  unit  with  probability  1 p.

At  the  boundaries,  when  the  population  is  5,  it  stays  the  same  at  the  next

time period with probability p or goes down to 4 with probability 1 p, and

at 0 it stays at 0 with probability 1.  In any time period there is a net benefit

to the economy of the country of 10 units per unit of population.   Immigra-

tion is possible; at any time a number of units of population can be admitted

to bring the net population after the natural change to 5 or less.  But there is

a  resettlement  cost  of  8  units  per  unit  of  immigrant  population  admitted.

Assume  that  new  immigrants  in  a  time  period  do  not  contribute  to  the  net

benefit until the next time period. Let the immigration control be done for 6

time periods, and let the economic benefit at the end also be 10 units per unit

of population. Formulate this as a Markov decision problem.  

6.2  The Finite Horizon Problem

Let  us  now  turn  to  the  solution  of  finite  horizon  dynamic  programming

problems. Recall that for deterministic dynamic programming problems with

finite time horizon,  we have a sequence of  states x0, x1, x2,  ...  xT ,  where xn
represents  the  state  of  a  system  at  time  n.   The  state  space  E  is  finite.   A

policy  u u0, u1, u2 ... , uT 1  induces  a  chain  of  actions  u0 x0 ,

u1 x1 , ..., uT 1 xT 1 .  Some deterministic mechanism is in place to generate

the  next  state  xn 1  from  the  previous  state  xn  and  action  un xn .  For  times

n 0, ..., T 1 there is  a  cost  (or  reward)  r xn, un xn .   There may or  may

not be a terminal cost (or reward) R xT  at time T.  We are to minimize total

cost subject to the choice of actions.

To  gain  an  understanding  of  how  to  solve  a  deterministic  dynamic

programming  problem,  we  will  start  by  solving  the  shortest  tour  problem

outlined in the previous section. 
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EXAMPLE  1.   The  diagram  for  the  shortest  campus  tour  problem  is

repeated  as  Figure  6.4  for  your  convenience.   Remember, the  state  space  is

the  set  of  vertices  of  the  graph,  the  actions  are  the  next  attractions  to  be

visited, and the costs, indicated as edge weights, are functions of the current

state and the action taken at that state.  There is no terminal cost at the final

level T 4, since that is our destination.  

One  last  idea  is  important  to  understand  before  going  on  to  solving  the

problem:  the  optimal  value  function.   Let  Vn i  be  the  optimal  value  func-

tion starting from level n and state i, which in our context means the cost of

the  shortest  path  from  the  current  attraction  i  at  level  n  to  the  destination.

We  are  really  interested  in  finding  V0 A ,  but  we  can  do  so  by  finding  the

other Vn i , working backwards from the right side of the graph. 
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Figure 6.4 – Possible routes on a campus tour

First,  we will  determine the  shortest  path to use  during the last  stage of

the  tour  from each  possible  current  state  at  time n 3.   Since  there  is  only

one  possible  path  from  these  attractions  to  the  destination,  we  can  see

immediately the shortest one: the only one.  Hence,

V3 H 5      V3 I 6      V3 J 4

Next, we step backwards one time unit and determine the shortest path to the

destination from each possible attraction at n 2.   It is rather simple to find

V2 F ,  which  is  the  length  of  the  optimal  path  from  F  to  the  destination,
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and V2 G ,  the  length  of  the  optimal  path  from  G  to  the  destination.   The

shortest path from attraction F  must start with the edge from attraction F  to

H  or from F  to I.  From H  or I, the path must follow the shortest path from

that attraction to the destination given by V3 H  or V3 I , respectively.

V2 F min r F, H V3 H , r F, I V3 I
min 6 5, 4 6 10 at F I  

Thus,  we  have  found  that  the  shortest  path  from F  to  the  destination is  the

path F I K, which has cost 10.  Similarly,

V2 G min r G, I V3 I , r G, J V3 J
min 3 6, 4 4 8 at G J

 

Hence the shortest path from G to the destination is G J K, with cost 8. 

Now,  we  step  backward  one  more  time  unit  and  determine  the  shortest

path  to  the  destination  from  each  possible  attraction  at  n 1  using  the

information:  V2 F 10  and  V2 G 8.  The  shortest  path  from attraction  B
must  start  with  the  edge  from  attraction  B  to  F.   From  F,  the  path  must

follow  the  shortest  path  from  that  attraction  to  the  destination  given  by

V2 F .   From vertex C,  the two choices for the next attraction are F  and G;

and from vertex D, the next attraction must be G.  The appropriate computa-

tions are as follows:

V1 B min r B, F V2 F 5 10 15 at B F
V1 C min r C, F V2 F , r C, G V2 G

min 2 10, 3 8 11 at C G
V1 D min r D, G V2 G 4 8 12 at D G

The optimal path B F I K  from B to the destination has cost 15, the

optimal path C G J K  from C  to the destination has cost 11, and the

optimal path D G J K from D to the destination has cost 12.

Finally, from A there are three choices: to use the edge from A to B, then

the optimal path from B to K, or to use the edge from A to C or from A to D
and then the corresponding shortest paths:

V0 A min r A, B V1 B , r A, C V1 C , r A, D V1 D
min 4 15, 3 11, 6 12

min 19, 14, 18 14 at A C
 

In  words,  the path that  spends  the least  amount of  time walking  and allows

for  the  most  time  to  look  at  the  attractions  is  A C G J K   and

this path takes 14 minutes to walk, leaving the student a total of 36 minutes

to look at the five attractions.  
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Activity 1 – At the beginning of the last example, we stated that there is

no terminal cost  function.   Could you take a slightly different modeling

perspective  and  recast  the  problem  so  that  there  is  a  terminal  cost?

(Hint: Does the time horizon have to be T 4?)

Let us review how we solved this finite deterministic dynamic program-

ming problem.  We started at the destination and worked backwards step by

step from the  terminal time T  to  find  the optimal  value  functions  Vn  evalu-

ated at each state, for times n T 1, using the following equation:

(1)

Vn 1 i mina Ai r i, a Vn j
minavailable actions current cost for next action

smallest total future cost resulting from that action

In formula (1), the state j is the next state to be visited if the current state is i
and  the  action  taken  is  a.   Thus,  we  worked  backwards,  at  each  time  n
computing  the  optimal  value  function  for  a  problem  starting  at  time  n  and

ending  at  T ,  until  we  found  the  optimal  value  function  for  the  complete

problem starting at n 0 and ending at time T .

Now  we  can  move  on  to  the  stochastic  version.   Like  the  deterministic

problem, we start at the end and work backwards, but the problem is slightly

more complicated due to the random nature of the dynamics that govern the

motion of the controlled process.

Dynamic Programming Algorithm, Stochastic Case

Once again,  let  X0, X1, ... , XT  be the chain of states for  a Markov decision

process  with  a  finite  time  horizon  T  and  finite  state  space  E.   A  policy

u u0, u2, ... , uT 1  induces  a  chain  of  actions  U0, U1, ... , UT 1  by

Un un Xn .  For times n 0, ..., T 1 there is a reward Rn r Xn, Un .  A

terminal reward R XT  is  earned at time T .   The probabilistic motion of  the

chain  is  described  by  the  one-step  transition  matrices  Ta.   Recall  that

T i, j; a Ta i, j  is  the  conditional  probability,  under  action  a,  that  the

next state will be j, given that the current state is i.  Then,

 Pu Xn 1 j Xn i T i, j; un i

For a maximum problem, we wish to devise an algorithm to find a policy u

to maximize for all starting states i the expected total reward

 V i, u Eu n 0
T 1 r Xn, un Xn R XT X0 i
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  The strategy will be to find uT 1  first, then work backwards step by step

to  u0.   At  each  time  m  we  must  compute  the  optimal  value  function  for  a

problem that starts at time m, and ends at T .  So, let us define, for a policy u

and a time m T 1:

(2)Vm i, u Eu n m
T 1 r Xn, un Xn R XT Xm i  

and the related time m optimal value function:

(3)Vm i maxu Vm i, u

The  maximum  is  taken  over  all  admissible  policies.   Notice  that  for  time

m T 1,

(4)
VT 1 i, u r i, uT 1 i Eu R XT XT 1 i

r i, uT 1 i j E R j T i, j; uT 1 i

At time T 1 we have a simple decision to make.  Knowing that the state of

the  system is  i,  we  must  pick  exactly  one  more  action  a uT 1 i  to  maxi-

mize  the  immediate  reward  r i, a ,  plus  the  expected  reward

j R j T i, j; a  to be earned at the terminal time.  It is now clear that

(5)VT 1 i max a Ai r i, a j R j T i, j; a

which enables us to initiate the backwards programming process, since r, R,

T i, j; a , and the action sets Ai are all known quantities.  

The  key  idea  of  dynamic  programming,  usually  called  the  Principle  of
Optimality,  is  this:  an  optimal  policy  is  also  optimal  from  each  time  m
onward.  This means that if we have the optimal policy um, um 1, ... , uT 1

from time m  onward,  then  we  can  find  the  optimal  policy  from time m 1

onward  by  adjoining  an  optimal  action  function  um 1  to  the  front  of  this

policy, chosen at state i  so as to maximize the sum of the immediate reward

r i, um 1 i  plus the expected reward from time m onward under the optimal

time m policy.  We step back in time until time 0 is reached, at which point

the optimal policy is completely determined.  The following theorem makes

this idea more precise.

THEOREM 1.  Let Vm, m 0, ... , T 1, be the sequence of optimal value

functions defined in (3) for the finite horizon Markov decision problem with

finite  state  and  action  spaces.   Also,  let  VT  equal  the terminal  reward func-

tion R.  Then,

(6)Vm 1 i max a Ai r i, a j Vm j T i, j; a , m 1, ... , T
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For m 1, ... , T , if we define a policy u* such that um 1 i  is the maximiz-

ing action in expression (6) for each time m and state i, then u* is optimal. 

Proof.   The  technique  will  be  to  show  inductively  on  m,  proceeding  back-

ward from time T ,  that (6) holds for all m,  and in so doing, show that u* is

optimal  from  time  m  onward.   In  particular,  for  m 0,  u*  is  optimal  from

time 0 onward, and V0 is the optimal value function for the entire problem.  

Since there are no more actions to be taken at time T , the anchoring step

is trivial:

VT i VT i, u R i  , i E  

To  proceed  with  the  proof,  we  will  need  the  following  computation.   For

times  m 1, ... , T   and  an  arbitrary  admissible  policy  u u0, ... , uT 1 ,

we have that

(7)

Vm 1 i, u

Eu n m 1
T 1 r Xn, un Xn R XT Xm 1 i

Eu Eu n m 1
T 1 r Xn, un Xn R XT Xm 1 i, Xm Xm 1 i

Eu r i, um 1 i

Eu n m
T 1 r Xn, un Xn R XT Xm 1 i, Xm Xm 1

Eu r i, um 1 i Eu n m
T 1 r Xn, un Xn R XT Xm Xm 1 i

Eu r i, um 1 i Vm Xm, u Xm 1 i
r i, um 1 i j E Vm j, u T i, j; um 1 i

Now  we  suppose  that  u  is  optimal  from  time  m  onward,  i.e.,

Vm i, u Vm i  for all i E, and that the value functions VT , ..., Vm satisfy

the dynamic programming equation (6).  We must extend this to time m 1;

that  is,  we  must  show (6)  itself  and  also  show that  u  is  optimal from time

m 1 onward.  

Return  to  the  last  line  of  (7).   For  all  policies  u  and  all  states  j,
Vm j, u Vm j .   We can take the maximum over all admissible policies u

on the right side of (7) to obtain the inequality

Vm 1 i, u r i, um 1 i j E Vm j T i, j; um 1 i

But the right side of the last inequality is smaller than or equal to the maxi-

mum over all possible actions of a sum of similar form:

Vm 1 i, u maxa Ai r i, a j E Vm j T i, j; a
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For u u , the first inequality is an equality by the induction hypothesis, and

the  second  inequality  is  also  an  equality  by  (7)  and  the  construction  of  the

time m 1 component of u .  Thus,

Vm 1 i, u maxa Ai r i, a j E Vm j T i, j; a Vm 1 i, u ,

u

This  implies  that  u  is  optimal  from  time  m 1  onward,  i.e.,

Vm 1 i, u Vm 1 i  for all states i, and that Vm 1 satisfies (6).   

Activity 2  – Explain why each line of the computation in derivation (7)

is true.

Formula  (6)  is  called  the  dynamic  programming  (DP)  equation.   In  the

case  of  cost  minimization,  the  procedure  is  the  same,  but  the  maxima  are

replaced  by  minima.   The  theorem  gives  rise  to  the  following  algorithm,

which requires knowledge of the state space E, the admissible action sets Ai,
the  transition  matrices  Ta,  the  reward  functions  r  and  R,  and  the  terminal

time T .  Since the state space is finite, we can consider the terminal reward R
and the time m  optimal value function  Vm  as  column vectors,  with an  entry

for each state.  Note that the sum j E Vm j T i, j; a  in the DP equation is

just the ith  row of the matrix Ta  dotted with the column vector Vm, or what is

the same thing, the ith row of the matrix product Ta Vm.

ALGORITHM. (Finite horizon Markov decision problem)

(1) Initialize column vector VT   by VT i R i  for each state i;
(2) For m T  down to 1, do (3)–(4):

  (3) For each i E, do (a)–(c);

(a) Find ai Ai to maximize r i, a Ta Vm i
(b) Let um 1 i ai
(c) Let Vm 1 i r i, ai Tai Vm i

  (4) Output Vm 1 i  and um 1 i  for each i.

To paraphrase the algorithm, after first determining the parameters of the

problem, we set VT R, in order to initialize the computation.  For each time

m,  working  backward  from T ,  we  do  the  following.   In  step  (3)(a)–(c),  we

find  the  optimal actions  for  time m 1 for  each state,  and  at  the  same time

compute the next value function Vm 1, using the DP equation and the known,

current  value  function  Vm.   We  continue  to  step  back  one  time period  at  a

time until we reach time 0, when all optimal actions have been determined.
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Examples

We  will  now  use  the  dynamic  programming  algorithm  to  find  the  optimal

solutions  to the rocket  production  problem and the fish harvesting problem.

You should refer now to Examples 2 and 3 of Section 1 for the notation and

problem conditions.  

EXAMPLE 2.   In  Example 2 of  Section 6.1,  we were to decide how many

rockets to make at each of the times 0, 1, and 2.  The per-period and terminal

cost functions were as follows:

r x, a
10 5 a if x 1 and a 0

0 otherwise

R x
64 if x 1

0 otherwise

These result from the assumptions that 10 is the set-up cost for a manufactur-

ing  run,  5  is  the  cost  per  rocket  manufactured,  and  64  is  the  penalty  if  the

manufacturer  does  not  fulfill  the  contract.   There  are  two  states,  0  and  1,

which  indicate  the  number  of  good  rockets  remaining  to  be  produced.   At

state  0,  only  action  0  is  permissible;  and  at  state  1,  the  permissible  actions

are  A1 0, 1, 2, 3 ,  meaning  that  on  a  production  run  we  can  choose  to

make between 0 and 3 rockets if we have not yet made a good rocket.   The

transition matrices Ta are reproduced below for your convenience:

T0
0
1

1 0
0 1

0 1

      T1
0
1 1 4 3 4

0 1

   

T2
0
1 7 16 9 16

0 1

      T3
0
1 37 64 27 64

0 1

   

The  terminal  time  is  T 3.   In  the  algorithm,  the  maxima  are  replaced  by

minima.

Since V3 0 0, and for m 1, 2, 3,

Vm 1 0 r 0, 0 Vm 0 T0 0, 0 0 Vm 0 ,

it is clear that Vm 0 0 for all m, and the optimal (and only) action is a 0.

Thus,  we  confine  our  attention  to  the  computation  of  Vm 1  for  each  m.

According  to  the  dynamic  programming  algorithm,  we  initialize

V3 R 0 64 t.  Then we calculate
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(8)

V2 1 mina 0,1,2,3 r 1, a V3 1 Ta 1, 1

min 0 64, 10 5 64 3
4

, 10 10 64 9
16

,

10 15 64 27
64

min 64, 63, 56, 52

52 at action 3

To proceed backward to V1, we have

(9)

V1 1 mina 0,1,2,3 r 1, a V2 1 Ta 1, 1

min 0 52, 10 5 52 3
4

, 10 10 52 9
16

,

10 15 52 27
64

min 52, 54, 49.25, 46.9375

46.9375 at action 3

V0 is computed in the same way.  You should check that the result is

(10)V0 1 44.801758,    taken on at action 3.

Combining these facts, we see that u u0, u1, u2  is optimal, where for each

n,

(11)un 1 3  and  un 0 0.

In words,  we should make three rockets on each production run until an

acceptable rocket is made.  

Activity  3  –  Intuitively,  what  is  it  about  the  problem  parameters  in

Example  2  that  gave  us  an  optimal  policy  that  always  makes  three

rockets?   Speculate  on  how  the  nature  of  the  solution  would  change  if

the problem parameters change.  In Exercises 1 and 2 you will be asked

to do some computations of this kind.

EXAMPLE 3.  In Example 3 of Section 6.1, the problem was to determine

how many units of fish should be harvested at each time 0, 1, and 2 in order

to  maximize the reward  received.   We will  complete that  problem now and

show how the use of Mathematica  simplifies some of the computations. Let

us fix the values h 5 and R 50 for the parameters of the problem.  Recall

that  h  is  the  amount  paid  for  each  population  unit  harvested,  and  R  is  the
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terminal  benefit  for  each  population  unit  remaining  after  the  third  year.

Then we can write the two reward functions as:

r 0, , , , , ,

0, 5, , , , , 0, 5, 10, , , ,

0, 5, 10, 15, , , 0, 5, 10, 15, 20, ,

0, 5, 10, 15, 20, 25 ;

R 0, 50, 100, 150, 200, 250 ;

MatrixForm r , MatrixForm R

0
0 5
0 5 10
0 5 10 15
0 5 10 15 20
0 5 10 15 20 25

,

0
50
100
150
200
250

We  are  using   to  encode  infeasible  combinations  of  state  and  action.

Since  we  are  maximizing  total  reward,  it  will  never  come  out  that  one  of

these  infeasible  combinations could  be  optimal.   (What  would  you do  for  a

minimum cost  problem?)  Recall  that  the  state  space  is  E 0, 1, 2, 3, 4, 5 ,

which  is  the  set  of  all  possible  population  levels.   Permissible  actions  are

limited by the fact that no more fish than are present at the beginning of the

year may be harvested.  Thus, the action sets are Ai 0, ... , i .  The transi-

tion  matrices,  as  defined  in  the  original  example,  are  as  in  the  output  cell

below.  
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T0 1, 0, 0, 0, 0, 0 ,

1 4, 0, 3 4, 0, 0, 0 , 0, 1 4, 0, 3 4, 0, 0 ,

0, 0, 1 4, 0, 3 4, 0 , 0, 0, 0, 1 4, 0, 3 4 ,

0, 0, 0, 0, 1 4, 3 4 ;

T1 0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 ,

1 4, 0, 3 4, 0, 0, 0 ,

0, 1 4, 0, 3 4, 0, 0 , 0, 0, 1 4, 0, 3 4, 0 ,

0, 0, 0, 1 4, 0, 3 4 ;

T2 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 , 1 4, 0, 3 4, 0, 0, 0 , 0,

1 4, 0, 3 4, 0, 0 , 0, 0, 1 4, 0, 3 4, 0 ;

T3 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 , 1 4,

0, 3 4, 0, 0, 0 , 0, 1 4, 0, 3 4, 0, 0 ;

T4 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 , 1 4, 0, 3 4, 0, 0, 0 ;

T5 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 1, 0, 0, 0, 0, 0 ;

AllTa T0, T1, T2, T3, T4, T5 ;

MatrixForm T0 , MatrixForm T1 , MatrixForm T2 ,

MatrixForm T3 , MatrixForm T4 , MatrixForm T5
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1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

0 0 0 1
4 0 3

4

0 0 0 0 1
4

3
4

,

0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

0 0 0 1
4 0 3

4

,

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

0 0 1
4 0 3

4 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

0 1
4 0 3

4 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1
4 0 3

4 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

Here  we  are  setting  row  i  of  transition  matrix  Ta  to  be  completely  zero  to

encode  infeasible  state-action  combinations  i, a .   The  sum

j Vm j T i, j; a  in 6  is then computable in Mathematica as the ith  row of

the matrix product Ta Vm,  and the answer will be zero when action a  is not

permissble  for  state  i.   In  this  case,  when  r i, a  is  added,  the  result  of  

will remind us that action a is not only suboptimal, but cannot be considered

for that state.  

The following command will  allow us to use the dynamic programming

equation (6) to solve the problem easily.  It is contained in the KnoxOR`Dy-

namicProgramming` package, but we also show its code.  The input parame-

ters  are  the  list  of  transition  matrices,  called  TransMats;  the  per-period

reward  function  r  in  matrix  form,  called  RewardMatrix;  and  the  current

value  function  Vm,  called Val.   You should  compare to  step  3(a)  of  the  DP

algorithm  above;  for  each  state  i,  we  make  a  list  for  each  action  a  of  the

quantities r i, a Ta Vm i , suitably converted to Mathematica syntax. 

Needs "KnoxOR`DynamicProgramming "̀

6.2 The Finite Horizon Problem 429



DPEquation TransMats,RewardMatrix,Val

DPEquation TransMats_, RewardMatrix_, Val_ :

Table RewardMatrix i, a

TransMats a .Val i ,

i, 1, Length TransMats 1 ,

a, 1, Length TransMats

To  initialize  the  computation  at  time  3,  we  must  call  DPEquation  with

Val R the terminal reward vector.  The sublists in the output correspond to

states 0, 1, ... , 5 respectively, and within each sublist the entries correspond

to actions 0, 1, ... , 5.  

time2list DPEquation AllTa, r, R

0, , , , , ,

75, 5, , , , , 125, 80, 10, , , ,
175, 130, 85, 15, , ,

225, 180, 135, 90, 20, ,
475
2

, 230, 185, 140, 95, 25

The  next  command  picks  out  the  maximum  elements  in  each  sublist,  and

forms them into the time 2 optimal value function V2  for the next step.  The

actions that achive the maximum values are 0 in each case.  

V2 Table Max time2list i ,

i, 1, Length AllTa 1

0, 75, 125, 175, 225,
475
2

Thus the time 2 optimal action function is u2 0, 0, 0, 0, 0, 0 .  Here is the

analogous computation for time 1.  
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time1list DPEquation AllTa, r, V2

V1 Table Max time1list i ,

i, 1, Length AllTa 1

0, , , , , ,
375
4

, 5, , , , ,

150,
395
4

, 10, , , ,

200, 155,
415
4

, 15, , ,

1775
8

, 205, 160,
435
4

, 20, ,

1875
8

,
1815
8

, 210, 165,
455
4

, 25

0,
375
4

, 150, 200,
1775
8

,
1875
8

Again,  the  time  1  optimal  action  function  is  u1 0, 0, 0, 0, 0, 0 .   Finally,

here is the result for time 0. 

time0list DPEquation AllTa, r, V1

V0 Table Max time0list i ,

i, 1, Length AllTa 1

0, , , , , ,
225
2

, 5, , , , ,

2775
16

,
235
2

, 10, , , ,

6525
32

,
2855
16

,
245
2

, 15, , ,

7225
32

,
6685
32

,
2935
16

,
255
2

, 20, ,

925
4

,
7385
32

,
6845
32

,
3015
16

,
265
2

, 25

0,
225
2

,
2775
16

,
6525
32

,
7225
32

,
925
4

Comparing the maxima in the second output to the lists in the first, we again

see that u0 0, 0, 0, 0, 0, 0 .  Thus, for all times it is optimal not to harvest

any units  of  fish for  this  choice  of  parameters.   It  must be the case that  the

relative size of the terminal reward R to the per period reward r was so great

that there is a lot of incentive to wait and let the fish population grow. Do the

activity below to follow up on this result.  
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Activity  4  –  Change  the  parameter  R  from 50  to  20  in  Example  3  and

recompute the optimal policy.   Does it change?   If  not,  try reducing the

value of R gradually until you find a value for which it becomes optimal

to harvest under some conditions.

Exercises 6.2

1.  Working  by  hand  (rather  than using the DPEquation  command), find  the

optimal  policy  for  the  rocket  production  problem,  Example  2,  if  the  cost

function r x, a  is changed to

r x, a
16 8 a if x 1 and a 0

0 otherwise

2. (Mathematica) (a) Use the DPEquation command to confirm the computa-

tions in Example 2.

(b) Repeat the solution of Example 2 holding r as it is, but with values of the

terminal cost  function  of  (i)  50;  (ii)  45;  (iii)  40 if  a  successful  rocket  is  not

made.  

3. (Mathematica) In Section 1 we introduced an example with two states and

two  actions  in  which  the  reward  function  was  r A, 1 4,  r B, 1 3,

r A, 2 2,  r B, 2 5  and  the  transition  matrices  were  as  below.   For  a

finite  horizon  stochastic  dynamic  programming  problem  with  time  horizon

T 6 and terminal reward R A 3, R B 5, find the optimal policy.

T1 = 
1 3 2 3
3 4 1 4  and  T2 = 

1 5 4 5
1 4 3 4  

4. (Mathematica) A house has a simple thermostat that can be set at 1 to turn

the furnace  on,  and 0 to turn  it  off.   Potential  changes  in setting take effect

every 10 minutes.  If the thermostat is on 0, in a 10-minute period the room

temperature  will  either  stay  the  same  or  go  down  by  a  degree,  with  equal

probability.   If  it  is on 1, the room temperature will go up by a degree with

certainty in the next 10-minute period.  There is an energy cost of 1 cent for

each  10-minute  period  during  which  the  furnace  is  on.   There  are  also

discomfort costs of  1.5 cents per  degree for  each 10-minute period for  each

degree  of  room temperature difference between the current  temperature and

the ideal temperature of 68.  Assume that room temperature must be kept at

all times between 65 and 71,  and that the thermostat must turn on when the

temperature is 65, and must turn off when it is 71.  How should the thermo-

stat  be  programmed to  operate?   Formulate  the  problem as  a  Markov  deci-

sion problem, write out the DP equation, and solve it using Mathematica for
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a time horizon of 50 minutes, using a terminal cost that penalizes differences

between final temperature and 68 as described above.  

5. (Mathematica) In Exercise 1 of Section 6.1, suppose that the single period

reward  function  is  r i, a i a,  and  at  the  terminal  time  T 4,  a  final

reward R X4 X4 is received.  Find the optimal policy.

6.  In  the  fishery  example  of  Example  3,  assume  that  there  are  only  two

fishing  seasons  under  study,  and  that  the  net  benefit  per  unit  of  fish  har-

vested is 5 and the net benefit per unit remaining at the end is 10.  Find the

optimal policy by hand, that is, without using the DPEquation command.

7. (Mathematica) Using the original problem parameters of Example 3, find

the smallest time horizon T  such that it  is  beneficial to harvest  fish at some

time prior to that horizon.  

8.  For  the  two-state,  two-action  Markov  decision  process  with  transition

matrices and per period reward function as below, consider the finite horizon

problem  with  time  horizon  T 4  and  terminal  reward  R 1 2, R 2 1.

Find the optimal policy.

T1
1 2 1 2
2 3 1 3  , T2

1 4 3 4
1 3 2 3  

r 1, a
5 if a 1

4 if a 2
 ,  r 2, a

2 if a 1

3 if a 2

9.   Let  us  presume  that  the  dynamic  programming  equation  (6)  still  holds

when  the  state  and  action  spaces  are  not  finite,  for  the  purposes  of  the

following problem.  An owner  of  a baseball team can spend any proportion

p 0, 1  of  his  currrent  assets  on  free  agents.   He  estimates  that  the  team

will  come  through  and  return  him  twice  the  amount  that  he  spent  with

probability  w,  but  the  team  will  fail  and  he  will  lose  what  he  spent  with

probability l 1 w.   The owner  plans to keep the team for  T  years before

selling out.   His goal  is  to maximize the expected value of  the logarithm of

his wealth when he sells the team.

  (a) Model this problem as a Markov decision problem, including a descrip-

tion  of  the  state  and action spaces,  a  formula for  the transition probabilities

T x, y; a , and the single period and terminal reward functions.

  (b) Write the dynamic programming equation for the problem.

  (c)  If  T 3  and  w 1 2,  show  that  the  optimal  action  at  each  time 0,  1,

and 2 is to bet a proportion  a 2 w 1 of the current wealth.
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10.  A  person  has  $4000  available  initially  for  investment  in  two  risky

ventures  A  and  B.   Venture  A   will  return  nothing  in  a  time  period  with

probability 2/3, and will return $3000 per thousand invested with probability

1/3.   Venture  B  will  return  either  $1000  or  $2000  per  thousand  invested,

each  with  probability  1/2.   Investment  amounts  are  in  units  of  a  thousand

dollars, and the person may risk as much as $2000 per time period.  Find the

strategy  that  maximizes  the  expected  value  of  the  square  of  the  terminal

wealth at the end of 2 time periods.

11.  The  following  is  a  deterministic  dynamic  programming  problem.   A

company is planning a marketing strategy for a new product.  There are three

phases of the plan: (1) an introductory low price; (2) a subsequent intensive

advertising  campaign in  newspapers  and magazines;  and (3)  a  follow-up  ad

campaign on radio.  A total of $4 million, which can be spent in $1 million

blocks,  is available.  After  each phase,  it  is possible for the product  to have

one of the following shares of the market:

                        5%         10%        15%        20%        25%

In the initial phase, allotments of  $0–$4  million result in these five percent-

ages,  respectively.   The  following  table  shows  the  changes  in  market  share

that will  result  between phases 1 and 2,  and between phases 2 and 3,  under

the five possible investments.

Amount

invested

$millions Old share new share

0 5 % 5 %, 10 % 5 %, 15 % 5 %, 20 % 10 %, 25 % 15 %

1 5 % 5 %, 10 % 5 %, 15 % 10 %, 20 % 15 %, 25 % 20 %

2 Old new

3 5 % 10 %, 10 % 15 %, 15 % 20 %, 20 % 25 %, 25 % 25 %

4 5 % 15 %, 10 % 20 %, 15 % 25 %, 20 % 25 %, 25 % 25 %

Find the amount of money to be allocated in each phase in order to maximize

the  share  of  the  market  at  the  end  of  the  plan  (there  is  no  single  period

reward r).            

12.   Solve Exercise 12  of  Section 6.1  on immigration if  the time horizon is

T 4 and the probability of population increase is p 1 2.  
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6.3 The Discounted Reward Problem

Method of Successive Approximations

To this point we have studied only the problem of maximization (or minimiza-

tion) over a finite time horizon.  Now we examine the problem of maximiz-

ing the infinite horizon discounted reward:

 DEFINITION  1.   Let  0, 1 .   The  value  function  of  policy

u u0, u1, u2, ...  for  the  infinite  horizon  discounted  problem  with

discount factor  is

W i, u Eu n 0
n r Xn, un Xn X0 i

and  the  optimal  value  function  for  this  problem  is  W i maxu W i, u

(minimum for a minimum cost problem).

In  this  problem,  control  is  exerted  forever,  but  the  present  value  of  a

reward  of  d  absolute  dollars  earned  at  time n  is  only  n d.   Since  the  state

space is finite, the reward function r  is bounded,  and therefore the expected

total discounted reward is also bounded (see Exercise 2). 

Activity  1  –  For  the  infinite  horizon  discounted  problem  there  are

infinitely  many  policies;  but  even  if  we  restrict  to  only  the  class  of

stationary  policies  u u, u, u, ... ,  there  are  potentially  a  very  large

number of them.  At most how many?

To motivate the dynamic programming equation that  is  the focus of  our

investigation,  consider  a  policy  u u0, u1, u2, ... .   In  the  following,  we

will  denote  by  u1  the  policy  u1, u2, ...  obtained  from u  by  truncating  the

first  action  function  u0.   In  the  infinite  series  in  W i, u ,  split  the time zero

reward  away  from  the  sum,  factor  out   from  what  remains,  and  then

condition and un-condition on X1.  We obtain the following expression:
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(1)

W i, u

E r i, u0 i n 1
n 1 r Xn, un Xn X0 i

E r i, u0 i
E n 1

n 1 r Xn, un Xn X1, X0 i X0 i
E r i, u0 i W X1, u1 X0 i
r i, u0 i j E W j, u1 T i, j; u0 i

 

If  u  is  a  stationary  policy  with  action  function  u,  then  the  changes  that

result in formula (1) are that  u0 u and u1 u.  In order for such a station-

ary policy to be optimal, it must choose the best action  a u0 i u i  in the

above  equation,  and  its  value  W i, u  will  equal  the  optimal  value  function

W i  for  all  states  i.   These  remarks  should  help  to  motivate  the  following

theorem.

THEOREM 1.  The optimal value function W  satisfies the equation:

(2)W i max
a Ai

r i, a j E W j T i, j ; a

If  u  is  defined  as  the  stationary  policy  such  that  the  action  u i  taken  at

state i maximizes the right side of (2) for every i, then u  is optimal. 

Proof.   We  give  a  proof  that  assumes  the  existence  of  an  optimal  policy

v v0, v1, v2, ... ,  a  fact  that  we  will  not  prove.   The  existence  can  be

shown (see Derman ([17], Lemma 3.5) by proving that W i, u  is a continu-

ous function of u, and that the set of admissible policies is compact.  

Let v v0, v1, ...   be an optimal policy.  Then W i, v W i  for all i.
As  in  the  theorem statement,  let  u i  be  the  maximizing  action  for  state  i.
We consider a sequence of policies u1, u2, u3 defined by

un u , u , ..., u , v0, v1, ... ,

that  is,  un  uses  the  actions  u i  up  through  time  n 1,  and  follows  the

optimal policy thereafter.  Notice that

W i, un

E k 0
n 1 k r Xk, u Xk k n

k r Xk , vk n Xk X0 i

Thus,  it  is  clear  that  W i, un W i, u as n  (since  the  two  values

differ only in the tail sum, which is bounded by n times a constant).  

Consider  u1 u , v0, v1, ... .  By (1), the choice of u  and the optimal-

ity of v , we have
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W i, u1 r i, u i j E W j, v T i, j; u i
r i, v0 i j E W j, v T i, j; v0 i
W i, v W i

Thus,  u1  is  at  least  as  good  as  v .   Now  consider  the  policy

u2 u , u , v0, v1, ... .   Iterating  (1),  that  is,  replacing  W j, u1  in  that

formula by the immediate reward r  plus  times the expected future reward

gives

W i, u2 r i, u i j E T i, j; u i
r j, u j k E W k, v T j, k; u j

r i, u i j E T i, j; u i
r j, v0 j k E W k, v T j, k; v0 j

r i, u i j E W j T i, j; u i
r i, v0 i j E W j T i, j; v0 i
W i, v W i

Thus, the policy u2 is at least as good as v .  

One can obviously repeat the process to obtain

W i, un W i

Therefore,  in  the  limit  as  n , W i, u W i .   Since  W  is  the  optimal

value function, the reverse inequality is obvious; consequently, u* is optimal

and (2) follows from (1) and the choice of u i .  

Equation  (2)  is  called  the  dynamic  programming  equation  for  the

discounted  problem.   Intuitively,  it  says that  if  the  initial  state is  i,  then the

optimal action maximizes the sum of the immediate reward plus the discount

factor times the expected total reward under an optimal policy from time one

onward.   For  the  problem  of  cost  minimization,  the  maximum  is  simply

replaced by a minimum. 

At  first  glance,  the  infinite  horizon  problem appears  to  be  solved,  since

we have characterized the optimal policy.  Unfortunately, in order to find the

optimal actions in (2), we must know the optimal value function W .  Unlike

the  finite  horizon  problem,  there  is  no  terminal  time  from  which  we  can

slowly step back until  the optimal value function  is reached.   But  there is  a

way of approximating W  to any desired accuracy by a sequence of functions.

We  will  describe  this  method  next.   In  the  next  section  a  different  way  of

finding  the  optimal  policy  is  given,  in  which  we  begin  with  an  arbitrary

policy and successively improve it  until,  after  finitely many steps,  we reach

optimality.  
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The next theorem gives us the so-called method of successive approxima-
tions.  

THEOREM 2.  For each j E, let w0 j  be an arbitrary real number, i.e., let

w0  be  an  arbitrary  column  vector.   Define  a  sequence  of  vectors

w1, w2, w3,  by

(3)wn 1 i maxa Ai r i, a Ta wn i

Then  the  sequence  wn  converges  to  the  optimal  value  function  W  (again,

replace max by min in the case of cost minimization).

Proof.     We  will  use  the  functional  notation  wn  instead  of  the  boldface

vector notation.  We would first like to establish the inequality

(4)maxi E wn 1 i W i maxi E wn i W i

Let a  be  the maximizing action in (3)  for  state i.   Since a  may not  be the

maximizer in the DP equation (2), we have the inequality

(5)

wn 1 i W i r i, a j E wn j T i, j; a
r i, a j E W j T i, j; a

j E wn j W j T i, j; a
maxk E wn k W k

The  last  line  occurs  because  wn j W j  is  no  larger  than  the  stated

maximum, which  is  constant  as  far  as  j  is  concerned.   The  remaining  sum

T i, j; a  is the sum of all the entries in the i th  row of a transition matrix,

which is 1.  

By  considering,  instead  of  a ,  the  maximizers  u i  in  the  DP  equation

(2), one can show in a similar way (see Exercise 4) that

(6)W i wn 1 i maxk E wn k W k

Since both of the inequalities (5) and (6) are true for all i E, (4) is true.

Iterating (4), we obtain

(7)maxi E wn 1 i W i n 1 maxi E w0 i W i

Since the state space is  finite,  since the maximum on the right  side is some

non-negative  real  constant,  and  since  0, 1 ,  the  right  side  of  (7)  forces

the left side to zero, which means that wn i W i  for each i E.  
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REMARK.   The convergence of the sequence wn  to W  shows the unique-

ness  of  the  solution  to  the  dynamic programming equation,  which  is  some-

thing  that  we  will  use  implicitly  in  the  examples.   For,  if  W0  is  another

solution to (2), consider the sequence of functions generated in (3) by using

W0  as  the  initial  function.   Since  W0  is  a  solution  of  the  DP equation,  it  is

easy to see that W0 w1 w2  , hence the limit W  of the sequence must

equal W0.

The  two  theorems  together  give  us  a  rough  procedure  for  finding  the

optimal policy.   Beginning with an arbitrary function w0  on the state space,

we can generate  a  sequence  of  functions  w1,  w2,  ...  by  (3),  which  approach

the  optimal  value  function  W .   At  some n,  we  decide  that  we  have  a  good

enough  approximation.   This  decision  may  be  made  on  the  basis  of  the

stabilization of the functions wn, or the stabilization of the optimal actions in

(3).   For the function wn  at which we stop, the optimal actions ai  are found

for each state i from (3). One forms a stationary policy u from these actions

and  computes  its  value  function  W i, u .   If  this  value  satisfies  the  DP

equation  (2),  then  the  policy  is  optimal.   If  not,  then  one  can  return  to  the

method  of  successive  approximations  to  find  a  closer  approximator  for  the

optimal value function,  together  with its corresponding  optimal actions.  To

solve  for  the  value  function  of  u,  we  use  (1)  to  obtain  a  system  of  linear

equations for the unknowns xi W i, u :

(8)I Tu x ru

where   Tu i, j T i, j; u i   and  ru r i, u i .   Note  that  this  is  just  the

system derived  in  Chapter  4,  Section  5  for  the long-run  discounted  cost  (or

reward).  

The  structure  of  the  DP  equation  (3)  for  the  method  of  successive

approximations  is  identical  to  the  DP  equation  for  the  finite  horizon  prob-

lem,  with  the  single  exception  that  the  discount  factor   is  a  coefficient  of

the second term.  This means that the DPEquation command of the previous

section can be modified to produce the next function wn 1  given the current

function wn,  and also it can be used to check to see whether a current value

function W i, u satisfies the DP equation (2),  which indicates that policy u

is optimal.  The command DiscountedDPEquation contained in the KnoxOR`-

DynamicProgramming`  package  takes  the  list  of  transition  matrices  Trans-

Mats,  the  reward  function  RewardMatrix,  the  current  approximating  value

function  Val  (i.e.,  wn),  and  the  discount  factor  ,  and  returns  the  list  (for

each state i) of sublists (for each action a) on the right side of formulas (2) or

(3),  the  optimum  values  of  which  form  next  value  function  approximator

wn 1.  
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Needs "KnoxOR`DynamicProgramming "̀

DiscountedDPEquation

TransMats,RewardMatrix,Val,

Activity 2  – Try without referring to Section 2 to write the code for the

DiscountedDPEquation command.  Compare your version to the code in

the closed cell above this Activity. 

The method for using DiscountedDPEquation is to start with an arbitrary

initial function (vector) w0,  iteratively compute a few of the next wi,  noting

whether  the  optimal  actions  ai  all  remain  the  same  from  one  time  to  the

other.   When  they  do,  pause  to  compute  the  value  function  of  the  current

policy  u  associated  with  the  actions  ai.   Form  the  transition  matrix  Tu  and

reward  vector  ru  for  this  policy,  where   Tu i, j T i, j; u i   and

ru r i, u i .  Solve the linear system I Tu x ru; the solution vector x

is  the  value  of  the policy Wu.   Use Wu  as  the  Val  argument in  Discounted-

DPEquation  command,  and  check  whether  the  maxima  are  identical  to  the

values of Wu; and if so, u is an optimal policy.  If not, resume the successive

approximations until the optimal actions restabilize differently and check for

optimality as in the previous sentence.  Continue to do this until the optimal

policy  is  found.   (Make  sure  that  you  can  explain  why  Theorems  1  and  2
justify  this  approach.)   We  will  use  the  standard  Mathematica  command

LinearSolve to do the necessary equation solving.

?LinearSolve

LinearSolve m, b finds an x which solves

the matrix equation m.x b. LinearSolve m

generates a LinearSolveFunction ... which

can be applied repeatedly to different b. More…

Examples

The application of the method of successive approximations is illustrated by

the following example.
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EXAMPLE 1.  Consider a two-state, two-action problem in which the states

are labeled 1, 2 and the actions are also labeled 1, 2.  Let the two transition

matrices for these actions be

T1=
1
2

1 2 1 2
2 3 1 3

1 2

 ,    T2= 
1
2

1 4 3 4
1 3 2 3

1 2

 

and suppose that the reward function is

r 1, a
5 if a 1

4 if a 2
 ,   r 2, a

2 if a 1

3 if a 2
  

Let  the  discount  factor   be  .9.   We  will  need  the  Mathematica  definitions

below.

matT1 1 2, 1 2 , 2 3, 1 3 ;

matT2 1 4, 3 4 , 1 3, 2 3 ;

AllTas matT1, matT2 ;

r 5, 4 , 2, 3 ;

.9;

Start the sequence with  w0 1 w0 2 0 . Then w1 is generated as follows:

w0 0, 0 ;

list1 DiscountedDPEquation AllTas, r, w0,

w1 Table Max list1 i ,

i, 1, Length AllTas 1

5, 4 , 2, 3

5, 3

The optimal actions are a1 1, a2 2.  Let us compute w2 and w3.  

list2 DiscountedDPEquation AllTas, r, w1,

w2 Table Max list2 i ,

i, 1, Length AllTas 1
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8.6, 7.15 , 5.9, 6.3

8.6, 6.3

list3 DiscountedDPEquation AllTas, r, w2,

w3 Table Max list3 i ,

i, 1, Length AllTas 1

11.705, 10.1875 , 9.05, 9.36

11.705, 9.36

In  each  case  the  optimal  actions  are  a1 1, a2 2.   It  is  time  to  stop  and

check the stationary policy defined by u 1 1, u 2 2 for optimality.  

When  the  system is  in  state  1,  this  policy  takes  action  1;  and  when  the

system  is  in  state  2,  action  2  is  taken.   Thus,  the  chain  of  states

X0, X1, X2, ...  is a time-homogeneous Markov chain with transition matrix:

T Tu
1
2

1 2 1 2
1 3 2 3

1 2

We have a reward function

ru r 1, 1 r 2, 2 5 3

The value of the policy is

Tu 1 2, 1 2 , 1 3, 2 3 ;

ru 5, 3 ;

Ident 1, 0 , 0, 1 ;

Wu LinearSolve Ident Tu, ru

39.4118, 37.0588

Checking the DP equation (2), 

ulist DiscountedDPEquation AllTas, r, Wu,

Table Max ulist i ,

i, 1, Length AllTas 1

39.4118, 37.8824 , 36.7647, 37.0588
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39.4118, 37.0588

Since Wu  matches the  maximum values  on  the right  side of  (2),  policy u  is

optimal.  Though it has turned out here that at each state i one acts in order

to receive the best immediate reward r i, a , it was not altogether obvious at

the outset that this had to be the case.  For instance, from state 2 we receive 3

monetary  units  if  we  take  action  2;  but  if  this  action  is  taken,  there  is  a

relatively  low  probability  that  the  chain  next  will  go  to  the  comparatively

high reward state 1.  

Activity 3 – If you compare the results for w3  in Example 1 to the final

result  for  Wu,  you  see  that  w3  was  not  very  close  at  all  to  the  optimal

value  function.   Nevertheless,  we  quickly  located  the  optimal  policy

itself   by  interrupting  the  successive  approximations  and  checking  for

optimality  of  the  current  policy.   Try  computing  the  next  several  wn  to

see whether they tend slowly or quickly to Wu.  (See also Exercise 5.)

The  following  simple  model  of  machine  repair  is  an  example  in  which

we can actually solve  the  dynamic programming equation  without  resorting

to successive approximations.

EXAMPLE  2.   A  machine  can  be  in  one  of  three  conditions:  like  new,

mildly deteriorated,  or  badly  deteriorated.   At  each  time,  our  options  are  to

do nothing to the machine, to attempt a repair, or to replace the machine with

another that is like new.  To simplify matters, we will assume that we never

interfere  with  a  machine  that  is  like  new,  and  we  must  replace  a  badly

deteriorated  machine.   There  is  a  known  repair  cost  and  a  known  replace-

ment cost.  In addition, there are costs due to production of inferior items by

the machine, when it is not in best possible condition.  The transition probabil-

ities under our various possible actions are known.  Find the repair schedule

that will minimize expected total discounted cost for a given discount factor

.

Let  us set down some notation first.   The state space and the associated

costs for inferior production are

States Cost bad output

0 like new 0

1 deteriorated C1

2 badly deteriorated C2
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Writing 0  for  the action of  doing nothing,  1 for  repairing,  and 2 for  replac-

ing, we have that the action sets are

A0 0 , A1 0, 1, 2 , A2 2

Since  only  one  action  is  allowed  at  each  of  states  0  and  2,  the  problem  is

simply to  decide  what  to  do  when the machine is  in  the mildly deteriorated

state.   This  simple  structure  will  permit  us  to  compute  the  optimal  value

function directly from the dynamic programming equation.  Suppose that 

 C3 = cost of repairing a deteriorated machine

C4 = cost of a new machine

Therefore the cost c i, a  when the state is i and the action is a can be written

c i, a

0 if i 0
C1 if i 1, a 0

C1 C3 if i 1, a 1
C1 C4 if i 1, a 2
C2 C4 if i 2

Suppose that the transition matrices for the three actions are

T0

0
1
2

3 4 1 4 0
0 7 8 1 8

0 1 2

, T1

0
1
2

1 2 1 2 0

0 1 2

,

T2

0
1
2

1 0 0
1 0 0

0 1 2

 

To say that  T1 1, 0 1 2 , for  example, says that if we choose to repair a

mildly deteriorated  machine,  the  chance  is  only  50% that  the  repair  will  be

successful.   To  say  that  T0 0, 1 1 4  means  that  a  good  machine  will

deteriorate with probability 1/4 if no maintenance is done.

Equation (2) can now be written for each of the states.  Using Mathemat-
ica, we obtain the expressions inside the minimum. 

444 Chapter 6 Dynamic Programming



T0 3 4, 1 4, 0 , 0, 7 8, 1 8 , 0, 0, 0 ;

T1 0, 0, 0 , 1 2, 1 2, 0 , 0, 0, 0 ;

T2 0, 0, 0 , 1, 0, 0 , 1, 0, 0 ;

c 0, , ,

C1, C1 C3, C1 C4 , , , C2 C4 ;

W W0, W1, W2 ;

AllTas T0, T1, T2 ;

ulist DiscountedDPEquation AllTas, c, W,

3 W0
4

W1
4

, , ,

C1
7 W1
8

W2
8

, C1 C3
W0
2

W1
2

,

C1 C4 W0 , , , C2 C4 W0

(Why did we define the cost function c  in this way?)   We have in full form

the following equations: 

(9)

W 0 3 4 W 0 1 4 W 1

W 1 min C1 7 8 W 1 1 8 W 2 ,

C1 C3 1 2 W 0 1 2 W 1 ,

C1 C4 W 0

W 2 C2 C4 W 0

 

The first and third equations allow us to solve for W 0  and W 2  in terms of

W 1 :

W 0 4 3 W 1 ,

W 2 C2 C4
2 4 3 W 1

These may be substituted into equation (9) for W 1  to give

(10)

W 1 min C1 C2 C4 8 7 8 3 8 4 3 W 1 ,

C1 C3 2 2 2 4 3 W 1 ,

C1 C4
2 4 3 W 1

We  now  take  some  specific  numbers  in  order  to  obtain  a  numerical

solution.  Let

0.9, C1 1, C2 2 , C3 6, C4 10

The three expressions inside the minimum simplify as follows:
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action0value 1 .9 2 10 8

7 .9 8 .9 3 8 4 3 .9 W1

action1value 1 6

.9 2 .9 2 2 4 3 .9 W1

action2value 1 10 .9 2 4 3 .9 W1

2.35 0.857596 W1

7 0.761538 W1

11 0.623077 W1

Now  W 1  must  equal  one  of  these  three  expressions.   This  gives  us  three

linear equations and three corresponding solutions that are candidates for the

true W 1 .  These turn out to be

Solve x 2.35 .857596 x, x ,

Solve x 7 .761538 x, x ,

Solve x 11 .623077 x, x

x 16.5023 , x 29.3548 , x 29.1837

If  action  0  is  optimal  for  state  1,  then  when  W 1 16.5023  is  substituted

into  the  expression  to  be  minimized  in  the  DP  equation,  action  0  should

produce  the  smallest  number  among  the  three.   Upon  substituting,  we  find

that the three numbers are

2.35 0.857596 16.5023 ,

7 0.761538 16.5023 , 11 0.623077 16.5023

16.5023, 19.5671, 21.2822

Because  16.5023  agrees  with  the  minimum  of  these  which  does  occur  for

action 0, action 0 is indeed optimal, and the dynamic programming equation

is satisfied if W 1 16.5023.  (To see what goes wrong when a non-optimal

action is picked, do the activity following this example.) This means that the

optimal policy is to wait until it is not functioning at all and replace it then.

For this choice of constants, the repair and replacement costs are apparently

too large in comparison with the costs of inferior production  to attempt any

maintenance.   To  see  how  sensitive  the  optimal  policy  is  to  the  costs,  the

reader  can  do  Exercise  8,  in  which  the  cost  structure  is  more  favorable  to
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maintenance.   Exercise  9  looks  at  the  sensitivity  of  the  optimal  policy  to

changes in the discount factor .  

Activity  4  –  In  Example  2,  one  of  our  candidate  values  for  W 1  was

29.3501,  corresponding  to the case where  action 1  is optimal at  state 1.

By substituting into the minimum expressions in the DP equation, check

to see that this value cannot be the correct W 1 .  

Exercises 6.3

1.  Argue  that  for  fixed  i,  the  maximum  in  the  optimal  value  function

W i maxu W i, u  among only all  stationary policies must be assumed by

some policy.  Does your argument extend to the case where the supremum is

taken over all admissible policies?

2.   Show  that  if  the  reward  function  r  of  a  Markov  decision  problem  is

bounded in absolute value by a constant c, then for any policy u, the infinite

horizon discounted value function of u with discount factor  is bounded in

absolute value by c 1 .

3.  Write  an  expression  similar  to  (1)  relating  the  value  of  a  policy

u u0, u1, u2, u3, ...  to that of  u2 u2, u3, ... .

4. Prove inequality (6) as suggested in the proof of Theorem 2.

5. (Mathematica) For the two-state, two-action problem (Example 1), write a

Mathematica  program  to  compute  the  sequence  of  functions  generated  by

the  method  of  successive  approximations,  until  a  termination  condition  is

achieved,  which  stops  the  computation  after  the  successive  approximating

functions  differ  by  no  more  than  a  desired  tolerance.   The  program  should

output the number of iterations necessary to terminate and the final function

wn.    Run the program for  the initial  function  w0 1 w0 2 0 and for  the

initial  function  w0 1 40, w0 2 30,  and  find  the  number  of  iterations

necessary to make the successive approximations differ by no more than .01.

6.  Using  the  same  problem  parameters  as  in  Example  1  and  the  initial

function w0 1 w0 2 0, estimate analytically how large n must be so that

wn  is within .1 of the optimal value function W . (Hint: Use (7) and Exercise

2.)

7. (Mathematica) Redo Example 1, changing T1 2, 1  to 7/8 and r 1, 1  to 8.

8.  Redo  Example  2,  changing  the  costs  to  C1 4,  C2 6,  C3 3,  C4 5.

Keep  set at .9.
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9. (a) Redo Example 2, changing  to .5.

(b) Redo Example 2, changing  to .95.

(c)  What  happens  to  the  solution  W 1  of  the  dynamic  programming

equation as 1?  Why is this result intuitively obvious?

10.  (Mathematica)  Let  us  expand  the  model  of  Example  2.   Suppose  now

that  the  machine  can  be  in  "like  new"  condition  (state  0),  "badly  deterio-

rated" condition (state 4), or one of three intermediate states of deterioration,

labeled 1, 2, 3, in order of increasing severity.  Again suppose that we do not

act if the machine is in state 0, we must replace the machine if it is in state 4,

and for the intermediate states we have the option of doing nothing, attempt-

ing  a  repair,  or  replacing  the  machine.   Suppose  that  if  we  do  nothing,  the

machine stays in its current state with probability 3/4  and reduces to the next

lower state with probability 1/4 (except that if it is badly deteriorated, it stays

in  that  state).   If  the  repair  option  is  chosen,  the  machine  goes  to  the  next

higher  level  with  probability  1/2,  or  stays  the  same  with  probability  1/2.

Replacement always restores the state to "like new."  Suppose that the costs

of  poor  output  for  the five states are 0,  3,  6,  9,  and 12;  the repair  cost  is  4;

and  the  replacement  cost  is  10.   Let  the discount  factor   be  .95.   Find  the

optimal policy.  

11. (a) Recall the advertising problem (Exercise 5 of Section 6.1). Consider-

ing  the  problem  as  an  infinite  horizon  discounted  reward  problem  with

discount factor .9, write the DP equation.

(b) Find the optimal value function and the optimal action at the state where

the  soft  drink  has  the  maximum  30%  of  the  market,  as  a  function  of  the

problem parameters r and c.

(c)  Let  r 10,  c 2,  and  find  the  optimal  value  function  and  the  optimal

policy  for  the  advertising  problem,  without  resorting  to  successive

approximations.

12.  (Mathematica)  For  the  advertising  problem  (Exercise  5  of  Section  6.1)

viewed  as  an  infinite  horizon  problem  with  discount  factor  .9,  use  the

parameters  in  Exercise  11(c)  to  find  the  value  of  the  policy  that  never

advertises.  Use this value as the initial function in the method of successive

approximations and compute w1, w2, and w3.

13.  (Mathematica)  A  reservoir  holds  3  units  of  water.   We  will  control  the

chain  defined  by  Xn  =  #  units  of  water  in  the  reservoir  at  the  beginning  of

month  n,  by  deciding  how  much  water  to  release  from  the  reservoir  at  the

beginning  of  the  month.   Each  unit  of  water  released  produces  a  monetary

benefit of 1 unit, due to the production of power and irrigation.  But if the 
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reservoir  is  dry,  there  is  a  loss  of  2  monetary  units  due  to  the  need  to  pur-

chase power from another source.  During a month, rainfall produces either 0

units  or  1  unit  of  inflow  to  the  reservoir,  each  with  probability  1/2.   Any

rainfall  occurring  when  the  reservoir  is  already full  is  simply lost.   Use  the

method of successive approximations to find the optimal value function and

optimal  water  release  policy  for  the  infinite  horizon  Markov  decision

problem with discount factor .95. 

6.4   Policy Improvement

Main Theorem and Policy Improvement Algorithm

Consider  again  the  discounted  reward  problem  with  discount  factor  ,

expressed  by  Definition  1  of  the  last  section.   Recall  that  there  exists  an

optimal stationary policy.   When u u  is  a  stationary policy,  the chain of

states Xn  is Markov, with transition matrix defined by

(1)Tu i, j P Xn 1 j Xn i, Un u i T i, j; u i

As we saw in  Chapter  4,  there is  a  system of  linear  equations  for  the value

W i, u Wu i  of a stationary policy.  Defining ru i r i, u i , this system

can be written in matrix form as

(2)I Tu Wu ru

where I is the identity matrix of the appropriate size, and we view Wu  and ru

as column vectors.

Since  there  are  usually  many  policies,  we  need  an  efficient  way  of

searching  through  policies  to  find  an  optimal  one.   In  the  last  section,  we

discussed  the  method  of  successive  approximations,  which  can  be  used  to

approximate  the  optimal  value  function  W ,  from  which  the  optimal  policy

can be found.  But there are problems with this method.  Nothing guarantees

that  the  sequence  wn  of  approximating  functions  converges  to  W  at  some

finite  step  n.   For  a  given  reward  function,  it  is  possible  to  find  n  large

enough to ensure that wn  is very close to W , but the policy we find from wn
may not  be optimal.  As in Example 1 of Section 6.3,  the value function of

this  policy  must  be  computed,  and  checked with  the  dynamic programming

equation below:

(3)W i max
a Ai

r i, a j E W j T i, j ; a
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If the policy is still not optimal, then our only recourse would be to continue

to  generate  functions  wn  by  successive  approximations,  in  hopes  that  later

we may locate the optimal policy.  

Thus,  the  method  of  successive  approximations  does  not  give  us  a

perfectly  satisfactory  algorithm,  and  we  now look  for  something  else.   The

algorithm studied in this section is called the policy improvement algorithm.

Instead  of  creating  a  sequence  of  better  and  better  approximate  value  func-

tions,  we  form  a  sequence  of  better  and  better  policies.   Below  is  the  key

result.

THEOREM 1.   Let  u u  be  a  stationary policy,  whose  value  function  is

W i, u Wu i .   Define  a  new  stationary  policy  v v ,  such  that  for  each

i E, v i  achieves the maximum in

(4)maxa Ai r i, a j E T i, j; a Wu j

Then for each i E,

Wv i Wu i

and if equality holds for all i, then u and v are optimal policies.   (As always,

the  maxima  are  replaced  by  minima  in  the  case  of  cost  minimization

problems.)

Proof.  By choice of v i  and formula (2),

r i, v i j E T i, j; v i Wu j
r i, u i j E T i, j; u i Wu j Wu i

The  left  side  of  this  inequality  is  the  value  of  the  non-stationary  policy  v1

that uses v  for  one period,  and uses u  in  every period thereafter.   Thus,  the

inequality can be restated as

W i, v1 W i, u for each i E

For  n 1, 2, 3, ...,   let  the  policy  vn  use  action  function  v  up  through  time

n 1, and u thereafter.  We have just shown that v1  is better than u, and we

will now prove inductively that vn  is better than u  for  all n.   Assuming that

this is true for a given vn, it suffices to prove that vn 1 is a better policy than

vn in order to complete the argument.  

The policies vn  and vn 1  both use v through time n. Thereafter, vn 1  uses

the non-stationary policy v1 introduced above, whereas vn uses u.  Therefore,

W i, vn 1

Ev k 0
n k r Xk, v Xk X0 i Ev

n 1 W Xn 1, v1 X0 i
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and

W i, vn

Ev k 0
n k r Xk, v Xk X0 i Ev

n 1 W Xn 1, u X0 i

The difference between the values of the two policies is

W i, vn 1 W i, vn n 1 Ev W Xn 1, v1 W Xn 1, u X0 i

Since  v1  is  better  than  u,  and  expectation  is  a  monotonic  operator,  this

difference exceeds 0, as desired.

As  in  the  proof  of  Theorem  2  of  Section  6.3,  W i, vn W i, v

as n .   Since  each  member  of  this  sequence  is  bounded  below  by

W i, u ,  we  must  have  that  W i, v W i, u ,  which  establishes  the  first

claim of Theorem 1.

Now suppose  the  value  of  the  new policy  v  equals  the  value  of  the  old

policy u.  Then, by the choice of v, we have that for each i E,

(5)

Wv i r i, v i j E T i, j; v i Wv j
r i, v i j E T i, j; v i Wu j
maxa Ai r i, a j E T i, j; a Wu j
maxa Ai r i, a j E T i, j; a Wv j

Since  Wv  satisfies  the  dynamic  programming  equation,  Wv  must  equal  the

optimal value function, i.e., v is optimal.  Since the value of u was the same

as the value of v, the old policy u is also optimal.  

Thus, starting with a policy, we may compute its value by (2).  Theorem

1 gives us a new policy that is at least as good.  If there is a state i such that

the  new value  for  i  is  strictly  better  than the  old,  then find  the value  of  the

new  policy,  and  improve  once  again  using  Theorem  1.   Since  there  are

finitely  many  stationary  policies,  we  can  only  strictly  improve  the  policy

finitely  many times.   At  some stage  we  will  find  a  new policy  that  has  the

same value as the old.  The theorem proves that this policy is optimal.  This

discussion motivates the following algorithm. 
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ALGORITHM.  (Policy  improvement  for  discounted  Markov  decision

problem)

(1) Pick an initial policy u u .

(2) Repeat steps (3)–(6) until done:

(3) Let Tu i, j T i, j; u i  and let ru i r i, u i for i, j E.

(4) Find the solution W to I Tu W ru.

(5) For each i E, find the action ai v i Ai to maximize 

(minimize for costs)

r i, a j E T i, j; a W j
(6) If  v i u i  for each i, then u and v are optimal and the 

algorithm is done, otherwise let u = v to set up the next pass 

through loop (3)–(6).

Activity  1  –  What  happens  in  the  policy  improvement  algorithm if  the

initial  policy  happens  to  be  optimal?   Must  there  be  just  one  optimal

policy?

Step 5 in the algorithm suggests that once again it is possible to make use

of  a  version  of  the  DiscountedDPEquation  command to  carry  out  the  algo-

rithm.  Actually,  the  KnoxOR`DynamicProgramming`  package  contains  a

streamlined function (see Exercise 5) that essentially does steps (3)–(5) all at

once.

Needs "KnoxOR`DynamicProgramming "̀

PolicyImprovementOneStep

TransMats,RewardMatrix, ,policy

The command called PolicyImprovementOneStep takes  the  list  of  transition

matrices,  the  reward  function  in  matrix  form,  the  discount  factor,  and  a

current  policy  represented  as  a  list  u 1 , u 2 , ...  and  outputs  a  list  of

sublists  like  DiscountedDPEquation  from  which  the  next  policy  can  be

obtained.  It assumes that the state space is of the form 1, 2, ... , n  and the

action  space  is  of  the  form  1, 2, ... , a .    We  illustrate  its  use  in  the  next

example.
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Examples

EXAMPLE  1.   To  illustrate  the  policy  improvement  approach,  consider  a

three-state,  three-action  problem  with  .9,  and  transition  matrices  and

reward matrix as defined below.

Clear T1, T2, T3, AllTas, r, ;

9 10;

T1 3 10, 2 10, 5 10 ,

4 10, 1 10, 5 10 , 6 10, 2 10, 2 10 ;

T2 0, 5 10, 5 10 , 5 10, 0, 5 10 ,

5 10, 5 10, 0 ;

T3 0, 1, 0 , 0, 0, 1 , 1, 0, 0 ;

AllTas T1, T2, T3 ;

MatrixForm T1 , MatrixForm T2 , MatrixForm T3

3
10

1
5

1
2

2
5

1
10

1
2

3
5

1
5

1
5

,

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

,

0 1 0
0 0 1
1 0 0

r 3, 3, 1 , 4, 5, 2 , 2, 3, 5 ;

MatrixForm r

3 3 1
4 5 2
2 3 5

Let us begin the policy improvement algorithm with the stationary policy

u u that takes action 1 at state 1, action 2 at state 2, and action 3 at state

3.  The transition matrix and reward vector for this policy are

MatrixForm 3 10, 2 10, 5 10 , 1 2, 0, 1 2 ,

1, 0, 0 , MatrixForm 3, 5, 5

3
10

1
5

1
2

1
2 0 1

2

1 0 0

,

3
5
5

(Make sure you see where these came from.)  The command PolicyImprove-

mentOneStep  finds  these,  solves  the  linear  equations  (2)  to  find  Wu,  and
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outputs  a  list  whose  ith  element  is  the  sublist,  one  for  each  action,  of  the

quantities in braces in the DP equation (4).

u 1, 2, 3 ;

N PolicyImprovementOneStep AllTas, r, , u

38.3109, 38.7686, 37.0053 ,

39.1584, 40.0058, 37.5319 ,
36.9953, 38.2425, 39.4798

The output shows us that the maximizing actions are now action 2 at state 1,

action 2 at state 2, and action 3 at state 3.  With this as our next policy, we

repeat the computation:

u 2, 2, 3 ;

N PolicyImprovementOneStep AllTas, r, , u

40.1151, 40.4875, 38.6801 ,
40.991, 41.8668, 39.2949 ,

38.8583, 40.0595, 41.4388

We see that the maximizing actions are still 2, 2, and 3, respectively, at states

1,  2,  and  3,  and  so  the  stationary  policy  with  action  function  u 1 2,

u 2 2, u 3 3  is  optimal.   Notice  that  the  actions  taken  at  each  state

maximize the  immediate reward  earned.   Here  the  shortsighted  policy turns

out to be optimal.  

The other important thing to notice is that we can easily check the result;

examining  the  sublist  maxima  in  the  output  above,  we  have

Wu 1 40.4875,  Wu 2 41.8668,  Wu 3 41.4388.   The  computation

below verifies  that  this  Wu  is  the  solution  of  the  linear  system (2),  and that

these values agree respectively with the maxima for states 1, 2, and 3 found

from the sublists in the second part of the output generated by the Discounted-

DPEquation  command.   This  means  that  this  particular  Wu  satisfies  the

dynamic programming equation (3), hence this u is optimal.  
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Clear Tu, ru, Ident, Wu ;

Tu 0, 1 2, 1 2 , 1 2, 0, 1 2 , 1, 0, 0 ;

ru 3, 5, 5 ;

Ident IdentityMatrix 3 ;

Wu N LinearSolve Ident Tu, ru

N DiscountedDPEquation AllTas, r, Wu,

40.4875, 41.8668, 41.4388

40.1151, 40.4875, 38.6801 ,
40.991, 41.8668, 39.2949 ,

38.8583, 40.0595, 41.4388

Activity 2 – Redo the problem in Example 1 starting from the policy that

takes action 3 at state 1, action 2 at state 2, and action 1 at state 3.  Are

more  or  fewer  iterations  required  than  were  required  above?   What  do

you predict the answer would be before performing the calculation?

EXAMPLE  2.   A  small  rental  van  operator  must  service  returned  vans

before returning them to the pool.  One van is returned in a day with probabil-

ity  p .6,  otherwise  no  vans  are  returned.   The  operator  can  either  service

all  of  the  vans  that  might  be  waiting  on  a  particular  day,  at  a  fixed  cost  of

c $300 (since he has a contract with a local handyman), or service none of

them, except  that  the  contract  says that  the repairman will  do no  more than

five  at  a  time,  so  that  when  the  fifth  van  comes  the  service  must  be  done.

Each  van  waiting  for  service  on  a  particular  day  entails  a  cost  for  lost

opportunity of  l $100.  Using a discount factor of .95,  model the problem

as  an  infinite  horizon  discounted  Markov  decision  problem,  and  find  the

optimal servicing policy.  

The  states  and  actions  are  rather  easy  to  recognize:  let  Xn  =  #  vans

waiting  for  service  at  the  end  of  day n,  and  let  action Un  be  the  number  of

vans  serviced  at  the  end of  day n.   We will  suppose  that  we know whether

another  van  has  arrived  in  a  particular  day  before  we  make the  decision  to

service all of them or none, and that the service is complete within a day, so

that those vehicles are back in the pool  and do not contribute to Xn 1.   The

state  space  is  then  E 0, 1, 2, 3, 4, 5 ,  and  by  the  conditions  of  the  prob-

lem,  the  action  space  is  A 0, 1, 2, 3, 4, 5  and  the  admissible  action  sets

are Ai 0, i ,  i 0, ..., 4 due to the "all or nothing" nature of the decision.

The  action  set  for  state  5  is  A5 5 .   The  probabilistic  dynamics  of  the

system are summarized by the equation:
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(6)Xn 1

Xn Un 1 with probability p .6

Xn Un with probability 1 p .4

This  indicates  that  on  the  next  day,  we  have  the  vans  waiting  from  the

previous day, less those that were serviced, plus either one or zero, depend-

ing  on  whether  a  new van has  come in.   Admissibility also  implies that  Un
can  only  be  either  Xn  or  0  for  Xn 0, 1, 2, 3, 4  and  Un Xn  for  Xn 5.

From these observations we can create the transition matrices Ta:

Clear T0, T1, T2, T3, T4, T5, AllTas, , c, Tu, cu ;

T0 .4, .6, 0, 0, 0, 0 , 0, .4, .6, 0, 0, 0 ,

0, 0, .4, .6, 0, 0 , 0, 0, 0, .4, .6, 0 ,

0, 0, 0, 0, .4, .6 , 0, 0, 0, 0, 0, 0 ;

T1 0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T2 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

.4, .6, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T3 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T4 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

.4, .6, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ;

T5 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0 ,

0, 0, 0, 0, 0, 0 , .4, .6, 0, 0, 0, 0 ;

AllTas T0, T1, T2, T3, T4, T5 ;

.95;

MatrixForm T0 , MatrixForm T1 , MatrixForm T2 ,

MatrixForm T3 , MatrixForm T4 , MatrixForm T5
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0.4 0.6 0 0 0 0
0 0.4 0.6 0 0 0
0 0 0.4 0.6 0 0
0 0 0 0.4 0.6 0
0 0 0 0 0.4 0.6
0 0 0 0 0 0

,

0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.4 0.6 0 0 0 0

The cost  structure has two components:  servicing cost  and lost opportu-

nity  cost.   The  following  per-period  cost  function  captures  the  problem

assumptions:

(7)c i, a
300 if a i, a 0

100 i if a 0

This means that the cost matrix is as follows:

c 0, , , , , ,

100, 300, , , , , 200, , 300, , , ,

300, , , 300, , , 400, , , , 300, ,

, , , , , 300 ; MatrixForm c
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0
100 300
200 300
300 300
400 300

300

The discount factor was given to be .95, and we are interested in minimiz-

ing  among  stationary  policies,  for  each  initial  state  i,  the  policy  value

Wu i Eu k 0
k c Xk, u Xk X0 i .  

Let us try a policy of the "threshhold" type, that is, service all of the vans

that are waiting if and only if the number waiting is at least some threshhold

value  m.   If  we  choose  m 3  to  start,  then  the  action  function  determining

the stationary policy is

u 0 0, u 1 0, u 2 0, u 3 3, u 4 4, u 5 5

Remember,  though,  that  because  Mathematica  indexes  lists  beginning  at  1,

we  should  treat  our  states  as  1, 2, 3, 4, 5, 6  and  our  actions  as

1, 2, 3, 4, 5, 6  as  well.  So  we can define  the  policy as  below,  and  make a

first attempt at policy improvement. 

u 1, 1, 1, 4, 5, 6 ;

N PolicyImprovementOneStep AllTas, c, , u

2933.62, , , , , ,
3190.96, 3233.62, , , , ,

3295.42, , 3233.62, , , ,
3371.94, , , 3233.62, , ,
3471.94, , , , 3233.62, ,

, , , , , 3233.62

We seem to have come close  to the optimal policy.   It  is  only at  state i 2

that  the  value  Wu 2 3295.42 is  not  equal  to  the  minimum element of  the

list  for  i 2,  3295.42, , 3233.62, , , .   The  optimal  action  there  is

a 2,  so  we  switch  to  the  threshhold  policy  v v  that  services  the  vans

when  2  or  more  are  there.   Explicitly,  we  have  v 0 0, v 1 0, v 2 2,

v 3 3, v 4 4, v 5 5.   We  can  reuse  earlier  commands in  edited  form

to recalculate the policy value Wv and the DP equation lists.
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v 1, 1, 3, 4, 5, 6 ;

N PolicyImprovementOneStep AllTas, c, , v

2596.13, , , , , ,
2823.87, 2896.13, , , , ,
2951.33, , 2896.13, , , ,

3051.33, , , 2896.13, , ,
3151.33, , , , 2896.13, ,

, , , , , 2896.13

Since  the  optimal actions in the last  output  above are again 0,  0,  2,  3,  4,  5,

policy v is optimal by Theorem 1.  

Activity  3  –  Write  out  the  dynamic  programming  equation  for  the

problem in Example 2.  Notice that the optimal value function takes the

same  value  at  states  2,  3,  4,  and  5.   Why  intuitively  do  you  think  that

happens?

REMARK.   It  is  very interesting to note that there is yet another  attack on

the infinite  horizon discounted  Markov decision problem, which uses  linear

programming.   It  turns  out  that  the  optimal  value  function  is  the  smallest

function V V i  satisfying:

V i maxa Ai r i, a j E T i, j; a V j

for each i E.  Therefore one can find it by solving the linear programming

problem:

(8)

minimize:  j E V i
subject to:   V i r i, a j E T i, j; a V j

 for all a Ai and all i E

For  more  information  on  linear  programming  approaches  to  dynamic  pro-

gramming problems, the reader may refer to Ross [53] or Derman [17].  The

reader  is  asked  to  show  the  above  result  in  Exercise  12.   We  will  see  this

idea again when we study optimal stopping problems in the next section. 

Exercises 6.4

1.  (Mathematica)  Solve  Example  1  of  Section  6.3  by  policy  improvement,

starting with the policy that takes action 1 at both states. 
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2.  (Mathematica)  Redo  Example  2  on  van  servicing  with  problem parame-

ters: (a) c 400, l 300; (b) c 500, l 200.

3.  (Mathematica)  Solve  the  advertising problem (Exercise  5  of  Section 6.1)

viewed  as  an  infinite  horizon  problem  with  .9,  r 10,  and  c 2  by

policy improvement, starting with the policy that never advertises.

4.  (Mathematica)  Solve  the  reservoir  problem  (Exercise  13  of  Section  6.3)

by  policy  improvement,  starting  with  the  policy  that  releases  all  water

present.

5.  (Mathematica)  Write  your  own  version  of  the  command PolicyImprove-

mentOneStep as described in the section.

6.  (Mathematica)  We  have  a  machine  that  is  in  one  of  five  possible  condi-

tions at each time.  State 1 is the best condition, etc. down to state 5, which is

the worst condition.  We can replace a machine with one that is in condition

1 at any time.  If we do not replace, the machine in operation will stay in its

current condition with probability 3/4, or go to the next worst condition with

probability 1/4 at the next instant of time.  If the machine is currently in the

worst  condition  5,  it  will  stay there  until  it  is  replaced.   There  are  costs  for

inferior production in each period, dependent on the machine's condition:

 C1 0, C2 2, C3 4, C4 6, C5 8.

A new machine costs a constant C6 12 monetary units.  What replacement

strategy  should  be  adopted  in  order  to  minimize  expected  total  discounted

cost, with a discount factor 9 10?  For your solution, use policy improve-

ment  with  the  initial  policy  of  replacing  the  machine whatever  is  its  condi-

tion. 

7.  (Mathematica)  Redo  the  machine  replacement  example  Exercise  6  by

policy  improvement,  beginning  with  the  initial  policy  of  replacing  the

current machine if it is in condition 4 or worse.

8. Consider the machine replacement example Exercise 6, in which all costs

Ci,  i 1, ..., 6  are  replaced  by  b Ci,  where  b  is  a  positive  constant.   Show

that the policy that replaces the current machine if its condition is 3 or worse

is still optimal for this new problem.

9.  Create  an  infinite  horizon  problem  in  which  the  optimal  policy  is  not

unique.

10.  Consider  again Example 3 of  Section 6.2 on fishery planning,  but  in an

infinite  horizon  context  with  discount  factor  .99.   Assume  the  same

per-period  reward function r  and transition matrices Ta  are in effect.   Solve
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for the optimal harvesting policy starting with the initial policy of harvesting

nothing when the population is 0 or 1, and 1 unit otherwise.

11. Does the optimal policy in the fishery example (see Exercise 10) change

if  the reward function r i, a  is  changed to 10 a?  If  not,  can you provide an

intuitive reason for it?

12.  Consider  an  infinite  horizon  Markov  decision  problem  with  the  usual

notation,  and  let  V  be  a  function  on  the  state  space  satisfying  the  linear

programming problem (8).   Adjoin  to E  an absorbing  state  of  no reward,

and adjoin  to  the  action  space  an action a  such  that  r i, a V i  and

T i, ; a 1.   In  other  words,  under  action  a  the  chain  proceeds

immediately to  absorbing  state  ,  entailing a  reward V i  for  that  move but

no reward thereafter. 

  (a) For the new problem, use (8) to show that the optimal policy is to take

action a  immediately.

  (b)  Deduce  from (a)  that  V  exceeds  the  optimal  value  function  W .   Con-

clude that W  satisfies the LP problem (8).  

13.  Use the linear  programming formulation (8)  in the remark at the end of

the  section to  solve for  the optimal value function  in Example 1.   Once the

optimal value function is in hand, discuss how you would obtain the optimal

policy from it.  

6.5  Optimal Stopping of a Markov Chain

Dynamic Programming Approach

The problem that we will discuss in this section shows beautifully the unity

of the four areas of Operations Research that have been studied in this book:

graph  theory,  linear  programming,  stochastic  processes,  and  dynamic

programming.  To illustrate the problem, consider the six-state Markov chain

whose  transition  diagram  is  in  Figure  6.4.  Graph-theoretic  considerations

show us easily that states 1–5 are transient, since there is a path from each of

these states to the absorbing state 6.
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Figure 6.4 – A Markov chain with rewards

Suppose that at any time we can stop the chain and collect a reward depen-

dent on the state occupied at that time.  These potential rewards are shown in

parentheses  in  the  diagram beside  the  state  numbers.   At  what  time  should

we collect the reward in order to maximize the expected payoff?  We would

like  to  wait  long  enough  to  hit  one  of  the  large  payoffs  (5  and  6  monetary

units at states 4 and 5, respectively), but to wait carries a risk that the chain

will be absorbed by state 6, which yields no reward.

The  optimal  time to  stop  and  collect  the  reward  will  turn  out  to  be  the

time  of  first  entry  to  a  set  of  states  characterized  by  the  optimal  value

function of a Markov decision problem.  Moreover, we will be able to solve

for  that  value  function  using  linear  programming  techniques.   In  this  way,

the  optimal  stopping  problem  ties  together  the  apparently  distantly  related

topics of this book.

The Markov chain of Figure 6.4 has enough special structure that we can

use  our  intuition  to  find  the  optimal  stopping  time.   First,  examine states  1

and  2.   Beginning  from these  states,  state  3  will  be  reached  with  certainty.

Since  state  3  has  a  higher  reward  than  states  1  and  2,  it  is  clear  that  we

should not stop at states 1 and 2.  The decision is also clear at states 5 and 6.

State 5  possesses  the best  possible  reward,  hence we should  stop at  state 5.

There  is  no decision  to be made at  the absorbing  state 6;  we must stop and

collect a reward of 0.  

The interesting behavior is at states 3 and 4.  Consider state 4 first.  If the

chain is at state 4, we can either stop immediately, for a certain reward of 5,

or  permit  the  chain  to  make  one  more  jump.   In  the  latter  case,  the  chain

either moves to state 5 to produce a reward of 6, with probability 1/2, or the

chain  moves  to  state  6  for  no  reward,  with  probability  1/2.   The  expected

reward if we do not stop at state 4 is therefore

1 2 V 5 1 2 V 6 1 2 6 1 2 0 3,
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where we have written V i  for the value starting at state i under the optimal

policy.  Since this expected reward is smaller than the immediate reward of 5

units that could be earned by stopping, it is optimal to stop at state 4.  Hence,

V 4 5. 

Knowing  the  optimal  value  starting  at  states  4,  5,  and  6,  we  can  now

decide what  to do when the chain is at state 3.   If  we stop immediately, we

can collect a reward of 3.  Let us compare this to what we expect to get using

an optimal policy, if we do not stop at state 3.  Since the chain will jump to

state 4, state 5, or state 6 with equal probability, the expected earnings under

the policy of not stopping at state 3 are

1 3 V 4 1 3 V 5 1 3 V 6

1 3 5 1 3 6 0 11 3

.

This exceeds the immediate reward at state 3, thus it is optimal not to stop at

state  3.   Common sense  has  led us  to  the optimal stopping policy,  which is

that we should stop at the first time T  such that the chain is in the set:

A 4, 5, 6 .

The  main  thing  that  you  should  notice  about  this  example  is  that  deci-

sions  are  made  on  the  basis  of  finding  the  larger  of  the  immediate  reward

f i  and the expected (optimal) value of waiting one more time unit:

 j E T i, j V j .

Viewed as a column vector, the optimal value function therefore satisfies

(1)V i max f i , T V i .

We stop at states i  such that this maximum is f i , i.e., the optimal stopping

time is the time of first entry to the set

(2)A i E : V i f i .

Our  advantage  in  the  simple  example  above  was  that  we  had  states  i  for

which  the  value  V i  was  "obvious,"  and  we could  use  these  states  to  com-

pute V  for the less obvious states.

Activity 1  – In the example above, at least how large would the reward

at state 3 have to be so that it is optimal to stop there?  By how much can

the  reward  at  state  4  be  reduced  without  changing  the  optimal  stopping

policy?
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Equation (1) looks like a dynamic programming equation, and indeed we

can  obtain  it  by  formulating  the  optimal  stopping  problem as  a  problem of

Markov decision theory.  Let X0, X1, X2, ... be the chain of states.  Suppose

that  the  state  space  E  is  finite  and  contains  an  absorbing  state   of  no

reward.  For each state i, let the action space be A Ai 0, 1 , where action

1 is to stop and collect the reward, and action 0  is to continue.  A stationary

policy  for  the  problem  is  determined  by  a  function  u : E A.   If  u i 1,

then we stop at state i; and if u i 0, then we let the chain continue.  There

are  rewards  f i  given  for  each state i E,  that  determine the reward func-

tion for the Markov decision process:

r i, a
0 if a 0 or i
f i if a 1 and i

To construct the transition matrices, note that if we choose action 0, then

the  probability  law  of  the  next  state  is  the  same as  that  of  the  uncontrolled

Markov chain.  Thus,

T0 i, j T i, j   ,     i, j E

If we choose action 1,  then no more rewards are to be earned.  A convenient

way of  reflecting this fact  is  to assume that under  action 1,  the next state is

certain to be , i.e.:

T1 i, j
1 if j
0 otherwise

for  all  i E.   The  optimal  stopping  problem  is  to  find  a  stationary  policy

u u ,  where u  is a function from the state space E  to the set A 0, 1  of

actions,  to  achieve  the  maximum value  in  the  following  expression,   for  all

i E:

(3)
V i maxu V i, u maxu Eu n 0 r Xn, u Xn X0 i

                                   

States i for which u i 1 are those at which we stop the chain.  This model

defines  an  infinite  horizon  undiscounted  Markov  decision  problem.   The

value V i, u  of  any stationary policy u u  is  still  finite because only one

term in the infinite series will actually be non-zero.

Let us proceed, at least formally, as if the results of Section 3 still apply,

with  1.   If  this  is  so,  then  the  DP  equation  (Formula  (2)  of  Section  3)

becomes:
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(4)

V i max
a 0,1

r i, a j E V j T i, j ; a

max r i, 0 j E V j T i, j ; 0 ,

r i, 1 j E V j T i, j ; 1

max 0 j E V j T i, j , f i V 1

max T V i , f i

for  all  i .   Clearly  V 0.   Thus,  formula  (1)  arises  as  a  result  of  a

Markov  decision  process  formulation,  granting  the  truth  of  the  dynamic

programming equation in this new setting.

EXAMPLE  1.   Let  us  see  how  expression  (1)  might  be  used  directly  to

solve  an  optimal  stopping  problem.   Suppose  that  you  have  a  piece  of  real

estate  up  for  sale.   Each  day,  an  offer  of  some  amount  comes  in.   Assume

that  there  are  n  possible  offers,  f1 f2 ... fn,  and  independent  of  the

previous history of offers, you receive an offer of level fi with probability pi.
But,  there  is  a  positive  probability  p0  that  another  offer  will  never  come.

Find a strategy that tells you when to accept an offer, so as to maximize the

expected value of the offer accepted.

To model this as an optimal stopping problem, let Xk  be the value of the

offer received on day k.  The state space is E 0, f1, f2, ... , fn , where we

have included 0 to represent the state of not receiving an offer.  By the stated

conditions,  Xk  is  almost a  completely memoryless Markov chain,  with the

exception  that  once  state  0  is  reached,  the  chain  stays  there  forever.   The

transition matrix is

T

0
f1
f2
:
fn

1 0 0 0 ... 0
p0 p1 p2 p3 ... pn
p0 p1 p2 p3 ... pn
: : : : : :

p0 p1 p2 p3 ... pn

0 f1 f2 f3 ... fn

 

Since  V 0  is  clearly  0,  to  characterize  the  optimal  stopping  policy  we

must  solve  for  n  variables  yi V i , i 1, 2, ..., n.   The  structure  of  the

transition matrix gives a very special form to equation (1):

V i max f i , T V i
yi max fi, j 1

n p j y j p y

So we must have both of the following:

yi p y,    yi fi i 1, 2, ... , n

Each component yi  of the optimal solution vector y exceeds the correspond-

ing fi,  and  exceeds  the  constant  p y.   One of  these  inequalities  must  be an
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equality.   Since  the  offers  fi  increase  as  i  increases,  there  must  be  some

cutoff level i , such that the first set of constraints yi p y are binding for

i i , and the second set yi fi  are binding for i i .  For i i , the optimal

value  function  agrees  with  the  reward  function;  thus  the  optimal  policy

accepts offers of fi   or higher.  Hence the value function satisfies

(5)yi V i
p y for i i

fi for i i

As a numerical example, suppose that the possible offers are 10, 20, 30,

40,  and 50 thousand dollars, occurring with probabilities 1/16, 1/8, 1/8, 1/2,

and 1/8, respectively.  Thus, the probability of not receiving an offer is p0  =

1/16.  Since there are few possibilities here, we can attempt by trial and error

to arrive at the offer that maximizes expected returns. Let us start by calculat-

ing the value of the policy that accepts offer 2 (20,000) or more.  For i 2,

yi fi 10000 i.   Clearly y0 0.   For  y1,  we  can  solve  the  linear  equation

y1 p y in the first part of (5), where p is the vector of probabilities and y is

the vector of yi's.   Then, initializing variables and solving as below we find

y1 104, 000 3 34666.7.

f f0, f1, f2, f3, f4, f5

0, 10000, 20000, 30000, 40000, 50000 ;

y y0, y1, y2, y3, y4, y5

0, y1, f2, f3, f4, f5 ;

p p0, p1, p2, p3, p4, p5

1 16, 1 16, 1 8, 1 8, 1 2, 1 8 ;

T 1, 0, 0, 0, 0, 0 , p, p, p, p, p ;

Solve y1 p.y, y1

y1
104000

3
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y1 104000 3;

f0, T.y 1 , f1, T.y 2 ,

f2, T.y 3 , f3, T.y 4 ,

f4, T.y 5 , f5, T.y 6

0, 0 , 10000,
104000

3
,

20000,
104000

3
, 30000,

104000
3

,

40000,
104000

3
, 50000,

104000
3

The  maxima  are  0, 104000
3

, 104000
3

, 104000
3

, 40000, 50000 ,  whereas  the

value of our current policy is  0, 104000
3

, 20000, 30000, 40000, 50000 . This

mismatch indicates  that  the  current  policy is  not  optimal.   Similarly we can

find that the policy of accepting offers 3 (30,000) or more is unsuitable (see

Activity 2 below). 

Now we evaluate a policy that accepts an offer of 40,000 or more.  Then

y0 0,  y4 40000,  y5 50000,  and  y1, y2, y3  can  be  solved  for  using  the

equations  y1 y2 y3 p V  from  formula  (5).   We  obtain  y1 y2 y3

420000 11 38181.81, as below.

Clear y, y0, y1, y2, y3, y4, y5 ;

y

y0, y1, y2, y3, y4, y5 0, y1, y2, y3, f4, f5 ;

Solve y1 p.y, y2 p.y, y3 p.y , y1, y2, y3

y1
420000
11

, y2
420000
11

, y3
420000
11

Again we compute for each state the two expressions inside the maximum in

(1):

y1 420000 11; y2 420000 11; y3 420000 11;

f0, T.y 1 , f1, T.y 2 ,

f2, T.y 3 , f3, T.y 4 ,

f4, T.y 5 , f5, T.y 6
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0, 0 , 10000,
420000
11

,

20000,
420000
11

, 30000,
420000
11

,

40000,
420000
11

, 50000,
420000
11

The  maxima  are  0, 420000 11, 420000 11, 420000 11, 40000, 50000

which  agree  with  the  values  of  the  current  policy.   Therefore  the  policy  of

accepting an offer of 40000 or more is optimal.  

Activity 2 – Check in Example 1 that the policy that accepts an offer of

30,000 or more is not optimal.

Linear Programming Approach

We cannot count on special structure similar to Example 1 all the time.  We

now  search  for  a  computationally  useful  characterization  of  the  optimal

value  function  and  the  optimal  policy.   The  characterization  of  the  optimal

stopping  policy  has  already  been  suggested  earlier  in  the  section,  and  it  is

repeated  in  Theorem  1  below.   To  find  the  policy  explicitly  requires  the

calculation  of  the  value  function.   A  method  for  doing  this  will  arise  from

Theorem  2.   Regrettably,  the  proofs  of  these  two  theorems  would  take  us

rather far afield.  They require a careful definition of the notion of stopping
time, and a study of general properties of stopping times, as well as functions

on  Markov  chains  called  excessive  functions  (see  the  Remark  below  Theo-

rem 2).  Consequently, we omit the proofs.  For a thorough development, see

Cinlar ([15], Section 7.3).

THEOREM 1.  Let A  be the set:

(6)A i E : V i f i

where  V  is  the  optimal  value  function.   Define  a  stationary  policy  by

u i 1 iff  i A .  Then u  is optimal.  In other words, the optimal time to

stop is the time at which the chain Xn  first visits A .  

Theorem 1  reduces  the  problem to  that  of  computing  the  optimal  value

function V .  Since f  is known, it is easy to find those states i at which V  and

f  agree, and these are the stopping states.  

From  (1),  we  see  that  V  is  a  function  g  from  E  to   satisfying  the

properties:
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(7) 
a g i T g i
b g i f i

(We  continue  to  view  functions  on  E  as  column  vectors.)   We  have  the

following.

THEOREM 2.  The optimal value function V  satisfies (7a) and (7b); and if

g  is  another  function  on  E  satisfying  (7a)  and  (7b),  then  g i V i  for  all

i E.  

REMARK.   A  function  g : E   is  called  excessive  if  it  satisfies  (7a).

Thus,  the  theroem  may  be  restated  as:   The  value  function  of  the  optimal

stopping  problem  is  the  minimal  excessive  function  dominating  the  reward

function.   There  is  an  interesting  intuitive  interpretation  of  excessive  func-

tions based on the fact that

(8)

g i T g i j E T i, j g j

j E P X1 j X0 i g j
E g X1 X0 i

One can iterate the inequality to show that also 

(9)g i E g Xn X0 i

for all n 0.  View g  as a reward function.  If g  is excessive, then for each

starting state i, the reward g i  that can be collected immediately exceeds the

expected reward that can be collected at any later instant of time.  In fact, (9)

forms the basis  for  the  proof  of  Theorem 2 because  we  can replace  g  by  f
inside  expectation,  by  the  monotonicity  of  expectation  and  the  fact  that

g f , to obtain

 g i E f Xn X0 i n 0 

That is, g  exceeds the expected reward we could collect at any fixed time n.

From this it is not too difficult to show that g must exceed the optimal value

function V  of the problem. 

Theorem 2  enables  us  to  compute  V  as  the  optimal  solution  of  a  linear

program.  View  the  optimal  value  function  V  as  a  column  vector
y y1, …, ym

t,  where m  is the size of E.   Since  V  is the minimal exces-

sive function  dominating f ,  for  any other  vector y y1, …, ym
t  satisfying

yi T y i  and yi f i  for all i, we have yi yi  for all i.  Since y  is the

smallest such vector in every component, in particular the sum of its compo-

nents  is  the  smallest  among  all  such  vectors.   This  means  that  y  is  an

optimal solution of the linear program:
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 minimize i 1
m yi

subject to:  yi  j 1
m T i, j y j       i 1, 2, ... , m

yi f i

To  summarize,  in  order  to  find  the  optimal  stopping  policy,  solve  the

linear  program  (10)  for  the  values  yi V i  of  the  optimal  value  function.

Then  compare  these  values  to  f i .   The  optimal  policy  is  to  stop  at  those

states for which f i V i , and continue otherwise.

 One final remark is that we can often simplify the computation, because

the value function is constant over any recurrence class of the Markov chain

Xn ,  and  equals  the  maximum reward  f i  for  states  i  in  the  class.   To see

this, note that if C  is a recurrence class and the chain begins in C,   then the

chain will reach every state in C.  Thus, we can wait until the state i , whose

reward  is  maximal  in  C,  is  reached.  We  stop  there  to  receive  a  reward  of

f i .  This reduces the problem to finding V i  for transient states i. 

Activity  3  –  Suppose  that  a  Markov  chain  has  a  transient  state  labeled

state 1, and two recurrence classes C1  and C2.  The rewards for the three

states in C1  are 6, 5, and 3, and the rewards for the four states in C2  are

2, 8, and 5.  State 1 has reward 6, and from state 1, it is equally likely to

go  back  to  state  1,  or  into  class  C1  or  into  class  C2  at  the  next  move.

What is the optimal stopping policy?

EXAMPLE 2. Let Xn  be the state at time n of a game, in which the gambler

can stop at any time and collect the reward that accrues to the current state.

Suppose  that  there  are  two  "bust"  states  (states  1  and  5  in  the  transition

diagram  of  Figure  6.5)  and  three  active  game  states  (2,  3,  and  4).   If  the

potential rewards are as indicated, at what states should the gambler quit the

game in order to maximize his expected reward?

1 0

2 2 3 2 4 3

5 01

1 3

2 3

1 2

1 2

1 3

2 3

1

Figure 6.5 – Markov chain of Example 2
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The transition matrix and reward vector are below:

T

1 0 0 0 0
1 3 0 2 3 0 0

0 1 2 0 1 2 0
0 0 1 3 0 2 3
0 0 0 0 1

    f

0
2
2
3
0

There are two absorbing states, namely 1 and 5.  Clearly,

V 1 0, V 5 0 

States  1  and  5  belong  to  the  set  A  of  states  where  the  gambler  should  (in

fact,  must)  stop.  Write  yi  for  V i ,  i 1, 2, ... , 5.   Since  y1 y5 0,  we

have,  from (10),  that  the  vector  y 0, y2, y3, y4, 0  is  the  optimal solution

to the three-variable linear program:

(11)

minimize:  y2 y3 y4                 

subject to:    

y2 2 3 y3

y3 1 2 y2 1 2 y4

y4 1 3 y3

y2 2

y3 2

y4 3

 

By suitable algebraic rearrangement, this problem can be written in standard

minimum  form,  and  then  dualized.   You  can  check  that  the  dual  standard

maximum problem is

(12)

maximize:   2 x4 2 x5 3 x6

subject to:  

x1
1
2

x2 x4 1

2
3

x1 x2
1
3

x3 x5 1

1
2

x2 x3 x6 1

   xi 0  i

This  can  be  solved  by  the  simplex algorithm.   We use  the Dictionary  com-

mand to produce the final  system of  equations.   In the electronic version of

the text you can reproduce the intermediate steps.  
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Needs "KnoxOR`LinearProgramming "̀

Clear f ;

system2 x1 1 2 x2 x4 x7 1,

2 3 x1 x2 1 3 x3 x5 x8 1,

1 2 x2 x3 x6 x9 1, f 2 x4 2 x5 3 x6 ;

Dictionary system2, x7, x8, x9, f ,

x1, x2, x3, x4, x5, x6

x7 1 1 x1 1
2 x2 0 x3 1 x4 0 x5 0 x6

x8 1 2
3 x1 1 x2 1

3 x3 0 x4 1 x5 0 x6

x9 1 0 x1 1
2 x2 1 x3 0 x4 0 x5 1 x6

f 0 0 x1 0 x2 0 x3 2 x4 2 x5 3 x6

Dictionary system2,

x7, x8, x6, f , x1, x2, x3, x4, x5, x9

Dictionary system2,

x7, x5, x6, f , x1, x2, x3, x4, x8, x9

Dictionary system2,

x4, x5, x6, f , x1, x2, x3, x7, x8, x9

Dictionary system2,

x4, x2, x6, f , x1, x3, x5, x7, x8, x9

x4 3
2

2
3 x1 1

6 x3 1
2 x5 1 x7 1

2 x8 0 x9

x2 1 2
3 x1 1

3 x3 1 x5 0 x7 1 x8 0 x9

x6 3
2

1
3 x1 5

6 x3 1
2 x5 0 x7 1

2 x8 1 x9

f 15
2

1
3 x1 13

6 x3 1
2 x5 2 x7 5

2 x8 3 x9

Here, x7, x8, x9 are the slack variables for the maximum problem.  We find:

V t 0, 2 , 5 2, 3, 0
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since,  as  you  will  recall,  the  optimal  solutions  y2, y3, y4  to  the  minimum

problem are the negatives of the slack coefficients in the objective row of the

final  system of  the  dual  maximum problem.   The  stopping  set  is  the  set  of

states  for  which  V  and  f  have  the  same value,  hence  the  optimal  stopping

time is the time of first entry to the set:

A 1, 2, 4, 5  .   

Exercises 6.5

1. (Mathematica) For the chain with transition matrix below, the rewards for

states 1–5 are,  respectively, 1, 0, 5, 2, and  3.  Draw the transition diagram,

and  use  your  intuition  to  guess  at  the  optimal  stopping  policy.   Then  solve

the  linear  program  associated  with  the  value  function  of  the  problem  to

verify that your solution is correct.

T

1 2 1 2 0 0 0
1 3 0 1 3 1 3 0
2 3 1 3 0 0 0

0 0 0 0 1
0 0 0 1 0

2. For the chain with the transition diagram below, the number of the state is

equal to its reward.  Find the optimal stopping time.

1

2 3

4

1

3 4

1 4
3 4

1 4

1

Exercise 2

3.  Consider  the  Markov  chain  of  Figure  4.8,  whose  transition  matrix  is

reproduced  below.   Suppose  that  the  reward  function  is  f i 7 i,
i 1, ... , 6  Find intuitively the optimal stopping time.  
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          2 3 4 5 6 1

T

2
3

4
5
6

1

1 4 3 4 0 0 0 0
3 4 1 4 0 0 0 0

0 0 0 1 3 2 3 0
0 0 0 0 1 0
0 0 1 3 2 3 0 0

1 2 0 0 0 1 4 1 4

4.  Let Xn  be a Markov chain with the transition matrix below.  Show that

the  constant  function  f 2  is  excessive  (i.e.,  f T f ).   More  generally,

show that for an arbitrary Markov chain with finite state space, the constant

function f c is excessive. 

T
1 2 1 2 0
1 3 1 3 1 3
1 4 0 3 4

5.  A  shady  character  has  a  sports  betting  operation.   Each  month  he  either

makes one more monetary unit,  or  else he is closed down by the police and

all  profits  are  confiscated.   The  latter  occurs  with  probability  1/8.   His

desired profit level is 6 monetary units; if that is reached he will abandon the

operation and retire to Florida.  But he realizes that it may be better for him

to quit early, since he risks the loss of all money.

(a) Formulate the problem as an optimal stopping problem.

(b) Write the system of inequalities V T V  for the value function V  of

the problem.

(c) Use expressions (1) and (2) to find the optimal stopping policy.

6. (Mathematica) You have a contract called an option to purchase a share of

stock  when  you  desire,  at  the  fixed  price  of  3  monetary units.   The day-to-

day  price  of  the  stock  follows  a  Markov  chain  with  the  transition  diagram

below.   If  the option is  exercised when the price is s,  then the stock can be

immediately  resold  at  a  profit  of  s 3.   You  do  not  have  to  exercise  the

option  at  all  if  it  is  not  beneficial,  but  note  that  there  is  a  chance  that  the

company  will  go  bankrupt  before  the  option  is  exercised  if  you  wait  too

long,  in  which  case  it  will  be  worthless.   When  should  you  exercise  the

option?
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0

1 2 3 4 5

1

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1

Exercise 6

7.  On  a  television  game show,  a  contestant  is  offered  a  sequence  of  prizes,

which  are  independent  and  identically  distributed  random  variables  taking

possible values $1000, $2000, and $3000 with probabilities 1/2, 1/8, and 1/8,

respectively.   The  contestant  may  at  any  time  choose  to  accept  a  prize,  at

which  point  the  game  is  over.   The  game  show  host  may,  at  some  point,

choose  to  offer  no  more  prizes,  and  the  contestant  departs  with  nothing.

This  happens  with  probability  1/4.   When  should  the  contestant  accept  a

prize?

8. Suppose, in the optimal stopping problem, that there is a discount factor of

0, 1  per  period.   That  is,  the  reward   collected  when  the  game  is

stopped at time S is only S f XS  in present-day terms.  

  (a)  Use  a  dynamic programming argument  to  show that  the optimal value

function satisfies

                                 V i max f i , T V i ,

                                 

 where T  is the transition matrix of the Markov chain.

  (b)  Let us presume that  it  is  still true that the optimal stopping time is the

time at which the chain first enters the set A i E : f i V i .  Find the

optimal stopping time for the chain whose transition diagram is below, if the

reward function is f i i, and the discount factor is .5.
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1 2

3

1

1 2

1 2
1 2

1 2

1

Exercise 8

9. Suppose that the reward function f itself in an optimal stopping problem is

excessive.  Show that the optimal strategy is to stop immediately.

10.  (Mathematica)  Can  you  develop  a  policy  improvement  approach  to  the

optimal stopping problem?  Try it on the problem of Figure 6.4.

11. (Mathematica) In the game show "Who Wants To Be A Millionaire?," a

contestant is given a sequence of multiple choice questions with four alterna-

tive answers.   The contestant  can choose to keep the amount of  money that

he  or  she  has  currently  earned  and  bow  out  of  the  game,  or  to  gamble  on

answering  the  next  question  correctly.   Each  question  answered  correctly

doubles the contestant's winnings; but with the first question that is answered

incorrectly, the contestant loses the game and goes away with nothing.  The

game stops if the contestant reaches an amount in excess of $1 million.  The

questions  become  harder  as  the  game proceeds;  suppose  that  the  chance  of

answering the ith  question correctly is 3 2 i 1 .  If  the contestant starts

with $1000, when should he quit the game?  

6.6  Extended Applications

In this section we present two examples that are larger and more complicated

than any we have done so far: (1) a model for the valuation of an investment

object  called  an  American  call  option,  and  (2)  an  inventory  management

problem.   There  are  two  purposes:  first,  you  will  see  other  applications  of

dynamic  programming  in  which  the  initial  modeling  is  more  subtle,  and

second, the main ideas covered in this chapter will be reviewed.  
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American Option Problem

EXAMPLE 1.Suppose that there is a risky investment opportunity (such as

a  common  stock)  whose  market  price  changes  with  time  in  a  probabilistic

way.  The transition diagram of the price process is drawn in Figure 6.6.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

q

1 q

q

1 q

q

1 q

q

1 q

q

1 q

q

1 q

Figure 6.6 – Markov chain for risky asset motion

The state labels in the diagram have been denoted generally as x1, x2, x3,

etc.,  but  we  actually  assume that  the  states  are  connected  to  one  another  as

follows.   If  at  time n,  the  price  is  X ,  then  at  time n 1,  the  price  is  either

1 u X  or  1 d X ,  where  u  and d  represent  the percentage  increase and

decrease, respectively, in the price of the risky asset (which we may refer to

occasionally as rates of return, or interest rates). Hence if the state at time 0

is  x1,  then  the  possible  states  at  time 1,  which  are  states  x2  and  x3,  respec-

tively,  represent  1 u x1  and  1 d x1;  states  x4,  x5,  and  x6  represent

1 u 2 x1,  1 u 1 d x1,  and  1 d 2 x1;  etc.   The  "up"  probability  is  q
at each time, and the "down" probability is 1 q.

Activity 1  – Consider as a numerical example the case where at time 0,

the  share  price  is  x1 $55.  Return  rates  are  u .04  and  d .02.

Assume  that  the  probability  q  is  exactly  1/2.   Draw  a  tree  diagram

representing  the  possible  motions  of  the  stock  price.   What  is  the

expected price at time 3?  

A call option on a risky asset such as our stock is a contract, tradeable in

the marketplace, which permits the owner  of  the option to purchase a share
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of  the stock for  a prespecified price E  if  it  is  in  the option owner's  interest.

An  option  of  so-called  American  type  allows  the  owner  to  exercise  the

option  at  any  time up  through  a  fixed  termination time T .   For  example,  if

the option contract specifies a termination time of three months, the exercise

price  is  $60  per  share,  and  the  current  price  is  $55,  it  is  not  in  the  owner's

interest  to  exercise the option immediately because he can purchase a share

in  the  open market  for  a  lower  price than the option  permits.   But  if  at  any

time in the next three months the stock price rises to $63, for example, then

the option holder can exercise the option to buy a share at $60, then immedi-

ately  resell  the  share  in  the  open  market  for  a  profit  of  $3.   Because  the

option holder can benefit in this way, the option has some value of its own,

and the option can be traded on the market just like the stock on which it is

based. Intuitively, the option value ought to depend on the price of the stock

at the current time, how much time remains before the termination time, and

perhaps  some  other  parameters  of  the  stock  price  process  or  the  economic

market as a whole.  We would like to find that option value. 

Activity  2  –  Would  you  expect  the  option  value  to  increase  or  to

decrease  as  a  function  of  (a)  stock  price;  (b)  time  remaining  until

termination?

Though  it  is  not  obvious,  we  can  consider  the  problem  as  a  dynamic

programming  problem  with  a  finite  time  horizon  equal  to  the  termination

time T  of the option. At each (discrete) time up to time T , the investor has a

decision  to  make  as  to  whether  to  exercise  the  option  or  not.  Let  action  1

represent  the  action  of  exercising,  and  action  2  the  action  of  not  exercising

the option.  The state space of  the system is  the set  of  prices  that  are attain-

able by the stock on which the option is based; but as we have done before,

we can introduce  a  special  death state  of  no reward to which  the process

goes if the option is exercised; otherwise the process follows the probability

law of  the stock price as shown on the tree of Figure 6.6.  When action 1 is

taken, there is a reward of max X E, 0  earned by the investor by exercis-

ing the option at price E  and reselling at current price X  in the open market.

We  will  also  assume  a  time  discounting  factor  of   using  which  future

money values are translated to present value, as in Sections 3 and 4.  The key

observation  is  that  the  value  of  the  option  to  the  investor  equals  the  maxi-

mum  expected  discounted  value  that  the  investor  can  possibly  receive  by

using  an  optimal  policy  in  the  DP  problem.   This  DP  problem  is  closely

related  to  the  optimal  stopping  problem  of  Section  6.5,  except  for  the

discount  factor  and  the  fact  that  the  termination  time  prevents  the  investor

from waiting indefinitely to act. 

A brief  note on the economics of  the situation is  in order.   Assume that

there  is  a  non-risky  asset  available  whose  value  increases  deterministically

by a factor of 1 r. Then it can be shown that in order to avoid arbitrage  in

478 Chapter 6 Dynamic Programming



the  market,  i.e.,  the  possibility  that  investors  can achieve riskless  profits  by

balancing portfolios of stocks and options on those stocks, the probability q
must be related to the parameters of  the model by q r d u d .  (See,

for example, Baxter and Rennie [4].) 

With  this  introduction,  it  should  be  clear  that  we  ought  to  define  the

parameters of the DP problem as follows: 

  T1 x, y
1 if y
0 otherwise

  T2 x, y
q if y 1 u x

1 q if y 1 d x   

r x, 1 max x E , 0 x ;

r x, 2 0 x ;

r , a 0 for a 1, 2

 

R 0; R x max x E, 0 x ;

The value of the option at time 0 solves the DP problem:

V0 x maxu Eu n 0
T 1 k r Xk, uk Xk

T R XT

We can solve the problem of valuing the option as in Section 6.2 by the

backward  programming  algorithm  beginning  at  the  final  time  T  with  the

function VT R and working back to time 0 using the DP equation:

(1)

Vn 1 x maxa 1,2 r x, a Eu Vn Xn

max max x E, 0 , 0 q Vn 1 u x
1 q Vn 1 d x

In the process of executing the algorithm, we also derive the option value at

all times n between 0 and T  by finding the value functions Vn. 

EXAMPLE  1. Suppose  that  at  time  0,  the  share  price  is  $10,  interest  rates

are u .04 and d .02, and q .5 (which would follow from the anti-arbi-

trage principle  if  the riskless  rate  was r .01).   Let  the termination time be

T 3,  let  the  discount  factor  be  .9,  and  let  the  exercise  price  be

E 10.50.  Setting the initial state to be x1,  the possible values x2  and x3  of

the stock price at time 1 are

x1 10;

x2, x3 1 .04 10, 1 .02 10

10.4, 9.8

The possible values at time 2 are
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x4, x5, x6
1 .04 2 10, 1 .04 1 .02 10, 1 .02 2 10

10.816, 10.192, 9.604

And the possible values at time 3 are

x7, x8, x9, x10
1 .04 3 10, 1 .04 2 1 .02 10,

1 .04 1 .02 2 10, 1 .02 3 10

11.2486, 10.5997, 9.98816, 9.41192

The tree representing the possible motions of the stock for this particular set

of parameters is below.

10

10.4

9.8

10.82

10.19

9.60

11.25

10.60

9.99

9.41

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 6.7 – Risky asset motion, x1 $10, u .04, d .02

The dynamic programming algorithm initializes

V3 x R x max x 10.50, 0 , for x x7, x8, x9, x10

and the DP equation (1) becomes
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(2)
Vn 1 x

max max x 10.50, 0 , .45 Vn 1.04 x .45 Vn .98 x

The values of V3 at the states x x7, x8, x9, x10 are computed below:

Clear V3, V2, V1, V0 ;

V3 x_ : Max x 10.50, 0 ;

V3 x7 , V3 x8 , V3 x9 , V3 x10

0.74864, 0.09968, 0, 0

This  gives  us  the  obvious  result  that  the  call  option  is  only  valuable  at  the

expiration  time T 3  if  the  stock  price  is  at  one  of  its  two  highest  values,

x7 11.25 or x8 10.60, in which case the profit to the option holder is the

stock  price  minus  the  exercise  price  of  10.50.  The  option  is  not  exercised,

and  consequently  it  expires  worthless,  if  the  stock  price  is  x9 9.99  or

x10 9.41. 

We use  Mathematica  to  simplify the  expression  inside  the  maximum in

(2) to find V2. So that we can see the maximizing action, we compute the list

of two values in the DP equation, then find the maximum of the two.  Begin-

ning with x4, note that the two states that it leads to are x7  and x8; hence we

can find V2 x4  as follows:

V2x4list

Max x4 10.50, 0 , .45 V3 x7 .45 V3 x8
V2 x4 Max V2x4list

0.316, 0.381744

0.381744

Since  the  second  action  achieves  the  maximum,  it  follows  that  the  option

should not be exercised at state x4. Repeating for x5  below, we see that it is

again optimal not to exercise. 
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V2x5list

Max x5 10.50, 0 , .45 V3 x8 .45 V3 x9
V2 x5 Max V2x5list

0, 0.044856

0.044856

The next computation shows that the option is without value at x6.  (Look at

the tree of Figure 6.7 to decide why this is true.) 

V2x6list

Max x6 10.50, 0 , .45 V3 x9 .45 V3 x10
V2 x6 Max V2x6list

0, 0

0

We proceed to V1, working along the same lines.

V1x2list

Max x2 10.50, 0 , .45 V2 x4 .45 V2 x5
V1 x2 Max V1x2list

0, 0.19197

0.19197

V1x3list

Max x3 10.50, 0 , .45 V2 x5 .45 V2 x6
V1 x3 Max V1x3list

0, 0.0201852

0.0201852

At both x2  and x3, it is optimal not to exercise. Finally, at the initial state x1

we have
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V0x1list

Max x1 10.50, 0 , .45 V1 x2 .45 V1 x3
V0 x1 Max V0x1list

0, 0.0954698

0.0954698

Thus,  the  value  of  the  option  when  there  are  three  time  periods  remaining

and the initial price is $10 is just V0 x1 $ .10, rounded to the nearest cent. 

Activity  3  –  In  Example  1,  redo  the  American  call  option  valuation

problem assuming that the expiration time is T 4.  Is there any path of

the  stock  price  process  under  which  the  option  is  exercised  before  the

termination time? 

Inventory Problem

EXAMPLE 2.A retail store stocks a certain dishwasher.   We are interested

in  controlling  the  number  of  dishwashers  in  stock  over  an  indefinite  period

of weeks.  During a given week, a total demand for either 0, 1, or 2 dishwash-

ers occurs, each with probability 1/3.  After the store closes on Friday night,

it is  possible to place an order with the manufacturer for more dishwashers.

The  order  will  be  filled  by  the  following  Monday  morning  when  the  store

reopens.   The  management has  decided  that  the  store  will  never  keep  more

than two dishwashers  on hand.  Demands for  a dishwasher that occur when

no dishwashers are in stock are lost.  Each dishwasher is sold at retail price r
and can be ordered from the manufacturer at wholesale price m r.  There is

a  weekly storage  cost,  which  for  simplicity we assume is  s  dollars  for  each

dishwasher in stock on Monday morning, regardless of whether any are sold

during  the  week.   If  there  is  a  discount  factor  of  .99,  how  should  the

store  reorder  dishwashers  on  each  Friday  night  in  order  to  maximize

expected total discounted profit? 

A  reasonable  first  guess  at  how  to  model  the  problem  as  a  Markovian

decision  problem  is  to  say  that  the  "state"  of  the  system  is  the  inventory

level,  and  the  "actions"  are  orders  for  more  dishwashers.   In  each  weekly

time  period  there  is  a  profit,  which  is  the  sales  revenue  minus  storage  and

reorder costs.  Let us adopt the following notation:

Yn = # dishwashers in stock at beginning of week n, n 0, 1, 2, …;

 

Dn = # dishwashers demanded during week n, n 0, 1, 2, …;
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Un = # dishwashers ordered at end of week n, n 0, 1, 2, …;

Rn = net profit during week n (including reorder cost, if any).

Note that if the demand Dn  in week n is less than or equal to the stock level

Yn, then Dn  dishwashers are sold, otherwise Yn  are sold.  In other words, the

smaller  of  these  two  numbers  gives  the  number  of  dishwashers  sold.   The

sequence of operations is shown in Figure 6.8.

order U0 order U1 order U2

week 0 week 1 week 2 week 3

M F M F M F M F
Y0 demand D0 Y1 demand D1 Y2 demand D2 Y3 demand D3

Figure 6.8 – Sequence of operations in the inventory problem

Consider  the  net  profit  during  week  n,  for  n 0, 1, 2, ….   We  sell

min Dn, Yn  dishwashers  at  r  dollars  apiece,  we  store  Yn  dishwashers  at  a

cost of s dollars each, and we order Un dishwashers from the manufacturer at

a cost of m dollars apiece.  Hence, we can write

(3)Rn r min Dn, Yn s Yn m Un,   n 0, 1, 2, … .

Notice also that the amount that can be ordered after week n depends on

both Yn  and  Dn.   For  example,  if  there  are 2  dishwashers  at  the start  of  the

week,  and  none  are  demanded  during  the  week,  the  rules  say  that  no  dish-

washers  can be ordered.   This  observation indicates that the inventory level

Yn  is an insufficient description of the "state" of the system.  The demand Dn
should be recorded as well.  A typical state is of the form i y, d , where y
is  the  inventory  level  at  the  start  of  the  week  and  d  is  the  weekly  demand.

Under the problem conditions, both y and d  can take on the values 0, 1, and

2,  and  the  set  of  possible  actions  a  (a  =  #  dishwashers  ordered  from  the

manufacturer)  is  also  0, 1, 2 ,  with  some  restrictions  dependent  on  the

current state.  You should have no difficulty checking the sets Ai  of admissi-

ble actions displayed in Figure 6.9 for the states i E.

states 0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

actions 0, 1, 2 0, 1, 2 0, 1, 2 0, 1 0, 1, 2 0, 1, 2 0 0, 1 0, 1, 2
 

Figure 6.9 – Admissible action sets for inventory problem

By (3), the per-period reward function r0 is

(4) r0 i, a r0 y, d , a r min d, y s y m a
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Recall  that  r  is  the  retail  price  per  dishwasher,  the  minimum  in  the  two

expressions  above  is  the  number  of  dishwashers  sold  during  the  week,  s  is

the storage cost per dishwasher,  m  is the reorder cost per dishwasher,  and a
is  the  number  of  dishwashers  ordered.  We  use  the  notation  r0,  since  r  is

being used for the retail price.

The  transition  matrices  for  the  three  possible  actions  0,  1,  and  2  are

below.   You  should  check  all  of  the  entries;  here  we  explain  just  a  few.

Consider  the  i 1, 0  row  of  T0 i, j .   We  are  given  that  this  week  we

began  with  1  dishwasher,  none  were  demanded,  and  none  were  reordered.

Then we must start next week with 1 dishwasher.  Demands next week for 0,

1,  or  2  dishwashers  have  equal  probability  1/3,  so  that  the  1, 0  row of  T0

clearly has 1/3 in each of the columns in which the first component is 1, and

has  zeros  elsewhere  in  the  row.   This  is  the  thought  process  behind  all  of

these  computations.   As  another  example,  consider  the  2, 1  row  of  T1.

Here, we are given to have started the week with 2 dishwashers, of which 1

was demanded, and 1 was ordered at the end of the week.  Thus, it is certain

that we start next week with 2 dishwashers, and demands of 0, 1, or  2  will

occur with probability 1/3 each.  Note, for instance that the 1, 0  row of the

matrix T2 is omitted, because if we begin a week with 1 dishwasher and none

are sold during the week, we are not permitted to order two more under the

conditions of this problem.

T0

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 1 3 1 3 1 3 0 0 0 0 0 0

0, 1 1 3 1 3 1 3 0 0 0 0 0 0

0, 2 1 3 1 3 1 3 0 0 0 0 0 0

1, 0 0 0 0 1 3 1 3 1 3 0 0 0

1, 1 1 3 1 3 1 3 0 0 0 0 0 0

1, 2 1 3 1 3 1 3 0 0 0 0 0 0

2, 0 0 0 0 0 0 0 1 3 1 3 1 3

2, 1 0 0 0 1 3 1 3 1 3 0 0 0

2, 2 1 3 1 3 1 3 0 0 0 0 0 0

 

T1

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 0 0 0 1 3 1 3 1 3 0 0 0

0, 1 0 0 0 1 3 1 3 1 3 0 0 0

0, 2 0 0 0 1 3 1 3 1 3 0 0 0

1, 0 0 0 0 0 0 0 1 3 1 3 1 3

1, 1 0 0 0 1 3 1 3 1 3 0 0 0

1, 2 0 0 0 1 3 1 3 1 3 0 0 0

2, 0

2, 1 0 0 0 0 0 0 1 3 1 3 1 3

2, 2 0 0 0 1 3 1 3 1 3 0 0 0
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T2

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

0, 0 0 0 0 0 0 0 1 3 1 3 1 3

0, 1 0 0 0 0 0 0 1 3 1 3 1 3

0, 2 0 0 0 0 0 0 1 3 1 3 1 3

1, 0

1, 1 0 0 0 0 0 0 1 3 1 3 1 3

1, 2 0 0 0 0 0 0 1 3 1 3 1 3

2, 0

2, 1

2, 2 0 0 0 0 0 0 1 3 1 3 1 3

 

Mathematica  definitions  of  the  matrices  T0,  T1,  and  T2,  and  the  list  of  all

three denoted by AllTa are in the closed cell below this paragraph.

Activity 4  – Why is the 2, 0  row of T1  deleted?  Justify the 2, 2  row

of T2.  Why are the 0, 0 , 0, 1 , and 0, 2  rows of each matrix identical?

A stationary policy for this problem of inventory control is a function u,

where  u i u y, d  =  number  of  dishwashers  ordered  at  the  end  of  each

week n, if week n started with y dishwashers and during week n, d dishwash-

ers were demanded.  We wish to find a stationary policy to maximize

W i, u Eu n 0
n r0 Yn, Dn, un Yn, Dn Y0, D0 i

for every initial state i. 

Let us now fix values for the coefficients of the reward function.  Let the

storage  cost  s  be  1  unit,  and  suppose  that  there  is  a  100%  mark-up  on  the

price of the dishwashers, i.e., the wholesale price m 1 2 r, where r is the

retail price.  Then we have

(5) r0 i, a r0 y, d , a r min d, y y 1
2

r a,

We  will  leave  r  as  a  parameter  of  the  problem,  and  do  two  examples  with

different values of r. Here is the reward function in tabular form in Mathemat-
ica. 

Needs "KnoxOR`DynamicProgramming "̀ ;
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Clear r ;

r0 0, 1 2 r, r , 0, 1 2 r, r ,

0, 1 2 r, r , 1, 1 1 2 r, ,

r 1, r 1 1 2 r, r 1 r ,

r 1, r 1 1 2 r, r 1 r ,

2, , , r 2, r 2 1 2 r, ,

2 r 2, 2 r 2 1 2 r, 2 r 2 r ;

tabheads " 0,0 ", " 0,1 ", " 0,2 ", " 1,0 ",

" 1,1 ", " 1,2 ", " 2,0 ", " 2,1 ",

" 2,2 " , "a 0", "a 1", "a 2" ;

TableForm r0, TableHeadings tabheads

a 0 a 1 a 2

0,0 0 r
2 r

0,1 0 r
2 r

0,2 0 r
2 r

1,0 1 1 r
2

1,1 1 r 1 r
2 1

1,2 1 r 1 r
2 1

2,0 2

2,1 2 r 2 r
2

2,2 2 2 r 2 3 r
2 2 r

Let  us  try  to  use  the  method  of  successive  approximations  to  approxi-

mate the  optimal value  function  and  find  the  optimal policy.   From Section

6.3, the DP equation is 

(6)wn 1 i maxa Ai r i, a Ta wn i

First,  for  r 10,  and  an  initial  function  w0  that  is  identically  zero,  the

DiscountedDPEquation  command can be used to generate for  each state the

list of values from which to choose the maximum. 

Clear , w0, reward ;

.99; w0 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

reward r0 . r 10;
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wlist

DiscountedDPEquation AllTa, reward, w0, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w1 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 5. 10.
0,1 0. 5. 10.
0,2 0. 5. 10.
1,0 1. 6.
1,1 9. 4. 1.
1,2 9. 4. 1.
2,0 2.
2,1 8. 3.
2,2 18. 13. 8.

0, 0, 0, 1, 9, 9, 2, 8, 18

Comparing  the  maximum  values  reported  in  the  second  list  to  the  first

column  of  the  table,  we  see  that  action  0  for  each  state  maximizes  the

quantity on the right of the DP equation. We repeat the process with w1.

wlist

DiscountedDPEquation AllTa, reward, w1, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w2 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 0.61 2.08
0,1 0. 0.61 2.08
0,2 0. 0.61 2.08
1,0 4.61 1.92
1,1 9. 9.61 6.92
1,2 9. 9.61 6.92
2,0 5.92
2,1 13.61 10.92
2,2 18. 18.61 15.92
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0.61, 0.61, 0.61, 4.61,

9.61, 9.61, 5.92, 13.61, 18.61

Since action 0 is no longer the maximizing action for each state, stabilization

has  yet  to  occur,  and  we  should  try  another  step.   The  current  maximizing

actions are a 1, 1, 1, 0, 1, 1, 0, 0, 1, respectively, for the nine states.

wlist

DiscountedDPEquation AllTa, reward, w2, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w3 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0.6039 2.8639 2.5862
0,1 0.6039 2.8639 2.5862
0,2 0.6039 2.8639 2.5862
1,0 6.8639 6.5862
1,1 9.6039 11.8639 11.5862
1,2 9.6039 11.8639 11.5862
2,0 10.5862
2,1 15.8639 15.5862
2,2 18.6039 20.8639 20.5862

2.8639, 2.8639, 2.8639, 6.8639,

11.8639, 11.8639, 10.5862, 15.8639, 20.8639

The  maximizing  actions  are  a 1, 1, 1, 0, 1, 1, 0, 0, 1,  which  are  the  same

as those in the previous step, but let us try one more time.

wlist

DiscountedDPEquation AllTa, reward, w3, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w4 Table Max wlist i ,

i, 1, Length AllTa 1
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a 0 a 1 a 2
0,0 2.83526 5.09526 5.61362
0,1 2.83526 5.09526 5.61362
0,2 2.83526 5.09526 5.61362
1,0 9.09526 9.61362
1,1 11.8353 14.0953 14.6136
1,2 11.8353 14.0953 14.6136
2,0 13.6136
2,1 18.0953 18.6136
2,2 20.8353 23.0953 23.6136

5.61362, 5.61362, 5.61362, 9.61362,

14.6136, 14.6136, 13.6136, 18.6136, 23.6136

We hit the policy below that always orders to restore the inventory to level 2,

defined in the offset formula below:  

u0 0, 0 u0 0, 1 u0 0, 2 2;

u0 1, 0 1; u0 1, 1 u0 1, 2 2;

u0 2, 0 0; u0 2, 1 1; u0 2, 2 2

This  differs  from  the  previous  policies,  but  let  us  pause  here  to  check  for

optimality  of  this  policy.   What  we  must  do  is  to  construct  the  transition

matrix Tu  of the chain under this policy and the reward vector ru.  These are

below, and you should check to see that the definitions are correct.

Tu 0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ,

0, 0, 0, 0, 0, 0, 1 3, 1 3, 1 3 ;

ru 10, 10, 10, 6, 1, 1, 2, 3, 8 ;

Ident IdentityMatrix 9 ;

Wu LinearSolve Ident Tu, ru

287., 287., 287., 291., 296., 296., 295., 300., 305.
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To  check  whether  the  current  policy  value  function  Wu  satisfies  the  DP

equation,  we  use  it  as  the  third  argument  of  the  DiscountedDPEquation

command. 

wlist

DiscountedDPEquation AllTa, reward, Wu, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 284.13 286.39 287.
0,1 284.13 286.39 287.
0,2 284.13 286.39 287.
1,0 290.39 291.
1,1 293.13 295.39 296.
1,2 293.13 295.39 296.
2,0 295.
2,1 299.39 300.
2,2 302.13 304.39 305.

287., 287., 287., 291., 296., 296., 295., 300., 305.

Our  function  Wu  does  satisfy  the  DP  equation,  so  for  the  value  r 10  it  is

optimal  to  restore  the  inventory  to  its  maximum  possible  level  of  2  at  the

start  of  every  week.   You will  observe  that  the  same solution  can be found

more easily using the policy improvement method in Exercise 11. 

Activity 5  –  We are about to do some parametric analysis of the inven-

tory  problem,  which  is  continued  in  the  exercises.   Try  to  answer  the

following before  reading on:  In  what  way do you think the parameter r
(the  dishwasher  retail  price)  might be changed in order  that the optimal

policy no longer restores the inventory level to 2 at the start of the week?

In  the  activity  above  you  should  have  concluded  that  the  balance

between  the  profit  on  dishwashers  and  the  cost  of  storing  them determines

the nature of the solution. If we reduce the value of r  in comparison with s,

we might expect that the optimal inventory level might decrease.  Let us try

the  value  r 2  and  proceed  through  the  same  computations  as  in  the

example.
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Clear , w0, reward, r ;

.99; w0 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

reward r0 . r 2;

wlist

DiscountedDPEquation AllTa, reward, w0, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w1 Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2
0,0 0. 1. 2.
0,1 0. 1. 2.
0,2 0. 1. 2.
1,0 1. 2.
1,1 1. 0. 1.
1,2 1. 0. 1.
2,0 2.
2,1 0. 1.
2,2 2. 1. 0.

0, 0, 0, 1, 1, 1, 2, 0, 2

The first policy that achieves the maximum in the DP equation is the policy

that never orders.  We see that in the next step of successive approximations

this policy does not change. 

wlist

DiscountedDPEquation AllTa, reward, w1, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

w2 Table Max wlist i ,

i, 1, Length AllTa 1
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a 0 a 1 a 2
0,0 0. 0.67 2.
0,1 0. 0.67 2.
0,2 0. 0.67 2.
1,0 0.67 2.
1,1 1. 0.33 1.
1,2 1. 0.33 1.
2,0 2.
2,1 0.33 1.
2,2 2. 1.33 0.

0, 0, 0, 0.67, 1, 1, 2, 0.33, 2

Let  us  check  to  see  whether  this  policy  is  optimal.  Its  value  is  computed

below. 

Ident IdentityMatrix 9 ;

ru 0, 0, 0, 1, 1, 1, 2, 0, 2 ;

Wu LinearSolve Ident T0, ru

2.22045 10 16, 2.22045 10 16, 2.28773 10 16,

0.507463, 1., 1., 1.75741, 0.492537, 2.

wlist

DiscountedDPEquation AllTa, reward, Wu, ;

TableForm N wlist , TableAlignments Center,

TableHeadings tabheads

Table Max wlist i ,

i, 1, Length AllTa 1

a 0 a 1 a 2

0,0 2.22045 10 16 0.507463 1.75741

0,1 2.22045 10 16 0.507463 1.75741

0,2 2.22045 10 16 0.507463 1.75741

1,0 0.507463 1.75741
1,1 1. 0.492537 0.757407
1,2 1. 0.492537 0.757407
2,0 1.75741
2,1 0.492537 0.757407
2,2 2. 1.49254 0.242593
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2.22045 10 16, 2.22045 10 16, 2.22045 10 16,
0.507463, 1., 1., 1.75741, 0.492537, 2.

So  we  have  swung  over  to  the  other  extreme  for  our  optimal  policy,  in

which,  for  r 2 it  is  best  not  to  order  any replacement dishwashers.   (Why

intuitively it is clear that this should be the optimal policy?) Exercises 8 and

9 ask you to find values of r that yield intermediate policies.

Conclusion

Let  us  review  briefly  the  highlights  of  this  chapter.   In  the  first  section  we

introduced the model.  A controller is to make a sequence of decisions based

upon  observation  of  the  system.   Those  decisions  change  the  course  of  the

system  and  incur  rewards.   The  goal  is  to  find  the  optimal  plan,  which

determines  what  the  decision  will  be  at  each  time,  and  for  each  possible

state.  In Section 2 we introduced the backtracking procedure for finding the

optimal  value  function  at  any  time  for  the  problem  in  which  control  is

exerted over a finite time interval.  Though the backward programming idea

had  been  known  for  some  time,  it  was  only  in  the  1950's  and  1960's  that

Bellman and others formalized the procedure in the modern way, and began

to fully exploit it.  

Section  3  began  the  study  of  the  infinite  horizon  discounted  problem,

which continued in Section 4.  In those sections we used a dynamic program-

ming  equation  to  generate  two  approximation  procedures.   The  first,  the

method  of  successive  approximations,  constructs  a  sequence  of  functions

approaching  the  optimal  value  function.   This  method  is  not  guaranteed  to

converge in finitely many steps;  hence another  method, the policy improve-

ment algorithm, due to Howard [37], was introduced.  Instead of approximat-

ing the value function,  the idea was to approximate the optimal policy by a

sequence  of  strictly  improving policies.   Here  it  is  required  to solve for  the

value function of  each policy in the sequence,  and this can be computation-

ally burdensome, but Mathematica provides assistance.

Section 5, on finding an optimal time to stop a Markov chain and accept

a reward, primarily followed Cinlar [15].  There are obvious applications of

this  problem  to  games  of  chance,  and  also  to  problems  such  as  the  accep-

tance of the best offer for an item up for sale.  We saw in this section that it

is  possible  to  solve  for  the  optimal  value  function  by  the  methods  of  linear

programming.   The  optimal  stopping  problem  therefore  serves  to  unify  the

diverse  elements  of  this  text:  graph  theory  (transition  diagrams),  linear

programming,  stochastic  processes,  and  dynamic  programming.   There  are

linear  programming  approaches  to  the  computation  of  the  optimal  value

function for other dynamic programming problems as well.  Both Ross [53]

and Derman [17] have details.  Finally, we presented two extended examples

of the ideas and methods of this chapter in Section 6 on option valuation and
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inventory control.   Here,  more than anywhere else in our brief introduction,

one sees the intricacies of the modeling process.

Our  formulation of  the Markovian decision problem was somewhat less

general  than  that  of  some  sources.   In  selecting  actions,  no  dependence  on

the  past  history  of  the  system  was  allowed,  and  the  only  sense  in  which

actions  were  random  was  in  their  dependence  on  the  random  variables

representing  the  state  of  the  system.   By  contrast,  it  would  be  possible  to

consider  randomized  policies,  in  which  we  observe  the  state,  then  perform

some randomized procedure based on the state to determine the action.  The

rewards  were  also  non-random  functions  of  state  and  action.   The  extra

generality  was  dispensed  with  for  the  sake  of  clarity  in  this  introduction  to

the  subject.   The  reader  may  see  Derman  [17]  for  a  discussion  of  more

general  problems.   From  the  standpoint  of  the  finite  horizon  and  infinite

horizon  discounted  problems,  our  restricted  view  of  policy  suffices,  for  it

can  be  shown  that  the  optimum among  the  broader  class  of  policies  occurs

among  policies  of  the  special  form  studied  in  this  chapter.   Much  of  our

material was patterned  after  Ross [53],  who discusses  the finite  and infinite

horizon discounted problems, as well as some others.  Hillier and Lieberman

[31]  devote  two  chapters  to  dynamic  programming  and  Markov  decision

processes.   Additional  applied  examples can be  found  in  that  source.   Bell-

man [5], and Dreyfus and Law [21] are other good references.

Such  extensions  and  generalizations  are  numerous.   Also,  as  with

stochastic  processes,  serious  technical  issues  arise  when  one  moves  to  the

case  of  countably  or  uncountably  infinite  state  or  action  spaces,  or  to  a

continuous  time parameter.   The  latter  typically  involves  partial  differential

equations.   But  even  in  the  context  of  a  discrete  time  parameter  and  finite

action set, questions about existence of optimal policies arise when the state

space  is  countable.   As  a  simple  example,  consider  the  two  transition  dia-

grams in Figure 6.10.  The state space is taken to be {0, 1, 2, ...}, and there

are  only  two  actions  available,  a  and  b.  The  first  diagram  is  the  transition

diagram of the chain of states under action a, the second, action b.  

0
1

2

3

1

1

1

1

0

1

2

3

1

1

1

1

1

(a)                                              (b)

Figure 6.10 – Transition diagram of a Markov chain under (a) action a; (b) action b
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Suppose that the reward function is

r i, a 0 for all i;      r 0, b 0, r i, b 1 1 i for i 1

Under  action a,  the chain drifts  to  the right  deterministically and no reward

can be collected.  Under action b, the chain immediately goes to the absorb-

ing  state  0;  an  immediate  reward  1 1 i   can  be  collected  if  this  action  is

taken  at  state  i,  but  no  further  rewards  are  possible.   The  supremum of  all

possible rewards is 1, but no stopping policy can have a value of identically

1.  Moreover, the DP equation is

V i max r i, a Ta V i , r i, b Tb V i
max V i 1 , 1 1 i
V i 1 1, at action a

The policy indicated by the DP equation is to take action a at every state, and

the value of this policy is 0.  Not only does there not exist an optimal policy,

but the DP equation gives us a very bad policy.  In general, there are topologi-

cal  and  analytical  subtleties  in  the  question  of  existence  of  optimal  policies

when  either  the  state  or  action  space  is  not  finite,  and  also  in  the  case  of

continuous  time  parameter.   And,  the  problem  of  actually  calculating  the

solution in the infinite case is not insignificant.  

An optimization criterion that we have not discussed is the maximization

of long-run average reward:

limn Eu k 0
n r Xk, uk Xk X0 i n 1

Does  there  exist  an  optimal  policy  at  all?   If  so,  is  it  stationary,  as  in  the

discounted  problem?   In  general,  the  answer  is  no  to  both  questions  (for

counterexamples,  see  Ross  ([53],  Sec.  5.1)).   But  under  some  regularity

conditions,  there  is  a  dynamic  programming  equation  that  characterizes  an

optimal  stationary  policy.   Furthermore,  there  is  a  way  of  translating  the

problem to  a  discounted  problem with  the  same optimal policy,  so  that  one

could use the methods developed here to solve the latter problem.

To summarize, the methods of  dynamic programming come into play in

applications  in  which  there  is  a  sequence  of  interrelated  decisions  to  be

made.   We  have  seen  examples  in  inventory,  fisheries,  production,  and

option valuation among others in this chapter, and the imaginative reader can

think of  other  applications  as  well.   The breadth of  the examples is impres-

sive,  and  the  methodologies  used  to  analyze  them  are  rather  simple,  yet

powerful,  and  are  often  algorithmic  in  nature.   In  fact,  one  could  make the

same statements about the other subject areas in this book.  We have tried to

show not only the useful examples, but also some of the interesting mathemat-

ics of operations research, and how the pieces of the puzzle make an aestheti-

cally appealing  picture.   This  picture  is  by no  means complete.  New prob-
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lems in need of  study arise frequently in business,  government,  engineering

and many other  areas,  and it  is  to  be hoped  that you will  choose to investi-

gate some of them.   

Exercises 6.6 

1. (Mathematica) In the American option valuation problem, suppose that at

time 0,  the  share  price  is  x1 $20.  Return  rates  are  u .07  and  d 0.  Use

the remark in the section to compute the probability q if there is a non-risky

asset  whose  rate  of  return  is  r .02.   For  an  option  that  expires  in  4  time

units  and  has  exercise  price  $23,  draw  a  tree  diagram  representing  the

possible  motions  of  the  stock  price.   If  the  discount  factor  is  .995,  find

the value of the option at each node of the tree, in particular at time 0. 

2. (Mathematica) For the scenario in Exercise 1, redo the problem for values

u .08 and u .09, and comment on how the solution depends on u.

3. (Mathematica) For the scenario in Exercise 1, redo the problem for values

of the exercise price E $22 and E $24, and comment on how the solution

depends on E.

4. (Mathematica) For the scenario in Exercise 1, redo the problem for values

of the discount factor .95 and .9, and comment on how the solution

depends on .

5.  (Mathematica)  A  put  option  is  an  option  that  allows  its  owner  to  sell,

rather  than  buy,  an  asset  at  an  agreed-upon  exercise  price  E  by  a  certain

expiration  time  T .   This  option  is  valuable  to  the  holder  if  the  asset  value

falls below E, because then the option holder can buy the asset in the market

at the lower price, then sell it at a price of E, thus making a profit. Redo the

analysis of Example 1 to give the value of an American put option. Use the

same  parameter  values,  except  that  the  initial  price  of  the  asset  should  be

taken as $11. 

6. For the dishwasher inventory problem, Example 2, relabel the state space

such that states 0, 0 , 0, 1 , and 0, 2  are lumped together as, say, state 0*,

and  states  1, 1  and  1, 2  are  lumped together  as  state  1*.   Write  the  new

transition matrices Ta,  and write dynamic programming equations similar to

(6) for the redesigned problem. Expand the equations out in full. 

7. (Mathematica) Redo the inventory problem, Example 2, for (a) parameter

value r 4; (b) parameter value r 6. 

8.  (Mathematica)  In  the  inventory  problem,  Example  2,  try  to  find  the

smallest value of r 2 that you can for which for some state it is optimal to
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reorder  some  positive  number  of  dishwashers.   Obtain  the  r  only  to  the

nearest .1.

9. (Mathematica) In the inventory problem, Example 2, try to find the largest

value of r 10 that you can for which for some state it is optimal to reorder

less than the maximum possible number of dishwashers. Obtain the r only to

the nearest .1.

10.  (Mathematica)  Suppose  in  the  inventory problem of  Example 2  that  we

are only interested in controlling the system during a particular ad campaign

that  ends  after  the  third  week.  No  additional  order  is  placed  at  the  end  of

week 3. The other problem conditions are the same, but we use no discount

factor. Solve the problem in finite time horizon. 

11.  (Mathematica)  Use  the  method  of  policy  improvement  to  find  the

optimal policy in the dishwasher inventory example of Example 2, beginning

with  the  policy  that  orders  only  enough  to  restore  the  inventory  level  to  1

when necessary, ordering nothing when the inventory level is 2. 

12. (Mathematica) Consider an inventory problem as in Example 2, but with

finite time horizon T 2 and no discount factor. Let r remain as a parameter

and  work  through  the  backward  programming  method for  times 1  and  0  to

find the optimal action functions, which will depend on the interval of values

to  which  r  belongs.  (Hence  you  should  be  able  to  make  statements  of  the

form:  "For  state  i,  at  time  n,  action  a  is  optimal  for  r  belonging  to  a  set;

otherwise action b is optimal" for each of the two times and nine states.)

Exercises  13–17  lead  you  through  another  financial  model.  A  risky  asset

moves  in  the  manner  of  Figure  6.6.  We  follow  the  progress  of  an  investor

who  owns  a  portfolio  of  some  shares  in  this  asset  as  well  as  a  checking

account  (0%  interest)  containing  some  amount  of  money  at  time  0.   The

investor can decide to either invest in more shares of the same asset or to sell

some number of the shares he holds currently.  The investor is to decide how

to  change  the  portfolio  and  how  to  consume  money  as  time  progresses,  in

order to maximize the expected total consumption.  In the finite time horizon

investment problem, all wealth is consumed at the terminal time T  and only

then.   (In  a  similar  infinite  horizon  discounted  problem,  the  investor  maxi-

mizes the expected total discounted consumption over all periods.) To begin

modeling  this  situation,  let  the  information  contained  in  the  state  of  the

process be given by

x = current price of risky asset;

r = current number of shares of risky asset;

y = current checking account balance.
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Therefore, a state i  is a three-dimensional vector:  i x, r, y .  The associ-

ated  stochastic  process  has  three  component  processes:   Xn  ,  Rn,  and  Yn,

indicating the share price and quantity held of the risky asset and the check-

ing account balance at time n.  At a time such that the state of the process is

x, r, y , the total wealth of the investor is  r x y. We will suppose that as

time  progresses,  the  investor  can  shift  money  from  the  risky  asset  to  the

checking account and vice versa. 

13. Describe the possible actions of the investor and the transition probabili-

ties  under  those  actions.  What  are  the  per-period  and  terminal  reward

functions for the finite horizon problem? Describe the conditions for a policy

to be feasible. Write an expression for the optimal value function.

14. Write in general the DP equation for the problem formulated in Exercise

13.  Suppose  that  at  time  0,  the  share  price  x0 $5.  The  investor  holds

exactly  10  shares  initially  and  the  checking  account  starting  balance  is

y $50.  Interest  rates  are  u .08  and  d .05.  The  investor  wants  to

maximize  wealth  at  the  end  of  3  years  assuming  that  q .5.  Write  the  DP

equation using these parameter values and draw a tree diagram representing

the possible paths of the risky asset.

15.  (Mathematica)  To  solve  the  problem,  it  is  convenient  at  this  stage  to

impose  a  continuous  approximation  to  the  actual  problem:  we  suppose  that

the investor can buy and sell fractional shares of stock so that all real values

of a between the constrained bounds in Exercise 13 are possible. This could

be  the  case  if  one  was  able  to  work  through  a  consortium of  investors  that

allows joint ownership of a share of stock. Use Mathematica  to simplify the

expression inside the DP equation for V2 in terms of V3. What action leads to

the  maximum?  Find  V2.   Continue  to  find  V1,  V0,  and  the  optimal  policy.

Given the nature of the problem parameters, is the optimal policy intuitively

obvious?

16.  (Mathematica)  Redo  the  investment  problem  with  q .4,  u .05,

d .04, T 4, and explain the result intuitively.

17. For the investment problem, show that as long as the expected change in

stock  price  from one  time to  the  next  is  positive,  the  optimal  strategy  is  to

invest all wealth in the stock.
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 Appendix A

 Probability Review

Introduction

This  appendix  is  not  meant  to  take  the  place  of  a  course  in  probability

theory, but rather to refresh your memory of notions such as sample spaces,

random variables, expectation, conditional distributions, and moment-generat-

ing  functions.   In  addition,  some limit theorems are  listed  at  the  end  of  the

appendix  that  are  often  omitted  in  elementary  treatments.   We  will  try  to

present  only  those  definitions  and  results  that  are  used  directly  in  Chapters

4–6.  Consequently, some standard features of introductory courses, such as

Chebyshev's inequality, the Central Limit Theorem, and elementary combinat-

orics,  are  omitted.   Good  references  for  the  material  in  this  appendix  are:

Devore  [18],  Hastings  [30],  and  Hogg  &  Tanis  [35],  and  at  a  somewhat

higher level: Feller [22], Hastings [29], Hogg & Craig [36], and Parzen [48].

A.1 Definitions and Properties

Probability  theory  is  concerned  with  random  experiments,  the  possible

results of  which are called outcomes.   We leave these two terms undefined,

except to say that a random experiment is a phenomenon whose result cannot

be predicted exactly before the phenomenon is observed.  An outcome is one

possible,  indecomposable result  of  the experiment.  By indecomposable, we

mean  that  an  outcome  cannot  be  broken  down  into  a  combination  of  other

outcomes.

Perhaps  the  simplest  experiment  is  the  flip  of  a  coin,  in  which  the

outcomes are head (H) and tail (T).  Another experiment, in which there are

uncountably  infinitely  many  outcomes,  is  the  observation  of  the  time  until

the next comet comes into view in the night sky.  The set of outcomes is the

set of all real-valued times t 0.  The experiment is random, since we cannot

predict exactly when the next comet will appear.  The reader should note that

when  we  say  random,  we  do  not  mean  that  nothing  whatsoever  is  known

about  the  experiment,  but  only  that  the  exact  outcome  is  not  known  in

advance.  In the coin flip experiment, for example, we believe that if a coin

is  uniformly  weighted  and  fairly  flipped,  then  both  outcomes  should  have

equal chance of occurring.

501



DEFINITION 1.  The sample space  of a random experiment is the set

of all possible outcomes  of the experiment.   

Consider  the  experiment  of  picking  two  balls  in  succession,  without

replacement,  from  a  box  that  contains  ten  balls  numbered  1–10.   Typical

outcomes are 1, 5  and 6, 3 , and we can describe the sample space as

(1)i, j : i j and i, j 1, 2, ... , 10

It is apparent that there are 90 outcomes in , since there are ten possibilities

for  the  first  component  i,  and  for  each  of  these,  nine  possibilities  for  the

second component j.  
The sample space for the comet experiment is clearly

(2): 0,

Another  experiment  with  an  uncountably  large  sample  space  is  the  experi-

ment  of  watching  a  machine  and  noting  its  times  of  failure.   A  typical

outcome is depicted in Figure A.1.

1.5 2 2.5 3
time

Figure A.1 – Outcome representing successive failure times

The  information  that  is  recorded  is  the  sequence  of  times  t1, t2, t3, ...  at

which  the  failures  occur,  from which  comes the  set  theoretic  description  of

:

(3)t1, t2, t3, ... : ti 0, and ti ti 1 for all i

DEFINITION 2.  An event is a subset of the sample space.

Since  we  have  defined  events  as  sets,  they  satisfy  all  of  the  usual  set

theoretic  properties.   In the experiment of  picking two numbered balls from

ten,  the  event  described  in  English  by  "the  first  ball  is  1"  consists  of  the

outcomes  1, 2 , 1, 3 , ... , 1, 10 .   In  the  comet  experiment,  the  event

described by "the arrival time is less than 4" is the interval 0, 4  on the real

line.   Although  we  do  not  discuss  it  in  detail  here,  we  must  be  careful  of
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what subsets can be called events in the case where the sample space is not

countable in size.  In this case there may be difficulties in measuring the size

of  the  set,  which  is  roughly  what  must  be  done  to  give  it  a  probability.

When the real line is the sample space, the sets that we will use are express-

ible as countable disjoint unions of intervals, which have enough structure to

avoid  such  technical  problems.   An  advanced  course  in  measure  theoretic

probability treats more complicated events.

If  the  precise  outcome  of  a  random  experiment  cannot  be  known  in

advance of the performance of the experiment, then the next best thing is to

have  a  probability  measure  that  tells  us  how  likely  each  event  is.   Under

some conditions it is possible to constructively define a probability measure.

Almost trivially, the assumption of a fair coin suggests that we define for the

coin flip experiment:

(4)P H 1 2, P T 1 2, P 0, P 1

These four sets, H , T , , ,  are the only events for this experiment.  To

say  that  the  empty  set  has  probability  zero  means  that  it  is  impossible  for

nothing to happen (e.g., the coin cannot land on its side); and to say that the

probability  of  the  whole  sample  space  is  one  means  that  some  outcome  is

certain to happen.  

Less  trivially,  for  the  sample  space  of  (1),  suppose  that  balls  are  drawn

randomly, meaning that no preference is given to any pair i, j .  Then each

of  the  90  outcomes  should  be  given  1 90th   of  the  total  probability  of  the

sample  space,  which  we  take  to  be  100 % 1.   Hence  P i, j 1 90  for

each outcome i, j .  Also, probability should be an additive function, so

that, for example, the event that the first ball is a 1 should be given probabil-

ity  equal  to  the  total  of  the  probabilities  of  outcomes  satisfying  the  event,

namely 9 90 1 10. 

For  an  arbitrary  finite  sample  space  one  can  constructively  define  a

probability  measure  by  assigning  non-negative  probabilities  P  to  each

outcome  in such a way that the sum of all of the outcome probabilities

is one.  Then define probabilities of events by

(5)P E P

The  same  procedure  works  for  countably  infinite  sample  spaces;  but  when

the  sample  space  is  uncountable,  we  cannot  assign  non-zero  probability  to

every outcome and still have finite total probability.  As we shall see shortly,

one  way of  defining  the  probability  of  an  event E  in  such  a  case  is  to  inte-

grate a suitable function over the set E.  

Following is a non-constructive, axiomatic definition of probability.
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DEFINITION 3.   A probability measure P on the sample space  of a

random experiment  is  a  function  from the  events  of   to  the real  num-

bers such that:

(a)  P 1;

(b)  If E is an event, then P E 0;

(c)  If A and B are disjoint events, then 

                                     P A B P A P B . 

It  can  be  quickly  checked  that  the  probability  defined  in  (5)  satisfies  the

three  axioms.   We  remark  that  by  induction,  Axiom  (c)  of  Definition  3

extends to unions of finitely many pairwise disjoint events, and in fact with a

little more effort it extends to countable disjoint unions.

Several useful consequences of the axioms are easy to prove.

(6)P 0

(7)For any event E, 0 P E 1

(8)
For any event E,  P Ec 1 P E , where Ec denotes the 

complement of E in 

(9)If A B, then P A P B  and P B Ac P B P A

For any two events A and B,

(10)P A B P A P B P A B

Property  (9)  is  easy to see from the Venn diagram in Figure A.2(a)  and the

additivity  property  of  probability  on  disjoint  sets.   The  Venn  diagram  in

Figure A.2(b) indicates why (10) is true.  If P A  and P B  are simply added,

then  the  probability  associated  with  the  overlap  P A B  has  contributed

twice; so that to obtain the correct P A B , we must subtract this intersec-

tion probability.   Notice also that (10) implies that P A B P A P B .

This  result  extends  to  the  case  of  countable  unions,  and  is  referred  to  as

countable sub-additivity:

(11)P i 1 Ai i 1 P Ai
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A

B

B Ac

A B

A B

(a) Subset rule                                      (b) General rule for unions

Figure A.2 – Two rules of probability

A.2 Random Variables and Their Distributions

Often  in  applications  of  probability  we  are  interested in  a  numerical-valued

function  of  outcomes.   For  example,  let   X1  be  the  number  of  the  first  ball

drawn  in  the  experiment  of  (1).   Then  X1 6, 1 6,  X1 3, 8 3,  and  in

general, X1 i, j i.  In the experiment of observing the machine breakdown

times, a random variable of interest is  T2, the time of the second breakdown.

Then T2 1, 3.5, 6.2, ... 3.5,  for example.

DEFINITION 4.  A random variable X  is a real-valued function whose

domain  is  the  sample  space   of  a  random  experiment.   The  set  of

values E that X can take on is called its state space.

Thus,  as in the examples described above,  a random variable is able to take

an outcome of an experiment and assign a number to it.

Another simple example of a random variable is the following, in which

we  again  consider  the  flip  of  a  single  coin:   X  is  defined  to  be  0  for  the

outcome T, and X is 1 for the outcome H.  The state space is 0, 1 ; and if  p
is the probability of head, then we can write

(12)P X 1 p; P X 0 1 p

This is a listing of what is called the probability distribution of X .  Inciden-

tally, we have used a well-accepted shorthand in (12).  Recall that probabil-

ity measures act on subsets of the sample space.  In the first part of (12), we

mean

(13)P X 1 P : X 1 P H

The short form on the left side is preferable in clarity and brevity to the long,

albeit correct, expression in the middle of (13).  We make the agreement that

"the event X 1" means the set of outcomes in the sample space for which X
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has  the  value  1.   But  a  random  variable  should  never  be  confused  with  a

numerical  constant.   The former is  a  function;  the latter  is  a  value taken on

by the function.

We  will  not  adopt  the  most  general  way  of  characterizing  probability

distributions  of  random  variables,  but  will  instead  restrict  to  random  vari-

ables belonging to one of two special classes.

DEFINITION  5.   (a)  X  is  said  to  be  a  discrete  random  variable  with

probability  mass  function   (p.m.f.)   p x   if   X   takes on at  most count-

ably many values, and

                                       P X x p x
                                                      

(b)  X is said to be a continuous random variable with probability density
function (p.d.f.) f x  if, for every subset  A of the state space E for which

the integral is defined,

                                  P X A
A

f x d x

That  is,  the  probability  that  X  takes  a  value  in  the  set  A  is  the  area beneath

the graph of the density function f corresponding to A, as in Figure A.3.

A

Figure A.3 – A density function

In order  for  the axioms of probability to be satisfied, a probability mass

function p must be non-negative, and

x E p x 1

where E is the state space.  Similarly, a p.d.f. f must be non-negative and

E f x d x 1

506 Appendix A Probability Review



Also, for a continuous random variable with p.d.f. f,

P X x x
x f t d t 0

EXAMPLE  1.  (a)   Recall  the  experiment  of  picking  two  numbered  balls,

and  recall  the  random  variable  X1,  which  was  the  number  of  the  first  ball

picked.  If outcomes are equally likely,  then it is easy to see that the probabil-

ity mass function of X1 is

(14)p x P X1 x
1 10 if x 1, 2, 3, ... , 10

0 otherwise

This  distribution  is  called  the  discrete  uniform  distribution.   Note  that  the

sum of the values p x  for x 1, ..., 10  is indeed 1, as it should be.  Using

this mass function, we can compute, for instance,

P X 5 x 5
10 p x 6 10

(b)  A  similar  continuous  uniform  density  with  state  space  a, b  can  be

defined by

(15)f x
1 b a if x a, b
0 otherwise

This  is  the  density  function  of  the  random  variable  X,  which  represents  a

randomly  selected  point  in  the  interval  a, b .   Notice  that,  as  desired  for  a

density, the integral of f  over the entire interval a, b  is 1.  For the uniform

distribution on 0, 1 , we can compute, for instance

P X 1 3
0

1 3
1 d x 1 3

In  general,  for  the  continuous  uniform  distribution,  the  probability  that  the

associated random variable falls into a set is the length of that set divided by

the length of the entire state space.  

Special Discrete Distributions

Several  discrete  mass  functions  come  up  often  in  stochastic  processes  and

operations research.

1.  Binomial  distribution.   Let  an  experiment  consist  of  repeated  trials,  in

which  each  trial  results  in  either  a  "success"  or  a  "failure."   Success  occurs

with  probability  p,  and  failure  occurs  with  probability  1 p.   Under  the

assumption  that  the  trials  are  independent  of  one  another  (to  be  discussed
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later), it can be shown by elementary combinatorics that the probability mass

function of the random variable X = number of successes among n trials is

(16)p k P X k
n

k n k pk 1 p n k
if k 0, 1, ... , n

0 otherwise

This distribution is the binomial distribution with parameters n and p.

2.   Geometric  distribution.    Let  T  be  the  trial  on  which  the  first  success

occurs  for  a  binomial  experiment  as  described  above.   Then the  probability

mass function of T is

(17)p n P T n
p 1 p n 1 if n 1, 2, 3, ...

0 otherwise

This can be seen from the observation that in order for the nth  trial to be the

one on which the first success occurs, we must see a string of n 1 failures,

each  happening  with  probability  1 p,  and  then  a  single  success,  with

probability p.  The distribution characterized by the mass function in (17) is

called the geometric distribution with parameter p. 

3.   Poisson distribution.    A  random variable  X  is  said  to  have  the  Poisson
distribution with parameter  if

(18)g k P X k
e k

k if k 0, 1, 2, 3, ...

0 otherwise

This arises later as the distribution of the number of occurrences of a certain

phenomenon during a fixed time interval.

Mathematica  knows  about  the  main discrete  distributions,  including  the

ones that we have introduced here.  They are referred to by their names and

the values of their parameters as follows.

BinomialDistribution n, p

GeometricDistribution p

PoissonDistribution

They  can  be  used  as  arguments  to  four  main  commands,  contained  in  the

standard package Statistics`DiscreteDistributions`. 
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Random distribution

RandomArray distribution, n

PDF distribution, x

CDF distribution, x

The  Random  command  simulates  a  single  random  observation  from  the

given  distribution.   Similarly,  RandomArray  simulates  a  list  of  n  such

observations.   The  PDF  function  gives  the  value  of  the  probability  mass

function of the distribution at the given x.  For instance, the probability that a

Poisson(2)  distributed  random  variable  X  takes  the  value  1  is  computed  as

follows.  (We must load the package first.)

Needs "Statistics`DiscreteDistributions "̀ ;

PDF PoissonDistribution 2 , 1

N %

2
2

0.270671

The CDF function works like the PDF function, except that it returns values

of  the  cumulative  distribution  function  of  the  distribution,  described  in  a

later subsection.  

Special Continuous Distributions

The  continuous  distributions  that  are  most  common  in  stochastic  processes

are instances of the gamma density, which depends on two constant parame-

ters  and .  The defining formula for the ,  density is

(19)f x
1

a x 1 e x if x 0

0 otherwise

In this expression, the gamma function  is given by

(20)
0

y 1 e y d y

One  can  show,  using  integration  by  parts,  that  if  n  is  an  integer,  then

n n 1 .    We  will  see  that  gamma  densities  are  appropriate  for

random variables  T  that  are  times of  occurrence  of  certain phenomena.   An
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important special case of the gamma density is the one for which 1 and

1 ,  where   is  a  constant  called the  rate.   The resulting  density  is  the

exponential density:

(21)f x
e x if x 0

0 otherwise

This density is  often suitable for  random variables that  are defined as times

between successive arrivals of customers to a service facility.

The  well-known  normal  distribution  will  be  involved  when  we  look  at

Brownian  motion  processes.  The  formula  for  the  normal  density  function,

with parameters  and 2 state space , , is below:

(22)f x 1

2 2
e x 2 2 2

Its graph is similar to the density of Figure A.3, symmetric about  and with

spread  determined  by  the  magnitude of  2.    The  parameter   is  called  the

mean, and  is the standard deviation  of the distribution.  The square 2  of

the standard deviation is called the variance.

Again  the  Random,  RandomArray,  PDF,  and  CDF  functions  are  avail-

able to apply to continuous distributions after you load the standard package

Statistics`ContinuousDistributions`.   The  names  of  the  distributions  above

are 

GammaDistribution ,

ExponentialDistribution

NormalDistribution ,

Notice  that  the  second  argument  in  NormalDistribution  is  the  standard

deviation,  not  the  variance.   To  illustrate,  the  following  computes  the

probability that an exponentially distributed random variable with parameter

.5 takes value between 2 and 4.

Needs "Statistics`ContinuousDistributions "̀ ;

f x_ : PDF ExponentialDistribution .5 , x ;

NIntegrate f x , x, 2, 4

0.232544
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Cumulative Distribution Functions

Another  way  to  characterize  the  probability  law  of  a  random  variable  is  to

measure how probability accumulates as we move through the state space.

DEFINITION  6.    The  cumulative  distribution  function  (c.d.f)  of  a

random variable X is the function

F x P X x

In particular, in the case that X is discrete with p.m.f. p,

(23)F x t x p t

and in the case that X is continuous with p.d.f. f,

(24)F x
x

f t d t

In  the  discrete  case,  the  cumulative  distribution  function  F  is  a  step

function  whose  jumps  are  located  at  the  points  of  the  state  space  of  X.   To

see this, imagine moving to the right along a real axis on which the states of

X are laid out in increasing order.  Strictly between two successive states, no

extra probability is accumulated, and so the c.d.f.  remains constant until the

next  state is  reached.   But when that next state, say t,  is reached, it  contrib-

utes its probability p t  to the previous total, which implies that F  jumps by

an amount p t  at this point.  This is illustrated in Figure A.4 for the discrete

distribution with p.m.f. p t 1 3 if t 1, 2, 3.  In the continuous case, F x
is the area under the graph of the density function f that lies to the left of x,

which is shaded in Figure A.5.

1 2 3 4

1

3

2

3

1

x

f t

    Figure A.4 – A discrete c.d.f.          Figure A.5 – F x  is the area under the density up to x
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Also, by the Fundamental Theorem of Calculus, for continuous distribu-

tions we have the important relation F x f x , where F  is the c.d.f. of the

distribution and f  is the p.d.f. 

EXAMPLE  2.  (a)  The  c.d.f.  of  the  discrete  uniform  distribution  on

1, 2, ..., 10  is

F x
0 if x 1

k 10 if k x k 1, for k 1, ... , 9

1 if x 10

(b)  The c.d.f. of the exponential distribution with rate  is

F x P X x
0

x e t d t 1 e x, x 0

Often useful is the complementary result: 1 F x P X x e x.  

Multivariate Distributions

The notion of  the probability  distribution of  a  random variable extends  in a

natural way to several random variables  X1, X2, ..., Xn.  Again we consider

separately the discrete and continuous cases.

DEFINITION  7.   (a)   Discrete  random  variables  X1, X2, ..., Xn  have

the joint probability mass function p x1, x2, ..., xn  if

P X1 x1, X2 x2, ..., Xn xn p x1, x2, ..., xn

(b)  Continuous random variables X1, X2, ..., Xn  have the joint probabil-
ity  density  function  f x1, x2, ..., xn  if,  for  all  subsets  A1, A2, ..., An  of

the real line for which the integral is defined,

P X1 A1, X2 A2, ... , Xn An

A1 A2 An
f x1, x2, ... , xn d x1 d x2 d xn

In the discrete case, notice that

(25)
P X1 A1, X2 A2, ... , Xn An

x1 A1 x2 A2 xn An
p x1, x2, ... , xn

which  is  similar  in  form to  the  corresponding  probability  in  the  continuous

case.

We can define a joint c.d.f. by
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(26)F x1, x2, ... , xn P X1 x1, X2 x2, ..., Xn xn

The  one  variable  sum  and  integral  in  formulas  (23)  and  (24)  are  simply

replaced by multiple sums and integrals over the n variables.

Let  X1, X2, ... , Xn  have  joint  discrete  mass  function  p,  and  denote  the

state space of Xi by Ei.  Then, by (25),

P X1 x1 P X1 x1, X2 E2, ... , Xn En

x2 E2 xn En
p x1, x2, ... , xn

Therefore,  we  can  obtain  the  distribution  of   X1  alone  (called  its  marginal
distribution) by adding the values of p over all other variables x2, x3, ... , xn.

Similarly, we can find the marginal of any other X j  by adding over all xi  for

i j.  The joint marginal distribution of two of the random variables Xi  and

X j  can be found by adding over all xk  such that k is neither equal to  i nor j,
etc.

The  idea  of  marginal  distributions  introduced  in  the  last  paragraph

carries over directly to the continuous case, with sums replaced by integrals.

For example, the marginal of X1 is

f1 x1 E2 En
f x1, x2, ... , xn d x2 d xn

In general, to get the joint density of a combination of the X j's , integrate the

joint  density  with  respect  to  those  variables  xi  not  included  in  the

combination.

EXAMPLE 3.  If  X1, X2, X3  have the joint density

f x1, x2, x3

6 if 0 x1 x2 x3 1

0 otherwise

then the joint marginal density of X1 and X2 is

f x1, x2
x2

1
6 d x3 6 1 x2 if 0 x1 x2 1

0 otherwise

The marginal density of X1 is

f1 x1
x1

1
6 1 x2 d x2 3 x1

2 6 x1 3 if 0 x1 1

0 otherwise
  

A.3 Conditional Probability and Independence

If  it  is  known that an event A  has occurred,  then the sample space is essen-

tially limited to A, and probabilities of other events change correspondingly.
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By way of  motivation,  suppose  there  are  ten  equally likely outcomes in the

sample space  depicted in Figure A.6.  Five outcomes are in A, four are in

B, and A and B share two outcomes.  If A has occurred, then B now has two

of  the  five  equally  likely  outcomes  in  A,  hence  the  new  probability  that  B
will occur is 2/5.  Note that this is the same as

P A B
P A

2 10

5 10
 

A B

A B

Figure A.6 – Conditional probability of event B given event A

DEFINITION 8.    The conditional probability  that B  occurs given that

A has occurred is defined by

                          P B A P A B
P B

provided that P A 0.

We  obtain  the  following  useful  equation,  called  the  multiplication  rule,

by simply rewriting the definition of conditional probability:

(27)P A B P A P B A

This  property  extends  by  induction  to  intersections  of  many  events.   Each

conditional probability factor in the product conditions on all of the previous

events.  For example, in the case of three events,

(28)P A B C P A P B A P C A B

EXAMPLE 4.   Suppose that the time T until arrival of the next bus has the

exponential  distribution  with  rate  .   The  probability  that  a  bus  does  not

arrive by time t s, given that it has not arrived by time s is
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P T t s T s P T s T t s P T s
P T t s P T s
e t s e s e t P T t

This property is called the memoryless property  of the exponential distribu-

tion.  Given that we have waited s time units for the bus, the probability that

we wait for t more time units is the same as the probability that we wait for  t
time units had the last bus just left.  Having waited for s time units does not

help  at  all;  the  wait  until  the  next  bus  is  still  an  exponentially  distributed

random variable with rate .  

EXAMPLE 5.    The multiplication rule is often useful for experiments that

occur  in  stages.   For  instance,  if  a  device  can  be  either  working  or  not

working at each time period, and we have information about the probability

that  the  device  works  at  time  1,  and  the  conditional  probability  that  the

device will  be working at time 2 given that it  works  at  time 1,  then we can

compute

   
P device works at both times 1 and 2

P device works at time 1 P device works at time 2 device works at time 1

This  kind  of  computation  is  fundamental  to  the  study  of  Markov  chains  in

Chapter 4.  

If the occurrence of an event A does not affect the probability of another

event B, then we call these two events independent.  We adopt the following

definition, which does not require P A  and P B  to be non-zero.

DEFINITION 9.  Events A and B are independent if

P A B P A P B

Notice  that  by  the  definition  of  conditional  probability,  if  A  and  B  are

independent of each other and if P A 0, then

(29)P B A P A B
P A

P A P B
P A P B

This coincides with our intuition about the meaning of independence.  

The  definition  of  independence  extends  to  more  than  two  sets  in  the

following way.
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DEFINITION 10.   Events A1, A2, ... , An   are called mutually indepen-
dent if, for any m 2, 3, ..., n  and any choice of m of these events,

P Ak1
Ak2

Akm P Ak1
P Ak2

P Akm

EXAMPLE  6.   Suppose  that  a  system  consists  of  three  components  con-

nected  in  series,  as  in  Figure  A.7.   The  system  fails  at  the  time  T  of  first

failure  of  any  component.   Let  T1, T2,  and  T3  be  the  failure  times  of  the

individual components.  If the Ti's  each have the 2, 1  distribution, and for

all fixed t the events Ti t  are mutually independent, find the density of  T.

1 2 3

Figure A.7 – A series system

By (19), the p.d.f. of each random variable Ti  is

f t
t e t if t 0

0 otherwise

A simple integration by parts yields that the c.d.f. associated to this density is

F t
0

t

x E x x

1 t 1 t

We  will  compute  the  c.d.f.  of  T min T1, T2, T3 ,  then  differentiate  it  to

obtain the probability density function of T.  The key observation is that the

system  failure  time  T  is  greater  than  t  if  and  only  if  all  three  component

failure times are greater than t.  The c.d.f. of T  is
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G t P T t 1 P T t
1 P T1 t P T2 t P T3 t
1 1 P T1 t 3

1 e t 1 t 3

Therefore, the density of T is

Simplify D 1 E t 1 t
3
, t

3 3 t t 1 t 2

 

As illustrated by the last example, we are mostly concerned with indepen-

dence  in  connection  with  random  variables.   The  next  definition  follows

along the lines of Definition 10.

DEFINITION  11.    Random  variables  X1, X2, ..., Xn  are  called  mutu-
ally  independent  if  for  any  subsets  B1, B2, ..., Bn  of  the  state  spaces  of

the random variables,

P X1 B1, X2 B2, ... , Xn Bn

P X1 B1 P X2 B2 P Xn Bn

Independence  of  random variables can be shown to be equivalent to the

factorization of the joint density (or mass function, in the discrete case) into

the product of the marginal densities:

f x1, x2, ... , xn f1 x1 f2 x2 fn xn

Independence is also equivalent to the factorization of the joint c.d.f. into the

product  of  the  marginal  c.d.f.'s.   When  a  group  of  random  variables  is

independent and each has the same probability distribution, we say that they

are i.i.d (for independent and identically distributed).  The statistical term for

a group of n i.i.d. random variables is a  random sample of size n.

In  stochastic  processes,  we  often  have  observations  X1, X2, ...  made  at

times 1, 2, ...  , respectively.  These observations may or may not be indepen-

dent.  One might be interested in gaining information about Xn 1   given one

or  more  of  the  previous  observations  X1, X2, ..., Xn.   For  this  reason,

conditional  distributions  of  random  variables  given  other  random  variables

play an important role in this subject.
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DEFINITION 12.   Let random variables X and Y have joint density (or

mass  function)  f x, y ,  and  let  X  have  marginal  density  (or  mass  func-

tion)  f1 x .   The conditional  density  (or  conditional  mass function) of  Y
given X x is defined by

 f y x f x,y
f1 x

for those x such that f1 x 0, and it is left undefined otherwise.

The  definition  of  conditional  probability  mass  function  for  discrete

random  variables  is  consistent  with  the  earlier  definition  of  conditional

probabilities of events.  When the event X x  has non-zero probability, we

can write

P Y y X x P X x,Y y
P X x

The  ratio  on  the  right  is  exactly  the  right  side  of  the  defining  formula  for

conditional  mass  function.   Thus,  in  the  discrete  case,  f y x  means

P Y y X x .  The situation is not quite as simple in the continuous case,

since  the  probability  that  a  continuous  random  variable  exactly  equals  a

value x  is zero.   It is possible to take a conditional c.d.f.  approach to justify

the  definition  in  the  continuous  case,  but  it  is  enough  for  us  to  work  by

analogy  with  the  discrete  case.   You  should  simply  understand  that  to

calculate the  conditional  probability  of  the  event   Y B  given  X x,  one

integrates in the usual way, using the conditional density:

(30)P Y B X x B f y x d y

EXAMPLE 7.   Consider the random variables X1  and X2  from Example 3.

Suppose  we  observe  the  event  that   X1 1 4.   Let  us  find  the  conditional

probability that X2 1 2.  We can use Mathematica to compute f1 1 4 :

f1 x_ : 3 x2 6 x 3;

f1 1 4

27
16

Then, since f x2 x1 1 4 f 1 4, x2 f1 1 4 , we have 
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P X2 1 2 X1 1 4

1 (27/16)
1 2

1

6 1 x2 x2

4
9

Conditional  distributions  are  defined  similarly  in  the  multiple  variable

case.   For  completeness,  we  give  the  definition  next,  together  with  a  new

idea called conditional independence.

DEFINITION  13.   (a)   The  conditional  density  (or  conditional  mass
function)  of  a  set  of  random  variables  Y1, Y2, ..., Ym   given

X1 x1, X2 x2, ... , Xn xn is

f y1, y2, ... , ym x1, x2, ... , xn
f x1,x2,...,xn,y1,y2,...,ym

fn x1,x2,...,xn

where  f  is  the  joint  density  of  all  of  the  X's  and  Y's,  and  fn  is  the  joint

marginal of the X's. 

                  (b)  Two random variables Y and Z are conditionally indepen-
dent given another random variable X if

P Y A, Z B X x P Y A X x P Z B X x

for all subsets A and B of the state spaces of Y and Z, respectively. 

The  property  of  conditional  independence  is  crucial  in  the  study  of

Markov processes.  In the discrete case, we can show easily that conditional

independence  of  Y  and  Z  implies  the  following  equation  about  the  condi-

tional mass functions:

(31)f z x, y f z x

which  essentially  says  that  knowledge  of  both  X  and  Y  gives  no  more

information  than  knowledge  of  X  alone  for  the  predicition  of  Z.   To  show

(31),  we can apply the definition of  conditional  independence to the single-

ton sets A y  and  B z  to obtain
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f z x, y f x, y, z f12 x, y
f1 x f y x f z x f12 x, y
f12 x, y f z x f12 x, y f z x

The  same  result  is  true  in  the  continuous  case,  but  a  deeper  study  of  the

theory of integration is required to prove it.

EXAMPLE  8.     A  traveling  salesman  begins  at  a  randomly  selected  city

from among the  four  in  Figure  A.8.   At  time 1  he  goes  to  some other  city,

and at time 2 to a third city such that the city he visits at time 2 is condition-

ally independent of the city at time 0, given the city at time 1.  If the one-step

conditional probabilities of visiting cities from other cities are the weights in

the directed graph,  find the probability that the salesman is in city 3 at time

2.                                                 

1 2

3 4

1
.5

.5.5

.5
1

Figure A.8 – Space of states of a traveling salesman

Let X0  be the initial position, let X1  be the position at time 1, and let X2  be

the position at time 2.  An inspection of the graph shows that there are only

two  ways  to  reach  city  3  in  two  time  steps,  namely  the  paths  3, 4, 3  and

2, 4, 3.  Thus, by the disjoint union property and the multiplication rule,

P X2 3

P X2 3, X1 4, X0 3 P X2 3, X1 4, X0 2

P X2 3 X1 4, X0 3 P X1 4 X0 3 P X0 3

P X2 3 X1 4, X0 2 P X1 4 X0 2 P X0 2

But X2  has been assumed to be conditionally independent of X0 given X1, so

that  as  in  the  remark  just  before  this  example,  the  probability  that  X2 3

depends only on the event X1 4, not on the value taken on by X0.  Reading

the one-step conditional probabilities from the graph, and noting that X0  has

probability 1/4 of being at each city, we see that
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P X2 3 1 1 2 1 4 1 1 2 1 4 1 4  

In the example above we have used one of the most important computa-

tional  devices  in  probability  theory,  which  we  formalize  in  the  following

theorem.

THEOREM  1.   (Law  of  Total  Probability)  Let  B1, B2, ...  be  pairwise

disjoint  events whose union is the entire sample space, and let A  be another

event.  Then,

(32)P A n P A Bn n P A Bn P Bn

provided the conditional probabilities in the last line exist.   

The first equation in (32) is apparent from Figure A.9 because the sets Bn
break  A  into  the  union  of  disjoint  pieces  of  the  form  A Bn.   The  second

equation  in  (32)  is  just  the  multiplication  rule.   This  approach  was  used  in

the  example,  with  A  equal  to  the  event  X2 3,  and  the  sets  B1  and  B2

representing the two possible previous paths traveled by the salesman. 

A

B1 B2 ... Bn

Figure A.9 – The Law of Total Probability

EXAMPLE 9.    Let  X  have the marginal mass function p1 x ,  and suppose

that  the  conditional  mass  function  of  Y  given  X x  is

p y x P Y y X x .  Then,

(33)
P Y y x P Y y X x P X x

x p y x p1 x

This  method  for  computing  probabilities  involving  Y  is  sometimes  called

"conditioning and un-conditioning on X."  There is a corresponding continu-

ous version.  If f x, y  is the joint density of X and Y,  f y x  is the condi-

tional density of Y given X x , and f1 x  is the marginal density of X, then
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(34)P Y B Ex
P Y B X x f1 x d x   

A.4 Expectation

The next definition captures the notion of the average value of a function of

a random variable.

DEFINITION 14.  Let X be a random variable with p.d.f. f x  and state

space E.  The expected value of a function g X  is

E g X E g x f x d x

provided that the integral exists.  If X is discrete with mass function p x ,

then we define

E g X x E g x p x

 Since g X  is  a random variable that takes on possible values g x  for  x
in the state space E, we see that  E g X  is a weighted average of the states

of g X , where the weighting function is the density f, or the mass function p
in  the  discrete  case.   As  an  elementary example,  you  can  check that  on  the

flip of two fair coins, the expected number of heads is one.

There  are  several  expectations  worth  noting.   We  illustrate  the  continu-

ous case; the discrete case merely replaces integrals by sums.

(35)E X x f x d x,  called the mean of X

(36)2 E X 2 x 2 f x d x, called the variance of X

By expanding the square, we easily obtain the computational formula

(37)2 E X 2 2

We now define 

(38)E X n xn f x d x, called the nth moment of X

(39)
M t E et X et x f x d x, called the moment-generating 

function of X

In  the  moment-generating function  (m.g.f.),  t  is  a  real  number  belonging  to

the  set  of  all  numbers  such that  the  integral  exists.   The m.g.f.  is  unique  to
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the distribution, that is, no two distributions share the same m.g.f.

The  mean  measures  the  central  tendency  of  the  distribution,  while  the

variance measures spread about the mean.  The moment-generating function

can be used to find the moments in the following way:

(40)

d M
d t t 0 E X et X

t 0 E X

d n M
d tn t 0 E X n et X

t 0 E X n

The following table summarizes the means, variances, and moment-generat-

ing functions of some of the most common distributions.

distribution mean variance moment–generating function

Binomial n, p n p n p 1 p 1 p p et n

Geometric p 1 p 1 p p2 p et 1 1 p et 1
, t ln 1 p

Poisson exp et 1

Uniform a, b a b 2 b a 2 12 et b et a t b a , t 0

Gamma , 2 1 t , t 1

Exponential 1 1 2 1 t 1, t

Normal , 2 2 exp t 1
2

2 t2

EXAMPLE  10.    (a)   As  an  example  of  the  computation  of  means,  let  X
have the exponential distribution with rate 3.  Then,

E X
0

x 3 3 x x

1
3

           (b)   To illustrate the computation of moment-generating functions, let

us verify the m.g.f. of the Poisson  distribution.  We have

M t E et X
k 0

et k e k

k

e
k 0

et k

k

e exp et exp et 1

You may show easily that, upon differentiating M once and setting t to 0, we

get  E X μ.   Differentiating  a  second  time  and  setting  t 0  gives
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E X 2 2.  From this, and (37), the variance of the Poisson  distribu-

tion is 2 2 2 . 

We  occasionally  have  situations  where  we  must  compute  the  expected

value of a random variable that can only take on the values 0 and 1, called a

Bernoulli  or  indicator  random  variable.   Suppose  that  the  probability  that

X 1 is p, and consequently the probability that X 0 is q 1 p.  Then,

(41)E X 1 p 0 1 p p

Note  that  this  is  the  special  case  of  the  expectation  of  a  binomial  random

variable with n 1.

When  random variables  X  and  Y  are  independent,  then  it  can  be  shown

that the expectation of their product is the product of their expectations.  The

next theorem takes this a little farther and establishes the basis for a powerful

technique  for  finding  the  distribution  of  the  sum  of  independent  random

variables.

THEOREM 2.   Let X and Y be independent random variables, and let g and

h be functions.  Then, provided the expectations exist,

E g X h Y E g X E h Y

In particular, the moment-generating function of the sum X Y  is

MX Y t E et X Y E et X .E et Y MX t MY t   

The proof is an easy consequence of the fact that if X and Y are indepen-

dent,  then  their  joint  density  function  factors  into  the  product  of  their  mar-

ginal densities.  The result extends easily by induction to n mutually indepen-

dent  random  variables.   The  fact  that  the  m.g.f.  of  the  sum of  independent

random variables  is  the  product  of  the  individual  m.g.f.'s  of  those  variables

often enables us to find the m.g.f. of the sum before we know its distribution.

If  this  m.g.f.  can  be  simplified  and  recognized,  then  one  can  recognize  the

distribution of the sum, since moment-generating functions are unique to the

distribution.

EXAMPLE  11.    Let  X1,  X2,  and  X3  be  independent  Poisson  random

variables with parameters 1, 2, and 3,  respectively.  The moment-generat-

ing function of X1 X2 X3 is

E et X1 X2 X3 E et X1 E et X2 E et X3

exp 1 et 1 exp 2 et 1 exp 3 et 1

exp 1 2 3 et 1
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Since  this  is  the  moment-generating  function  of  a  Poisson  distribution,  we

see that the sum X1 X2 X3 is Poisson with parameter 1 2 3.  

Conditional  expectations  are  defined  similarly  to  ordinary  expectations.

The only difference  is  that  the weighting functions are conditional  densities

(or  mass  functions  in  the  discrete  case)  instead  of  ordinary  densities  as  in

Definition 14.

DEFINITION  15.    Let  X  and  Y  be  jointly  distributed  continuous

random variables,  such  that  the  conditional  density  of  Y  given  X x  is

f y x .   Then  the  conditional  expectation  of  a  function  g X , Y ,  given

X x,  is

E g X , Y X x g x, y f y x d y

In the discrete case, if the conditional mass function of Y given X x is

p y x , then the conditional expectation is

E g X , Y X x g x, y p y x

Notice that the definitions imply that

E g X , Y X x E g x, Y X x

In addition, since the definition allows the function g to depend on X, we can

obtain the following intuitive result:

(42)

E g X X x g x f y x d y

g x f y x d y
g x

That is, if the event X x  is known to have occurred, then it is certain that

X x  and  all  references  to  X  may  be  replaced  by  the  constant  x.   In  (42),

g X  is essentially non-random, given X x.

EXAMPLE  12.    Referring  again  to  the  random  variables  X1  and  X2  of

Examples 3 and 7, the conditional expectation of X2 given X1 1 2 is

E X2 X1 1 2
1 2

1 x2 f x2 1 2 d x2

1 2

1 x2
f12 1 2,x2

f1 1 2
d x2

4
3 1 2

1 x2 6 1 x2 d x2 2 3
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after a simple integration.   

One  special  property  of  conditional  expectation  comes  up  often.   First,

notice that

(43)h x E g X , Y X x

defines a function of x.  Then h X  is a random variable, which we write as

(44)h X E g X , Y X

We can take the expectation of this random variable.  In the continuous case,

(45)

E E g X , Y X E h X h x f1 x d x

g x, y f y x d y f1 x d x

g x, y f x, y d y d x
E g X , Y

In this derivation we have used the usual notations f1 x , f y x , and f x, y
for the marginal density of X,  the conditional  density of Y  given X x,  and

the joint  density, respectively.  The discrete case is similar.  Loosely stated,

formula  (45)  says  that  the  expected  value  of  the  conditional  expectation  is

the ordinary expectation.

We have one final note in this very brief review of expectation.  It is easy

to show,  using properties  of sums and integrals,  that expectation and condi-

tional expectation are linear operators:

(46)E a X b Y a E X b E Y

Also, because the integral of a density function (or sum of a mass function)

over  the  entire  state  space  is  one,  it  is  a  simple  matter  to  prove  that  the

expected value of a constant is that constant:

(47)E c c
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A.5 Convergence Theorems

Let A1, A2, ...  be a sequence of events in a sample space  on which there

is a probability measure P.  Suppose that these sets are nested increasing, as

shown  in  Figure  A.10(a),  i.e.,  for  all  n 1,  An An 1.   Then  the  "limiting

set" approached by the sequence of sets is the union

n 1 An

A1 A2 A3 A3 A2 A1

(a) A nested increasing sequence of sets     (b) A nested decreasing sequence of sets

Figure A.10 – Monotone continuity of probability

Suppose,  on  the  other  hand,  that  the  sequence  is  nested  decreasing,  as  in

Figure  A.10(b),  that  is,  for  all  n 1,   An An 1.   Then the "limiting set" is

the intersection

n 1 An

How  does  the  probability  of  the  limiting  event  depend  on  the  individual

event  probabilities?   The  answer  is  provided  by  the  following  theorem,

usually called the monotone continuity of probability.

THEOREM 3.  (a) If A1 A2 A3 , then

P n 1 An limn P An

(b) If  A1 A2 A3 , then

P n 1 An limn P An    

EXAMPLE 13.   Let X be a random variable.  Clearly,

An X x 1 n X x 1 n 1 An 1

Also, the event X x  occurs if and only if the event X x 1 n  occurs

for all n 1.  Therefore, by part (b) of Theorem 3,

P X x P n 1 X x 1 n limn P X x 1 n
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This  shows  that  if  F  is  the  cumulative  distribution  function  of  X,  then

F x 1 n F x  as  n .   The  same  argument,  applied  to  a  general

sequence of points converging from the right to x,  shows that the c.d.f.  of a

random variable must be right-continuous.  

Perhaps  the  most  famous  theorem  in  probability  is  the  Strong  Law  of
Large  Numbers.   To  facilitate  the  statement  of  this  result  and  some  of  its

consequences  to  be  encountered  elsewhere  in  the  book,  we  introduce  the

following notion.  An event A is said to occur for almost every outcome  in

the  sample  space  (alternatively,  A  occurs  almost  everywhere,  abbreviated

a.e.) if P Ac 0.  That is, A occurs almost everywhere if the set of outcomes

for which A does not occur has probability zero.

THEOREM 4 (Strong Law of Large Numbers).   Let X1, X2, X3, ... be a

sequence of independent, identically distributed random variables with finite

mean E X1 .  Then,

limn k 1
n Xk n

for almost every outcome .  

EXAMPLE  14.   Suppose  that  a  coin  with  head  probability  p  is  flipped

repeatedly.  Define Xn  to be 1 if the  nth  flip is a head, and 0 otherwise.   If

the flips  are independent,  then the sequence Xn  satisfies the hypotheses of

the  Strong  Law of  Large Numbers.   Also,  E X1 p,  by  (41).   The sum of

the  first  n  Xk 's   is  the  total  number  of  heads  in  the  first  n  flips,  hence  the

quantity

X k 1
n Xk n

is the proportion of heads in the first n flips.  The strong law implies that for

all  but  some  exceptional  outcomes  of  probability  zero,  the  proportion  of

heads in the first n flips converges to p as n .  

There are occasions when expectation must be interchanged with limits.

It is not always possible to do this, but the next two theorems give sufficient

conditions  under  which  the  interchange  can  be  done.   The  question  is  as

follows.   Let  X1, X2, X3, ...  be  a sequence of  random variables that  reach a

limit  X  for  almost  every  outcome.   Does  the  sequence  of  expectations

E X1 , E X2 , E X3 , ... approach E X ?

THEOREM 5 (Monotone  Convergence  Theorem).   If  Xn  is  an  increas-

ing sequence of random variables whose expectations exist, then

E limn Xn limn E Xn    
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THEOREM  6  (Dominated  Convergence  Theorem).   Let  Xn  be  a

sequence of random variables.  If there exists a random variable Y with finite

expectation such that Xn Y  for all n, then

E limn Xn limn E Xn    

The  proofs  are  beyond  the  scope  of  this  text,  but  can  be  found  in

advanced probability texts such as Chung [14] and Tucker [58].  The special

case  of  the  Dominated  Convergence  Theorem  in  which  the  dominating

random variable Y is just a constant, that is, the sequence Xn  is bounded, is

called  the  Bounded  Convergence  Theorem.    The  Monotone  Convergence

Theorem often arises in the context of infinite series of random variables, as

in the following example.

EXAMPLE 15.   Let Y1, Y2, Y3, ... be an i.i.d. sequence of random variables

with the probability mass function:

p k P Y k
1 3 if k 0, 1, or 2

0 otherwise

Notice that the mean of the distribution is 1.  Suppose Yn represents a reward

received  at  time  n,  and  the  value  of  that  reward  in  present  day  dollars  is

.95 n Yn.  Find the expected present value of the total of all rewards.

The total discounted reward is a random variable given by

X k 1 .95 k Yk

Then  X  is  the  limit  of  the  sequence  of  partial  sums  Xn k 1
n .95 k Yk .

Since  the  Yk 's   are  non-negative  valued,  the  sequence  X1, X2, X3, ...   is

increasing.  By the Monotone Convergence Theorem,

E X E limn Xn

limn E Xn

limn k 1
n .95 k E Yk

limn k 1
n .95 k 1

1 1 .95 1 19

It is easy to check that the Dominated Convergence Theorem could also have

been  used  to  justify  the  interchange  of  limit  and  expectation  in  the  second

line of the computation.   
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Appendix B

Answers to Selected Exercises

Section 1.1

1. The adjacency matrix A and its third power are:

1 0 0 0
1 0 1 0
0 1 0 1
0 0 0 1

        

1 0 0 0
2 0 1 1
1 1 0 2
0 0 0 1

7.  There is a mismatch in vertex degrees.

11. (a) The graph is strongly connected.  

(b) The graph is also quasi-connected.

14.  The  connected  components  are  1, 2, 3, 4, 6, 14 ,  5, 7, 8, 10, 13, 16 ,

and 9, 11, 12, 15 .

17.  The components are:  1, 2, 10 , 3, 4, 6, 7 , and 5, 8, 9 . 

19.  (a) 1: 4, 5;   2: 4, 5, 6; 3: 5, 6; 4: 1, 2; 5: 1, 2, 3; 6: 2, 3

(b) 1: 2;  2: 3; 3: 2, 4, 5;   4: 5;  5: 1,4

(c) 1: 2, 4;  2: 1, 7;  3: 6; 4: 1, 5, 7; 5: 4, 8;   6: 3; 7: 2, 4, 8; 8: 5, 7

Section 1.2

1. A spanning tree has edges: 1, 2 , 2, 5 , 2, 3 , 4, 7 , 2, 6 , 1, 4 .

2.  (a)  The  spanning  tree  has  edges  5, 6 , 4, 5 , 3, 4 , 2, 6 , 1, 6 .  The

total cost of these edges is 15.  

(b)  The  new  spanning  tree  is  1, 2 , 2, 6 , 1, 4 , 5, 6 , 1, 3 .  The  total

cost of these edges is 9.

5.  The optimal tree uses edges

 {1,2},{1,3},{1,6},{1,7},{1,8},{1,9},{1,10},{3,4}, and {3,5}.

9. This list of degrees is not possible.

12. At most 
n n 1 2

n 1
 trees can form.

13. One tree is 1, 2 , 1, 5 , 1, 6 , 2, 3 , 2, 4 .  It is not unique.
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15.  The edge set is:

 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6 ,

2, 7 , 2, 8 , 5, 9 , 5, 12 , 7, 10 , 8, 11

.  

16.  The directed spanning tree contains edges

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 4, 7 , 5, 8 , 6, 9 .

Section 1.3

1. The Kruskal minimal spanning tree is

 1, 4 , 6, 7 , 1, 2 , 1, 3 , 3, 6 , 7, 8 , 4, 5 .  Its total cost is 15. 

2.  The best set of edges is

 3, 6 , 5, 8 , 1, 2 , 5, 7 , 2, 4 , 4, 7 , 5, 6 , 5, 9 .  

 The total weight is 19.

4.  The edges in the best tree are

 2, 5 , 2, 7 , 3, 4 , 1, 5 , 10, 11 , 12, 14 , 8, 10 ,

2, 12 , 4, 5 , 6, 13 , 12, 15 , 2, 13 , 9, 15 , 1, 8 .
The total weight of the spanning tree is 241.

8.  The best edges are

 1, 4 , 1, 2 , 8, 9 , 3, 4 , 6, 7 , 7, 9 , 9, 10 , 4, 6 , 5, 7 , 

 and the total weight is 25.

11. The spanning tree includes edges

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 5, 7 , 6, 8 .  Edge  7, 8  may  be  substi-

tuted for edge 6, 8  with no loss. 

12. The paths are 1,2;  1,3;  1,4;  1,5;  1,2,6;  1,3,7;  1,3,8;  1,5,9;  1,3,7,10.

13.  The paths are 1,2 ; 1,3; 1,4; 1,5; 1,4,6. 

17.  The edges in the minimal directed spanning tree are

 1, 2 , 1, 3 , 1, 4 , 2, 5 , 4, 6 , 4, 7 , 6, 9 , 7, 8 .

Section 1.4

2.  There  is  a  maximal  path  1, 2, 4, 8, 10,  and  another  maximal  path

1, 3, 7, 9, 10, both of total cost 14.

3.  The unique critical path is 1, 3, 6, 10 of length 13.  

4.  The critical path is B, D, F, H , J , of cost 20.
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6. The debugging takes 7 days, with critical tasks B, D, and F.

8.   The  project  takes  13  days,  and  the  critical,  delay-causing  tasks  are

B, D, F, H , and J .

9.  The sequence of tasks A, B, C, E, H , I, J  is critical, and the commercial

takes 18 days in all.  

11.   Tasks  A, D, F, H  form  a  chain  that  must  be  done  in  succession,  and

therefore the project cannot be done in less than 2 5 4 3 14 time units.

Section 1.5

 1.  (a)   For  V0 1, 2 ,  the  cut  is  K 1, 3 , 1, 4 , 2, 3 , 2, 5  and  its

capacity  is  8.   For  V0 1, 2, 3 ,  the  cut  is  K 1, 4 , 2, 5 , 3, 5 , 4, 3

and  its  capacity  is  8.   For  V0 1, 4 ,  the  cut  is

K 1, 2 , 1, 3 , 4, 3 , 4, 5  and its capacity is 10.  

(b)  Flow on 1, 2 : 4; flow on 1, 3 : 2; flow on 1, 4 : 2; flow on 2, 3 : 1;

flow on 2, 5 : 3; flow on 4, 3 : 0; flow on 3, 5 : 3; flow on 4, 5 : 2.

4.   The capacity of the cut is 19.  It is not minimal.

8.   Flow on 1, 2 :  3;  flow on 1, 3 :  2;  flow on 2, 3 :  0;  flow on 1, 4 :  1;

flow on 2, 4 : 3; flow on 3, 4 : 2.

9.  The first augmenting path is 1, 2, 5 on which a flow of 3 may be added.

Then we find path 1, 3, 5 on which a flow of 2 can be added.  Then 1, 4, 5

receives a flow of 2.  Finally 1, 2, 3, 5 is the last augmenting path, receiving

a flow of 1 unit.  Flow on 1, 2 : 4; flow on 1, 3 : 2; flow on 2, 3 : 1; flow

on 1, 4 : 2; flow on 2, 5 : 3; flow on 3, 5 : 3; flow on 4, 5 : 2.

10. The maximal flow is 8.  

11. The maximal flow is 11.  

12.  Flow on 1, 2 :  4; flow on 1, 3 : 3; flow on 2, 4 : 1; flow on 3, 4 : 3;

flow on 2, 5 : 3; flow on 4, 6 : 4; flow on 5, 6 : 3.

Section 1.6

2.  The matching v1, w1 , v2, w3 , v3, w2  is maximal.

3.  One path is 5, 8, 2, 6, which leads to the matching 2, 6 , 3, 7 , 5, 8 .

4.  The path 3, 7, 2, 8 is augmenting, producing the matching

 1, 6 , 2, 8 , 3, 7 , 4, 9 .
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8.  (a)  L1 5, 6, 4, 3, 4, 6, 0, 0, 0, 0, 0, 0 .  (b)  The  revised  labeling  is

3, 6, 2, 3, 4, 6, 0, 2, 0, 0, 0, 0 .

9.  (a) L1 4, 3, 5, 3, 6, 0, 0, 0, 0, 0   (b) L2 4, 2, 4, 2, 6, 0, 1, 1, 0, 0 .

12.   There are two complete matchings, both of which are maximal, namely

1, 5 , 2, 6 , 3, 8 , 4, 7 , and 1, 6 , 2, 5 , 3, 8 , 4, 7 . 

13. The maximal matching is  1, 6 , 2, 10 , 3, 8 , 4, 7 , 5, 9 . 

14.  One maximal matching is

 1, 8 , 2, 7 , 3, 9 , 4, 10 , 5, 11 , 6, 12 . 

15. One maximal matching is 1, 6 , 2, 7 , 3, 8 , 4, 9 , 5, 10 . 

16. An optimal matching is

 1, 9 , 2, 10 , 3, 11 , 4, 12 , 5, 14 , 6, 13 , 7, 16 , 8, 15 .  

 The optimal weight is 60. 

Section 2.1

1. It is optimal to buy x 100 Jeeps and y 0 vans.  

2. The minimum value of the objective is 3, taken on at 3, 0 .

3.  The  optimum  is  12000  taken  on  at  all  points  on  the  segment  between

1, 2  and 2, 1 .

4. The best arrangement is 16 mice and 8 rats. 

5. This problem has no feasible solutions.

6.  The minimum toxin dosage is 40, using none of substance 1 and 40 gms

of substance 2.

7.  The problem is unbounded.  

9.  (a) 3 2, 1 1
2

1, 2 1
2

2, 0 .  

(b) 1, 1 2
5

0, 5 2 1
2

2, 0 1
10

0, 0  is one choice.

11.  (a) One choice is 3 2, 1 1
2

1, 2 1
3

3, 0 1
6

0, 0 .  

(b) 1, 1 1
2

0, 1 1
4

1, 2 1
4

3, 0  is one of many choices.

14.  The direction of most rapid increase is the vector 3, 2 .  Moving in this

direction, x 3 2, y 1 is the intersection point.
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Section 2.2

2. (b) The answer is yes, with t 3 4. (c) x3 must be between 0 and 1/2, and

x2 1 2 x3.  

8. One basic feasible solution is 0, 0, 0, 2, 4, 6 ; another is 2, 0, 0, 0, 2, 4 .

Section 2.3

1.  The point 0, 0, 5 , corresponding to 5 miles of  road,  all repaired at level

3,  is  one  optimal  point.   There  is  a  second  corner  point  solution  0, 10, 0 ,

corresponding  to  10  miles  of  road  all  at  level  2.   Any  point  on  the  line

segment t 0, 0, 5 1 t 0, 10, 0  is therefore also optimal.  

3.  One  optimal  solution  is  x1 0, x2 0, x3 0, x4 5.   Another  optimal

solution is x1 3, x2 0, x3 0, x4 7 2.  The set of all solutions is the set

of all points on the line segment connecting these two. 

4.  The  optimal  combination  of  animals  is  x1 1000  cattle,  and  x3 4000

buffalo (no horses).

5. One optimal solution is x1 0, x2 2, x3 0. Another is x1 0, x2 0,

 x3 2.  

7.  No single family dwellings, 10 apartments, and a $500,000 profit.

13 (a) The optimal value is 10/3 taken on at 8 3, 2 3 .  (b) The conditions

are h2
1
2

h1 1, and 8 2 h1 h2. 

Section 2.4

1. Use 6 lbs. of feed 1.  

2. The optimal solution is y1 8 5, y2 8 5, g 16 5.

4. y1 4 hours of calisthenics, y2 1 hour of jogging, y3 1 hour of biking,

y4 0 hours of rowing.

9.  The  optimal  value  of  the  objective  is  120/7,  taken  on  when

y1 0, y2 45 7, y3 25 7.

13.  The  maximum value  for  the  dual  problem of  8  is  taken  on  at  the  point

4, 0 .  The minimum occurs at y1 0, y2 0, and y3 2.
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14 (a)  The dual is 

maximize f 10 x1 7 x2

subject to: 

x1 2 x2 2

4 x2 1

5 x1 1

x1 0, x2 unrestricted

   (b)  The minimum value is 1/4.

Section 3.1

1.  There  are  two  optimal  solutions,  with  x1 5, x2 1  and  with

x1 2, x2 4.

3.  The unique optimal solution is x1 11, x2 6, x3 0, f 17. 

4.  One  optimal  solution  is  x1 2, x2 0, x3 2,  for  the  three  pastry  types,

and another is x1 2, x2 4, x3 0.

6. The minimum of the objective is 5, taken on at x1 0, x2 5.

7.  The maximal solution is x1 13 3, x2 8 3, and the optimal value of

f  is 2/3. 

9. The point x1 6, x2 5 is optimal for the original problem.  

10.  $5000  from the  in-town bank and $5000  from the out-of-town bank,  or

$5000 from the in-town bank,  $2500 from the savings and loan,  and $2500

from the out-of-town bank.  The minimal interest is $900.

12.  (a)  The  optimal  amounts  are  x1 60, x2 20, x3 20  grams  of  A,  B,

and C, respectively.

13.  The problem is:

maximize f x12 x13

subject to:

x12 4, x13 5, x23 3, x24 2,

x34 6, x35 2, x45 3, x46 4, x56 4,
x12 x23 x24, x13 x23 x34 x35,

x24 x34 x45 x46, x45 x35 x56

xi j 0 for all i, j
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Section 3.2

1. The optimal solution is

 x11 0, x12 0, x13 100, x21 150,

x22 50, x23 0, x31 0, x32 100, x33 0.

2. The optimal solution is:

 x11 200, x12 0, x13 0, x14 800,

x21 600, x22 500, x23 400, x24 0,

 

 and f 49000.

5.  The  optimal  cost  is  540,  taken  on  at  x11 0, x12 60, x13 20, x14 0,

x21 50, x22 0, x23 0, x24 0, x31 0, x32 0, x33 60, x34 40,

x41 10, x42 40, x43 0, x44 0.

12.  The  solutions  are  x13 10,  x22 4,  x23 4,  x34 7,  x41 10,  x52 4,

x51 2,  x54 0,  where  xi j  is  the  number  of  units  of  bread  that  truck  i
delivers to supermarket j. The optimal cost is 126.

13.  (c)  The  optimal  cost  is  11,  taken  on  with  x13 1,  x32 1,  and  x21 1;

i.e.,  matching 1 with 3, 3 with 2, and 2 with 1.

Section 3.3

2. The key coefficients are

cb 0, 4 , cn b 2, 0 , B 1 1
0 2 , N 1 0

1 1 .

4. (a) The two optimality conditions are

 1000 2 1 0, 4400 1 0.  

 Individually, 1 1000 and 2 1000. 

 (c) The new optimal solution is x1 0, x2 12, f 54000.

7. (a) The inequalities are

1
3

6200 3 1 2 2 3 0

1000 2 3 0

4000 3 0

(b) 5 19000 3 2 3 .

(c)    

  1 6200 3
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  2 6200 and 2 1000

  3 6200 2 3100 and 3 1000 3 1000

8. (a) The inequalities are

5000 1 5 2 0

5 2 200 0

(b) The new objective value is 20 2

50
.

(c)  

1 5000

2 1000 and 2 1000

11. The current solution is still optimal iff 2

8
5 3

4
5
4

.

12. The old solution is still optimal under the perturbation iff 1 3600.  

13. (a)  1
3

. (b) The problem becomes unbounded.

Section 4.1

1.  

0 3
5

0 2
5

1
3

0 1
3

1
3

1
3

1
3

0 1
3

0 1 0 0

2.  The row 1 column 4 element of T2 is 1 5.

4. P X1 F, X2 F, X3 E X0 F 27
1000

.

6(a)  A, A, B, C, A, B, A, B, C, D.  

(b) The transition matrix is T
1 2 1 2 0 0
1 2 0 1 2 0
1 2 0 0 1 2

0 0 0 1

 

Section 4.2

1.  (a)  3 4, 1 4, 0 .  (b) The probabilities are 1 32 n

4
, 32 n

4
, 0 .

2 (a) T3 3, 4 .121116.  (b) p 0 T5 3 .186337.

4.  The  limit  as  n  of  Tn  is  the  matrix,  both  of  whose  rows  are
q 1

q p 2
,

p 1

q p 2
.
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6.  P X3 0 X0 5 109 120 and P X2 1, X3 0 X0 5 13 60. 

7.   55 288.

8.  n 54.

Section 4.3

1. Fk 3, 1 1
3

1
2

k 3 2 k 1

1 2
1 .

2.  1 2, 0, 1 12, 1 18, 11 216.

3.   Fk 1, 2 0 for all k. 

Fk 3, 2 3
5

1
15

k 1
, k 1, 2, 3, ...

Fk 2, 2
1 4 if k 1

3 5 1 15 k 2 1 4 if k 2

5. Fk 2, 4
3 10 if k 1

3 10 k 3 10 5
2

1 2 k 1 1 3 5 k 1 if k 2
    

6.  Fk 1, 4 2 1
3

k 3
1 3 4 k 2 .

8.  E T4 X0 2 17 6.

Section 4.4

1.  The closed sets are 1, 2, 3, 4 , 2, 3, 4 , 3, 4 , and 4 .

2. Since states 1 and 2 form an irreducible set and a recurrence class.  States

7, 8, 9  comprise  an  irreducible  set  and  a  recurrence  class.   States  3,  4,  5,

and 6 are transient.

4.  States 1 and 2 are transient.  State 3 has its own recurrence class C1.  The

set 4, 5  makes up a second recurrence class C2. 

5.  The group of  states 1, 5, 6  is one recurrence class.  State 3 is in a class

by itself.  Also, the group of states 2, 4, 7  is a third recurrence class.  State

8 is the only transient state.

6. States 1, 2, 6, and 7 are transient.  State 8 is absorbing, and states 3, 4, and

5 form a recurrence class.
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Section 4.5

1.   The  recurrence  classes  are  3, 4, 5  and  8 ,  the  latter  of  which  has  the

trivial  limiting distribution 1 .   For class 3, 4, 5 ,  the limiting distribu-

tion is 3 1 9, 4 2 3, 5 2 9.

2. The limiting probabilities for all states are 1/4. 

3. In the long run, 1/3 of the vans occupy each district.

5. The long-run average cost is 647.22.

6. We should decide in favor of the second press.

12 (a) The long-run average salary per day for school system 1 is 34.29, and

for  system  2  is  30.   On  this  basis,  system  1  is  the  better  choice.   (b)  For

system  1,  the  long-run  discounted  reward  vector  R f1  is  761.38, 628.97 ;

and  for  system  2,  it  is  696.77, 551.61 .  Again,  for  both  possible  starting

states, the long-term reward for system 1 dominates that of system 2.

13. The maximum value occurs at the left endpoint .1.  

Section 4.6

1.   f21 1, f24 0  f31 6 7, f34 1 7,  where  state  1  is  E,  state  2  is  G,

state 3  is F,  and state 4 is  P.   If  half  are fair and half are good initially, the

proportion reaching the excellent state is 13
14

.

2.  Each of the two transient states has probability 1/3 of being absorbed by

class 1, 2, 3  and 2/3 of being absorbed by class 4, 5 .  

This means that the limit of Tn is

3 10 1 10 3 5 0 0 0 0
3 10 1 10 3 5 0 0 0 0
3 10 1 10 3 5 0 0 0 0

0 0 0 4 7 3 7 0 0
0 0 0 4 7 3 7 0 0

1 10 1 30 1 5 8 21 2 7 0 0
1 10 1 30 1 5 8 21 2 7 0 0

4.  The smallest such value of p is about .542.

5.  100.

6.  The limiting matrix is
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                  1 2 7 8 9 3 4 5 6

limn Tn

1
2
7
8
9
3
4
5
6

 

2 3 1 3 0 0 0 0 0 0 0
2 3 1 3 0 0 0 0 0 0 0

0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0

2 9 1 9 4 15 2 15 4 15 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0
0 0 2 5 1 5 2 5 0 0 0 0

7.   About  22% of  entering  students  graduate,  44% of  second-year  students,

73%  of  third-year  students,  81%  of  fourth-year  students,  and  90%  of  fifth-

year students. 

Section 5.1

1. (a)  .0243895; (b) .161668; (c)  .00487791

3.  The k, 1  distribution, mean k , and variance k 2.  

4.  (a) s Nt; (b) t s t t 2.

5.  
n
k

3
8

k 5
8

n k
.  

8.   
0

f u d u. 

9.   approximately equal to .82 is the value at which the probability reaches

.95.

11.  45.

12.  5. 

14.  9 per minute.

Section 5.2

1.  (c) The long-run proportion of time in state 1 is .

4. 10 beds.

7.  c is approximately .188598. 

8.  Under the stated conditions, E T 7 n 2 .  Also, Var T 25 n 2 .  
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9.  0.00155199, 0.0155199, 0.0775996, 0.258665, 0.646663 .

10. p0 1 0

1

1
1

1
  and  p j

0
j 1

1
j 1 1 0

1

1
1

1
.

11. The limiting probabilities are

p0 1 3 O
L

2 O
H

1
;  p1

3 O
L

p0;  p2
2 O

H
p0

Section 5.3

1.  F n t
0

t
n

n 1
sn 1 e s d s.

2. G F t

0 if t 1

1
4

t 1
4

if 1 t 2

1
2

t 3
4

if 2 t 3

1
4

t if 3 t 4

1 if t 4

   

F G t

0 if t 1

1
2

1
2

t 1 if 1 t 2

1
2

1
2

t 1 1
2

t 2 if 2 t 3

1
2

1 1
2

t 2 if 3 t 4

1
2

1 1 if t 4

4.   The  long-run  expected  number  of  reports  that  can  be  finished  per  unit

time is 1 1 1 1 2 1 3 .  

7.  The  expected  number  of  renewals  per  unit  time  converges  to

1 1 5 6 c .

8.  m t 2
3

t .  

13.  The long-run cost per time is c
1 1 1 2

.

15.  Investment 1 is best.

17  (a)  p; (c) p; (d)  3 t p.

18.  The final price itself is expected to be about 20
2 p 1 t

8
.

Appendix B Answers to Selected Exercises 541



Section 5.4

1. (a)  i
if i 0, 1, …, 5

0 otherwise
        j

j if j 1, 2, 3, 4

4 if j 5, 6

0 otherwise

(b) 2
15

, 4
15

, 4
15

, 8
45

, 4
45

, 2
45

, 1
45

.

(c) Doubling the service rate changes the probability that the queue is full to

1/1045.

2.  The traffic intensity is 5
2

.  The queue will have no limiting distribution.

3.  The limiting distribution is Poisson with parameter .  

5.  N 6 suffices. 

6.  s 6 suffices.

7.  The minimum cost occurs when 1.  

8. The total probability of 3 or fewer is about .692882.

13. pn

n

n p0 if n 1
n

1 1n 1 p0 if n 1

14.  7/8. 

15.  The  limiting  distribution  is  j 1 j, j 0, 1, 2, ...,  where

.122365.

16.  p0 1
1 p

1
, pn

n pn 1

n p0, n 1. 

Section 5.5

1. (a) .194712; (b) .841345.

(c) f x2, x3, x4
1

2
e

x4 x3
2

2
1

2
e

x3 x2
2

2
1

2
e

x2
2

2

2. (a) .357962 ; (b) .23906.

4. f x e2 M N e2 M x

e2 M N 1
.
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6.  K p1 ex K 1

2 2 T
e x T 2 2 2 T x.

10. After some experimentation we find the value to be about a 10.85.

11.  g y 1
y

1

2 t
e log y 2 2 t.  The desired probability is .159983. 

12. The density function is

g y 1

2 t
e y2 2 t 1

2 t
e 2 M y 2 2 t, y M

13.  The mean is 0 and the variance is i 0
n 1 xi

2 ti 1 ti .

Section 6.1

1.  For this policy, actions 0, 0, 1, and 0 are taken.  The rewards are 1, 2, 2, 2.

3.   A  stationary  policy  can  be  created  in  81  ways.   In  the  second  scenario,

there are 815 3486784401 policies.  

4.  The  path  5, 8, 10  is  the  shortest  path  from  5  to  10,  with  cost  6.   The

shortest path from 6 to 10 is 6, 8, 10 with cost 4. 

6.  V A, u 11.23 and V B, u 8.96.

7. There are 27 stationary policies. 

8.  There are  6 3 373248000 admissible policies.  

9.  The transition matrix under u is

Tu

0 1 0 0
1 2 0 1 2 0

0 1 0 0
0 1 0 0

The expected total reward is 4.5. 

10.  The expected total reward is 11/2.  

Section 6.2

1. It is optimal to make no rockets at any time.

2.  (b)  (i)  When  the  terminal  cost  is  50  we  manufacture  as  many rockets  as

possible at each time. (ii) Again at all times, 3 rockets should still be made.

(iii) This time it is always optimal to make 0 rockets.
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3. For each time n, un A 1, un B 2.  

4.  At  all  times,  the  optimizing  actions  are  to  turn  the  furnace  on  when  the

temperature is below 68, and turn it off otherwise. 

5. The stationary policy that always takes action 0 is optimal.  

6. V1 0, 15, 25, 35, 45, 50 , with optimal action function

 u1 i 0, i 1, 2, 3, 4; u1 5 1.

 At  time  0,  V0 0, 75 4, 30, 40, 185 4, 205 4 ,  with  the  same  optimal

action function u0 i 0, i 1, 2, 3, 4; u0 5 1. 

7.   For  T 5,  it  is  optimal  to  harvest  a  single  unit  of  fish  at  time  0,  when

there are 5 units available.  

8. At each time we see that the action function u 1 1, u 2 2 is optimal.

10. At each time, it is optimal for the investor to invest $2000 in Venture B. 

11. The only stream of investments that results in a share of 15 at phase 3 is

to  save all  the money for  the last period:  0,  0,  and $4 million and no better

final share is possible.     

12. At time 3, the optimal immigration policy is

 u3 0 4, u3 1 3, u3 2 2, u3 3 1, u3 4 0, u3 5 0.  

 Notice  that  immigration  is  permitted  to  bring  the  population  up  to  4  for

states 0 through 4.  At times 2, 1, and 0, the optimal actions are

  un 0 5, un 1 4, un 2 3, un 3 2, un 4 0, un 5 0.  

  Except for population 4, it is optimal to let immigration raise the population

to 5.

Section 6.3

5.  58  steps  are  required  for  the  initial  function  w0 1 w0 2 0,  yielding

the  vector  [39.3275,  36.9745];  and  for  the  initial  function  w0 1 40,

w0 2 30,  just  33  steps  are  required,  resulting  in  the  vector  [39.3294,

36.9764].

6. The computation shows that n should be at least as large as 59 to guaran-

tee convergence to within .1.  

7. The stationary policy defined by u 1 1, u 2 1 is optimal.  

8. With the new cost parameters, action 2 is now optimal at state 1.  
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9.  (a)  action 0  is optimal at  state 1  and W 1 3.14607;  (b)  action 0 is still

optimal at state 1 and W 1 32.095.

10. The policy u that uses action 0 at state 0, action 1 at state 1, and action 2

at states 2, 3, and 4 is optimal.

12.  w1 =  43, 143, 243, 343, 443, 543, 600 ;

 w2 = 81.7, 181.7, 281.7, 381.7, 481.7, 562.35, 600 ; 

w3  =  116.53, 216.53, 316.53, 416.53, 507.823, 571.058, 600 .  Note  that  in

all three cases,  the optimizing actions suggest  to advertise at all states other

than state 6.  

13.  The policy u 0 0, u 1 0, u 2 1, u 3 2 is optimal.  The optimal

value function is w 4.78571, 9.5, 10.5, 11.5 .

Section 6.4

1. The optimal policy is u 1 1, u 2 2.

2.  (a)  u i i  is  optimal.  (b)  The  computation  shows  the  optimality  of  the

policy u i 0 for i 2 and u i i otherwise.

3. The policy u i 1, i 0, ..., 5; u 6 0 is optimal. 

4.  The  policy  that  releases  0  when  i 0,  1;  releases  1  when  i 2;  and

releases 2 when i 3 is optimal. 

6.  The  policy  that  replaces  when  the  machine  is  in  condition  3  or  worse  is

optimal.

10.  The  policy  that  harvests  0  at  levels  0,  1,  2,  3  and  4;  and  harvests  1  at

level 5 is optimal.

13.  The  solution  vector  V  to  the  DP  equation  has  entries  34050/841,

35210/841, and 34850/841.

Section 6.5

1.  The  policy  that  stops  at  states  3, 5  is  intuitively  optimal.  The  optimal

values,  that  is  V 1 , V 2 , V 3 , V 4 , and V 5 , are  4, 4, 5, 3, and 3,

respectively.

2.  V i i; i 1, 2, 3, 4 and it is optimal to stop at every state.
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3.  The  stopping  set  is  1, 2, 4 ,  and  the  value  function  is  V 1 6,

V 2 V 3 5, V 4 V 5 V 6 3.

5. (c) It is optimal not to stop when his wealth is 1, 2, 3, 4, 5, but only when

it is 0 or 6.

6. The only states for which V i f i  are states 0 and 5, so we stop when

the stock price reaches those values. 

7. The optimal policy is to stop at rewards 0, 2000, or 3000. 

8. (b) It is optimal to stop immediately at every state.

11. The contestant should answer the first question and then quit. 

Section 6.6

1. The option is worth .12 at time 0. 

2. For u .08, the time 0 option value is .18; for u .09, it is .24.

3. For E 22, the time 0 option value is .41; for E 24, it is .05.

4. For .95, the time 0 option value is .10; for .9, it is .08.

5. The put option value is .01 at time 0. 

7.  (a)  The  policy  whose  optimal  actions  are  1, 1, 1, 0, 1, 1, 0, 0, 1  at  the

states  in  their  usual  order  is  optimal  when  r 4.  (b)  The  same policy  as  in

(a) is optimal when r 6.

8. The parameter value r 3.1 is the cutoff value to the nearest tenth. 

9. The parameter value r 6.1 is the cutoff value to the nearest tenth. 

10.  At  time  2,  the  optimal  action  function  is  u2 1, 1, 1, 0, 1, 1, 0, 0, 1 ;

the  same  action  function  is  optimal  at  time  1;  but  at  time  0,  the  optimal

strategy changes to u0 2, 2, 2, 1, 2, 2, 0, 1, 2 .

15.  At  all  times it  is  optimal to  buy as  much stock as  the checking account

will afford.

16. The optimal action at each period is to sell all existing stock.  
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Appendix C

Glossary of Mathematica Commands

The  commands  below  are  grouped  by  the  Mathematica  package  in  which

they  reside.   Also  contained  in  the  four  packages  are  utility  commands that

are  needed  by  the  other  commands,  although  the  user  does  not  interact

directly  with  them.  We  list  the  usage  messages  that  are  identical  to  the

on-line  help  messages  that  a  user  will  see  when  querying  for  information

about the commands. 

KnoxOR`Graphs`

AddFlow

AddFlow[capacities,  flows,  augmentingpath,  epsilon]  takes the capacity and

flow  matrices  for  a  maximal  flow  problem,  and  the  augmenting  path  and

amount  of  new  flow  epsilon  to  augment  by,  and  it  returns  the  new  flow

matrix.  

AdjustComponents

AdjustComponents[u, v, components] is used by Kruskal and SpanningTree-

OneStep.  It  accepts  two  vertices,  u  and  v,  and  returns  an  updated  compo-

nents  list  obtained  by setting the  component  number  which  is  larger  of  that

of u and v, and also all similar component numbers, to the smaller of that of

u and v.

AugmentMatching

AugmentMatching[matching,  augmentingpath]  returns  a  revised  matching

that  augments  using a  given  augmenting path  on  the  given  previous  match-

ing M.  It  keeps  all  edges  in the matching that  were not  on the augmenting

path, and deletes edges that are,  replacing them by edges in the augmenting

path  that  were  not  in  the  original  matching.  Edges  must  be  written  with

left-side vertices first and right-side vertices second.

ComputePathCosts

ComputePathCosts[theTree,  theRoot]  computes  the  costs  of  all  paths  to  all

vertices in the given tree from the given root.

ComputeSlacks

ComputeSlacks[theGraph,  theTree,  pathcosts]  takes  a  directed  graph,  a

directed spanning tree for that graph, and the list of path costs in the tree to

each  vertex  and  computes  a  matrix  of  slack  values,  that  is,  path  cost  to  v

minus the path cost  to  u  plus the cost  of  omitted edge (u,v),  for  all  omitted

edges. Entries of the slack matrix are 0 for edges that are not omitted.
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ConvertToAdjMatrix

ConvertToAdjMatrix[listofedges,  numberofvertices,  opts]  takes  a  list  of

edges  and  converts  it  to  an  adjacency  matrix.  Options  are  GraphType  

Undirected, which may be set to Directed; and Weighted  False, which can

be set to True if the list of edges has a third component that gives the weight

of the edge that is to be stored in the weighted adjacency matrix. 

DirectedSpanningTree

DirectedSpanningTree[theGraph,  initialTree,  theRoot,  opts]  takes  a  given

initial  spanning  tree  of  a  given  directed,  quasi-connected  graph,  both  in

adjacency  matrix  form,  and  the  vertex  number  of  the  root  of  the  tree.  It

performs  the  full  minimal  directed  spanning  tree  algorithm,  displaying  all

intermediate  graphs  unless  the  option  ShowTree  is  set  to  False,  and  returns

the minimal spanning tree in adjacency matrix form. The display options of

DisplayGraph may be passed in.

DirectedSpanningTreeFirstStep

DirectedSpanningTreeFirstStep[theGraph,  initTree,  theRoot,  opts]  displays

the initial spanning tree supplied by the user,  together with unused edges in

the  whole  graph  and  slack  values  for  the  unused  edges.  The  option  Show-

Tree is made True by default, and if so the first tree is displayed. All graphs

are  in  adjacency matrix form.  The display options  of  DisplayGraph may be

passed in.

DirectedSpanningTreeOneStep

DirectedSpanningTreeOneStep[theGraph,  currentTree,  theRoot,  newedge,

opts] performs one step of the directed spanning tree algorithm, inserting the

new edge into the current tree in the graph with the given root, and deleting

the  edge  that  had  pointed  to  the  same  vertex  as  the  new  edge.  The  option

ShowTree is made True by default, and if so the new tree is displayed.  The

value returned  by the function  is  the new tree.   All  graphs are in adjacency

matrix form.  The display options of DisplayGraph may be passed in.

DisplayBipartiteGraph

DisplayBipartiteGraph[weightmatrix,  opts]  takes  the  weight  matrix  of  a

bipartite graph, in which the rows mean vertices on one side and the columns

mean  vertices  on  the  other,  and  displays  the  graph.  Its  options  are  Show-

Weights True  indicating  the  edge  weights  are  to  be  shown;  Labeling

Automatic,  which  may be  set  to  a  list  of  vertex labels  L(v)  in  the matching

algorithm; Matching None,  which can be set to a list  of  edges  in a current

matching; and the options of DisplayGraph.  EdgeLabels will be superceded

though. DisplayBipartiteGraph computes the matrix of EdgeLabels to pass to

DisplayGraph  if  ShowWeights  is  true.  If  Matching  is  set,  then  edges  in  the

matching will be shown as solid, and the edges not used by the matching will

be shown dashed. The VertexPositions and VertexLabelPositons options are
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preset  to  give  the  graph  a  satisfactory  appearance,  but  may  be  changed  by

the user. 

DisplayGraph

DisplayGraph[adjmatrix,  opts]  shows  the  graph  associated  with  the  given

adjacency  matrix.  Options  are  GraphType   Undirected,  which  may be  set

to  Directed  to  obtain  a  directed  graph;  VertexLabels   Automatic,  which

may  be  set  to  a  list  of  labels  for  vertices;  VertexPositions   Automatic,

which  may be  set  to  a  list  of  coordinates  for  the vertices;  VertexLabelPosi-

tions   Automatic,  which  may  be  set  to  a  list  of  values  such  as  Above,

Below,  ToLeft,  ToRight  to  indicate  where  the  vertex  labels  should  be

positioned relative to the vertex points; EdgeLabels  Automatic, which can

be  set  to  a  matrix  whose  elements  are  to  be  used  as  labels  on  the  edges;

EdgeLabelPositions   Automatic,  which  like  VertexLabelPositions  can  be

set  to  directional  offsets  from  the  midpoint  of  the  edge;  EdgeSeparation-

>.01,  which  controls  the  separation  between  double  arrows  in  a  directed

graph;  and EdgeStyle  Thickness[.005],  which  can apply a style to edges.

It  also  accepts  the  options  of  SelfLoops,  which  are  LoopPositions Auto-

matic, which can be set to a list of values such as Above, Below, ToLeft, and

ToRight  to  indicate  where  the  loops should  be drawn relative to the points;

and  LoopSize .05,  which  controls  the  size  of  loops  by setting the  percent-

age of the overall picture size that the loop radius will be. 

EdgeLabelPositions

EdgeLabelPositions  is  an  option  for  DisplayGraph,  which  may  be  set  to  a

matrix  of  values  such  as  Above,  Below,  ToLeft,  ToRight  to  indicate  where

the edge labels should be positioned relative to the edge midpoints.

EdgeLabels

EdgeLabels  is  an  option  for  DisplayGraph,  which  can  be  set  to  a  matrix

whose elements are to be used as labels on the edges.

Edge Separation

EdgeSeparation  is  an  option  for  DisplayGraph,  set  to  .01  by  default,  which

controls the gap between the two arrows in a double edge

EdgeStyle

EdgeStyle  is  an option for  DisplayGraph,  set  to Thickness[.005]  by default,

which can apply a style to edges.

EqualitySubgraph

EqualitySubgraph[weightmatrix, labeling] produces the weight matrix of the

equality subgraph for a labeling in the maximal matching problem, given the

weight matrix and the labeling.
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FindAugmentingPath

FindAugmentingPath[capacities,  flows,  source,  sink,  opts]  is  a  breadth-first

search for  the maximal flow problem.  It  takes  the  capacity matrix and flow

matrix,  and  the  source  and  sink  vertices.  The  command  returns  the

list{augmentingpath,epsilon}, or {{},0} if the augmenting path could not be

found and the sink could not be labeled. It accepts one option, ShowLabels

True,  which  displays  a  table  of  vertex  labels  found  by  BFS  if  it  is  kept  at

True, and suppresses the table if it is set to False.  

FindChildren

FindChildren[A, parents] is a function used by ComputePathCosts to find all

children of the vertices in the list parents.  The argument A is the adjacency

matrix of the graph.

FindDirectedRoot

FindDirectedRoot[digraph] returns the root of a directed graph if one exists,

else Null and a message indicating that a root was not found.

FindNeighbors

FindNeighbors[capacities,vert]  returns  a  list  of  children  or  parents  of  the

given vertex in the graph indicated by the given capacity matrix.  

GraphType

GraphType  is  an  option  for  DisplayGraph.  It  is  Undirected  by  default,  and

can be set to Directed for a directed graph.

Kruskal

Kruskal[adjlist,  n,  opts]  performs  Kruskal's  algorithm  to  find  a  minimal

undirected spanning tree, given a list of weighted edges, each element of the

form  {v1,v2,weight},  and  the  number  of  vertices.  Options  accepted  are

ShowTree  True to display the new tree, Weighted  True for a weighted

graph, and the options of DisplayGraph.

Labeling

Labeling is an option for DisplayBipartiteGraph, set to Automatic by default,

which can be set to a list of vertex labels in the maximal matching algorithm.

The labels will be shown when the graph is displayed.

LoopPositions

LoopPositions  is  an  option  for  DisplayGraph,  which  can  be  set  to  a  list  of

values  such  as  Above,  Below,  ToLeft,  and  ToRight  to  indicate  where  the

loops  should  be drawn relative to the points.  Its  default  value of  Automatic

positions all loops above the points.

LoopSize

LoopSize  is  an  option  for  DisplayGraph,  initialized  to  .05,  which  controls
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the size of loops by setting the percentage of the overall picture size that the

loop radius will be. 

Matching

Matching  is  an  option  for  DisplayBipartiteGraph,  set  to  None  by  default,

which can be set to a list of edges in a matching.  These edges will be shown

as solid segments, and others will be shown as dashed. 

MaximalDirectedSpanningTree

MaximalDirectedSpanningTree[theGraph,initialTree,theRoot,opts]  takes  a

given  initial  spanning  tree  of  a  given  directed,  quasi-connected  graph,  both

in  adjacency matrix form,  and  the  vertex  number  of  the root  of  the tree.   It

performs  the  full  maximal  directed  spanning  tree  algorithm,  displaying  all

intermediate  graphs  unless  the  option  ShowTree  is  set  to  False,  and  returns

the maximal spanning tree in adjacency matrix form. The display options of

DisplayGraph may be passed in.

MaximalFlow

MaximalFlow[capacities, source, sink, opts] takes the capacities, source, and

sink in  a  maximal flow problem as  its  parameters.   It  returns  the final  flow

matrix.  The  Option  ShowSteps True  can  be  set  to  choose  whether  to

display the intermediate steps or not. The command also accepts the ShowLa-

bels True  option  to  display  tables  of  breadth-first  search  labels,  and  it

accepts the display options for DisplayGraph.

MaxSlack

MaxSlack[slackmatrix] returns a pair {maximum, {row,column}}, which are

the maximum element and its position in the given slack matrix.

MinSlack

MinSlack[slackmatrix] returns  a  pair  {minimum, {row,column}},  which  are

the minimum element and its position in the given slack matrix.

QuasiConnectedQ

QuasiConnectedQ[digraph]  returns  True  or  False  respectively  according  to

whether the given directed graph is quasi-connected or not.

ReviseLabeling

ReviseLabeling[weightmatrix,  labeling,  S,  T]  finds  the   for  a  revised

labeling  in  the  maximal  matching  problem,  given  the  weightmatrix  of  the

bipartite graph and the sets of vertices S and T on the left and right sides of

the graph that were found in the previous unsuccessful search for an augment-

ing path. It returns the result in the form of a list { , newlabeling}.

Appendix C Glossary of Mathematica Commands 551



ShowLabels

ShowLabels True  is  a  boolean  option  for  FindAugmentingPath  and  Maxi-

malFlow, which if True displays a table of vertex labels.

ShowSteps

ShowSteps True is an option for MaximalFlow, which if set to True shows

all the intermediate flow augmenting steps.

ShowTree

ShowTree  is  an  option  for  SpanningTreeOneStep,  True  by  default,  which

can be set to False to suppress the tree display.

ShowWeights

ShowWeights  is  an  option  for  DisplayBipartiteGraph,  initialized  to  False,

which determines whether the edge weights should be displayed.

SortEdges

SortEdges[adjlist]  takes  a  list  of  weighted  edges,  each  element  of  the  form

{v1,v2,weight}, and sorts it into increasing order of weight. It is used by the

Kruskal command to prepare the edges.

SpanningTreeOneStep

SpanningTreeOneStep[treelist,  edgelist,  edgenumber,  componentlist, opts] is

one  step  of  Kruskal's  algorithm  for  minimal  undirected  spanning  trees.  It

takes  a  current  tree,  a  list  of  edges  of  the  whole  graph,  the  number  of  the

edge  in  that  list  to  substitute,  and  the  list  of  connected  components  of  the

vertices. If the new edge has vertices that belong to different components, it

is  added  to  the  tree  and  the  component  numbers  of  all  vertices  like the one

that has  the larger component between the two that are incident  on the new

edge  are  adjusted  down  to  the  component  number  of  the  smaller.  The

command  returns  the  revised  tree  and  componentlist.  Options  accepted  are

ShowTree  True to display the new tree, Weighted  True for a weighted

graph, and the options of DisplayGraph.

VertexLabelPositions

VertexLabelPositions  is  an  option  for  DisplayGraph,  which may be set  to  a

list  of  values  such as Above,  Below, ToLeft,  ToRight to indicate where  the

vertex labels should be positioned relative to the vertex points.

VertexLabels

VertexLabels  is  an  option  for  DisplayGraph,  which  may  be  set  to  a  list  of

labels for vertices.
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VertexPositions

VertexPositions is an option for DisplayGraph, which may be set to a list of

coordinates for the vertices.

Weighted

Weighted is an option for ConvertToAdjMatrix, which may be set to True to

construct a weighted adjacency matrix. It is also an option for SpanningTree-

OneStep, which may be set to False for an unweighted graph.

KnoxOR`LinearProgramming`

Dictionary

Dictionary[system,  basiclist,  nonbasiclist]  takes  the  system  of  constraint

equations  with  the  objective  equation  adjoined,  a  list  of  basic  variables

including  the  objective  variable,  and  a  list  of  non-basic  variables,  and

displays  the  equivalent  dictionary system of  equations.   The basic  variables

are solved for and the system is well-aligned with variables in columns.

ObjectiveLines

ObjectiveLines is an option for PlotFeasibleRegion, which can be set to a list

of constant values.  Lines in which the objective function is set equal to each

of the constants are displayed on the feasible region.

ObjectiveLineStyle

ObjectiveLineStyle  is  an  option  for  PlotFeasibleRegion,  which  can  be  used

to apply a plot style to the objective lines in the feasible region.

PlotFeasibleRegion

PlotFeasibleRegion[constrainteqns,  xdomain,  ydomain,  corners,  objective,

opts] takes the list of constraint equations, both x and y domains for plotting,

the list of corners to use to bound the polygon, and the name of the objective

function.  The option ShowTable  True shows a table of objective function

values at the corners. The option ObjectiveLines  Automatic can be set to a

list  of  constant  values  c  that  will  result  in  the  display  of  lines  of  constant

objective value equal to c on the graph. The option ShadingStyle can be set

to a style for the feasible region. The option ObjectiveLineStyle can be set to

a plot style for these lines.  Other options are those of ImplicitPlot.

ShadingStyle

ShadingStyle  is  an  option  for  PlotFeasibleRegion,  which  applies  a  style  to

the feasible region.

ShowTable

ShowTable is an option for PlotFeasibleRegion, which, if set to True, shows

a table of objective function values at the corner points.
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SimplexOneStep

SimplexOneStep[tableau,  varlist,  enteringbasic,  departingbasic,  basicvaria-

blelist] takes the current simplex tableau, in the usual Mathematica form of a

list  of  lists,  the  list  of  all  variable  names,  the  names  of  the  entering  and

departing  basic  variables,  and  the  list  of  current  basic  variable  names.  It

performs one  simplex step and  prints  the  new tableau,  with  both  row head-

ings  for  the  basic  variables  and  column  headings  for  all  variables.  Then  it

returns a pair {newtableau, newbasicvariablelist} for use in the next step. 

TransportationOneStep

TransportationOneStep[tableau,  varlist,  enteringbasic,  pivotrow,  basicvaria-

blelist]  takes  the  current  transportation  simplex  tableau,  the  list  of  all  vari-

able names, the name of the entering basic variable, the row in which it is to

be  made basic,  and  the  list  of  current  basic  variable  names,  some of  which

can be blank. It prints the new tableau, with both row headings for the basic

variables  and  column  headings  for  all  variables.  Then  it  returns  a  pair

{newtableau,  newbasicvariablelist}  for  use  in  the  next  step  of  the  phase  1

transportation algorithm. 

KnoxOR`StochasticProcesses`

AbsorptionProbability

AbsorptionProbability[transmatrix,  transientstatelist,  recurrenceclass]  takes

the transition matrix of a Markov chain, the list of transient states, and a list

that  is  a  recurrence  class  of  the  chain,  and  returns  a  list  of  probabilities  of

absorption  into  the  recurrence  class,  with  one  entry  for  each  intial  transient

state.

DotSize

DotSize is an option for PlotStepFunction.  It controls the size of the dots on

the graph.

FirstPassageTime

FirstPassageTime[transmatrix,  j,  time]  accepts  the  transition  matrix  of  a

Markov chain, a target state number j,  and a time, and returns a list with an

element for each initial state, of probabilities that the time of first visit from

the initial state to state j equals this time.

Histogram

Histogram[datalist, numrectangles] plots a histogram of a list of data, with a

desired number of rectangles. It inherits some of the options of Generalized-

BarChart  and  has  four  of  its  own.   The  option  Type  has  any  of  the  values

Relative (default), Absolute, or Scaled, depending on whether you want bars

to have heights that are relative frequencies, absolute frequencies, or relative

frequencies divided by interval length.  The option Endpoints may be set to a
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list  {a,b}  of  real  numbers  with  a<b  to  force  the  histogram  to  be  plotted

between  these  endpoints.  Otherwise  the  command uses  the  min and max of

the datalist as endpoints. The option NumDigits (initialized to 2) can be used

to set the number of decimaldigits used in the tick marks on the x-axis. The

option Distribution->Continuous may be reset to Discrete in order to force a

histogram  whose  boxes  are  at  the  integer  values  between  the  lowest  and

highest  integer  data  value.  The  user  cannot  override  the  PlotRange  option,

nor  AxesOrigin,  nor  Ticks,  nor  BarOrientation,  in  the  interest  of  having  a

well-formed graph.

LimitingProbs

LimitingProbs[transmatrix]  takes  the  transition  matrix  of  a  regular  Markov

chain and returns the vector of limiting probabilities.

Nt

Nt[arrtimes, t]  takes a list  of arrival  times of  a Poisson process and a time t

and returns the cumulative number of arrivals by time t.

PlotContsProb

PlotContsProb[density,  domain,  between]  plots  the  area  under  the  given

function  on the given domain between the points  in the list between,  which

is  assumed  to  consist  of  two  points  in  increasing  order.   Options  are  the

options  that  make  sense  for  Show,  and  ShadingStyle->RGBColor[1,0,0],

which can be used to give a style to the shaded area region.

PlotSimulateBrownianMotion

PlotSimulateBrownianMotion[x0, deltat, numpoints] takes an initial state x0,

a  timestep  deltat,  and  a  number  of  time  points  and  simulates  a  standard

Brownian motion.  It produces a connected list plot of the path.

PlotStepFunction

PlotStepFunction[fn,  domain,  jumplist]  plots  a  step  function  on  the  domain

specified,  with  jumps  at  the  points  in  jumplist,  which  is  a  list  of  sorted

numbers.  The step function is assumed to be right continuous, as a c.d.f. is.

It  accepts  option  DotSize .017  to  change  the  size  of  the  dots,  StepStyle

RGBColor[0,0,0]  to  assign  a  style  to  the  steps,  and  it  inherits  any  options

that make sense for Show.

ProportionOfTime

ProportionOfTime[processlist] takes the output of the SimBirthDeathProcess

command  in  the  form  {jumptimelist,statelist}  and  finds  the  proportion  of

time that the process was in each of the states it visited, in the form of a list

of pairs {state,  proportion}.
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ReachableSet

ReachableSet[transmatrix,  state]  returns  the  list  of  states  reachable  from the

given state for the Markov chain with the given transition matrix.

SimBirthDeathProcess

SimBirthDeathProcess[x0,  finaltime,  birthrate,  deathrate]  takes  an  initial

state  x0,  a  finaltime  to  end  simulation,  a  birthrate  and  a  deathrate  for  a

birth–death  process,  and  returns  a  list  of  jumptimes  and  states  passed

through in the form {timelist, statelist}.

SimDiscreteDist

SimDiscreteDist[problist]  is  used  by  SimMarkovChain.  It  takes  a  list  of

numbers  that  forms  a  valid  probability  distribution  and  simulates  a  value

having that distribution.

SimMarkovChain

SimMarkovChain[transmatrix,  start,  numsteps]  returns  a  list  of  numsteps

simulated  states  for  a  Markov  chain  with  the  given  transition  matrix  and

starting state.

SimulateNArrivals

SimulateNArrivals[lambda, n] returns a list of n simulated arrival times for a

Poisson process with rate lambda.

StepSize

StepSize[deltat]  is  a  function  used  by  PlotSimulateBrownianMotion   to

generate a random step size of either positive or negative deltat.

StepStyle

StepStyle is an option for PlotStepFunction, which gives a style to the steps.

Its default is RGBColor[0,0,0], or black.

KnoxOR`DynamicProgramming`

DPEquation

DPEquation[TransMats,  RewardMatrix,  Val]  takes  the  list  of  transition

matrices,  one  for  each  action;  the  reward  matrix  as  a  function  of  state  and

action;  and  the  current  value  function  for  the  finite  horizon  stochastic

dynamic  programming  problem,  and  returns  a  list,  one  for  each  state,  of

dynamic  programming  equation  values  for  each  action.  The  rowwise  max-

ima or minima form the next value function.

DiscountedDPEquation

DiscountedDPEquation[TransMats,  RewardMatrix,  Val,  alpha] takes the list

of transition matrices, one for each action; the reward matrix as a function of

state and action; the current value function for the infinite horizon stochastic
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dynamic programming problem; and the discount factor alpha, and returns a

list,  one  for  each  state,  of  dynamic  programming  equation  values  for  each

action. The rowwise maxima or minima form the next value function.

PolicyImprovementOneStep

PolicyImprovementOneStep[TransMats,  RewardMatrix,  alpha,  policy]  takes

the  list  of  transition  matrices,  one  for  each  action;  the  reward  matrix  as  a

function  of  state  and  action;  the  discount  factor  alpha;  and  a  current  policy

represented  as  a  list  whose  ith  element  is  the  number  of  the  action  taken

when the state is i.  It returns a list, one for each state, of dynamic program-

ming  equation  values  for  each  action.  The  actions  at  which  the  rowwise

maxima or minima are taken on form the next policy. 
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