forked from DebeshJha/ResUNetPlusPlus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
173 lines (130 loc) · 5.52 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import os
import numpy as np
import cv2
from glob import glob
import tensorflow as tf
from tensorflow.keras.metrics import Precision, Recall, MeanIoU
from tensorflow.keras.optimizers import Adam, Nadam, SGD
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger
from data_generator import DataGen
from unet import Unet
from resunet import ResUnet
from m_resunet import ResUnetPlusPlus
from metrics import dice_coef, dice_loss, DiceLoss, IoULoss, TverskyLoss, SSLoss
# import keras
# import keras.backend as K
# def DiceLoss(targets, inputs, smooth=1e-6):
# #flatten label and prediction tensors
# inputs = K.flatten(inputs)
# targets = K.flatten(targets)
# # print(inputs.shape)
# # print(targets.shape)
# intersection = K.sum(targets*inputs)
# dice = (2.*intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
# return 1 - dice
# def IoULoss(targets, inputs, smooth=1e-6):
# #flatten label and prediction tensors
# inputs = K.flatten(inputs)
# targets = K.flatten(targets)
# intersection = K.sum(targets*inputs)
# total = K.sum(targets) + K.sum(inputs)
# union = total - intersection
# IoU = (1.*intersection + smooth) / (union + smooth)
# return 1 - IoU
# ALPHA = 0.5
# BETA = 0.5
# def TverskyLoss(targets, inputs, alpha=ALPHA, beta=BETA, smooth=1e-6):
# #flatten label and prediction tensors
# inputs = K.flatten(inputs)
# targets = K.flatten(targets)
# #True Positives, False Positives & False Negatives
# TP = K.sum((inputs * targets))
# FP = K.sum(((1-targets) * inputs))
# FN = K.sum((targets * (1-inputs)))
# Tversky = (TP + smooth) / (TP + alpha*FP + beta*FN + smooth)
# return 1 - Tversky
# GAMMA = 0.5
# def SSLoss(targets, inputs, gamma=GAMMA, smooth=1e-6):
# #flatten label and prediction tensors
# inputs = K.flatten(inputs)
# targets = K.flatten(targets)
# sq = K.square(targets-inputs)
# inputs_o = 1 - inputs
# LSS = gamma*(K.sum(sq*inputs)+smooth)/(K.sum(inputs)+smooth) + (1-gamma)*(K.sum(sq*inputs_o)+smooth)/(K.sum(inputs_o)+smooth)
# return LSS
loss_fn_dict = {"DiceLoss":DiceLoss,"IoULoss":IoULoss,"TverskyLoss":TverskyLoss,"SSLoss":SSLoss,"binary_crossentropy":"binary_crossentropy"}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ResUnetPlusPlus argument list")
parser.add_argument("--batch_size", help="batch size")
parser.add_argument("--lr", help="learning rate")
parser.add_argument("--epochs", help="no of epochs")
parser.add_argument("--loss_fn", help="loss function to use in training")
args = parser.parse_args()
## Path
file_path = "files/"
model_path = "files/resunetplusplus3_new.h5"
## Create files folder
try:
os.mkdir("files")
except:
pass
train_path = "data/train/"
valid_path = "data/val/"
## Training
train_image_paths = glob(os.path.join(train_path, "images", "*"))
train_mask_paths = glob(os.path.join(train_path, "masks", "*"))
train_image_paths.sort()
train_mask_paths.sort()
# train_image_paths = train_image_paths[:2000]
# train_mask_paths = train_mask_paths[:2000]
## Validation
valid_image_paths = glob(os.path.join(valid_path, "images", "*"))
valid_mask_paths = glob(os.path.join(valid_path, "masks", "*"))
valid_image_paths.sort()
valid_mask_paths.sort()
## Parameters
image_size = 256
batch_size = int(args.batch_size)
lr = float(args.lr)
epochs = int(args.epochs)
loss_fn = loss_fn_dict[args.loss_fn]
#batch_size = 8
#lr = 1e-4
#lr = 1e-3
#lr = 3e-2
#lr = 1e-5
#epochs = 200
train_steps = len(train_image_paths)//batch_size
valid_steps = len(valid_image_paths)//batch_size
#train_steps = 1
#valid_steps = 1
## Generator
train_gen = DataGen(image_size, train_image_paths, train_mask_paths, batch_size=batch_size)
valid_gen = DataGen(image_size, valid_image_paths, valid_mask_paths, batch_size=batch_size)
## Unet
#arch = Unet(input_size=image_size)
#model = arch.build_model()
## ResUnet
#arch = ResUnet(input_size=image_size)
#model = arch.build_model()
## ResUnet++
arch = ResUnetPlusPlus(input_size=image_size)
model = arch.build_model()
optimizer = Nadam(lr)
metrics = [Recall(), Precision(), dice_coef, MeanIoU(num_classes=2)]
#model.compile(loss=dice_loss, optimizer=optimizer, metrics=metrics)
model.compile(loss=loss_fn, optimizer=optimizer, metrics=metrics)
csv_logger = CSVLogger(f"{file_path}resunet3_{batch_size}.csv", append=False)
checkpoint = ModelCheckpoint(model_path, verbose=1, save_best_only=True, monitor='val_dice_coef', mode='max')
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=5, min_lr=1e-8, verbose=1)
#early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=False)
#callbacks = [csv_logger, checkpoint, reduce_lr, early_stopping]
callbacks = [csv_logger, checkpoint, reduce_lr]
#callbacks = [csv_logger, reduce_lr]
model.fit_generator(train_gen,
validation_data=valid_gen,
steps_per_epoch=train_steps,
validation_steps=valid_steps,
epochs=epochs,
callbacks=callbacks)