From 6174659a628f5f7ce1ee0a6f2b9983a974a7e3c5 Mon Sep 17 00:00:00 2001 From: Jhen Date: Fri, 13 Oct 2023 10:26:17 +0800 Subject: [PATCH] feat: sync llama.cpp --- android/src/main/CMakeLists.txt | 1 + android/src/main/jni.cpp | 56 ++++---- cpp/build-info.h | 4 +- cpp/common.cpp | 242 +++++++++----------------------- cpp/common.h | 60 ++------ cpp/ggml.c | 2 +- cpp/rn-llama.hpp | 21 +-- cpp/sampling.cpp | 166 ++++++++++++++++++++++ cpp/sampling.h | 108 ++++++++++++++ example/ios/Podfile.lock | 4 +- ios/RNLlamaContext.mm | 41 +++--- llama.cpp | 2 +- scripts/bootstrap.sh | 2 + 13 files changed, 424 insertions(+), 285 deletions(-) create mode 100644 cpp/sampling.cpp create mode 100644 cpp/sampling.h diff --git a/android/src/main/CMakeLists.txt b/android/src/main/CMakeLists.txt index cc41ebf4..e38f9116 100644 --- a/android/src/main/CMakeLists.txt +++ b/android/src/main/CMakeLists.txt @@ -13,6 +13,7 @@ set( ${RNLLAMA_LIB_DIR}/k_quants.c ${RNLLAMA_LIB_DIR}/common.cpp ${RNLLAMA_LIB_DIR}/grammar-parser.cpp + ${RNLLAMA_LIB_DIR}/sampling.cpp ${RNLLAMA_LIB_DIR}/llama.cpp ${RNLLAMA_LIB_DIR}/rn-llama.hpp ${CMAKE_SOURCE_DIR}/jni.cpp diff --git a/android/src/main/jni.cpp b/android/src/main/jni.cpp index 434b2d3a..fa42043d 100644 --- a/android/src/main/jni.cpp +++ b/android/src/main/jni.cpp @@ -299,7 +299,6 @@ Java_com_rnllama_LlamaContext_doCompletion( llama->params.prompt = env->GetStringUTFChars(prompt, nullptr); llama->params.grammar = env->GetStringUTFChars(grammar, nullptr); - llama->params.temp = temperature; int max_threads = std::thread::hardware_concurrency(); // Use 2 threads by default on 4-core devices, 4 threads on more cores @@ -307,32 +306,26 @@ Java_com_rnllama_LlamaContext_doCompletion( llama->params.n_threads = n_threads > 0 ? n_threads : default_n_threads; llama->params.n_predict = n_predict; - llama->params.n_probs = n_probs; - llama->params.repeat_last_n = repeat_last_n; - llama->params.repeat_penalty = repeat_penalty; - llama->params.presence_penalty = presence_penalty; - llama->params.frequency_penalty = frequency_penalty; - llama->params.mirostat = mirostat; - llama->params.mirostat_tau = mirostat_tau; - llama->params.mirostat_eta = mirostat_eta; - llama->params.top_k = top_k; - llama->params.top_p = top_p; - llama->params.tfs_z = tfs_z; - llama->params.typical_p = typical_p; llama->params.ignore_eos = ignore_eos; - llama->params.antiprompt.clear(); - int stop_len = env->GetArrayLength(stop); - for (int i = 0; i < stop_len; i++) { - jstring stop_str = (jstring) env->GetObjectArrayElement(stop, i); - const char *stop_chars = env->GetStringUTFChars(stop_str, nullptr); - llama->params.antiprompt.push_back(stop_chars); - env->ReleaseStringUTFChars(stop_str, stop_chars); - } - - llama->params.logit_bias.clear(); + auto & sparams = llama->params.sampling_params; + sparams.temp = temperature; + sparams.repeat_last_n = repeat_last_n; + sparams.repeat_penalty = repeat_penalty; + sparams.presence_penalty = presence_penalty; + sparams.frequency_penalty = frequency_penalty; + sparams.mirostat = mirostat; + sparams.mirostat_tau = mirostat_tau; + sparams.mirostat_eta = mirostat_eta; + sparams.top_k = top_k; + sparams.top_p = top_p; + sparams.tfs_z = tfs_z; + sparams.typical_p = typical_p; + sparams.n_probs = n_probs; + + sparams.logit_bias.clear(); if (ignore_eos) { - llama->params.logit_bias[llama_token_eos(llama->ctx)] = -INFINITY; + sparams.logit_bias[llama_token_eos(llama->ctx)] = -INFINITY; } const int n_vocab = llama_n_vocab(llama_get_model(llama->ctx)); @@ -346,9 +339,9 @@ Java_com_rnllama_LlamaContext_doCompletion( llama_token tok = static_cast(doubleArray[0]); if (tok >= 0 && tok < n_vocab) { if (doubleArray[1] != 0) { // If the second element is not false (0) - llama->params.logit_bias[tok] = doubleArray[1]; + sparams.logit_bias[tok] = doubleArray[1]; } else { - llama->params.logit_bias[tok] = -INFINITY; + sparams.logit_bias[tok] = -INFINITY; } } @@ -357,6 +350,15 @@ Java_com_rnllama_LlamaContext_doCompletion( env->DeleteLocalRef(el); } + llama->params.antiprompt.clear(); + int stop_len = env->GetArrayLength(stop); + for (int i = 0; i < stop_len; i++) { + jstring stop_str = (jstring) env->GetObjectArrayElement(stop, i); + const char *stop_chars = env->GetStringUTFChars(stop_str, nullptr); + llama->params.antiprompt.push_back(stop_chars); + env->ReleaseStringUTFChars(stop_str, stop_chars); + } + if (!llama->loadGrammar()) { auto result = createWriteableMap(env); putString(env, result, "error", "Failed to load grammar"); @@ -408,7 +410,7 @@ Java_com_rnllama_LlamaContext_doCompletion( auto tokenResult = createWriteableMap(env); putString(env, tokenResult, "token", to_send.c_str()); - if (llama->params.n_probs > 0) { + if (llama->params.sampling_params.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(llama->ctx, to_send, false); size_t probs_pos = std::min(sent_token_probs_index, llama->generated_token_probs.size()); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama->generated_token_probs.size()); diff --git a/cpp/build-info.h b/cpp/build-info.h index 9495f1fe..93f808c2 100644 --- a/cpp/build-info.h +++ b/cpp/build-info.h @@ -1,8 +1,8 @@ #ifndef BUILD_INFO_H #define BUILD_INFO_H -#define BUILD_NUMBER 1364 -#define BUILD_COMMIT "9f6ede1" +#define BUILD_NUMBER 1378 +#define BUILD_COMMIT "1e0e873" #define BUILD_COMPILER "" #define BUILD_TARGET "unknown" diff --git a/cpp/common.cpp b/cpp/common.cpp index 93e307da..077cc959 100644 --- a/cpp/common.cpp +++ b/cpp/common.cpp @@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string arg; gpt_params default_params; const std::string arg_prefix = "--"; + llama_sampling_params & sparams = params.sampling_params; for (int i = 1; i < argc; i++) { arg = argv[i]; @@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.top_k = std::stoi(argv[i]); + sparams.top_k = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx-size") { if (++i >= argc) { invalid_param = true; @@ -216,73 +217,73 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.top_p = std::stof(argv[i]); + sparams.top_p = std::stof(argv[i]); } else if (arg == "--temp") { if (++i >= argc) { invalid_param = true; break; } - params.temp = std::stof(argv[i]); + sparams.temp = std::stof(argv[i]); } else if (arg == "--tfs") { if (++i >= argc) { invalid_param = true; break; } - params.tfs_z = std::stof(argv[i]); + sparams.tfs_z = std::stof(argv[i]); } else if (arg == "--typical") { if (++i >= argc) { invalid_param = true; break; } - params.typical_p = std::stof(argv[i]); + sparams.typical_p = std::stof(argv[i]); } else if (arg == "--repeat-last-n") { if (++i >= argc) { invalid_param = true; break; } - params.repeat_last_n = std::stoi(argv[i]); + sparams.repeat_last_n = std::stoi(argv[i]); } else if (arg == "--repeat-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.repeat_penalty = std::stof(argv[i]); + sparams.repeat_penalty = std::stof(argv[i]); } else if (arg == "--frequency-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.frequency_penalty = std::stof(argv[i]); + sparams.frequency_penalty = std::stof(argv[i]); } else if (arg == "--presence-penalty") { if (++i >= argc) { invalid_param = true; break; } - params.presence_penalty = std::stof(argv[i]); + sparams.presence_penalty = std::stof(argv[i]); } else if (arg == "--mirostat") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat = std::stoi(argv[i]); + sparams.mirostat = std::stoi(argv[i]); } else if (arg == "--mirostat-lr") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat_eta = std::stof(argv[i]); + sparams.mirostat_eta = std::stof(argv[i]); } else if (arg == "--mirostat-ent") { if (++i >= argc) { invalid_param = true; break; } - params.mirostat_tau = std::stof(argv[i]); + sparams.mirostat_tau = std::stof(argv[i]); } else if (arg == "--cfg-negative-prompt") { if (++i >= argc) { invalid_param = true; break; } - params.cfg_negative_prompt = argv[i]; + sparams.cfg_negative_prompt = argv[i]; } else if (arg == "--cfg-negative-prompt-file") { if (++i >= argc) { invalid_param = true; @@ -294,16 +295,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.cfg_negative_prompt)); - if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') { - params.cfg_negative_prompt.pop_back(); + std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(sparams.cfg_negative_prompt)); + if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') { + sparams.cfg_negative_prompt.pop_back(); } } else if (arg == "--cfg-scale") { if (++i >= argc) { invalid_param = true; break; } - params.cfg_scale = std::stof(argv[i]); + sparams.cfg_scale = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; @@ -383,6 +384,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.lora_base = argv[i]; + } else if (arg == "--mmproj") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.mmproj = argv[i]; + } else if (arg == "--image") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.image = argv[i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--embedding") { @@ -512,7 +525,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { - params.penalize_nl = false; + sparams.penalize_nl = false; } else if (arg == "-l" || arg == "--logit-bias") { if (++i >= argc) { invalid_param = true; @@ -524,7 +537,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { - params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); + sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); } else { throw std::exception(); } @@ -627,6 +640,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { + const llama_sampling_params & sparams = params.sampling_params; + printf("usage: %s [options]\n", argv[0]); printf("\n"); printf("options:\n"); @@ -659,19 +674,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); - printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); - printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); - printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); - printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); - printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); - printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); - printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); - printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); + printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); + printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); + printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z); + printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p); + printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n); + printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty); + printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty); + printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty); printf(" --mirostat N use Mirostat sampling.\n"); printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); - printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); - printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); - printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); + printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat); + printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta); + printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau); printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); printf(" modifies the likelihood of token appearing in the completion,\n"); printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); @@ -682,7 +697,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" --cfg-negative-prompt-file FNAME\n"); printf(" negative prompt file to use for guidance. (default: empty)\n"); - printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); + printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale); printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n"); printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n"); @@ -690,7 +705,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); - printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); + printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); @@ -700,6 +715,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); + printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); + printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n"); if (llama_mlock_supported()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } @@ -840,7 +857,7 @@ std::tuple llama_init_from_gpt_par } if (params.ignore_eos) { - params.logit_bias[llama_token_eos(lctx)] = -INFINITY; + params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY; } { @@ -932,127 +949,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector & last_tokens, - std::vector & candidates, - int idx) { - const int n_ctx = llama_n_ctx(ctx); - const int n_vocab = llama_n_vocab(llama_get_model(ctx)); - - const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; - const float top_p = params.top_p; - const float tfs_z = params.tfs_z; - const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; - const float repeat_penalty = params.repeat_penalty; - const float alpha_presence = params.presence_penalty; - const float alpha_frequency = params.frequency_penalty; - const int mirostat = params.mirostat; - const float mirostat_tau = params.mirostat_tau; - const float mirostat_eta = params.mirostat_eta; - const bool penalize_nl = params.penalize_nl; - - llama_token id = 0; - - float * logits = llama_get_logits_ith(ctx, idx); - - // Apply params.logit_bias map - for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { - logits[it->first] += it->second; - } - - candidates.clear(); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; - - if (ctx_guidance) { - llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); - } - - // apply penalties - if (!last_tokens.empty()) { - const float nl_logit = logits[llama_token_nl(ctx)]; - const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); - - llama_sample_repetition_penalty(ctx, &cur_p, - last_tokens.data() + last_tokens.size() - last_n_repeat, - last_n_repeat, repeat_penalty); - llama_sample_frequency_and_presence_penalties(ctx, &cur_p, - last_tokens.data() + last_tokens.size() - last_n_repeat, - last_n_repeat, alpha_frequency, alpha_presence); - - if (!penalize_nl) { - for (size_t idx = 0; idx < cur_p.size; idx++) { - if (cur_p.data[idx].id == llama_token_nl(ctx)) { - cur_p.data[idx].logit = nl_logit; - break; - } - } - } - } - - if (grammar != NULL) { - llama_sample_grammar(ctx, &cur_p, grammar); - } - - if (temp <= 0) { - // Greedy sampling - id = llama_sample_token_greedy(ctx, &cur_p); - } else { - if (mirostat == 1) { - static float mirostat_mu = 2.0f * mirostat_tau; - const int mirostat_m = 100; - llama_sample_temp(ctx, &cur_p, temp); - id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); - } else if (mirostat == 2) { - static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temp(ctx, &cur_p, temp); - id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); - } else { - // Temperature sampling - size_t min_keep = std::max(1, params.n_probs); - llama_sample_top_k (ctx, &cur_p, top_k, min_keep); - llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); - llama_sample_typical (ctx, &cur_p, typical_p, min_keep); - llama_sample_top_p (ctx, &cur_p, top_p, min_keep); - llama_sample_temp(ctx, &cur_p, temp); - - { - const int n_top = 10; - LOG("top %d candidates:\n", n_top); - - for (int i = 0; i < n_top; i++) { - const llama_token id = cur_p.data[i].id; - LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); - } - } - - id = llama_sample_token(ctx, &cur_p); - - LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); - } - } - // printf("`%d`", candidates_p.size); - - if (grammar != NULL) { - llama_grammar_accept_token(ctx, grammar, id); - } - - return id; -} - // // YAML utils // @@ -1204,6 +1100,8 @@ std::string get_sortable_timestamp() { void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { + const llama_sampling_params & sparams = params.sampling_params; + fprintf(stream, "build_commit: %s\n", BUILD_COMMIT); fprintf(stream, "build_number: %d\n", BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", lm_ggml_cpu_has_arm_fma() ? "true" : "false"); @@ -1250,21 +1148,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); - dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str()); - fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale); + dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); + fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); - fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); + fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty); dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); - const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx)); - const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY; + const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(lctx)); + const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); @@ -1277,7 +1175,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); - for (std::pair lb : params.logit_bias) { + for (std::pair lb : sparams.logit_bias) { if (ignore_eos && lb.first == logit_bias_eos->first) { continue; } @@ -1301,30 +1199,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); - fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); - fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau); - fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); + fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); + fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); + fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); - fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); + fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); - fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false"); + fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false"); fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); - fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty); + fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty); dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); - fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty); + fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { @@ -1342,15 +1240,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); - fprintf(stream, "temp: %f # default: 0.8\n", params.temp); + fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); - fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z); + fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency()); - fprintf(stream, "top_k: %d # default: 40\n", params.top_k); - fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p); - fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p); + fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); + fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); + fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); } diff --git a/cpp/common.h b/cpp/common.h index c8021527..36fd4416 100644 --- a/cpp/common.h +++ b/cpp/common.h @@ -4,6 +4,8 @@ #include "llama.h" +#include "sampling.h" + #define LOG_NO_FILE_LINE_FUNCTION #include "log.h" @@ -49,31 +51,12 @@ struct gpt_params { int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_beams = 0; // if non-zero then use beam search of given width. float rope_freq_base = 0.0f; // RoPE base frequency float rope_freq_scale = 0.0f; // RoPE frequency scaling factor - // sampling parameters - int32_t top_k = 40; // <= 0 to use vocab size - float top_p = 0.95f; // 1.0 = disabled - float tfs_z = 1.00f; // 1.0 = disabled - float typical_p = 1.00f; // 1.0 = disabled - float temp = 0.80f; // 1.0 = disabled - float repeat_penalty = 1.10f; // 1.0 = disabled - int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) - float frequency_penalty = 0.00f; // 0.0 = disabled - float presence_penalty = 0.00f; // 0.0 = disabled - int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 - float mirostat_tau = 5.00f; // target entropy - float mirostat_eta = 0.10f; // learning rate - - std::unordered_map logit_bias; // logit bias for specific tokens - - // Classifier-Free Guidance - // https://arxiv.org/abs/2306.17806 - std::string cfg_negative_prompt; // string to help guidance - float cfg_scale = 1.f; // How strong is guidance + // // sampling parameters + struct llama_sampling_params sampling_params; std::string model = "models/7B/ggml-model-f16.gguf"; // model path std::string model_draft = ""; // draft model for speculative decoding @@ -115,13 +98,16 @@ struct gpt_params { bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens bool instruct = false; // instruction mode (used for Alpaca models) - bool penalize_nl = true; // consider newlines as a repeatable token bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory bool numa = false; // attempt optimizations that help on some NUMA systems bool verbose_prompt = false; // print prompt tokens before generation bool infill = false; // use infill mode + + // multimodal models (see examples/llava) + std::string mmproj = ""; // path to multimodal projector + std::string image = ""; // path to an image file }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); @@ -180,36 +166,6 @@ std::string llama_detokenize_bpe( llama_context * ctx, const std::vector & tokens); -// -// Sampling utils -// - -// this is a common sampling function used across the examples for convenience -// it can serve as a starting point for implementing your own sampling function -// -// required: -// - ctx: context to use for sampling -// - params: sampling parameters -// -// optional: -// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL -// - grammar: grammar to use for sampling, ignore if NULL -// - last_tokens: needed for repetition penalty, ignore if empty -// - idx: sample from llama_get_logits_ith(ctx, idx) -// -// returns: -// - token: sampled token -// - candidates: vector of candidate tokens -// -llama_token llama_sample_token( - struct llama_context * ctx, - struct llama_context * ctx_guidance, - struct llama_grammar * grammar, - const struct gpt_params & params, - const std::vector & last_tokens, - std::vector & candidates, - int idx = 0); - // // YAML utils // diff --git a/cpp/ggml.c b/cpp/ggml.c index 9a247103..9fc1bfd9 100644 --- a/cpp/ggml.c +++ b/cpp/ggml.c @@ -14428,7 +14428,7 @@ static void lm_ggml_compute_forward_conv_2d_f16_f32( int64_t t0 = lm_ggml_perf_time_us(); UNUSED(t0); - LM_GGML_TENSOR_BINARY_OP_LOCALS + LM_GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; diff --git a/cpp/rn-llama.hpp b/cpp/rn-llama.hpp index 996bf1b3..5f7ef230 100644 --- a/cpp/rn-llama.hpp +++ b/cpp/rn-llama.hpp @@ -144,6 +144,7 @@ struct llama_rn_context llama_model *model = nullptr; llama_context *ctx = nullptr; gpt_params params; + llama_sampling_context ctx_sampling; grammar_parser::parse_state parsed_grammar; llama_grammar *grammar = nullptr; @@ -191,6 +192,7 @@ struct llama_rn_context if (grammar != nullptr) { llama_grammar_free(grammar); grammar = nullptr; + ctx_sampling = llama_sampling_context_init(params, NULL); } } @@ -221,8 +223,8 @@ struct llama_rn_context grammar_parser::print_grammar(stderr, parsed_grammar); { - auto it = params.logit_bias.find(llama_token_eos(ctx)); - if (it != params.logit_bias.end() && it->second == -INFINITY) { + auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx)); + if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) { LOG_WARNING("EOS token is disabled, which will cause most grammars to fail"); } } @@ -231,6 +233,7 @@ struct llama_rn_context grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); } + ctx_sampling = llama_sampling_context_init(params, grammar); return true; } @@ -271,9 +274,6 @@ struct llama_rn_context // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); - // since #3228 we now have to manually manage the KV cache - llama_kv_cache_seq_rm(ctx, 0, n_past, -1); - embd = prompt_tokens; if (n_past == num_prompt_tokens) { @@ -281,6 +281,9 @@ struct llama_rn_context n_past--; } + // since #3228 we now have to manually manage the KV cache + llama_kv_cache_seq_rm(ctx, 0, n_past, -1); + LOG_VERBOSE("prompt ingested, n_past: %d, cached: %s, to_eval: %s", n_past, tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past).c_str(), @@ -364,12 +367,12 @@ struct llama_rn_context std::vector candidates; candidates.reserve(llama_n_vocab(model)); - result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates); + result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates); llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - const int32_t n_probs = params.n_probs; - if (params.temp <= 0 && n_probs > 0) + const int32_t n_probs = params.sampling_params.n_probs; + if (params.sampling_params.temp <= 0 && n_probs > 0) { // For llama_sample_token_greedy we need to sort candidates llama_sample_softmax(ctx, &candidates_p); @@ -443,7 +446,7 @@ struct llama_rn_context const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok); generated_text += token_text; - if (params.n_probs > 0) + if (params.sampling_params.n_probs > 0) { generated_token_probs.push_back(token_with_probs); } diff --git a/cpp/sampling.cpp b/cpp/sampling.cpp new file mode 100644 index 00000000..8ce41945 --- /dev/null +++ b/cpp/sampling.cpp @@ -0,0 +1,166 @@ +#include "sampling.h" + +llama_sampling_context::~llama_sampling_context() { + for (auto & it : sequence_contexts) { + if (it.second.grammar != NULL) { + llama_grammar_free(it.second.grammar); + it.second.grammar = NULL; + } + } +} + +llama_sampling_context llama_sampling_context_init( + const struct gpt_params & params, + llama_grammar * grammar) { + llama_sampling_context result; + + result.params = params.sampling_params; + result.grammar = grammar; + return result; +} + +// Note: Creates the context if it doesn't exist, so this always return something. +llama_sampler_sequence_context & llama_sampling_get_sequence_context( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it != ctx_sampling.sequence_contexts.end()) { + return it->second; + } + llama_sampler_sequence_context new_ctx = { + 2.0f * ctx_sampling.params.mirostat_tau, + ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL, + }; + return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second; +} + +bool llama_sampling_context_reset( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq) { + const auto it = ctx_sampling.sequence_contexts.find(seq); + if (it == ctx_sampling.sequence_contexts.end()) return false; + if (it->second.grammar != NULL) { + llama_grammar_free(it->second.grammar); + it->second.grammar = NULL; + } + ctx_sampling.sequence_contexts.erase(it); + return true; +} + +llama_token llama_sampling_sample( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_sampling_context & ctx_sampling, + const std::vector & last_tokens, + std::vector & candidates, + const int idx, + llama_seq_id seq) { + const int n_ctx = llama_n_ctx(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + + const llama_sampling_params & params = ctx_sampling.params; + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + + llama_token id = 0; + + float * logits = llama_get_logits_ith(ctx, idx); + + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; + } + + candidates.clear(); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; + + if (ctx_guidance) { + llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); + } + + // apply penalties + if (!last_tokens.empty()) { + const float nl_logit = logits[llama_token_nl(ctx)]; + const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); + + llama_sample_repetition_penalty(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &cur_p, + last_tokens.data() + last_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + + if (!penalize_nl) { + for (size_t idx = 0; idx < cur_p.size; idx++) { + if (cur_p.data[idx].id == llama_token_nl(ctx)) { + cur_p.data[idx].logit = nl_logit; + break; + } + } + } + } + + llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq); + + if (ctx_seq.grammar != NULL) { + llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar); + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &cur_p); + } else { + if (mirostat == 1) { + const int mirostat_m = 100; + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu); + } else if (mirostat == 2) { + llama_sample_temp(ctx, &cur_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu); + } else { + // Temperature sampling + size_t min_keep = std::max(1, params.n_probs); + llama_sample_top_k (ctx, &cur_p, top_k, min_keep); + llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep); + llama_sample_typical (ctx, &cur_p, typical_p, min_keep); + llama_sample_top_p (ctx, &cur_p, top_p, min_keep); + llama_sample_temp(ctx, &cur_p, temp); + + { + const int n_top = 10; + LOG("top %d candidates:\n", n_top); + + for (int i = 0; i < n_top; i++) { + const llama_token id = cur_p.data[i].id; + (void)id; // To avoid a warning that id is unused when logging is disabled. + LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); + } + } + + id = llama_sample_token(ctx, &cur_p); + + LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); + } + } + + if (ctx_seq.grammar != NULL) { + llama_grammar_accept_token(ctx, ctx_seq.grammar, id); + } + + return id; +} diff --git a/cpp/sampling.h b/cpp/sampling.h new file mode 100644 index 00000000..0aab5d03 --- /dev/null +++ b/cpp/sampling.h @@ -0,0 +1,108 @@ +#pragma once + +#include "llama.h" + +#include +#include +#include + +// sampling parameters +typedef struct llama_sampling_params { + int32_t top_k = 40; // <= 0 to use vocab size + float top_p = 0.95f; // 1.0 = disabled + float tfs_z = 1.00f; // 1.0 = disabled + float typical_p = 1.00f; // 1.0 = disabled + float temp = 0.80f; // 1.0 = disabled + float repeat_penalty = 1.10f; // 1.0 = disabled + int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) + float frequency_penalty = 0.00f; // 0.0 = disabled + float presence_penalty = 0.00f; // 0.0 = disabled + int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 + float mirostat_tau = 5.00f; // target entropy + float mirostat_eta = 0.10f; // learning rate + + bool penalize_nl = true; // consider newlines as a repeatable token + + int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. + + // Classifier-Free Guidance + // https://arxiv.org/abs/2306.17806 + std::string cfg_negative_prompt; // string to help guidance + float cfg_scale = 1.f; // How strong is guidance + + std::unordered_map logit_bias; // logit bias for specific tokens + +} llama_sampling_params; + +// per-sequence sampler context +typedef struct llama_sampler_sequence_context { + float mirostat_mu; // mirostat sampler state + llama_grammar * grammar; +} llama_sampler_sequence_context; + +// general sampler context +typedef struct llama_sampling_context { + ~llama_sampling_context(); + + // parameters that will be used for sampling and when creating + // new llama_sampler_sequence_context instances + llama_sampling_params params; + + // map of sequence ids to sampler contexts + std::unordered_map sequence_contexts; + + // when non-NULL, new instances of llama_sampler_sequence_context + // will get a copy of the grammar here + // note: only the pointer is stored here, it is not a copy of + // the grammar and shouldn't be freed + llama_grammar * grammar; +} llama_sampling_context; + +#include "common.h" + +// Create a new sampling context instance. +llama_sampling_context llama_sampling_context_init( + const struct gpt_params & params, + llama_grammar * grammar = NULL); + +// Fetches the sampler context for the specified sequence id (defaults to 0). +// If the context for that sequence id doesn't already exist, it will be created with +// default values based on the parameters in the ctx_sampling argument. +llama_sampler_sequence_context & llama_sampling_get_sequence_context( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq = 0); + +// Reset the sampler context for the supplied sequence id (defaults to 0). +// This is necessary to reuse a sequence id or free memory used by sequences +// that are no longer required. +bool llama_sampling_context_reset( + llama_sampling_context & ctx_sampling, + const llama_seq_id seq = 0); + +// this is a common sampling function used across the examples for convenience +// it can serve as a starting point for implementing your own sampling function +// Note: When using multiple sequences, it is the caller's responsibility to call +// llama_sampling_context_reset when a sequence ends +// +// required: +// - ctx: context to use for sampling +// - ctx_sampling: sampling-specific context +// +// optional: +// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL +// - last_tokens: needed for repetition penalty, ignore if empty +// - idx: sample from llama_get_logits_ith(ctx, idx) +// - seq: sequence id to associate sampler state with +// +// returns: +// - token: sampled token +// - candidates: vector of candidate tokens +// +llama_token llama_sampling_sample( + struct llama_context * ctx, + struct llama_context * ctx_guidance, + struct llama_sampling_context & ctx_sampling, + const std::vector & last_tokens, + std::vector & candidates, + const int idx = 0, + llama_seq_id seq = 0); diff --git a/example/ios/Podfile.lock b/example/ios/Podfile.lock index b4ef6817..bcfbed7b 100644 --- a/example/ios/Podfile.lock +++ b/example/ios/Podfile.lock @@ -8,7 +8,7 @@ PODS: - hermes-engine/Pre-built (= 0.72.3) - hermes-engine/Pre-built (0.72.3) - libevent (2.1.12) - - llama-rn (0.2.0): + - llama-rn (0.3.0-rc.0): - RCT-Folly - RCTRequired - RCTTypeSafety @@ -1242,7 +1242,7 @@ SPEC CHECKSUMS: glog: 04b94705f318337d7ead9e6d17c019bd9b1f6b1b hermes-engine: 10fbd3f62405c41ea07e71973ea61e1878d07322 libevent: 4049cae6c81cdb3654a443be001fb9bdceff7913 - llama-rn: 38a0f48bb799df21706bc5552929475114ddf9cb + llama-rn: 181274aa4c46da201545cdf45ccf0300e9bc0363 RCT-Folly: 424b8c9a7a0b9ab2886ffe9c3b041ef628fd4fb1 RCTRequired: a2faf4bad4e438ca37b2040cb8f7799baa065c18 RCTTypeSafety: cb09f3e4747b6d18331a15eb05271de7441ca0b3 diff --git a/ios/RNLlamaContext.mm b/ios/RNLlamaContext.mm index a117f121..2ce63f1c 100644 --- a/ios/RNLlamaContext.mm +++ b/ios/RNLlamaContext.mm @@ -137,8 +137,6 @@ - (NSDictionary *)completion:(NSDictionary *)params llama->params.grammar = [params[@"grammar"] UTF8String]; } - if (params[@"temperature"]) llama->params.temp = [params[@"temperature"] doubleValue]; - if (params[@"n_threads"]) { int nThreads = params[@"n_threads"] ? [params[@"n_threads"] intValue] : llama->params.n_threads; const int maxThreads = (int) [[NSProcessInfo processInfo] processorCount]; @@ -147,22 +145,27 @@ - (NSDictionary *)completion:(NSDictionary *)params llama->params.n_threads = nThreads > 0 ? nThreads : defaultNThreads; } if (params[@"n_predict"]) llama->params.n_predict = [params[@"n_predict"] intValue]; - if (params[@"n_probs"]) llama->params.n_probs = [params[@"n_probs"] intValue]; - if (params[@"repeat_last_n"]) llama->params.repeat_last_n = [params[@"repeat_last_n"] intValue]; - if (params[@"repeat_penalty"]) llama->params.repeat_penalty = [params[@"repeat_penalty"] doubleValue]; - if (params[@"presence_penalty"]) llama->params.presence_penalty = [params[@"presence_penalty"] doubleValue]; - if (params[@"frequency_penalty"]) llama->params.frequency_penalty = [params[@"frequency_penalty"] doubleValue]; + auto & sparams = llama->params.sampling_params; + + if (params[@"temperature"]) sparams.temp = [params[@"temperature"] doubleValue]; + + if (params[@"n_probs"]) sparams.n_probs = [params[@"n_probs"] intValue]; + + if (params[@"repeat_last_n"]) sparams.repeat_last_n = [params[@"repeat_last_n"] intValue]; + if (params[@"repeat_penalty"]) sparams.repeat_penalty = [params[@"repeat_penalty"] doubleValue]; + if (params[@"presence_penalty"]) sparams.presence_penalty = [params[@"presence_penalty"] doubleValue]; + if (params[@"frequency_penalty"]) sparams.frequency_penalty = [params[@"frequency_penalty"] doubleValue]; - if (params[@"mirostat"]) llama->params.mirostat = [params[@"mirostat"] intValue]; - if (params[@"mirostat_tau"]) llama->params.mirostat_tau = [params[@"mirostat_tau"] doubleValue]; - if (params[@"mirostat_eta"]) llama->params.mirostat_eta = [params[@"mirostat_eta"] doubleValue]; + if (params[@"mirostat"]) sparams.mirostat = [params[@"mirostat"] intValue]; + if (params[@"mirostat_tau"]) sparams.mirostat_tau = [params[@"mirostat_tau"] doubleValue]; + if (params[@"mirostat_eta"]) sparams.mirostat_eta = [params[@"mirostat_eta"] doubleValue]; - if (params[@"top_k"]) llama->params.top_k = [params[@"top_k"] intValue]; - if (params[@"top_p"]) llama->params.top_p = [params[@"top_p"] doubleValue]; - if (params[@"tfs_z"]) llama->params.tfs_z = [params[@"tfs_z"] doubleValue]; + if (params[@"top_k"]) sparams.top_k = [params[@"top_k"] intValue]; + if (params[@"top_p"]) sparams.top_p = [params[@"top_p"] doubleValue]; + if (params[@"tfs_z"]) sparams.tfs_z = [params[@"tfs_z"] doubleValue]; - if (params[@"typical_p"]) llama->params.typical_p = [params[@"typical_p"] doubleValue]; + if (params[@"typical_p"]) sparams.typical_p = [params[@"typical_p"] doubleValue]; llama->params.antiprompt.clear(); if (params[@"stop"]) { @@ -172,9 +175,9 @@ - (NSDictionary *)completion:(NSDictionary *)params } } - llama->params.logit_bias.clear(); + sparams.logit_bias.clear(); if (params[@"ignore_eos"] && [params[@"ignore_eos"] boolValue]) { - llama->params.logit_bias[llama_token_eos(llama->ctx)] = -INFINITY; + sparams.logit_bias[llama_token_eos(llama->ctx)] = -INFINITY; } if (params[@"logit_bias"] && [params[@"logit_bias"] isKindOfClass:[NSArray class]]) { @@ -185,9 +188,9 @@ - (NSDictionary *)completion:(NSDictionary *)params llama_token tok = [el[0] intValue]; if (tok >= 0 && tok < n_vocab) { if ([el[1] isKindOfClass:[NSNumber class]]) { - llama->params.logit_bias[tok] = [el[1] doubleValue]; + sparams.logit_bias[tok] = [el[1] doubleValue]; } else if ([el[1] isKindOfClass:[NSNumber class]] && ![el[1] boolValue]) { - llama->params.logit_bias[tok] = -INFINITY; + sparams.logit_bias[tok] = -INFINITY; } } } @@ -243,7 +246,7 @@ - (NSDictionary *)completion:(NSDictionary *)params NSMutableDictionary *tokenResult = [[NSMutableDictionary alloc] init]; tokenResult[@"token"] = [NSString stringWithUTF8String:to_send.c_str()]; - if (llama->params.n_probs > 0) { + if (llama->params.sampling_params.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(llama->ctx, to_send, false); size_t probs_pos = std::min(sent_token_probs_index, llama->generated_token_probs.size()); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama->generated_token_probs.size()); diff --git a/llama.cpp b/llama.cpp index 9f6ede19..1e0e873c 160000 --- a/llama.cpp +++ b/llama.cpp @@ -1 +1 @@ -Subproject commit 9f6ede19f3cfa50d4a51a5babb056c3f8a450b80 +Subproject commit 1e0e873c373c33989beb6bc64d83cd572ab7fe2b diff --git a/scripts/bootstrap.sh b/scripts/bootstrap.sh index c8b4ccf9..5c7b98a6 100755 --- a/scripts/bootstrap.sh +++ b/scripts/bootstrap.sh @@ -27,6 +27,8 @@ cp ./llama.cpp/common/common.h ./cpp/common.h cp ./llama.cpp/common/common.cpp ./cpp/common.cpp cp ./llama.cpp/common/grammar-parser.h ./cpp/grammar-parser.h cp ./llama.cpp/common/grammar-parser.cpp ./cpp/grammar-parser.cpp +cp ./llama.cpp/common/sampling.h ./cpp/sampling.h +cp ./llama.cpp/common/sampling.cpp ./cpp/sampling.cpp # List of files to process files=(