
Project Hexabus

Bernd Lietzow
lietzow@itwm.fhg.de

February 10, 2012

lietzow@itwm.fhg.de

Introduction

1 Introduction

The following document describes the development of a software framework
for the wireless home automation system Hexabus. The software was
developed to run on microcontroller boards specifically manufactured for the
project. The goal of the Hexabus project is to become an affordable, open, end
extensible home automation platform. It is a part of the mySmartGrid project by
Fraunhofer ITWM in Kaiserslautern. mySmartGrid aims to provide intelligent
home device control [2]: Renewable energy sources, e.g. wind generators or
solar panels, can not constantly produce electricity. Their power output varies
with time of day and weather conditions and is often hard to predict. Since
storing the produced energy is costly, ways for demand side management,
controlling energy consumption by energy availability, are examined. In most
households, there are appliances which can store energy in other forms, like
heat pumps or freezers. These can run when a lot of electricity is available, and
work off the stored energy when there is not enough electricity. Furthermore,
household appliances which need little user interaction, like washing machines
or dishwashers, can be automatically started when enough electricity is
available1. Hexabus is being developed to support control of these devices
within the mySmartGrid project is implemented.

Prior to this work, the hardware was available, but the software still lacked
important functionality. The goal of this work was the development of a
software framework that provides basic but essential functionality for the
Hexabus platform.

1.1 Related Work

Several commercial building automation systems are already available. Popular
examples are KNX and LON [12]. Those systems have been developed for the
automation of large buildings. While they are extensible and support a variety
of compatible devices, they are too expensive for most home use scenarios.
They are intended to be installed, programmed, and maintained by trained
professionals, making them even more expensive for non-professional home
users. In addition most of them require separate wiring which makes them
unsuitable for installation in rented apartments.

However, there are several systems aimed towards the home user market, like
RWE SmartHome [5] and Plugwise [4]. While those systems are designed
specifically for home users, they are still expensive. They are based on

1For example, a washing machine can be loaded by the user in the morning before they leave for work, and the home automation system starts
the machine around noon, when the solar panels on the roof produce the most power.

1

Introduction

proprietary or closed protocols, which limits their extensibility and the number
of compatible devices.

For the mySmartGrid project, an extensible and adaptable system is needed,
because it has to be compatible with the devices already used in the project,
and it has to be adapted to the needs of the experiments.

1.2 What is Hexabus?

Hexabus aims to be an affordable, open, and extensible home automation
system. The devices are built out of inexpensive hardware components and the
protocol description as well as the software source code are publicly
available [3]. The network protocol is based on IPv6, making software
development and integration into existing home networks easy. The
configuration will be possible over a simple point-and-click web interface so
that the end user can set up and reconfigure their home automation system
without the help of a professional. While there are going to be components
available that are directly connected to the 230 V wiring of the house and
therefore have to be installed by a trained electrician, most devices can be set
up by the user themselves. This includes switches that are just plugged into the
wall between the socket and the actual device, and appliances that come with
Hexabus connectivity pre-installed.

1.3 Hexabus Devices

At the moment several Hexabus devices are available:

The Hexabus USB Stick (Figure 1a), which can be plugged into a PC or wireless
router. It provides a 6LoWPAN [14] network interface that is used to
communicate with other Hexabus devices. On a Linux PC, the network device
can be used with the cdc_ether module, and there are also drivers available for
Windows, MacOS, and the OpenWRT firmware package which is compatible
with many wireless routers.

Hexabus Plugs (Figure 1c) are wall-wart style devices which can be plugged into
a power socket. They have a socket themselves where other devices can be
plugged in. The socket can be switched on or off by a relay. A microcontroller
with a wireless interface can communicate with the Hexabus network and
control the relay. There is also the Hexabus Plug+ variant which additionally
measures the electrical current drawn from the socket. The reading can be
accessed from the software running on the microcontroller.

Most development is done on Hexabus Prototyping Boards (Figure 1b). They are
identical to the electronics in the Hexabus Plugs except for the mains power

2

Introduction

(a) Hexabus USB Stick (b) Hexabus Prototyping Board

(c) Hexabus Plug

Figure 1: Hexabus Devices

part: They run off a safe 12 V power supply instead of the 230 V needed for the
Hexabus Plugs, and they do not contain a relay. The prototyping boards are
ideal for testing and development because software developed for them can be
run on the Hexabus Plugs without any modification.

The prototyping boards and the Hexabus Plugs contain an ATMEL ATMega 1284
microcontroller. This is a microcontroller with an 8-bit RISC CPU that runs at
20 MHz and has 128 kiB of flash memory, 16 kiB of RAM, and 4 kiB EEPROM [7].
It runs the Contiki operating system. Wireless connectivity is handled by an
ATRF212 chip which provides a wireless link on 868 MHz used for the 6LoWPAN
IPv6 network connectivity. The microcontroller has several IO pins, some of
which are used to control the relay and receive the power meter reading. Eight
of the IO pins are connected to soldering points on the board allowing for
addition of external electronics, for example a OneWire compatible temperature
sensor, pushbuttons, or optocouplers controlling other electric or electronic
devices. With this connectivity, the Hexabus prototyping boards are used to
experimentally connect different appliances to a Hexabus network.

Contiki is a lightweight operating system for memory constrained systems [9]. It
runs on a variety of 8-bit platforms, including the Texas Instruments MSP430
microcontroller series and the ATMEL ATMega microcontrollers used in the

3

The Hexabus Network Protocol

Hexabus hardware.

Contiki provides the 6LoWPAN IPv6 stack used for the Hexabus network. It also
provides cooperative multitasking by means of protothreads. As opposed to
regular threads, protothreads do not have their own stack for local variables so
the only way to preserve data over blocking calls (the only point where context
switches can occur in cooperative multitasking) is through global variables. In
exchange for this drawback, protothreads need very little memory because for
each thread, only the instruction pointer has to be stored permanently in main
memory [10].

1.4 Goals

The goal of this project was to develop the components needed to implement a
home automation system, namely:

• The design of the network protocol
• The implementation of this protocol on embedded hardware
• An application for a PC that is able to interact with this protocol
• The program that controls the functions of each device

The idea of the Hexabus protocol is to offer most, if not all, functionality
without a central server. All devices which generate input to the network, e.g.
pushbuttons or temperature sensors, must broadcast their readings either when
a certain events occur, for instance when a button is pressed, or periodically.
The devices receiving these broadcasts must decide by themselves how to react
on these broadcasts. For example, a light has to turn on when it receives the
“button pressed” broadcast from the pushbutton associated with it, and the
room heater must switch off once the room temperature reading broadcast
from a temperature sensor rises above a certain value.

2 The Hexabus Network Protocol

The Hexabus network protocol uses UDP as the transport layer protocol and
IPv6 as the network layer protocol. Since memory and bandwidth of the
embedded systems the Hexabus is intended to run on are limited, the 6LoWPAN

4

The Hexabus Network Protocol

Figure 2: Interaction of Hexabus software components.

protocol is used. It is a set of standards which enables the use of IPv6 over
low-power wireless area networks [14]. 6LoWPAN maintains compatibility to
IPv6 while adapting the format to make network packets suitable for low power
wireless network, for example by fragmentation and header compression [13].
6LoWPAN typically uses the 802.15.4 wireless network standard [6], which is
also used in ZigBee.

Mini-Glossary

Endpoint A feature of a device. An endpoint is identified by it’s
endpoint ID and always has a value. It is typically acces-
sible from the network.

Device descriptor The value of the special endpoint with the EID 0. It con-
tains information about the device’s other endpoints.

Query Requests a device to transmit the current value of a par-
ticular endpoint.

Write Requests a device to set a particular endpoint to a certain
value.

Info A piece of information containing the current value of
an endpoint.

Broadcast An info being sent to the link-local multicast address,
therefore being readable to all devices on the same
Hexabus network2.

Endpoint query Requests a device to transmit an endpoint info.
Endpoint info A piece of inforamtion about a particular endpoint: The

datatype and a short text describing the functionality.

2.1 Hexabus Devices And Endpoints

A Hexabus device offers several functions called endpoints. Each endpoint has
an identification number (the endpoint ID or EID) and a value. All capabilities of
a particular device are represented by endpoints. The endpoint with the EID 0 is

2The notion of a network here refers to the PAN ID of the 6LoWPAN. The link-local multicasts therefore go to all devices on this PAN because the
PAN is treated as a single IPv6 link.

5

The Hexabus Network Protocol

a special endpoint containing the device descriptor that indicates which other
endpoints exist on a device. Other endpoints may offer access to the device’s
functionality. For example, the endpoint 1 on a Hexabus Plug is the state of the
relay. It can be switched on or off using write packets, or read with a query
packet. Endpoint 2 is the power meter reading which can be queried, but not
written.

2.1.1 The Device Descriptor

The endpoint 0 of each device contains the device descriptor. It is a 32 bit vector
containing information about the device’s endpoints. Each bit stands for an
endpoint ID on the device. If the bit is set to 1, the endpoint exists, if it is set to
0, the endpoint does not exist. The least significant bit (bit number 0) of the
device descriptor corresponds to endpoint ID 1, the next bit (bit number 1)
corresponds to endpoint ID 2, and so on. This way, the first 32 endpoints of the
device are described. Endpoint 32 contains another device descriptor if
endpoints with IDs greater than 32 are present on the device (otherwise it is
nonexistent). This device descriptor describes the endpoints 33 to 64. This
pattern continues up to 255 endpoints.

2.1.2 Querying and Writing Values

Each value can be directly set by sending a write packet to the device. The
device then reacts to this either by executing the appropriate action to set the
endpoint to the new value, or by sending an error packet if the endpoint is
nonexistent or cannot be written.

Each endpoint has a data type associated with it, such as boolean, 8 bit integer,
32 bit integer or 32 bit floating point. The network protocol offers functions to
find out which data type belongs to a particular endpoint. When writing to an
endpoint, the correct data type has to be used.

On the Hexabus Plug, a process named udp_handler is used for accessing the
network. If a read or write packet is received, the request is passed to a module
named endpoint_access which provides access to the device’s features
themselves, translating generic read and write calls into the specific actions of
the device (see Figure 2).

2.1.3 Broadcasting Values

The Hexabus concept relies on values being broadcast over the network. The
process value_broadcast is responsible for periodically sending out these
broadcasts. It has a timer that runs for 60 seconds. When this timer expires it is

6

The Hexabus Network Protocol

reset and another timer is started which runs for a (pseudo)random time
between 0 and 60 seconds, before a broadcast packet is sent out. In every 60
second interval, a value is broadcast once, but the actual point of time when it
is broadcast within the interval varies. This random timer is used in order to
reduce network congestion which might occur if all devices try to broadcast at
the same time repeatedly. If the interval was the same for all devices, the
packets could collide every time the devices broadcast, but if a randomized
timeout is used, these collisions rarely occur.

Of course there are also cases where one does not want to broadcast a value
periodically, but immediately when a special event occurs. This is handled by the
process where the event is handled. For example, if a broadcast has to be sent
every time a button is pushed, the broadcasting function in value_broadcast is
called from the Contiki process reading the pushbutton values.

2.1.4 The endpoint_access Module

The endpoint_access module converts the Hexabus protocol actions (reading
and writing endpoints) to the concrete function calls for the processes and
hardware components associated to the endpoints. endpoint_access provides
the functions endpoint_read and endpoint_write, which call the more complex
functions needed to actually execute the actions associated with the particular
read or write calls. For example, when endpoint_access is instructed to write to
endpoint 1, it calls the appropriate functions to switch the socket’s relay on or
off. It reports errors (e.g. when trying to write to a read-only endpoint, or when
there is a datatype mismatch). There are also functions to find out the name
and datatype of a particular endpoint.

2.1.5 Extending a Hexabus Device

Extending a Hexabus device can be done by adding a Contiki process for the
desired functionality. This can be a simple software process receiving and
broadcasting values to and from the network, but most commonly, the board’s
IO-port is used to attach different hardware components that will either be
controlled via the Hexabus network, or provide data input to it. Then, the
functionality has to be broken down into endpoints and values. Those
endpoints have to be defined in the endpoint_access module, and the actions
to read and write those endpoints have to be implemented. Additionally, if
values from the endpoints should be broadcast, their EIDs have to be entered
into the value_broadcast module configuration.

7

The Hexabus Network Protocol

2.2 Modeling the Protocol

A model of this protocol was built using Promela [11]. Only the broadcast
sending and receiving parts were modeled because the direct query/info
functionality is only intended as a debugging mechanism which should only be
used for manual setup and testing, not in continuous operation. The
broadcasting and broadcast receiving mechanism of the protocol is stateless: A
node can send out a broadcast at any time, and it can receive a broadcast at any
time.

When only this portion of the protocol is taken into account, simulation of a
single node is simple: It just has a single state, and can send info messages to a
channel, or read info messages from a channel. But the nodes themselves also
contain programs, and their internal state depends on the values they receive as
broadcasts. Therefore the model was extended: There is a sending node, which
sends out messages which have one of four values, they are called info0, info1,
info2, and info3. There are N receiving nodes, which change their internal state
when they receive a broadcast. The internal state of the receivers is modeled as
an array localX[N], where every receiver rn can change the element localX[n].
The network is modeled by a process named broadcastHub which reads
messages from one channel and copies them to several channels, one for each
receiver. This allows for the inclusion of a lossy-demon to simulate a network
link experiencing packet loss in each of the channels. The lossy-demon can
either copy messages from its input to output channel, or “lose” them,
meaning a message is read from the input channel without copying it to the
output channel.

Consistency criteria were defined: We call the network consistent when for
every broadcasting endpoint e, every node whose internal state depends on the
value of e, has received a broadcast of the current value of e at least once.

In continuous use, a network can become nonconsistent when info broadcasts
are lost. For normal operation, it is not necessary that a network is consistent all
the time. A node which has not received the current value yet will just not react
to it. As long as the network becomes consistent again before the values
change3, all the nodes will get the chance to react to the current value, albeit
maybe not all at the same time.

3Or, since the state machines which compute the reaction on the broadcasts (see below) usually use greater-than or less-then as comparison
operators, the network just has to become consistent again before the values change too much. So in practice the broadcasting interval should be
chosen in a way so that several broadcasts occur before the value crosses a threshold which triggers a reaction of a node.

8

The Hexabus Network Protocol

Figure 3: Example message exchange over the Hexabus network

To check whether a network will reach consistency one could use the following
claims: (For all pairs of nodes na, nb)
• ♦�localX[a] = localX[b]: At some time, the network becomes and stays

consistent.
• �♦localX[a] = localX[b]: The network will always be able to reach a

consistent state.
If one assumes that packet loss over the wireless link is purely random, a
scenario where the network can never become consistent can be constructed.
But under the assumption that of every n packets, at least some fraction m of
the packets reach their destination, we can see that the network can always
become consistent after at most n−m + 1 repeated broadcasts of the same
value. To simulate this situation, the node periodicLossy was implemented. It
either consumes or forwards messages, but it guarantees that a certain fraction
of messages are forwarded.

The source code of the model can be found in Appendix C.

The model does not take into account the time constraints such a system has:
There are scenarios with direct user interaction, e.g. the user pushing a button
to turn on a lamp, where the reaction has to be carried out within a short
amount of time. It is however not desirable to just send off multiple broadcasts
in quick succession because this might congest the network. This problem still
has to be investigated.

2.3 The Hexabus Network Packet Format

Hexabus network packets are transmitted using 6LoWPAN. This is fully
compatible to IPv6, so the packets can be routed to different networks. Using a
router4, the Hexabus devices can communicate with computers or other devices

4The test networks use an OpenWRT equipped wireless router with a Hexabus USB stick plugged into it

9

The Hexabus Network Protocol

connected to the wireless or wired local area network. It is also possible to route
the packets over the Internet to remote machines.

Hexabus devices listen on port 61616 for incoming UDP packets. This can be
broadcasts or packets directed to the device itself. Port 61616 was chosen
because for port numbers 61616 through 61631, the 6LoWPAN header
compression can compress the port number to four bits [14].

Byte 0-3 4 5 6.. (variable length) n− 1, n
Field "HX0B" Packet type Flags Payload CRC

Hexabus packets are wrapped in UDP packets. The UDP data of a Hexabus
packet starts with the bytes 0x48 0x58 0x30 0x42 ("HX0B") to identify it as a
Hexabus packet. Then follow one byte denoting the packet type and one byte
reserved for flags that may be present in future versions of the protocol5, but
are not yet implemented. The actual payload starts at byte 6. Its length is
variable and depends on the packet type and data type being transmitted. The
last two bytes contain the checksum6.

2.3.1 Error Packets

An error packet indicates something went wrong.

Byte 0-3 4 5 6 7, 8
Field Header Packet type Flags Error Code CRC
Content "HX0B" 0x00 see below

The packet type 0 marks the packet as an error packet. The error code field
gives more specific information:

Error
code

Error Description

0x01 Unknown EID A query or write packet was received, but
the EID matches none of the endpoints on
the receiving device.

0x02 Write Read-Only A set value-packet was received, but the EID
corresponds to a read-only endpoint.

0x03 CRC Failed The CRC check of a packet failed.
0x04 Data type mismatch A write packet was received, but the data

type does not match that of the endpoint.

5e.g. a request for acknowledgement to make sure a packet has reached its destination
6The checksum is generated via the CRC16-Kermit method: Generator Polynomial: 0x1021, Initial value: 0x0000, Reflect Input: true, Reflect

Output: true, XOR Output: 0x0000 [1]

10

The Hexabus Network Protocol

2.3.2 Info Packets

An info packet contains information about an endpoint’s value. This can be the
reply to a query of that endpoint or an autonomous broadcast of a value. If it is
a reply to a query it is sent to the source address of the query packet. If it is a
broadcast it is sent to the link-local multicast address.

Byte 0-3 4 5 6 7 8.. n− 1, n
Field Header Type Flags EID Data type Value CRC
Content "HX0B" 0x01

An info packet has the packet type 1. The EID field contains the endpoint ID of
the endpoint on the sending device whose value is transmitted. The length of
the value field varies depending on the data type. The following data types are
implemented:

Number Data type Length
(bytes)

0x00 Reserved (used to denote “no data at all” inter-
nally)

0x01 Boolean (represented by values 0x00 (false) and
0x01 (true))

1

0x02 8 bit unsigned integer 1
0x03 32 bit unsigned integer 4
0x04 Date and time data structure 8
0x05 32 bit floating point value 4
0x06 Character string (fixed length) 128
0x07 Timestamp: Seconds since device was booted

(32 bit unsigned integer)
4

2.3.3 Write Packets

A write packet is used to directly set an endpoint’s value on a specific device to a
specific value.

Byte 0-3 4 5 6 7 8.. n− 1, n
Field Header Type Flags EID Data type Value CRC
Content "HX0B" 0x04

The structure of a write packet is basically the same as an info packet. It is
marked by packet type 4. The difference to the info packet is that in an info
packet, the endpoint ID refers to an endpoint on the sending device, but in a
write packet, the endpoint ID refers to an endpoint on the receiving device.

11

The Hexabus Network Protocol

If a device receives a write packet for an endpoint which can not be written to
(e.g. power metering on a Hexabus Plug) it will reply with an error packet
containing the error code write read-only. If a device receives a write packet for
an endpoint ID not present on this device, it will reply with an error packet
containing the error code unknown EID. Upon receiving a write packet whose
data type does not match that of the endpoint to be written to, a device replies
with an error packet with the error code data type mismatch.

If the endpoint is present on the device, is writable, and the endpoint ID
matches, the data is written to the endpoint as described above.

2.3.4 Query Packets

The query packets are used to request an immediate and direct (not broadcast)
transmission of an info packet containing the value of a specific endpoint.

Byte 0-3 4 5 6 7, 8
Field Header Packet type Flags endpoint ID CRC
Content "HX0B" 0x03

The packet type marking a packet as a query packet is packet type number 3. A
device receiving a query packet either responds with an info packet containing
the endpoint ID of the queried endpoint and its value, or—if the endpoint is not
present on the device—with an error packet carrying the error code unknown
EID.

2.3.5 Endpoint Query and Info Packets

To find out an endpoint’s properties, the endpoint query packet can be used. It
uses the same layout as the query packet, but has packet type 0x0A (10). When
a device receives an endpoint query for an existing endpoint, it responds with
an endpoint info packet. The endpoint info packet contains the datatype of the
endpoint and a character string containing a textual description of the
endpoint. The endpoint info packet uses the layout from the character string
info packet, but with datatype 0x09. The datatype and endpoint ID of an
endpoint info packet are set to the datatype and endpoint ID of the endpoint it
describes7. If a device receives an endpoint query for a nonexisting endpoint, it
responds with the “unknown EID” error message. When the endpoint info for
endpoint ID 0 (device descriptor endpoint) is queried, the response contains the
name of the device itself.

7 In contrast to the info packets, the datatype-field is not needed to find out the length of the payload, since endpoint info packets always contain
a 128 byte character string.

12

Rule-based Device Control Using
State Machines

2.4 Implementation of the Network Protocol

The network protocol described here was implemented on the Hexabus
prototyping boards under the Contiki operating system. It also runs on the
Hexabus Plugs. The Linux command line application hexaswitch was written. It
can be used to send all packet types and values, and to receive info packets as
direct messages and broadcasts and print them out on the console. The
network part and protocol implementation of this application were later split off
into a library named libhexabus which can be used to implement other Hexabus
compatible applications.

3 Rule-based Device Control Using State Machines

The main part of the Hexabus software concept is the device control logic. Each
device has to react to the values broadcast over the network and execute the
appropriate actions.

The programs needed to control a device can depend on a multitude of value
broadcasts and also have temporal dependencies. For example, a rule
formulated in natural language could read: “Between 5pm and 7am, when the
motion detector is triggered, turn on the lights for 5 minutes.”

To represent these rules, the concept of state machines is used. Each device has
a state machine which can control its endpoints.

These state machines consist of
• a set of states S with an initial state S0 ∈ S
• an input alphabet Σ consisting of triples (d, er, vr)
• an output alphabet Λ consisting of pairs (el, vl)
• a transition function T : S × Σ→ Λ× S × S
Σ contains triples (d, er, vr) of a device IP address d, an endpoint ID er, and a
value vr. These are called remote endpoints, because the endpoints from which
the values originate typically reside on remote devices. Λ contains pairs (el, vl)
of endpoint IDs el and values vl. Since these endpoints are on the same device
as the state machine, we call them local endpoints.

The transition function T differs from normal state machines: It is defined as
T : S × Σ→ Λ× S × S. The transition function maps to triples (a, sg, sb) and is

13

Rule-based Device Control Using
State Machines

Figure 4: State machine representing the control program: “Between 5pm and
7am, when the motion detector is triggered, turn on the lights for 5 minutes.”

read as follows: If the machine is in state s ∈ S and receives a broadcast b ∈ Σ,
and T (s, b) = (a, sg, sb), try running the action a = (el, vl) ∈ Λ, i.e. set the
endpoint el to the value vl. If the action succeeds, go to the good state sg, if it
fails, go to the bad state sb.

The above example could be expressed with the state machine shown in
Figure 4.

3.1 Implementation of the State Machine

The state machines implemented in the Hexabus devices have two kinds of
transitions: Value-dependent transitions and date/time dependent transitions.
To store those transitions, three tables are used: The conditions table, the table
of value-dependent transitions, and the table of date/time-dependent
transitions.

3.1.1 Transitions

Each transition has a condition index which gives the position of its condition
entry in the conditions table. This is intended to save some memory since
transitions sharing the same conditions can point to the same entry in the
conditions table. Transitions also have a number of state indices: fromState, the
state the machine has to be in in order for the transition to be applicable,
goodState and badState. There is no state table since states are entirely defined
by the entries in the transition table. Furthermore it stores an endpoint ID and a
value, which constitute the action described above.

14

Rule-based Device Control Using
State Machines

The C-Code defining an entry in the transition table can be found in Appendix
A.

To execute the action, the endpoint_access module is used (see Figure 2). The
endpoint_write function returns 0 if the action succeeded, and an error code if
it fails. According to this return value the state machine changes into either
goodState or badState.

3.1.2 Conditions

Conditions fall into two categories for the two kinds of transitions. They are
stored in the condition table, as a data structure which holds a source IP
address, a source endpoint ID, a comparison operator, and a constant value to
compare with.

For all transitions going out of the current state, the value-dependent transitions
are checked each time a value broadcast is received. The first transition whose
condition holds is executed. For the value-dependent transition, the comparison
operator can be =, ≤, ≥, <, >, or 6= and is stored encoded as an 8 bit value in
the condition data structure. To execute a transition, its associated condition has
to hold: First the source IP is checked. The broadcast has to originate from the
host specified in the condition. Two special source IPs are defined: The
unspecified IP address consisting entirely of zeros, which is interpreted as “any
host”, and the localhost IP address ::1. If the IP matches, the value of the
endpoint is compared to the condition’s constant according to the comparison
operator, and the transition executed if the condition holds.

The implementation of the data structure used for an entry in the condition
table is given in Appendix B.

The date/time-dependent transitions are checked periodically, every five
seconds. The conditions for them are handled a bit differently. Source IP and
endpoint ID do not matter since the conditions are checked against the internal
clock of the device, and the 8 bit value for the comparison operator is used in a
different way. The bits 0..6 are used to denote the different fields of the
date/time data structure. When a bit is set to 1, the corresponding field is
checked: Bit number 0 stands for the hour field, bit number 1 for the minutes,
bit number 2 for the seconds, and so on8. Bit number 7 is the comparison
operator: The selected field of the date/time stored in the condition is compared
to the current date and time. If bit number 7 is set the condition evaluates to
true if the corresponding field in the current date/time is greater or equal to the
condition’s constant. When bit number 7 is not set it evaluates to true if it is less
than the condition’s constant.

8Bit no. 3: Day of month; bit no. 4: Month; bit no. 5: Year; bit no. 6: Day of week.

15

Course of the Project

It is also possible to execute a transition if the state machine has remained in a
certain state for a set amount of time. Those transitions have timestamp
conditions: Their constant holds a 32 bit value indicating the number of seconds
the machine can remain in the fromState until the transition is executed. To
facilitate this the device counts the seconds since it was booted. Each time the
state machine executes a transition, this timestamp is copied into a local
variable called inStateSince. When checking a timestamp condition, this variable
is subtracted from the current timestamp and the transition executed if the
difference is higher than the condition’s constant.

3.1.3 Storing the Tables

The tables which contain the transitions and conditions are stored in the device’s
EEPROM. In order to reduce memory usage, a transition or condition data
structure is only copied into RAM when it is currently being checked. With the
current configuration, 512 bytes in the EEPROM are reserved for each table. This
is enough for 18 conditions and 2× 36 transitions.

When work on the state machines was first started, the transition and condition
tables had to be hard-coded so that they were written into the device’s EEPROM
at boot-up. Later, a student worker developed a web interface which runs on
the devices’ embedded HTTP server allowing the user to write and change the
state machine’s condition and transition tables while the device is running.

4 Course of the Project

To evaluate the fitness of the 6LoWPAN protocol and the ATMega
microcontrollers, at the beginning of the project experiments were done on
ATMEL AVR Raven microcontroller kits. These kits contain a USB stick with a
2.4GHz transceiver as well as an experimenting board with two microcontrollers
and an LCD on it. One microcontroller is an ATMega 3290PV, which drives the
LCD. The other is an ATMega 1284PV which is very similar to the
microcontrollers used in the current Hexabus devices. The boards are capable of
running Contiki and can communicate via 6LoWPAN. The microcontrollers and
radio transceiver components used for the actual Hexabus electronics were
chosen because of their similarity with the components of the AVR Raven
products.

16

Course of the Project

Figure 5: Several experimental Hexabus-enabled devices (left to right): Temper-
ature controlled water boiler9, infrared motion detector, pushbuttons, electric
window blind motor, a Hexabus Plug with a temperature sensor, and a Hexabus
Plug with a light used as visual output

The Hardware for the Hexabus Plugs and USB sticks was developed by
embedded brains GmbH in Puchheim. Basic functionality (adaption of Contiki,
IPv6 connectivity, wirelessly switching a socket on and off and reading the
power measurement) was implemented at Fraunhofer ESK in Munich.

Once the Hexabus prototyping boards and USB sticks were delivered,
development and experiments were switched over to them. Now the 868 MHz
frequency band was used. Since now also Hexabus Plugs were available, the
power meters contained in them could be used for testing value broadcasting
and reacting to broadcasts.

After the idea of the protocol was specified, a model was built using Promela
and simulated using SPIN [11]. This model can be used in the future to analyze
the behaviour of the network if not all value broadcasts reach their destination:
Several broadcasting and receiving nodes can be connected with a lossy-demon
that drops packets randomly or with a pre-set pattern. This can be used to find
out how packet loss impairs the operation of a Hexabus network.

As soon as the basic functionality of the network protocol was implemented,
the software was being used by other students and student workers for their
own projects:

Several Hexabus boards were equipped with temperature sensors and

17

Conclusion

distributed in the hallway and offices. A data logging application was
implemented using libhexabus, and a temperature controlled water boiler was
built using Hexabus components. These serve as experiments for a diploma
thesis conducted at FH Kaiserslautern (development of a distributed heating
control system). Other experiments include a Hexabus controlled window blind
motor, an infrared motion detector, a door sensor, a sunlight sensor, and several
boxes with pushbuttons serving as input devices for the system. Some of these
prototypes can be seen in Figure 5.

These experiments serve as a demonstration of the Hexabus system’s capabilities
as well as a means of finding out what is needed to make a functional home
automation system. Having more people work with the software also provided
valuable input in the form of feature requests and bug reports, as newly
implemented features were not only tested for a simple test application or
specified test cases, but put to a thorough test being used in several
applications simultaneously.

To coordinate the software development between the different people working
on and with the software the git distributed version control system [8] was
used. A central repository was hosted on github.com which also provides a Wiki
for documentation and an issue tracking system for bug reports and feature
requests.

5 Conclusion

This document described the development of various software components for
the wireless home automation system Hexabus. The concept of the system is
that all devices offering input to the network have to broadcast their readings,
and all actor devices decide using control rules implemented as a state machine
how to react to the broadcasted readings. The network protocol used for
broadcasting the readings as well as for directly accessing the devices is
described. The implementation of the state machines executing the control
rules is also described.

Several test devices for the system have been implemented, and the system is
currently being tested by several people in different environments.

9The image only shows the boiler with the temperature sensor. The heating coil of the boiler is controlled by a solid state relay not pictured here.

18

Conclusion

5.1 Future Work

The current version of the protocol does not contain a mechanism to deal with
lost packets. This is no problem when a packet of a periodic value broadcast is
lost, since the receiver will just wait for the next one. But when pushbuttons or
other devices for user input are used, a lost packet can cause the system to not
react to the user’s input in the desired way. Imagine a system where one
pushbutton controls two lamps. A single push of the button turns both of the
lamps on or off. Since each lamp only knows its own state, it has to toggle
when the “button pushed” broadcast is received. Now when the user pushes
the button, it could happen that one of the lamps receives the broadcast and
the other does not. From that point on one of the lamps is on while the other is
off. A way to work around this problems should be investigated, for example
using acknowledgement packets or sequence numbers in certain types of
broadcasts.

From the current state of development, several improvements to the state
machine implementation can be made. A considerable amount of space in the
EEPROM can be saved by using a separate table for the source IP addresses. An
IPv6 address is 16 bytes long, but it is often the case that many conditions share
the same source IP address, so several 16 byte “source address” entries could be
compressed to 1 byte indices pointing to a single 16 byte address table entry.
Another approach to fit more entries into the EEPROM could be making the
tables’ start addresses dynamic, so that a larger condition table can be used if
the transition tables have less entries and vice-versa. The tables could also be
made smaller by introducing transitions that have multiple conditions which are
connected by boolean operators.

The number of transitions can be reduced further by introducing broadcast
groups: A common usage scenario is several light switches controlling a lamp.
With the current state machine implementation, a condition is needed for each
light switch. This could be simplified by introducing group IDs. All the light
switches would share the same group ID. This group ID would be included in
their broadcasts, and instead of reacting to each broadcasting light switch IP
separately, the lamp could just have one transition reacting to that group ID.

It is still not clear whether the state machine concept is the best solution for
rule-based control in a home automation system. Different ways of
programming the devices, e.g. using a simple interpreted programming
language like FORTH, should be examined.

Furthermore, the distributed state machines are not an easy concept for an end
user to understand. If the system should be programmable by users themselves
without prior training, there has to be another layer of abstraction. A user
interface which is easier to understand should be designed and implemented.
The user could interact with a simple point-and-click interface providing a view

19

References

of their network with devices or parts of the network by graphical objects. They
could then draw lines between the objects to define control rules. This control
program could then be compiled, sliced into the programs for the individual
devices and uploaded automatically.

References

[1] Catalogue of parametrised CRC algorithms.
Website: http://regregex.bbcmicro.net/crc-catalogue.htm.

[2] MySmartGrid. Website: http://www.mysmartgrid.de/.
[3] mysmartgrid/hexabus on GitHub.

Website: http://github.com/mysmartgrid/hexabus.
[4] Plugwise. Website: http://www.plugwise.com.
[5] RWE SmartHome. Website: www.rwe-smarthome.de.
[6] IEEE Standard for Local and metropolitan area networks–Part 15.4:

Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std
802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), 5 2011.

[7] Atmel Corporation, San Jose, CA 95131. ATMega 1284P Datasheet.
[8] Scott Chacon. Pro Git (Expert’s Voice in Software Development). Apress,

August 2009.
[9] Adam Dunkels, Björn Grönvall, and Timo Voigt. Contiki - a lightweight

and flexible operating system for tiny networked sensors. In Proceedings
of the 29th Annual IEEE International Conferece on Local Computer
Networks, 2004, pages 455–462, November 2004.

[10] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.
Protothreads: simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings of the 4th
international conference on Embedded networked sensor systems, SenSys
’06, pages 29–42, New York, NY, USA, 2006. ACM.

[11] Gerard J. Holzmann. The SPIN Model Checker - Primer and Reference
Manual. Addison-Wesley, 2004.

[12] Herrmann Merz, Thomas Hansemann, and Christof Hübner.
Gebäudeautomation. Carl Hanser Verlag München, 2nd edition, 2010.

[13] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th
workshop on Embedded networked sensors, EmNets ’07, pages 78–82,
New York, NY, USA, 2007. ACM.

[14] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded
Internet. John Wiley & Sons Ltd, 2009.

20

http://regregex.bbcmicro.net/crc-catalogue.htm
http://www.mysmartgrid.de/
http://github.com/mysmartgrid/hexabus
http://www.plugwise.com
www.rwe-smarthome.de

C data structure for a state
machine transition

A C data structure for a state machine transition

1 s t ruc t t r a n s i t i o n {
2 u i n t 8 _ t f romState ; / / c u r r e n t s t a t e
3 u i n t 8 _ t cond ; / / index of c o n d i t i o n tha t must be matched
4 u i n t 8 _ t e id ; / / i d of endpoint which should do something
5 u i n t 8 _ t goodState ; / / new s t a t e i f e v e r y t h i n g went f i n e
6 u i n t 8 _ t badState ; / / new s t a t e i f something went wrong
7 s t ruc t hxb_va lue va lue ; / / Data f o r the endpoint
8 } _ _ a t t r i b u t e _ _ ((packed)) ;

B C data structure for a state machine condition

hxb_value is a wrapper structure for the different data types supported as
constants.

1 s t ruc t c o n d i t i o n {
2 u i n t 8 _ t s o u r c e I P [1 6] ; / / source I P address
3 u i n t 8 _ t sourceE ID ; / / E ID we expect data from
4 u i n t 8 _ t op ; / / comparison opera to r
5 s t ruc t hxb_va lue va lue ; / / the cons tan t to compare with
6 } _ _ a t t r i b u t e _ _ ((packed)) ;

C Promela Model for a simple Hexabus network

1 / / Number of messages tha t can be i n a channel s i m u l t a n e o u s l y
2 #define chanS ize 1
3

4 #define N 3 / / number of r e c e i v i n g nodes
5

21

Promela Model for a simple
Hexabus network

6 chan broadcastChannel [N] = [chanS ize] of { mtype } ;
7

8 / / Messages
9 mtype = { info0 , info1 , info2 , in fo3 }

10

11 byte sensorX = 0;
12

13 / / t h i s node sends out b roadcas t s
14 proctype sendingNode (chan output) {
15 S t I n i t i a l :
16 goto StNetworkJo ined ;
17 StNetworkJo ined :
18 i f
19 : : (sensorX == 0) −> output ! in fo0 ; sensorX ++; goto StNetworkJo ined ;
20 : : (sensorX == 1) −> output ! in fo1 ; sensorX ++; goto StNetworkJo ined ;
21 : : (sensorX == 2) −> output ! in fo2 ; sensorX ++; goto StNetworkJo ined ;
22 : : (sensorX == 3) −> output ! in fo3 ; sensorX = 3; goto StNetworkJo ined ; / /

keep b roadcas t i ng "3"
23 f i ;
24 }
25

26 proctype broadcastHub (chan i npu t) {
27 in t i ;
28 S t I n i t i a l :
29 i f
30 : : i npu t ? in fo0 −> goto StSendZero ;
31 : : i npu t ? in fo1 −> goto StSendOne ;
32 : : i npu t ? in fo2 −> goto StSendTwo ;
33 : : i npu t ? in fo3 −> goto StSendThree ;
34 f i ;
35 StSendZero :
36 i = 0 ;
37 do
38 : : (i < N) −> broadcastChannel [i] ! i n fo0 ; i ++;
39 : : else goto S t I n i t i a l ;
40 od ;
41 StSendOne :
42 i = 0 ;
43 do
44 : : (i < N) −> broadcastChannel [i] ! i n fo1 ; i ++;
45 : : else goto S t I n i t i a l ;
46 od ;
47 StSendTwo :
48 i = 0 ;
49 do
50 : : (i < N) −> broadcastChannel [i] ! i n fo2 ; i ++;
51 : : else goto S t I n i t i a l ;
52 od ;
53 StSendThree :
54 i = 0 ;
55 do
56 : : (i < N) −> broadcastChannel [i] ! i n fo3 ; i ++;
57 : : else goto S t I n i t i a l ;
58 od ;
59 }
60

61 in t l o c a l X [N] ;
62

63 proctype r ece i v ingNode (chan i npu t ; in t ID) {

22

Promela Model for a simple
Hexabus network

64 S t I n i t i a l :
65 goto StNetworkJo ined ;
66 StNetworkJo ined :
67 i f
68 : : i npu t ? in fo0 −> l o c a l X [ID] = 0 ; goto StNetworkJo ined ;
69 : : i npu t ? in fo1 −> l o c a l X [ID] = 1 ; goto StNetworkJo ined ;
70 : : i npu t ? in fo2 −> l o c a l X [ID] = 2 ; goto StNetworkJo ined ;
71 : : i npu t ? in fo3 −> l o c a l X [ID] = 3 ; goto StNetworkJo ined ;
72 f i ;
73 }
74

75 proctype p e r i o d i c L o s s y (chan input , output ; byte keep , l o s e) {
76 byte kept ; byte l o s t ;
77 S t I n i t i a l :
78 kept = 0; l o s t = 0 ; goto StRunning ;
79 StRunning :
80 i f
81 : : (kept < keep) −> kept ++; goto StForward ;
82 : : (l o s t < l o s e) −> l o s t ++; goto S t Ea t ;
83 : : (kept == keep && l o s t == l o s e) −> kept = 0; l o s t = 0 ; goto StRunning ;
84 f i ;
85 StForward :
86 i f
87 : : i npu t ? in fo0 −> output ! in fo0 ; goto StRunning ;
88 : : i npu t ? in fo1 −> output ! in fo1 ; goto StRunning ;
89 : : i npu t ? in fo2 −> output ! in fo2 ; goto StRunning ;
90 : : i npu t ? in fo3 −> output ! in fo3 ; goto StRunning ;
91 f i ;
92 S t Ea t :
93 i f
94 : : i npu t ? in fo0 −> goto StRunning ;
95 : : i npu t ? in fo1 −> goto StRunning ;
96 : : i npu t ? in fo2 −> goto StRunning ;
97 : : i npu t ? in fo3 −> goto StRunning ;
98 f i ;
99 }

100

101 i n i t {
102 in t r e c e i v e r s = 0 ;
103 chan send2hub = [chanS ize] of { mtype } ;
104 chan l o s s yChanne l = [chanS ize] of { mtype } ;
105

106 run sendingNode (send2hub) ;
107 run broadcastHub (send2hub) ;
108

109 do
110 : : (r e c e i v e r s < N−1) −> run r ece i v ingNode (broadcastChannel [r e c e i v e r s] ,

r e c e i v e r s) ; r e c e i v e r s ++;
111 : : (r e c e i v e r s == N−1) −> run p e r i o d i c L o s s y (broadcastChannel [r e c e i v e r s] ,

lossyChanne l , 1 , 9) ; run r ece i v ingNode (lossyChanne l , r e c e i v e r s) ;
r e c e i v e r s ++;

112 : : else break ;
113 od ;
114 }

23

	Introduction
	Related Work
	What is Hexabus?
	Hexabus Devices
	Goals

	The Hexabus Network Protocol
	Hexabus Devices And Endpoints
	The Device Descriptor
	Querying and Writing Values
	Broadcasting Values
	The endpoint_access Module
	Extending a Hexabus Device

	Modeling the Protocol
	The Hexabus Network Packet Format
	Error Packets
	Info Packets
	Write Packets
	Query Packets
	Endpoint Query and Info Packets

	Implementation of the Network Protocol

	Rule-based Device Control Using State Machines
	Implementation of the State Machine
	Transitions
	Conditions
	Storing the Tables

	Course of the Project
	Conclusion
	Future Work

	C data structure for a state machine transition
	C data structure for a state machine condition
	Promela Model for a simple Hexabus network

