forked from Esri/wind-js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwindy.js
503 lines (424 loc) · 18.5 KB
/
windy.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/* Global class for simulating the movement of particle through a 1km wind grid
credit: All the credit for this work goes to: https://github.com/cambecc for creating the repo:
https://github.com/cambecc/earth. The majority of this code is directly take nfrom there, since its awesome.
This class takes a canvas element and an array of data (1km GFS from http://www.emc.ncep.noaa.gov/index.php?branch=GFS)
and then uses a mercator (forward/reverse) projection to correctly map wind vectors in "map space".
The "start" method takes the bounds of the map at its current extent and starts the whole gridding,
interpolation and animation process.
*/
var Windy = function( params ){
var VELOCITY_SCALE = 0.011; // scale for wind velocity (completely arbitrary--this value looks nice)
var INTENSITY_SCALE_STEP = 10; // step size of particle intensity color scale
var MAX_WIND_INTENSITY = 40; // wind velocity at which particle intensity is maximum (m/s)
var MAX_PARTICLE_AGE = 100; // max number of frames a particle is drawn before regeneration
var PARTICLE_LINE_WIDTH = 2; // line width of a drawn particle
var PARTICLE_MULTIPLIER = 1/30; // particle count scalar (completely arbitrary--this values looks nice)
var PARTICLE_REDUCTION = 0.75; // reduce particle count to this much of normal for mobile devices
var FRAME_RATE = 20; // desired milliseconds per frame
var BOUNDARY = 0.45;
var NULL_WIND_VECTOR = [NaN, NaN, null]; // singleton for no wind in the form: [u, v, magnitude]
var TRANSPARENT_BLACK = [255, 0, 0, 0];
var τ = 2 * Math.PI;
var H = Math.pow(10, -5.2);
// interpolation for vectors like wind (u,v,m)
var bilinearInterpolateVector = function(x, y, g00, g10, g01, g11) {
var rx = (1 - x);
var ry = (1 - y);
var a = rx * ry, b = x * ry, c = rx * y, d = x * y;
var u = g00[0] * a + g10[0] * b + g01[0] * c + g11[0] * d;
var v = g00[1] * a + g10[1] * b + g01[1] * c + g11[1] * d;
return [u, v, Math.sqrt(u * u + v * v)];
};
var createWindBuilder = function(uComp, vComp) {
var uData = uComp.data, vData = vComp.data;
return {
header: uComp.header,
//recipe: recipeFor("wind-" + uComp.header.surface1Value),
data: function(i) {
return [uData[i], vData[i]];
},
interpolate: bilinearInterpolateVector
}
};
var createBuilder = function(data) {
var uComp = null, vComp = null, scalar = null;
data.forEach(function(record) {
switch (record.header.parameterCategory + "," + record.header.parameterNumber) {
case "2,2": uComp = record; break;
case "2,3": vComp = record; break;
default:
scalar = record;
}
});
return createWindBuilder(uComp, vComp);
};
var buildGrid = function(data, callback) {
var builder = createBuilder(data);
var header = builder.header;
var λ0 = header.lo1, φ0 = header.la1; // the grid's origin (e.g., 0.0E, 90.0N)
var Δλ = header.dx, Δφ = header.dy; // distance between grid points (e.g., 2.5 deg lon, 2.5 deg lat)
var ni = header.nx, nj = header.ny; // number of grid points W-E and N-S (e.g., 144 x 73)
var date = new Date(header.refTime);
date.setHours(date.getHours() + header.forecastTime);
// Scan mode 0 assumed. Longitude increases from λ0, and latitude decreases from φ0.
// http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-4.shtml
var grid = [], p = 0;
var isContinuous = Math.floor(ni * Δλ) >= 360;
for (var j = 0; j < nj; j++) {
var row = [];
for (var i = 0; i < ni; i++, p++) {
row[i] = builder.data(p);
}
if (isContinuous) {
// For wrapped grids, duplicate first column as last column to simplify interpolation logic
row.push(row[0]);
}
grid[j] = row;
}
function interpolate(λ, φ) {
var i = floorMod(λ - λ0, 360) / Δλ; // calculate longitude index in wrapped range [0, 360)
var j = (φ0 - φ) / Δφ; // calculate latitude index in direction +90 to -90
var fi = Math.floor(i), ci = fi + 1;
var fj = Math.floor(j), cj = fj + 1;
var row;
if ((row = grid[fj])) {
var g00 = row[fi];
var g10 = row[ci];
if (isValue(g00) && isValue(g10) && (row = grid[cj])) {
var g01 = row[fi];
var g11 = row[ci];
if (isValue(g01) && isValue(g11)) {
// All four points found, so interpolate the value.
return builder.interpolate(i - fi, j - fj, g00, g10, g01, g11);
}
}
}
return null;
}
callback( {
date: date,
interpolate: interpolate
});
};
/**
* @returns {Boolean} true if the specified value is not null and not undefined.
*/
var isValue = function(x) {
return x !== null && x !== undefined;
}
/**
* @returns {Number} returns remainder of floored division, i.e., floor(a / n). Useful for consistent modulo
* of negative numbers. See http://en.wikipedia.org/wiki/Modulo_operation.
*/
var floorMod = function(a, n) {
return a - n * Math.floor(a / n);
}
/**
* @returns {Number} the value x clamped to the range [low, high].
*/
var clamp = function(x, range) {
return Math.max(range[0], Math.min(x, range[1]));
}
/**
* @returns {Boolean} true if agent is probably a mobile device. Don't really care if this is accurate.
*/
var isMobile = function() {
return (/android|blackberry|iemobile|ipad|iphone|ipod|opera mini|webos/i).test(navigator.userAgent);
}
/**
* Calculate distortion of the wind vector caused by the shape of the projection at point (x, y). The wind
* vector is modified in place and returned by this function.
*/
var distort = function(projection, λ, φ, x, y, scale, wind, windy) {
var u = wind[0] * scale;
var v = wind[1] * scale;
var d = distortion(projection, λ, φ, x, y, windy);
// Scale distortion vectors by u and v, then add.
wind[0] = d[0] * u + d[2] * v;
wind[1] = d[1] * u + d[3] * v;
return wind;
};
var distortion = function(projection, λ, φ, x, y, windy) {
var τ = 2 * Math.PI;
var H = Math.pow(10, -5.2);
var hλ = λ < 0 ? H : -H;
var hφ = φ < 0 ? H : -H;
var pλ = project(φ, λ + hλ,windy);
var pφ = project(φ + hφ, λ, windy);
// Meridian scale factor (see Snyder, equation 4-3), where R = 1. This handles issue where length of 1º λ
// changes depending on φ. Without this, there is a pinching effect at the poles.
var k = Math.cos(φ / 360 * τ);
return [
(pλ[0] - x) / hλ / k,
(pλ[1] - y) / hλ / k,
(pφ[0] - x) / hφ,
(pφ[1] - y) / hφ
];
};
var createField = function(columns, bounds, callback) {
/**
* @returns {Array} wind vector [u, v, magnitude] at the point (x, y), or [NaN, NaN, null] if wind
* is undefined at that point.
*/
function field(x, y) {
var column = columns[Math.round(x)];
return column && column[Math.round(y)] || NULL_WIND_VECTOR;
}
// Frees the massive "columns" array for GC. Without this, the array is leaked (in Chrome) each time a new
// field is interpolated because the field closure's context is leaked, for reasons that defy explanation.
field.release = function() {
columns = [];
};
field.randomize = function(o) { // UNDONE: this method is terrible
var x, y;
var safetyNet = 0;
do {
x = Math.round(Math.floor(Math.random() * bounds.width) + bounds.x);
y = Math.round(Math.floor(Math.random() * bounds.height) + bounds.y)
} while (field(x, y)[2] === null && safetyNet++ < 30);
o.x = x;
o.y = y;
return o;
};
//field.overlay = mask.imageData;
//return field;
callback( bounds, field );
};
var buildBounds = function( bounds, width, height ) {
var upperLeft = bounds[0];
var lowerRight = bounds[1];
var x = Math.round(upperLeft[0]); //Math.max(Math.floor(upperLeft[0], 0), 0);
var y = Math.max(Math.floor(upperLeft[1], 0), 0);
var xMax = Math.min(Math.ceil(lowerRight[0], width), width - 1);
var yMax = Math.min(Math.ceil(lowerRight[1], height), height - 1);
return {x: x, y: y, xMax: width, yMax: yMax, width: width, height: height};
};
var deg2rad = function( deg ){
return (deg / 180) * Math.PI;
};
var rad2deg = function( ang ){
return ang / (Math.PI/180.0);
};
var invert = function(x, y, windy){
var mapLonDelta = windy.east - windy.west;
var worldMapRadius = windy.width / rad2deg(mapLonDelta) * 360/(2 * Math.PI);
var mapOffsetY = ( worldMapRadius / 2 * Math.log( (1 + Math.sin(windy.south) ) / (1 - Math.sin(windy.south)) ));
var equatorY = windy.height + mapOffsetY;
var a = (equatorY-y)/worldMapRadius;
var lat = 180/Math.PI * (2 * Math.atan(Math.exp(a)) - Math.PI/2);
var lon = rad2deg(windy.west) + x / windy.width * rad2deg(mapLonDelta);
return [lon, lat];
};
var mercY = function( lat ) {
return Math.log( Math.tan( lat / 2 + Math.PI / 4 ) );
};
var project = function( lat, lon, windy) { // both in radians, use deg2rad if neccessary
var ymin = mercY(windy.south);
var ymax = mercY(windy.north);
var xFactor = windy.width / ( windy.east - windy.west );
var yFactor = windy.height / ( ymax - ymin );
var y = mercY( deg2rad(lat) );
var x = (deg2rad(lon) - windy.west) * xFactor;
var y = (ymax - y) * yFactor; // y points south
return [x, y];
};
var interpolateField = function( grid, bounds, extent, callback ) {
var projection = {};
var velocityScale = VELOCITY_SCALE;
var columns = [];
var x = bounds.x;
function interpolateColumn(x) {
var column = [];
for (var y = bounds.y; y <= bounds.yMax; y += 2) {
var coord = invert( x, y, extent );
if (coord) {
var λ = coord[0], φ = coord[1];
if (isFinite(λ)) {
var wind = grid.interpolate(λ, φ);
if (wind) {
wind = distort(projection, λ, φ, x, y, velocityScale, wind, extent);
column[y+1] = column[y] = wind;
}
}
}
}
columns[x+1] = columns[x] = column;
}
(function batchInterpolate() {
var start = Date.now();
while (x < bounds.width) {
interpolateColumn(x);
x += 2;
if ((Date.now() - start) > 1000) { //MAX_TASK_TIME) {
setTimeout(batchInterpolate, 25);
return;
}
}
createField(columns, bounds, callback);
})();
};
var animate = function(bounds, field) {
function asColorStyle(r, g, b, a) {
return "rgba(" + 243 + ", " + 243 + ", " + 238 + ", " + a + ")";
}
function hexToR(h) {return parseInt((cutHex(h)).substring(0,2),16)}
function hexToG(h) {return parseInt((cutHex(h)).substring(2,4),16)}
function hexToB(h) {return parseInt((cutHex(h)).substring(4,6),16)}
function cutHex(h) {return (h.charAt(0)=="#") ? h.substring(1,7):h}
function windIntensityColorScale(step, maxWind) {
var result = [
/* blue to red
"rgba(" + hexToR('#178be7') + ", " + hexToG('#178be7') + ", " + hexToB('#178be7') + ", " + 0.5 + ")",
"rgba(" + hexToR('#8888bd') + ", " + hexToG('#8888bd') + ", " + hexToB('#8888bd') + ", " + 0.5 + ")",
"rgba(" + hexToR('#b28499') + ", " + hexToG('#b28499') + ", " + hexToB('#b28499') + ", " + 0.5 + ")",
"rgba(" + hexToR('#cc7e78') + ", " + hexToG('#cc7e78') + ", " + hexToB('#cc7e78') + ", " + 0.5 + ")",
"rgba(" + hexToR('#de765b') + ", " + hexToG('#de765b') + ", " + hexToB('#de765b') + ", " + 0.5 + ")",
"rgba(" + hexToR('#ec6c42') + ", " + hexToG('#ec6c42') + ", " + hexToB('#ec6c42') + ", " + 0.5 + ")",
"rgba(" + hexToR('#f55f2c') + ", " + hexToG('#f55f2c') + ", " + hexToB('#f55f2c') + ", " + 0.5 + ")",
"rgba(" + hexToR('#fb4f17') + ", " + hexToG('#fb4f17') + ", " + hexToB('#fb4f17') + ", " + 0.5 + ")",
"rgba(" + hexToR('#fe3705') + ", " + hexToG('#fe3705') + ", " + hexToB('#fe3705') + ", " + 0.5 + ")",
"rgba(" + hexToR('#ff0000') + ", " + hexToG('#ff0000') + ", " + hexToB('#ff0000') + ", " + 0.5 + ")"
*/
"rgba(" + hexToR('#00ffff') + ", " + hexToG('#00ffff') + ", " + hexToB('#00ffff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#64f0ff') + ", " + hexToG('#64f0ff') + ", " + hexToB('#64f0ff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#87e1ff') + ", " + hexToG('#87e1ff') + ", " + hexToB('#87e1ff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#a0d0ff') + ", " + hexToG('#a0d0ff') + ", " + hexToB('#a0d0ff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#b5c0ff') + ", " + hexToG('#b5c0ff') + ", " + hexToB('#b5c0ff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#c6adff') + ", " + hexToG('#c6adff') + ", " + hexToB('#c6adff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#d49bff') + ", " + hexToG('#d49bff') + ", " + hexToB('#d49bff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#e185ff') + ", " + hexToG('#e185ff') + ", " + hexToB('#e185ff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#ec6dff') + ", " + hexToG('#ec6dff') + ", " + hexToB('#ec6dff') + ", " + 0.5 + ")",
"rgba(" + hexToR('#ff1edb') + ", " + hexToG('#ff1edb') + ", " + hexToB('#ff1edb') + ", " + 0.5 + ")"
]
/*
var result = [];
for (var j = 225; j >= 100; j = j - step) {
result.push(asColorStyle(j, j, j, 1));
}
*/
result.indexFor = function(m) { // map wind speed to a style
return Math.floor(Math.min(m, maxWind) / maxWind * (result.length - 1));
};
return result;
}
var colorStyles = windIntensityColorScale(INTENSITY_SCALE_STEP, MAX_WIND_INTENSITY);
var buckets = colorStyles.map(function() { return []; });
var particleCount = Math.round(bounds.width * bounds.height * PARTICLE_MULTIPLIER);
if (isMobile()) {
particleCount *= PARTICLE_REDUCTION;
}
var fadeFillStyle = "rgba(0, 0, 0, 0.97)";
var particles = [];
for (var i = 0; i < particleCount; i++) {
particles.push(field.randomize({age: Math.floor(Math.random() * MAX_PARTICLE_AGE) + 0}));
}
function evolve() {
buckets.forEach(function(bucket) { bucket.length = 0; });
particles.forEach(function(particle) {
if (particle.age > MAX_PARTICLE_AGE) {
field.randomize(particle).age = 0;
}
var x = particle.x;
var y = particle.y;
var v = field(x, y); // vector at current position
var m = v[2];
if (m === null) {
particle.age = MAX_PARTICLE_AGE; // particle has escaped the grid, never to return...
}
else {
var xt = x + v[0];
var yt = y + v[1];
if (field(xt, yt)[2] !== null) {
// Path from (x,y) to (xt,yt) is visible, so add this particle to the appropriate draw bucket.
particle.xt = xt;
particle.yt = yt;
buckets[colorStyles.indexFor(m)].push(particle);
}
else {
// Particle isn't visible, but it still moves through the field.
particle.x = xt;
particle.y = yt;
}
}
particle.age += 1;
});
}
var g = params.canvas.getContext("2d");
g.lineWidth = PARTICLE_LINE_WIDTH;
g.fillStyle = fadeFillStyle;
function draw() {
// Fade existing particle trails.
var prev = g.globalCompositeOperation;
g.globalCompositeOperation = "destination-in";
g.fillRect(bounds.x, bounds.y, bounds.width, bounds.height);
g.globalCompositeOperation = prev;
// Draw new particle trails.
buckets.forEach(function(bucket, i) {
if (bucket.length > 0) {
g.beginPath();
g.strokeStyle = colorStyles[i];
bucket.forEach(function(particle) {
g.moveTo(particle.x, particle.y);
g.lineTo(particle.xt, particle.yt);
particle.x = particle.xt;
particle.y = particle.yt;
});
g.stroke();
}
});
}
(function frame() {
try {
windy.timer = setTimeout(function() {
requestAnimationFrame(frame);
evolve();
draw();
}, 1000 / FRAME_RATE);
}
catch (e) {
console.error(e);
}
})();
}
var start = function( bounds, width, height, extent ){
var mapBounds = {
south: deg2rad(extent[0][1]),
north: deg2rad(extent[1][1]),
east: deg2rad(extent[1][0]),
west: deg2rad(extent[0][0]),
width: width,
height: height
};
stop();
// build grid
buildGrid( params.data, function(grid){
// interpolateField
interpolateField( grid, buildBounds( bounds, width, height), mapBounds, function( bounds, field ){
// animate the canvas with random points
windy.field = field;
animate( bounds, field );
});
});
};
var stop = function(){
if (windy.field) windy.field.release();
if (windy.timer) clearTimeout(windy.timer)
};
var windy = {
params: params,
start: start,
stop: stop
};
return windy;
}
// shim layer with setTimeout fallback
window.requestAnimationFrame = (function(){
return window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
function( callback ){
window.setTimeout(callback, 1000 / 20);
};
})();