
6/28/22 CapDataReceive_02c.cpp 1

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

/*	This	is	an	investigative	variabnt	of	the	Raspberry	Pi,	receive,	side	of	my
	*	'step-5'	milestone:	*	Transmit	/	Receive	capacitance	measurement.	In	this
	*	code	I	am	trying	to	work	out	what	is	going	on	with	the	receipt	and	rendering
	*	of	the	non-string	and	non-8-bit	intteger	data	values.	Floats	and	unsigned	long
	*	are	not	coming	across	correctly.	One	theory	is	this	is	due	to	differing
	*	endian	encoding	on	the	tiny84	vs	the	RPi.	So	I	am	herein	trying	to	work	this
	*	out.
	*
	*	06-19-2022:	First	iteration,	using	code	that	has	started	as	a	copy	of	CapDataReceive_02b.cpp
	*	06-20-2022:	Inserting	HEX	output	to	investigate	endian	difference
	*	06-26-2022:	Manually	load	struct	from	raw	bytes	received
	*	06-27-2022:	Continue	manual	loading	work,	based	on	endianTest_05.cpp	success	on	my	desktop.
	*/
#define	VERSION	"06-27-2022	rel	05"

/*
	*	For	nRF24	radio	chip	documentation	see	https://nRF24.github.io/RF24
	*	For	the	approach	on	capacitance	measurement	on	the	ATTiny84	side	--:
	*			RCTiming_capacitance_meter	||	Paul	Badger	2008
	*			@	https://www.arduino.cc/en/Tutorial/Foundations/CapacitanceMeter

	*	This	source	based	on	"manualAcknowledgements.cpp"	in	the	RPi	nRF24	library
	*	noted	above.
	*/

#include	<ctime>							//	time()
#include	<iostream>				//	cin,	cout,	endl
#include	<iomanip>					//	format	manipulators	for	use	with	cout
#include	<string>						//	string,	getline()
#include	<time.h>						//	CLOCK_MONOTONIC_RAW,	timespec,	clock_gettime()
#include	<RF24/RF24.h>	//	RF24,	RF24_PA_LOW,	delay()

using	namespace	std;

/******************	Linux	***********************/
//	Radio	CE	Pin,	CSN	Pin,	SPI	Speed
//	CE	Pin	uses	GPIO	number	with	BCM	and	SPIDEV	drivers,	other	platforms	use	their	own	pin
numbering
//	CS	Pin	addresses	the	SPI	bus	number	at	/dev/spidev<a>.
//	ie:	RF24	radio(<ce_pin>,	<a>*10+);	spidev1.0	is	10,	spidev1.1	is	11	etc..

//	Generic:
RF24	radio(22,	0);
/******************	Linux	(BBB,x86,etc)	***********************/
//	See	http://nRF24.github.io/RF24/pages.html	for	more	information	on	usage
//	See	http://iotdk.intel.com/docs/master/mraa/	for	more	information	on	MRAA
//	See	https://www.kernel.org/doc/Documentation/spi/spidev	for	more	information	on	SPIDEV

/*	===
			Gloabal	Variable	Declarations
			===
*/

				/*	Using	a	struct	to	directly	load	the	received	payload	seems	to	fail

6/28/22 CapDataReceive_02c.cpp 2

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

							due	to	boundary-alignment	issues.	Whole	bytes	seem	to	get	dropped
							or	shifted	as	compared	to	the	originating	struct	on	the	transmit
							side.	NOTE:	At	first	I	thought	this	was	an	endian	mismatch	issue,
							but	after	much	debugging	have	determined	that	is	not	the	issue,	the
							issue	is	struct	boundary/alignment	mismatch.
				*/
				/*	SO	-	below	declare	is	a	variable	to	read	the	received	bytes	into.
							And	I	will	see	if	I	can	work	out	how	best	to	then	take	the	raw
							bytes	and	assign	them	into	the	intended	rxPayload	struct.
				*/
uint8_t	rxBytes[40];

				/*	Struct	to	hold	the	data	received	in
							from	the	ATTiny's	nRF24
				*/
struct	RxPayloadStruct	{
		char	statusText[11];												//	For	use	in	debugging.
		float	testFloat1	=	0;
		uint32_t	chargeTime	=	0;
		float	testFloat2	=	0;
		char	units[4];																		//	nFD,	mFD,	FD
		float	capacitance	=	0;
};
RxPayloadStruct	rxPayload;

				/*	Structure	to	store	the	outgoing	ACK	payload
				*/
struct	AckPayloadStruct	{
		char	message[11];															//	Outgoing	message,	up	to	10	chrs+Null.
		uint8_t	counter;
};
AckPayloadStruct	ackPayload;

				/*	Custom	defined	timer	for	evaluating	transmission
							time	in	microseconds.
				*/
struct	timespec	startTimer,	endTimer;

/*	===
			Function	prototypes
			===
*/
void	setRole();																																																	//	prototype	to	set	the	node's
role
void	slave();																																																			//	prototype	of	the	RX	node's
behavior
void	loadRxStruct(RxPayloadStruct*	pStruct,	uint8_t*	pBytes);			//	prototype	for	struct	load
function
void	showHexOfBytes(unsigned	char*	b,	int	iLen);																//	display	hex	value	of	variables

int	main(int	argc,	char**	argv)	{
				//	perform	hardware	check
				if	(!radio.begin())	{
								cout	<<	"radio	hardware	is	not	responding!!"	<<	endl;

6/28/22 CapDataReceive_02c.cpp 3

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

								return	0;	//	quit	now
				}

				//	Let	these	addresses	be	used	for	the	pair
				uint8_t	address[2][6]	=	{"1Node",	"2Node"};
				//	It	is	very	helpful	to	think	of	an	address	as	a	path	instead	of	as
				//	an	identifying	device	destination

				//	to	use	different	addresses	on	a	pair	of	radios,	we	need	a	variable	to
				//	uniquely	identify	which	address	this	radio	will	use	to	transmit
				bool	radioNumber	=	1;	//	0	uses	address[0]	to	transmit,	1	uses	address[1]	to	transmit

				//	print	example's	name
				cout	<<	endl<<	argv[0]	<<	"	["	<<	VERSION	<<	"]"	<<	endl;

				//	Set	the	radioNumber	via	the	terminal	on	startup
				cout	<<	"Which	radio	is	this?	Enter	'0'	or	'1'.	Defaults	to	'0'	";
				string	input;
				getline(cin,	input);
				radioNumber	=	input.length()	>	0	&&	(uint8_t)input[0]	==	49;

				//	to	use	ACK	payloads,	we	need	to	enable	dynamic	payload	lengths
				radio.enableDynamicPayloads();				//	ACK	payloads	are	dynamically	sized

				//	Acknowledgement	packets	have	no	payloads	by	default.	We	need	to	enable
				//	this	feature	for	all	nodes	(TX	&	RX)	to	use	ACK	payloads.
				radio.enableAckPayload();

				//	Set	the	PA	Level	low	to	try	preventing	power	supply	related	problems
				//	because	these	examples	are	likely	run	with	nodes	in	close	proximity	to
				//	each	other.
				radio.setPALevel(RF24_PA_LOW);		//	RF24_PA_MAX	is	default.

				//	set	the	TX	address	of	the	RX	node	into	the	TX	pipe
				radio.openWritingPipe(address[radioNumber]);					//	always	uses	pipe	0

				//	set	the	RX	address	of	the	TX	node	into	a	RX	pipe
				radio.openReadingPipe(1,	address[!radioNumber]);	//	using	pipe	1

				//	For	debugging	info
				//	radio.printDetails();								//	(smaller)	function	that	prints	raw	register	values
				radio.printPrettyDetails();					//	(larger)	function	that	prints	human	readable	data

				//	ready	to	execute	program	now
				setRole();	//	calls	master()	or	slave()	based	on	user	input
				return	0;

}	//	Main()

/*	===
			Local	Functions
			===
*/

/*	Set	this	node's	role	from	stdin	stream.
			This	only	considers	the	first	char	as	input.

6/28/22 CapDataReceive_02c.cpp 4

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

*/
void	setRole()	{
				string	input	=	"";
				while	(!input.length())	{
								cout	<<	"***	PRESS	'r'	to	begin	receiving	from	the	other	node\n";
								cout	<<	"***	PRESS	'q'	to	exit"	<<	endl;
								getline(cin,	input);
								if	(input.length()	>=	1)	{
												if	(input[0]	==	'R'	||	input[0]	==	'r')
																slave();
												else	if	(input[0]	==	'Q'	||	input[0]	==	'q')
																break;
												else
																cout	<<	input[0]	<<	"	is	an	invalid	input.	Please	try	again."	<<	endl;
								}
								input	=	"";	//	stay	in	the	while	loop
				}	//	while
}	//	setRole()

/*	Performs	receiver-role	tasks	*/
void	slave()	{
				memcpy(ackPayload.message,	"Pkt	Count	",	10);										//	set	the	ackPayload	message
				ackPayload.counter	=	0;																																//	set	the	ackPayload	counter

								/*	Load	the	ackPayload	for	first	received
											transmission	on	pipe	0.
								*/
				radio.writeAckPayload(1,	&ackPayload,	sizeof(ackPayload));

				radio.startListening();																																//	put	radio	in	RX	mode
				time_t	startTimer	=	time(nullptr);																					//	start	a	timer
				while	(time(nullptr)	-	startTimer	<	12)	{														//	use	12	second	timeout
								uint8_t	pipe;
								if	(radio.available(&pipe))	{																						//	is	there	a	received	payload?	get	the

pipe	number	that	recieved	it
												uint8_t	bytes	=	radio.getDynamicPayloadSize();	//	yes,	get	it's	size
												radio.read(&rxBytes[0],	sizeof(rxBytes));						//	fetch	payload	from	RX	FIFO

												unsigned	int	wdthVarName	=	14;
												unsigned	int	wdthValue	=	14;

												cout	<<	endl;
												cout	<<	setw(0)	<<	setfill('	');
												cout	<<	fixed;

																/*	Show	the	sizes	of	things.
																*/
												cout	<<	"Recieved	"	<<	(unsigned	int)bytes;
												cout	<<	"	bytes	on	pipe	"	<<	(unsigned	int)pipe	<<	"	|	";
												cout	<<	"Size	of	rxBytes[]:	"	<<	sizeof(rxBytes)	<<	"	||	";
												cout	<<	"Size	Of	rxPayload	struct:	"	<<	sizeof(rxPayload)	<<	"	|	"	<<	endl;

																/*	Inspect	the	received	data	received	from	ATTiny.
																*/
												cout	<<	setfill('-')	<<	setw(sizeof(rxBytes)*3)	<<	"-"	<<	setfill('	')	<<	endl;
												cout	<<	"rxBytes	in	HEX	/	rxBytes[]	index	offset	---:	"	<<	endl;
												showHexOfBytes((unsigned	char	*)&rxBytes,sizeof(rxBytes));

6/28/22 CapDataReceive_02c.cpp 5

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

												cout	<<	endl;
												for	(unsigned	int	k=0;	k<sizeof(rxBytes);	k++)	{
																cout	<<	setw(2)	<<	setfill('0')	<<	k	<<	"	";
												}
												cout	<<	endl;
												cout	<<	setfill('-')	<<	setw(sizeof(rxBytes)*3)	<<	"-"	<<	setfill('	')	<<	endl;

																/*	'Manually'	load	rxPayload	structure	from	the	received	bytes	array.
																*/
												loadRxStruct(&rxPayload,	rxBytes);

																/*	Display	received	data,	as	loaded	into	the	struct,	on	the	console.
																	*/
												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	statusText:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.statusText);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	rxPayload.statusText	<<	"	|	0x	";
												showHexOfBytes((unsigned	char*)&rxPayload.statusText,sizeof(rxPayload.statusText));
												cout	<<	endl;

												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	testFloat1:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.testFloat1);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	setprecision(2)	<<	rxPayload.testFloat1	<<	"	|	0x

";
												showHexOfBytes((unsigned	char*)&rxPayload.testFloat1,sizeof(rxPayload.testFloat1));
												cout	<<	endl;

												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	chargeTime:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.chargeTime);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	rxPayload.chargeTime	<<	"	|	0x	";
												showHexOfBytes((unsigned	char*)&rxPayload.chargeTime,sizeof(rxPayload.chargeTime));
												cout	<<	endl;

												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	testFloat2:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.testFloat2);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	rxPayload.testFloat2	<<	"	|	0x	";
												showHexOfBytes((unsigned	char*)&rxPayload.testFloat2,sizeof(rxPayload.testFloat2));
												cout	<<	endl;

												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	units:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.units);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	rxPayload.units	<<	"	|	0x	";
												showHexOfBytes((unsigned	char*)&rxPayload.units,sizeof(rxPayload.units));
												cout	<<	endl;

												cout	<<	setw(wdthVarName)	<<	setfill('	')	<<	"	capacitance:	";
												cout	<<	setw(2)	<<	(unsigned	int)sizeof(rxPayload.capacitance);
												cout	<<	"	|	"	<<	setw(wdthValue)	<<	rxPayload.capacitance	<<	"	|	0x	";
												showHexOfBytes((unsigned	char*)&rxPayload.capacitance,sizeof(rxPayload.capacitance));
												cout	<<	endl	<<	endl;

																/*	Display	onto	the	console	what	we	are	going	to	respond	back	with.
																*/
												cout	<<	"	Sent	in	Response:	";
												cout	<<	ackPayload.message;
												cout	<<	(unsigned	int)ackPayload.counter	<<	endl;			//	print	ACK	payload	sent

																/*	Reset	the	timer.
																*/

6/28/22 CapDataReceive_02c.cpp 6

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

												startTimer	=	time(nullptr);

																/*	Increment	the	'payloads	received'	counter.
																*/
												ackPayload.counter	=	ackPayload.counter	+	1;

																/*	Load	the	ACK	payload	for	use	on	the	next	received
																			transmission	on	pipe	0
																*/
												radio.writeAckPayload(1,	&ackPayload,	sizeof(ackPayload));
								}	//	if	received	something
				}	//	while

								/*	Handle	radio	listening	timout	case.	Which,	other	than	a	Control-C	by
											the	user,	is	the	only	way	the	slave()	function	ends.	And	upon	ending
											we	return	back	to	the	setRole()	function's	while	loop,	allowing	the
											user	to	quite	or	initiate	another	try.
								*/
				cout	<<	"Timeout	While	Waiting	to	Receive	Data.	Leaving	RX	role."	<<	endl;
				cout	<<	"You	may	quite	or	press	r	to	try	again."	<<	endl;
				radio.stopListening();																																	//	recommended	idle	behavior	is	TX	mode
}	//	slave

/*	Manually	load	the	incoming	data	into	a	structure.
			--
			REQUIRES:	The	RxPayloadStruct	defintion	on	this	node	exactly	match	the
													definition	created	on	the	transmit	node.
	*/
void	loadRxStruct(RxPayloadStruct*	pStruct,	uint8_t*	pBytes)	{
				size_t	offset	=	0;

								/*	Define	columns	for	the	display	output.
								*/
				unsigned	int	wdthCol1,	wdthCol2,	wdthCol3,	wdthCol4;
				wdthCol1	=	23;	wdthCol2	=	3;	wdthCol3	=	25;	wdthCol4	=	6;

				cout	<<	setfill('	');
				cout	<<	fixed;

				cout	<<	setw(wdthCol1)	<<	"offset	to	statusText:"	<<	setw(wdthCol2)	<<	offset	<<	endl;
				memcpy(pStruct->statusText,	&pBytes[offset],	sizeof(pStruct->statusText));
				offset	=	offset	+	sizeof(pStruct->statusText);

				cout	<<	setw(wdthCol1)	<<	"offset	to	testFloat1:"	<<	setw(wdthCol2)	<<	offset;
				pStruct->testFloat1	=	*(float	*)&pBytes[offset];
				cout	<<	setw(wdthCol3)	<<	left	<<	"	|	Value	of	testFloat1=	"	<<	setw(wdthCol4)	<<	right	<<

pStruct->testFloat1	<<	endl;
				offset	=	offset	+	sizeof(pStruct->testFloat1);

				cout	<<	setw(wdthCol1)	<<	"offset	to	chargeTime:"	<<	setw(wdthCol2)	<<	offset;
				pStruct->chargeTime	=	*(uint32_t	*)&pBytes[offset];
				cout	<<	setw(wdthCol3)	<<	left	<<	"	|	Value	of	chargeTime=	"	<<	setw(wdthCol4)	<<	right	<<

pStruct->chargeTime	<<	endl;
				offset	=	offset	+	sizeof(pStruct->chargeTime);

6/28/22 CapDataReceive_02c.cpp 7

file:///home/jroc/Dropbox/ToShare-Misc/BugReports/RF24_ByteAlignment/CapDataReceive_02c.cpp

				cout	<<	setw(wdthCol1)	<<	"offset	to	testFloat2:"	<<	setw(wdthCol2)	<<	offset;
				pStruct->testFloat2	=	*(float	*)&pBytes[offset];
				cout	<<	setw(wdthCol3)	<<	left	<<	"	|	Value	of	testFloat2=	"	<<	setw(wdthCol4)	<<	right	<<

pStruct->testFloat2	<<	endl;
				offset	=	offset	+	sizeof(pStruct->testFloat2);

				cout	<<	setw(wdthCol1)	<<	"offset	to	units:"	<<	setw(wdthCol2)	<<	offset	<<	endl;
				memcpy((unsigned	char	*)&pStruct->units,	&pBytes[offset],	sizeof(pStruct->units));
				offset	=	offset	+	sizeof(pStruct->units);

				cout	<<	setw(wdthCol1)	<<	"offset	to	capacitance:"	<<	setw(wdthCol2)	<<	offset;
				pStruct->capacitance	=	*(float	*)&pBytes[offset];
				cout	<<	setw(wdthCol3)	<<	left	<<	"	|	Value	of	capacitance=	"	<<	setw(wdthCol4)	<<	right	<<

pStruct->capacitance	<<	endl;

				cout	<<	endl;
}

/*	Display	the	HEX	value	of	the	bytes	that	store	a	variable.
			--
			PARMS:						1.	The	first	byte	of	the	variable	to	show	the	HEX	for	is	passed	in
												as	a	pointer	to	an	unsigned	char.
															2.	The	2nd	param	is	the	length	of	the	variable,	i.e.,	the	length
												of	it's	data	type	(or	length	of	the	string	array	if	a	string).
												E.g.,	use	the	sizeof()	function	on	the	variable	to	obtain	this
												param.
	*/
void	showHexOfBytes(unsigned	char*	b,	int	iLen)	{
				for	(int	k=0;	k<iLen;	k++)	{
								cout	<<	setfill('0')	<<	setw(2)	<<	hex	<<	(unsigned	int)b[k]	<<	"	";
				}
				cout	<<	dec;
}

