-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy2.py
34 lines (24 loc) · 844 Bytes
/
deploy2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 2 16:10:30 2021
@author: Naoki
"""
from flask import Flask, request, jsonify
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
colunas = ['tamanho', 'ano', 'garagem'] #colunas do predict usada dentro do list comprehetion
df = pd.read_csv('casas.csv')
X = df.drop('preco', axis=1)
y=df.preco
X_train, X_test , y_train, y_test = train_test_split(X,y ,test_size=0.3, random_state=42)
modelo = LinearRegression()
modelo.fit(X_train, y_train)
app = Flask(__name__)
@app.route('/cotacao/', methods=['POST']) # para passar json usamos o post
def cotacao():
dados = request.get_json()
dados_input = [dados[x] for x in colunas]
preco = modelo.predict([dados_input])
return jsonify(preco=preco[0])
app.run()