-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
295 lines (267 loc) · 9.74 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from julep import Client
import sqlite3
import json
from julep.api import ChatResponse
api_key = "eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiI5ODE3NzM3Ni1hZWQzLTQ4ZmMtYTc2MC1lOTY2ZGZlYThjNGIiLCJlbWFpbCI6Im5hcmVucm9ja3N0YXIxQGdtYWlsLmNvbSIsImlhdCI6MTcxNzI1NDEzNywiZXhwaXJlc0luIjoiMXkiLCJyYXRlTGltaXRQZXJNaW51dGUiOjM1MDAsInF1b3RhUmVzZXQiOiIxaCIsImNsaWVudEVudmlyb25tZW50Ijoic2VydmVyIiwic2VydmVyRW52aXJvbm1lbnQiOiJwcm9kdWN0aW9uIiwidmVyc2lvbiI6InYwLjIiLCJleHAiOjE3NDg4MTE3Mzd9.WKOUWvtTYnhVUFUcziKWXqyhIUs1jMH5ewBg_V_eEaJnFw5BELT8wx2wZnnRk11n1FCSO6AmCfMt9qaIb8b_6A"
client = Client(api_key=api_key)
conn = sqlite3.connect('karani.db')
def get_matching_users(user_name: str):
connec = sqlite3.connect('karani.db')
cursor = connec.cursor()
query = f"""
SELECT * FROM USER WHERE username LIKE '%{user_name}%' or full_name LIKE '%{user_name}%';
"""
cursor.execute(query)
rows = cursor.fetchall()
result_lines = []
for row in rows:
line = ', '.join(str(item) for item in row)
result_lines.append(line)
all_results = '\n'.join(result_lines)
connec.close()
return all_results
def get_matching_posts_with_tagged_users(user_id: str, time: str = "-7 days"):
connec = sqlite3.connect('karani.db')
cursor = connec.cursor()
query = f"""
SELECT 'analysis: ' || analysis, 'at: ' || l.name, 'alongwith: ' || UT.full_name as friends
FROM POSTS
JOIN LOCATIONS L on POSTS.location = L.id
JOIN TAGGED_USERS TU on POSTS.post_id = TU.post_id
JOIN USER UT on UT.id = TU.user_id
and timestamp >= datetime('now', '{time}')
and POSTS.user_id = '{user_id}'; """
cursor.execute(query)
rows = cursor.fetchall()
result_lines = []
for row in rows:
line = ', '.join(str(item) for item in row)
result_lines.append(line)
all_results = '\n'.join(result_lines)
connec.close()
return all_results
def get_users_from_keyword(keyword):
conn = sqlite3.connect('karani.db')
cursor = conn.cursor()
query = f"""
SELECT U.full_name, P.analysis from POSTS P JOIN USER U on U.id = P.user_id where P.analysis LIKE '%{keyword}%';
"""
cursor.execute(query)
rows = cursor.fetchall()
result_lines = []
for row in rows:
line = ', '.join(str(item) for item in row)
result_lines.append(line)
all_results = '\n'.join(result_lines)
return all_results
# def get_matching_posts(time: str = "-7 days", user_id: str = None):
# cursor = conn.cursor()
# query = f"""
# SELECT analysis, l.name
# FROM POSTS JOIN main.LOCATIONS L on POSTS.location = L.id
# and timestamp >= datetime('now', '{time}')
# and user_id = '{user_id}'; """
# cursor.execute(query)
# rows = cursor.fetchall()
#
# result_lines = []
# for row in rows:
# line = ', '.join(str(item) for item in row)
# result_lines.append(line)
#
# all_results = '\n'.join(result_lines)
# return all_results
def summarize(big_string: str, query: str):
res = client.sessions.chat(
session_id=summarize_session.id,
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": query
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": big_string
}
],
}
],
remember=False
)
return res.response[0][0].content
def take_user_input(query: str):
return input(query)
TOOLS = [
{
"type": "function",
"function": {
"name": "get_users_from_keyword",
"description": "Searches all users posts for the provided keyword and returns the users and their posts.",
"parameters": {
"type": "object",
"properties": {
"keyword": {
"type": "string",
"description": "The keyword to search for in the analysis column of the database.",
},
},
"required": ["keyword"]
}
}
},
{
"type": "function",
"function": {
"name": "take_user_input",
"description": "Takes a user input for the provided query and returns it as a string. It should be used to get user input for further processing.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to be displayed to the user to get the input.",
},
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "summarize",
"description": "Summarizes the provided big string to a smaller string.",
"parameters": {
"type": "object",
"properties": {
"big_string": {
"type": "string",
"description": "The big string to be summarized.",
},
"query": {
"type": "string",
"description": "The query to be used to summarize the big string.",
},
},
"required": ["big_string", "query"]
}
}
},
{
"type": "function",
"function": {
"name": "get_matching_users",
"description": "Gets the users matching the provided user name.",
"parameters": {
"type": "object",
"properties": {
"user_name": {
"type": "string",
"description": "The user name to be used to get the matching users.",
},
},
"required": ["user_name"]
}
}
},
{
"type": "function",
"function": {
"name": "get_matching_posts_with_tagged_users",
"description": "Gets the matching posts alongwith tagged users matching the provided user id and time. Use it when you want to see who the user is tagging in their posts, or hanging out with.",
"parameters": {
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "The user id to be used to get the tagged users.",
},
"time": {
"type": "string",
"description": "The time to be used to get the tagged users. This is sqlite date comparator like '-7 days.'",
},
},
"required": ["user_id", "time"]
}
}
}
]
INSTRUCTIONS = [
"If you want to get user_id for a user name, invoke get_matching_users with the user name",
"After getting the user_id get the relevant posts for the user_id and time using get_matching_posts_with_tagged_users",
"If a random question is provided, figure out the most appropriate keyword in the query and get the relevant posts and summarise the analyses by calling get_users_from_keyword"
]
summarize_agent = client.agents.create(
name="Summarizer",
about="Summarizes the provided text for the provided query",
model="gpt-4o",
metadata={"name": "Summarizer"}
)
summarize_session = client.sessions.create(
agent_id=summarize_agent.id,
situation="Analyse the provided images according to the requirements",
metadata={"agent": "Instagram Post Analyser"},
)
agent = client.agents.create(
name="Question Answerer",
about="""
Answers the questions asked by the user using the tools it has, if it requires more data, it will ask the user for it.
Always invoke the summarize() tool at the end to summarize the data for the user.
""",
model="gpt-4o",
metadata={"name": "Question Answerer"},
tools=TOOLS,
instructions=INSTRUCTIONS
)
while True:
session = client.sessions.create(
agent_id=agent.id,
situation="Answer the questions asked by the user",
metadata={"agent": "Question Answerer"},
)
user_input = input("Good Afternoon good sir, would you like some tea?\n")
if user_input == "exit":
break
outputs = []
response = client.sessions.chat(
session_id=session.id,
messages=[
{
"role": "user",
"content": user_input,
}
],
)
while response.finish_reason == "tool_calls":
for _responses in response.response:
for _response in _responses:
try:
tool_function = json.loads(_response.content)
args = json.loads(
tool_function.get("arguments", "{}")
) # Parse the JSON string into a dictionary
tool = tool_function.get("name", "")
outputs.append(globals()[tool](**args))
except json.JSONDecodeError:
outputs.append(_response.content)
response = client.sessions.chat( # submit the tool call
session_id=session.id,
messages=[
{
"role": "assistant",
"content": json.dumps(outputs),
}
],
recall=True,
remember=True,
)
print(response.response[0][0].content)
print("\n\n")